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Abstract

Embodied AI agents responsible for execut-001
ing interconnected, long-sequence household002
tasks often face difficulties with in-context003
memory, leading to inefficiencies and errors004
in task execution. To address this issue, we005
introduce KARMA, an innovative memory sys-006
tem that integrates long-term and short-term007
memory modules, enhancing large language008
models (LLMs) for planning in embodied009
agents through memory-augmented prompting.010
KARMA distinguishes between long-term and011
short-term memory, with long-term memory012
capturing comprehensive 3D scene graphs as013
representations of the environment, while short-014
term memory dynamically records changes015
in objects’ positions and states. This dual-016
memory structure allows agents to retrieve rel-017
evant past scene experiences, thereby improv-018
ing the accuracy and efficiency of task plan-019
ning. Short-term memory employs strategies020
for effective and adaptive memory replace-021
ment, ensuring the retention of critical infor-022
mation while discarding less pertinent data.023
The memory-augmented embodied AI agent024
improves 1.9× success rates and 3.2× task025
execution efficiency. Through this plug-and-026
play memory system, KARMA significantly en-027
hances the ability of embodied agents to gener-028
ate coherent and contextually appropriate plans,029
making the execution of complex household030
tasks more efficient.031

1 Introduction032

Robotic applications are evolving towards longer033

and more complex tasks. Using an LLM as its core034

planning module can effectively decompose long035

and complex tasks into multiple short and fixed036

movements (Choi et al., 2024; Sarch et al., 2024;037

Chen et al., 2023b), increasing the success rate.038

Yet, simply equipping an embodied agent or a039

robot with an LLM is not enough. Take indoor040

household tasks as an example, they usually re-041

quire a sequence of interrelated instructions where042

later ones have strong or weak dependencies on 043

previous ones. When the amount of in-context ex- 044

amples and task descriptions necessary to cover the 045

task constraints increases, even advanced models 046

like GPT-4o can blur critical details, such as the 047

location of a previously used object. Thus, there 048

is a growing need to enhance the power of LLMs 049

with "memory-augmented prompting" (Sarch et al., 050

2023; Lewis et al., 2020; Mao et al., 2020). 051

We introduce KARMA, a plug and play memory 052

system tailored for indoor embodied agents. The 053

memory system comprises both long-term memory, 054

represented as a non-volatile 3D scene graph, and 055

volatile short-term memory, which retains immedi- 056

ate information about objects encountered during 057

instruction execution. The memory system allows 058

agents to accurately recall the positions and states 059

of objects during complex household tasks, reduc- 060

ing task redundancy and enhancing execution effi- 061

ciency and success rates. 062

On top of the memory system design, we pro- 063

pose to effectively maintain the contents of the 064

memory given the capacity constraints. Specifi- 065

cally, we use the metric hit rate that measures how 066

often a memory recall requirement is satisfied. We 067

demonstrate that a higher hit rate indicates an im- 068

proved replacement policy and enhanced system 069

performance. Using this metric, we propose replac- 070

ing the least recently used (LRU) unit whenever a 071

new unit needs to be incorporated into a full mem- 072

ory. Our findings show that this approach achieves 073

a higher hit rate compared to a naive first-in-first- 074

out policy. 075

In summary, the paper makes following contri- 076

butions to the community: 077

• We tailor a memory system for indoor embod- 078

ied agents, which combines a long-term mem- 079

ory module and a short-term memory module. 080

We also propose the way of recalling from 081

both modules and feeding it to the LLM plan- 082

ner. 083
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• We propose to use hit rate as the metric of084

evaluating the effectiveness of memory re-085

placement mechanism and present to always086

replace the least frequently used unit with the087

new unit.088

• We evaluate the memory-augmented LLM089

planner in the simulated household environ-090

ments of ALFRED (Shridhar et al., 2021) and091

AI2-THOR (Kolve et al., 2017). The results092

shows significant improvements in the effi-093

ciency and accuracy of embodied agents per-094

forming long-sequence tasks.095

2 Related Work096

2.1 LLM for Robotics097

Large language models have been widely used098

in robotic applications (Huang et al., 2022; Ahn099

et al., 2022) due to their impressive generaliza-100

tion abilities and common-sense reasoning capa-101

bilities (Brown et al., 2020; Madaan et al., 2022;102

Achiam et al., 2023). In most cases, LLMs replace103

the task planning and decision making modules104

in traditional robotic computing pipeline. Most105

robotic applications now encode sensor inputs into106

the format of LLM-accepted tokens and use LLMs107

to generate the next instructions, which further108

connect to robots through predefined skills or ba-109

sic movements across different degrees of free-110

dom (Ahn et al., 2022; Jin et al., 2023; Wu et al.,111

2023a,c).112

2.2 Memory-Augmented Prompting of113

LLM-Based Agent114

Using LLMs as task planner for robots face115

the challenge of accurately retaining information116

across multiple interdependent tasks. Thus, aug-117

menting LLM-based agents with different forms118

of memory is a common approach in role-playing119

games (Shao et al., 2023; Li et al., 2023a; Wang120

et al., 2023e; Zhou et al., 2023; Zhao et al., 2023),121

social simulations (Kaiya et al., 2023; Park et al.,122

2023; Gao et al., 2023; Li et al., 2023b; Hua et al.,123

2023), personal assistants (Zhong et al., 2024;124

Modarressi et al., 2023; Lu et al., 2023; Packer125

et al., 2023; Lee et al., 2023; Wu et al., 2023b; Hu126

et al., 2023; Liu et al., 2023; Liang et al., 2023),127

open-world games (Wang et al., 2023a; Zhu et al.,128

2023; Wang et al., 2023f; Yan et al., 2023), code129

generation (Tsai et al., 2023; Chen et al., 2023a;130

Qian et al., 2023; Li et al., 2023b; Zhang et al.,131

2024b), recommendations (Wang et al., 2023d,c;132

Zhang et al., 2024a), and domain-specific expert 133

systems (Wang et al., 2023b; Yang et al., 2023; 134

Zhao et al., 2024b). 135

The definition and formats of the memory is dis- 136

tinctive in different works. Historical actions (Park 137

et al., 2023), thoughts (Liu et al., 2023), con- 138

texts (Liang et al., 2023; Packer et al., 2023) are 139

explored. Different memory management mecha- 140

nisms are also designed and evaluated. For exam- 141

ple, agents can simply use text indexing to match 142

relevant memory; the memory recall and manage- 143

ment can also be much more complicated, involv- 144

ing text embedding, semantic retrieval(Zhao et al., 145

2024a) and Graph RAG(Edge et al., 2024). 146

Despite existing efforts, integrating memory 147

mechanisms into LLMs remains at a preliminary 148

stage, particularly regarding memory saving and 149

updating mechanisms. For example, saving ev- 150

erything permanently can result in unaffordable 151

storage requirements, while refreshing the mem- 152

ory every time agents restart will lose any long- 153

term capability. Additionally, the decision of which 154

memory unit to replace remains unsolved. Most 155

approaches use either a forgetting curve (Zhong 156

et al., 2024) or the simple first-in-first-out princi- 157

ple (Packer et al., 2023) without detailed discus- 158

sions on context-specific updates. 159

Our work addresses these limitations by incorpo- 160

rating a tailored memory framework for embodied 161

AI agents. This system includes long-term mem- 162

ory in the form of a 3D scene graph representing 163

static objects and short-term memory for instant 164

information about recent activities. This long-short 165

memory approach helps the agent better understand 166

its environment and recent actions. Various exit 167

and update mechanisms are discussed to maintain 168

effectiveness even under fixed memory capacity, 169

providing a comprehensive solution for long se- 170

quential tasks in household environments. 171

3 Method 172

We describe the methodology in this section, with 173

start on elaborating the problem setup (Sec. 3.1), 174

Sec. 3.2 gives an overview of the framework and 175

Sec. 3.3 and Sec. 3.4 reveals the long-term and 176

short-term memory design. We wrap Sec. 3.6 with 177

the novel memory exit and replacement mecha- 178

nism. 179
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3.1 Problem setup180

Although generalizable, our work focuses on in-181

door environment where users send instructions182

to an agent to perform a series of tasks, H =183

It0 , It1 , . . . , ItN . These tasks are typically related184

in terms of both time and order of completion. For185

instance, if the agent is asked to prepare a salad,186

it must first wash an apple (It0) and cut it (It1),187

then repeat the process with a tomato (It2 ,It3), and188

finally place the ingredients into a bowl and mix189

them. During this process, an large volume of high-190

dimensional data is incorporated through various191

sensors, such as the agent’s location and the po-192

sition and status of different objects. Even when193

equipped with a large language model as its plan-194

ner, the agent may lose track of its tasks and need195

to re-explore the environment, which motivates our196

work to customize a memory system to augment197

the agent.198

In this paper, we use S ∈ {Smanipulation ∪199

Snavigation} to represent the set of skills that the200

agent can perform, which should be executed by201

a LLM through pre-defined APIs. The instruction202

I can be further decomposed into an ordered set203

of K sub-tasks, T = {T1, T2, . . . , TK}, where K204

represents the sequence of sub-tasks over time.205

3.2 Overview206

KARMA is a memory system tailored for embodied207

AI agents, incorporating memory design, recall us-208

ing context embedding with a pre-trained LLM and209

an accurate replacement policy. Specifically, we210

design two memory modules: long-term memory211

and short-term memory. The long-term memory212

comprises a 3D scene graph (3DSG) representing213

static objects in the environment, while the short-214

term memory stores instant information about used215

or witnessed objects. The long-term memory aids216

the agent in better understanding the environment,217

and the short-term memory helps the agent under-218

stand its recent activities. Due to fixed memory219

capacity, we also discuss various exit and update220

mechanisms. Fig. 1 provides an overview of our221

work.222

3.3 Long-Term Memory Design223

Long-term memory is large in size, non-volatile,224

and task-irrelevant. It should be built incrementally225

and updated infrequently. This type of memory is226

designed to store static information that remains227

constant over extended periods, such as the layout228

of the environment and the positions of immovable 229

objects. In the context of an indoor agent, semantic 230

maps serve as an appropriate carrier for it. 231

In many forms of semantic maps, KARMA uses a 232

3D scene graph to represent the environment. The 233

main reason we choose a 3DSG instead of 2D se- 234

mantic maps or voxel grids is that 3DSG offers a 235

more accurate and comprehensive representation 236

of the environment and features a topological struc- 237

ture, which is essential for tasks that require precise 238

navigation and manipulation. Also, even a state-of- 239

the-art multi-modality LLM has difficulties under- 240

standing the geographic relationships from a 2D 241

semantic map, while a 3DSG display it explicitly. 242

The 3DSG utilizes a hierarchical structure en- 243

compassing floors, areas, and objects, not only 244

capturing the spatial relationships and attributes 245

of objects but also leveraging the benefits of a topo- 246

logical graph. This structure is particularly ad- 247

vantageous when expanding the map to represent 248

the environment, as its sparse topological nature 249

effectively mitigates the impact of accumulated 250

drifts compared to dense semantic maps. Thus, 251

3DSG is better suited to meet the navigation needs 252

in unknown environments. The construction pro- 253

cess of the 3DSG is similar to existing works 254

(Rosinol et al., 2021; Armeni et al., 2019; Rana 255

et al., 2023), as illustrated in Figure 2. We estab- 256

lish and manage a hierarchical topological graph 257

G = (V,E), where the set of vertices V is com- 258

posed of V1 ∪ . . . ∪ Vk, with k = 3, Each Vk repre- 259

sents the set of vertices at a particular level of the hi- 260

erarchy. The area nodes, V2 = {V 1
2 , V

2
2 , . . . , V

N
2 }, 261

are evenly distributed across the reachable regions 262

in the indoor environment, with their world coor- 263

dinates acquired through a simulator. If two area 264

nodes are navigable to each other, an edge is es- 265

tablished between them. For each area node, we 266

detect the types and additional information of ob- 267

jects within a certain radius, using data acquired 268

through a simulator. In real-world applications,this 269

object detection can be performed using methods 270

such as Faster R-CNN. The detected immovable 271

entities are then assigned as object nodes to their 272

respective area nodes. These object nodes encode 273

detailed attributes such as volume and 3D position. 274

In our framework, the agent gradually builds 275

and maintains a 3DSG as it explores the indoor 276

environment. The graph remains unchanged un- 277

less the indoor environment change. When being 278

used by the planner, we transform the 3DSG into 279
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Long-Horizon Tasks
Put an apple in 
the fridge.

Throw the tomato 
in the trash.

Find the apple and 
put it on the plate.

Ti
m

e
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LLM

Explore(‘Apple’) #find apple
Pickup(‘Apple’)
......
Put(‘Apple’,‘fridge’) 

GoTo(‘Apple’) #use memory
Pickup(‘Apple’) 
......
Put(‘Apple’,’plate’) 
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Memory
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Memory
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Adjacent 
   nodes

……

Object 1
ID

Position
State
Image

Object 2
ID

Position
State
Image

Object N
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Fig. 1: KARMA’s architecture, with a LLM as the core planner, a long-term and a short-term memory, and
corresponding recall and replacement mechanisms.

a topological graph and serialized it into a text280

data format that can be directly parsed by a pre-281

trained LLM. An example of a single area node282

from the 3DSG is as follows: {name: node_1,283

type: Area, contains: [bed, table, window, ...], ad-284

jacent nodes: [node_2, node_8], position: [2.34,285

0.00, 2.23]} with edges between nodes captured as286

{node_1↔ node_2, node_1↔ node_8}.287

Our design and use of long-term memory aim288

to provide accurate geometric relationships within289

the indoor environment. With this information, the290

agent is able to reduce the cost for repetitive en-291

vironment exploration by allowing the addition or292

deletion of nodes through topological relationships,293

thus updating the environment representation seam-294

lessly. This approach effectively avoids the drift295

errors typically caused by loop closure detection296

in traditional SLAM methods, and it minimizes297

the need for extensive place recognition processes,298

saving computational resources, storage, and time.299

Moreover, long-term memory enhances the300

agent’s ability to make informed decisions based on301

a comprehensive understanding of the environment.302

This capability is particularly useful for planning303

complex, multi-step tasks. By accessing detailed304

and persistent environmental data, the agent can 305

predict potential obstacles and plan its actions more 306

effectively, thereby improving both task comple- 307

tion success rates and execution efficiency. Also, 308

the 3DSG is updated when the indoor environment 309

changes, capturing the up-to-date information. 310

Scene Graph
Floor

Area

Object

Topological Graph Textual Descriptions
Topological graph: 

Area node 1's position is at (-0.92, 0.00, -

1.29), it contains {Fridge, GarbageCan, ...}

Navigable nodes:  Area node 2, 

                               Area node 8,
                                       

 ......

Fig. 2: Transforming 3D scene graphs into prompts.

3.4 Short-Term Memory 311

Short-term memory is small, volatile, and fre- 312

quently updated. It is refreshed every time the 313

agent starts and provides instant memorization of 314

recently used objects and their status during task 315

execution. This ensures that the same objects or 316

relevant information are readily available for sub- 317

sequent tasks. 318

Among all the information the agent captures 319

during tasks, vision data is relied upon, as it pro- 320

vides the highest information density compared to 321

other sensor inputs. After capturing an image, we 322
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use a vision language model (VLM) to analyze the323

image and extract the state of the object of interest324

(OOI). This process is task-specific, meaning the325

VLM is fed both the task and the image to handle326

multiple objects in the image. Subsequently, the327

world coordinates (acquired through a simulator),328

the state (generated by the VLM), and the raw im-329

age form a memory unit in the short-term memory,330

akin to a line of data in a cache. Finally, a multi-331

modality embedding model converts the memory332

unit into a vector for later recall.333

We use an example to illustrate the design of334

KARMA’s short-term memory. Given a task asking335

the agent to ’wash an apple and place it in a bowl,’336

the agent will memorize the coordinates of the ap-337

ple and its state (cleaned) at the end. If a subsequent338

task asks the agent to ’bring an apple,’ KARMA will339

retrieve the apple’s memory from short-term mem-340

ory, include it in the prompt, and query the LLM to341

generate a more efficient task plan. This saves the342

agent from exploring the kitchen to find the apple,343

reduces interactions with the LLM, and speeds up344

the process.345

Input Instruction 
wash an apple and 
place it on the table

Embedding 
   Model

Match Vector 
Similarity

Long-Term Memory

               Id: Apple 2|0|2
               Position: (2.45, 0.66, 2.61)
               State: washed(clean)

Short-Term Memory

Embedding 
   Model

              Id: Tomato 3|1|1
              Position: (3.45, 1.66, 1.61)
              State: in trash(dirty)

..........

Embedding 
   Model

Retrieveal 

Extended
Prompt

LLM as Planner

Fig. 3: Recalling long-term and short-term memory

3.5 Planner346

KARMA utilizes two memory modules to augment347

the planning process, in order to achieve higher348

success rates and lower costs. We first decompose349

a given instruction I into a sequence of subtasks or350

skills S ∈ {Smanipulation ∪ Snavigation}. These skills351

include basic agent actions such as Explore() and352

Openobject(), which are pre-programmed. The353

planner call the skills through a set of APIs (Kan-354

nan et al., 2023; Sarch et al., 2023). More details355

of APIs are provided in Apdx. D.356

KARMA’s planner uses both long-term and short-357

term memory when interacting with the LLM. As358

mentioned earlier, the entire long-term memory359

is directly serialized into the prompt, while only360

one unit of the short-term memory can be selected.361

KARMA uses vector similarity to select from the en-362

tire short-term memory. Each short-term memory363

is embedded into a set of vectors using a pre-trained364

embedding model. For the current instruction I , 365

KARMA retrieves the top-K most similar memo- 366

ries—those with the smallest cosine distance to the 367

embedding of the input instruction I . The corre- 368

sponding text content of these memories is then 369

added as context to the LLM prompt. 370

We show an example prompt in Apdx. A. It in- 371

cludes the action code for the basic skills S (pa- 372

rameterized as Python functions), examples of task 373

decomposition, the input instruction I , and the re- 374

trieves short-term memory and long-term memory. 375

The LLM is tasked with generating action code 376

based on the parameterized basic skills S. 377

3.6 Memory Replacement 378

Unlike long-term memory that can be stored in non- 379

volatile storage, short-term memory has a fixed 380

capacity and can easily become full. An effective 381

short-term replacement policy ensures it remains 382

highly relevant to subsequent tasks. 383

Hit rate. We use memory hit rate to evaluate 384

the effectiveness of memory replacement policies. 385

This metric is defined as the ratio of the number 386

of times the required memory units are found in 387

short-term memory to the total number of queries. 388

It is widely used in evaluating cache replacement 389

policies(Einziger and Friedman, 2014), with higher 390

values indicating better performance. 391

First-In-First-Out (FIFO). The FIFO replace- 392

ment policy is the most straightforward. It manages 393

memory units as a queue. When the queue is full 394

and a new memory unit needs to be added, the 395

earliest entry will be removed from the queue. 396

We improve the FIFO policy to better suit our 397

application by adding a merging option. When a 398

new memory unit needs to join the queue and the 399

queue is full, we first check the object’s ID in all 400

memory units in the queue. If the same ID exists, 401

the new unit will replace the old one with the same 402

object’s ID, instead of replacing the oldest unit. 403

Least Frequently Used. A more complex yet 404

accurate replacement policy is Least Frequently 405

Used (LFU). The design principle of LFU is based 406

on the usage frequency of each memory unit. 407

Whenever a new memory unit needs to join, the 408

existing unit with the lowest usage frequency is 409

replaced. This results in a high hit rate, as the 410

memory retains frequently-used units. Since per- 411

fect LFU is not feasible, we use an approximate 412

method called W-TinyLFU. 413

W-TinyLFU maintains two segments of mem- 414

5



ory: a main segment and a window segment. The415

main segment is organized in a two-segment Least416

Recently Used (LRU) manner, containing a protec-417

tion segment and an elimination segment. Units in418

the protection segment are the safest; even if they419

are picked for replacement, they first move to the420

elimination segment.421

Every time a unit needs to join the memory, it422

enters the window segment first. When the memory423

is full and a unit needs to be evicted, a comparison424

occurs among all units in the window segment and425

the elimination segment. The memory then selects426

the unit whose eviction would minimally impact427

the overall usage frequency and evicts it.428

W-TinyLFU uses counting Bloom filters (Luo429

et al., 2018) as the basic data structure to count430

the usage of memory units. To keep frequency431

statistics fresh, W-TinyLFU applies a reset method.432

Each time a memory unit is added, a global counter433

is incremented. When the counter reaches a thresh-434

old W , all counters are halved:ci ← ci
2 .435

4 Experiments436

We discuss the setup Sec. 4.1 and metrics Sec. 4.2437

first, followed by extensive experiments. This in-438

cludes success rate and efficiency (Sec. 4.3), dif-439

ferent replacement policies (Sec. 4.4) and ablation440

study (Sec. 4.5).441

4.1 Experimental Setup and Metrics442

Experimental Settings. We use the widely-443

adopted AI2-THOR simulator(Kolve et al., 2017)444

for evaluation. The simulator’s built-in object de-445

tection algorithm provided the label of objects and446

their relevant information for both long-term and447

short-term memory. Additionally, we employ Ope-448

nAI’s text-embedding-3-large model as the embed-449

ding model for memory recall.450

Baseline. To our best knowledge, most current451

methods using LLMs for task planning are very452

similar with LoTa-Bench(Choi et al., 2024). It pro-453

vides a prompt that includes a prefix, in-context454

examples to the LLM, and then the LLM calcu-455

lates the probabilities of all executable skills based456

on this prompt and selects the skill from skill sets457

most likely to complete the task. We also use it458

as our baseline. Additionally, we optimize the effi-459

ciency and success rate of planning and executing460

tasks in LoTa-Bench by referring to the skill sets461

configurations and selection described in SMART-462

LLM(Kannan et al., 2023).463

Dataset. The dataset construction utilizes 464

tasks from the ALFRED benchmark(Shridhar et al., 465

2021). By extracting its typical tasks and reorganiz- 466

ing them into long sequence tasks that align with 467

everyday human needs, we ensured a more accu- 468

rate assessment. More details of the dataset are 469

provided in supplementary material. 470

This new dataset, ALFRED-L, includes 48 high- 471

level instructions that detail the length, relevance, 472

and complexity of sequential tasks. Additionally, 473

it provides corresponding AI2-THOR floor plans 474

to offer spatial context for task execution. We also 475

include the ground truth states and corresponding 476

location of objects after the completion of each 477

subtask. This ground truth is used as symbolic goal 478

conditions to determine whether the tasks are suc- 479

cessfully completed. For example, conditions such 480

as heated, cooked, sliced, or cleaned are specified. 481

Our dataset comprises three task categories: 482

Simple Tasks have multiple unrelated tasks. The 483

agent is assumed to perform sequential tasks with 484

a length of less than five, without requiring specific 485

memory to assist in task completion. 486

Composite Tasks include highly related tasks. 487

These tasks involve multiple objects, and the agent 488

needs to utilize memories generated from previous 489

related tasks to execute subsequent subtasks. 490

Complex Tasks consist of multiple loosely re- 491

lated tasks. Some of these tasks involve specific 492

objects, while others involve vague object concepts. 493

For example, the agent be instructed to wash an 494

apple(It0) and cut it(It1), then to place a red food 495

on the plate(It2). 496

ALFRED-L comprises 15 tasks categorized as 497

simple tasks, 15 tasks as composite tasks, 18 tasks 498

as complex tasks. 499

Additionally, we use another dataset to bet- 500

ter assess the performance of the memory 501

replacement mechanism. The new dataset, 502

ALFWorld-R, consists of long-sequence tasks 503

H = {It0 , It1 , ..., ItN }, with each task Iti , i ∈ 504

{0, 1, 2, ..., N} in the sequence randomly selected 505

from tasks in ALFRED. 506

4.2 Evaluation Metrics. 507

Success Rate (SR) is the percentage of tasks 508

fully completed by the agent. A task is considered 509

complete only when all subtasks are achieved. 510

Memory Retrieval Accuracy (MRA) is a bi- 511

nary variable determines if related memory can be 512

successfully retrieved. 513
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Memory Hit Rate (MHR). The definition is the514

same as the hit rate described in Sec. 3.6.515

Reduced Exploration (RE). This metric mea-516

sures the effectiveness of the system in reducing517

unnecessary exploration attempts. RE = Ereduced
Etotal

,518

where Etotal is the total number of exploration at-519

tempts, Ereduced is the number of exploration at-520

tempts that were reduced.521

Reduced Time (RT). This metric measures the522

proportion of time saved by reducing unnecessary523

actions during task execution. RT = Treduced
Ttotal

, where524

Ttotal is the total time taken for the task, Treduced is525

the time that was reduced.526

4.3 Success Rate and Efficiency Evaluation527

Success Rate. Tbl. 1 shows that for simple tasks,528

the original baseline, KARMA, and KARMA with-529

out long-term or short-term memory exhibit similar530

success rates in task execution. Simple tasks do531

not consist of interdependent subtasks, where mem-532

ory system is unnecessary. However, in composite533

tasks, KARMA achieves a success rate 1.8× higher534

than the original baseline. For more complex tasks,535

this improvement is even more pronounced, reach-536

ing up to 5.2× higher. This shows that the more537

frequently a task requires memory retrieval, the538

greater the success rate improvement provided by539

our memory system.540

When comparing the SR results of KARMA with-541

out long-term memory and KARMA without short-542

term memory, we find that long-term memory does543

not directly enhance success rates for composite544

and complex tasks. However, for composite tasks,545

KARMA with short-term memory achieves a 1.5×546

increase in success rate compared to the original547

baseline. For complex tasks, this improvement548

was 3.0×, showing that short-term memory signifi-549

cantly contributes to the success rate.550

Memory Retrieval Accuracy. We show the551

accuracy of memory recall in the MRA column552

of Tbl. 1. Our memory system achieves a recall553

accuracy that is 2.2× higher for composite tasks554

compared to complex tasks, as the recall method555

has certain limitations when instructions contain556

ambiguous information. We believe this is due to557

the inherent performance limitations of the com-558

monly used models for semantic matching. For559

complex tasks, instructions may contain particu-560

larly ambiguous semantics, such as "get me a high-561

calorie food," where even the most advanced se-562

mantic matching models perform poorly.563

Task Efficiency. We find that KARMA’s im- 564

provement in RE and RT for simple tasks is con- 565

sistent with KARMA having only long-term mem- 566

ory. However, for composite and complex tasks, 567

KARMA’s improvement in RE and RT was 1.1× 568

greater compared to KARMA with only long-term 569

memory. This indicates that long-term memory has 570

a more significant impact on task efficiency. Be- 571

cause long-term memory stores 3D scene maps rep- 572

resenting the environment and is able to reduce the 573

action code generated by the LLM during task plan- 574

ning, thereby enhancing task execution efficiency. 575

On the other hand, short-term memory provides 576

instant memorization of recently used objects, en- 577

suring that the same objects or relevant information 578

are readily available for subsequent tasks. 579

4.4 Replacement Policy Evaluation 580
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Fig. 4: The memory hit rate of FIFO and W-TinyLFU.
[10] means the memory size of FIFO is 10, [9,1] means
the memory size of W-TinyLFU is also 10, the main
segment is 1, window segment is 9.

Fig. 4 illustrates the efficiency of the FIFO policy 581

compared to the W-TinyLFU policy under various 582

configurations of window segment size and main 583

segment size, with a total of 10 memory units. We 584

show the number of consecutive tasks performed 585

by the agent on the x-axis. The y-axis shows the 586

memory hit rate for each memory replacement pol- 587

icy, representing the effectiveness of each policy. 588

Vertical lines of different colors indicate whether 589

the corresponding policy has undergone a warm-up 590

phase. We consider memory to be warmed up when 591

the occupancy rate of the memory units exceeds 592

95%. After all replacement policies have under- 593

gone their warm-up phases, the W-TinyLFU policy 594

with a window segment size of 9 achieves the high- 595

est memory hit rate. This indicates that, on the 596

ALFRED-R dataset, a larger window segment size 597
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Table 1: Evaluation of KARMA and baseline for different categories of tasks in ALFRED-L.

Methods Simple Tasks Composite Tasks Complex Tasks
LLM SR MRA RE RT LLM SR MRA RE RT LLM SR MRA RE RT

LoTa-Bench(Modified) GPT-
4o

0.41 - - - GPT-
4o

0.23 - - - GPT-
4o

0.04 - - -

KARMA(w/o long term memory) GPT-
4o

0.40 - 0.011 0.002 GPT-
4o

0.35 1 0.329 0.210 GPT-
4o

0.12 0.43 0.021 0.013

KARMA(w/o short term memory) GPT-
4o

0.44 - 0.573 0.605 GPT-
4o

0.22 - 0.774 0.624 GPT-
4o

0.05 - 0.784 0.654

KARMA GPT-
4o

0.42 - 0.582 0.612 GPT-
4o

0.43 0.93 0.902 0.687 GPT-
4o

0.21 0.42 0.867 0.690

in the W-TinyLFU policy allows for more effective598

utilization of memory units. For W-TinyLFU, a599

larger window size typically covers a broader time600

range, capturing more memory units that are likely601

to be frequently recalled. These memory units have602

a high probability of being reused in the task se-603

quence, thereby increasing the memory hit rate.604

4.5 Ablation Study.605
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Fig. 5: Evaluation on different FIFO sizes. [10] means
the memory is with size equals to 10.

Fig. 5 illustrates the memory hit rate of FIFO pol-606

icy with different numbers of memory units, with607

x-axis represents the number of tasks. As expected,608

larger memory size brings higher hit rate, the mem-609

ory hit rate with 25 memory units is 4.6× higher610

than with only 5 memory units. Similar results611

can be extracted through Fig. 6, where memory hit612

rate with 25 memory units is 3.9× higher than with613

only 5 memory units.614

In Fig. 7, we illustrate the impact of memory hit615

rate on the efficiency of task execution. The x-axis616

shows the memory hit rate of the W-TinyLFU pol-617

icy with a window segment size of 9 and a main618

segment size of 1. The y-axis displays the propor-619

tion of reduced exploration. We demonstrate that620

the memory hit rate and the proportion of reduced621

exploration are linearly correlated. This means that622

increasing the memory hit rate enhances the agent’s623

task execution efficiency. A higher memory hit rate624
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Fig. 6: Evaluation on W-TinyLFU configurations. [9,1]
means the memory size of wTinyLFU is 10, the main
segment is 1, window segment is 9.

signifies more efficient use of memory units. This 625

enhances the agent’s ability to recall relevant infor- 626

mation, reducing the amount of action code needed 627

for task execution, and ultimately improving over- 628

all task performance.
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Fig. 7: The impact of memory hit rate on the agent’s
task execution efficiency. 629

5 Conclusion 630

In this paper, we explore the potential of augment- 631

ing embodied AI agents with external long-term 632

and short-term memory. With a tailored memory 633

system, a recall mechanism and a replacement pol- 634

icy, we demonstrate that the memory system im- 635

proves the success rate by up to 1.9× and reduced 636

the execution time by 3.2×. 637
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6 Limitations638

Ideal Simulation Environments. In this work,639

all evaluations are performed under ideal simula-640

tion environments, free from interruptions by other641

agents or humans. However, this ideal situation is642

not reflective of real life. Although this paper in-643

cludes extensive experiments, it lacks evaluation of644

how the memory system will behave in real-world645

scenarios. Specifically, the number of objects in the646

real world will significantly increase compared to a647

simulation environment, making the effectiveness648

of recall and replacement mechanisms crucial to649

final performance. Additionally, we have not tested650

the system’s response to intentional disturbances651

by humans. These factors constitute the primary652

limitation of this paper.653

Lack of Biological Theory. Although effective,654

the current design of the memory system is analo-655

gous to the memory systems of existing computing656

platforms. For instance, the concept of short-term657

memory and its replacement can be found in cache658

design. However, human memory may not func-659

tion in this manner. This work borrows terminology660

from human memory yet lacks theoretical support661

from a biological perspective, which constitutes its662

second limitation.663

Open-loop Planning. In this work, all memory664

operations and planning are open-loop, meaning665

there is no feedback. However, in most robot sys-666

tem designs, feedback is necessary. For example,667

if the memory is incorrect, there is no mechanism668

designed for eviction or updating. The lack of feed-669

back constitutes the third limitation of this paper.670
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Supplementary Material

A Prompts955

In Fig. 8, we provide a prompt template that in-956

tegrates both long-term and short-term memory,957

specifically designed to enhance the capabilities of958

LLMs in planning long-sequence tasks.959

You are highly skilled in robotic task planning......

class skill:
    def __init__(self,object_class:str ...)
        .......
    def pickup(self,object)
        .......
    # EXAMPLE 1 -
Task Description: Turn off the light and turn 
on the faucet. 
#Action Code
def turn_off_light_and_turn_on_faucet():
    # 0: SubTask 1: Turn off the light
    # 1: Explore the LightSwitch.
    Explore(robot,'LightSwitch')
    # 2: Switch off the LightSwitch.
    SwitchOff(robot,'LightSwitch')
 ......

If you do not know the specific location of the 
object involved in the task or have no memory of 
the object ......

When decomposing a task, consider 
previously performed tasks and how they 
changed the object's state and position......

You are a Robot Task Decomposition Expert, 
Please help me decompose the following 
tasks: wash the apple. 

The previously completed task:
{ throw the apple in trash.}

In which area do you think Apple may be? 
Please list the explored areas from high to low.

Role

Skill 

Code 

Examples of Task 

Decomposition 

Emphasize the 

use of memory

Instruction 

short-term
memory 

long-term
memory 

{apple is in the trash}{apple is dirty}
{tomato is in the plate}{tomato is clean}

Topological graph: Area node 1's position is at 

(-0.92, 0.00, -1.29), it contains {Fridge, 

GarbageCan, ...}

Navigable nodes:  Area node 2,  Area node 8, ...

Fig. 8: Our prompt template for LLM encompasses
several key elements: the role of LLM, the skill API,
examples of task decomposition, an emphasis on the
importance of memory, natural language instruction,
and the structured recall of both short-term and long-
term memory.

B More Details on Short-Term960

We present the contents stored in short-term (List-961

ing1) during task execution . In Listing1, we962

present the text and image stored in short-term963

memory after executing the sequential tasks of964

washing a potato and placing it on the countertop,965

washing a tomato and placing it on the counter-966

top, putting bread on the countertop, and throwing967

the knife in the trash. In short-term memory, the968

"objectId" is a unique identifier for each object969

that remains constant over time. This identifier 970

is used to determine if the object is the same be- 971

fore and after memory updates. The "position" 972

records the current location of the object after the 973

agent’s interaction or the location of objects the 974

agent has encountered during task execution. The 975

"imagePath" stores images of objects captured by 976

the agent, which are used for subsequent analysis 977

by the Vision-Language Model (VLM). 978

In Fig. 9, we present the image of bread captured 979

by the agent after executing the task of putting 980

bread on the countertop. This image is stored at 981

”/short_term/images/Bread.jpg”. 982

Listing 1: The detailed content of short-term memory
during task execution.
short_term_memory =[ 983

{ 984
"objectType": "Tomato", 985
"position": { 986

"x": 0.9792354106903076 , 987
"y": 1.7150063514709473 , 988
"z": -2.606173276901245 989

}, 990
"objectId": "Tomato 991

| -00.39|+01.14| -00.81" 992
"imagePath": "/short_term/images 993

/Tomato.jpg" 994
}, 995
{ 996

"objectType": "Apple", 997
"position": { 998

"x": 1.0981664657592773 , 999
"y": 0.9569252133369446 , 1000
"z": -2.4071836471557617 1001

}, 1002
"objectId": "Apple 1003

| -00.47|+01.15|+00.48" 1004
"imagePath": "/short_term/images 1005

/Apple.jpg" 1006
}, 1007
{ 1008

"objectType": "DishSponge", 1009
"position": { 1010

"x": -1.8567615747451782 , 1011
"y": 0.14490127563476562 , 1012
"z": -1.6192175149917603 1013

}, 1014
"objectId": "DishSponge 1015

| -01.94|+00.75| -01.71" 1016
"imagePath": "/short_term/images 1017

/DishSponge.jpg" 1018
}, 1019
{ 1020

"objectType": "Potato", 1021
"position": { 1022

"x": 1.098166584968567 , 1023
"y": 0.9390283823013306 , 1024
"z": -2.2535505294799805 1025

}, 1026
"objectId": "Potato 1027
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| -01.66|+00.93| -02.15"1028
"imagePath": "/short_term/images1029

/Potato.jpg"1030
},1031
{1032

"objectType": "Book",1033
"position": {1034

"x": -1.35060715675354 ,1035
"y": 1.1669094562530518 ,1036
"z": 1.9700858592987061037

},1038
"objectId": "Book1039

|+00.15|+01.10|+00.62"1040
"imagePath": "/short_term/images1041

/Book.jpg"1042
},1043
{1044

"objectType": "Bread",1045
"position": {1046

"x": 0.9692967534065247 ,1047
"y": 0.9761490225791931 ,1048
"z": -2.3303670883178711049

},1050
"objectId": "Bread1051

| -00.52|+01.17| -00.03"1052
"imagePath": "/short_term/images1053

/Bread.jpg"1054
},1055
{1056

"objectType": "Knife",1057
"position": {1058

"x": -2.0168256759643555 ,1059
"y": 0.24547088146209717 ,1060
"z": 2.17252659797668461061

},1062
"objectId": "Knife1063

| -01.70|+00.79| -00.22"1064
"imagePath": "/short_term/images1065

/Knife.jpg"1066
},1067
{1068

"objectType": "Lettuce",1069
"position": {1070

"x": -1.6119909286499023 ,1071
"y": 0.9801480174064636 ,1072
"z": -0.69896471500396731073

},1074
"objectId": "Lettuce1075

| -01.81|+00.97| -00.94"1076
"imagePath": "/short_term/images1077

/Lettuce.jpg"1078
}1079

]1080

C More Details on ALFRED-L1081

ALFRED-L includes three types of tasks: sim-1082

ple tasks, composite tasks, and complex tasks.1083

These tasks are adapted from the original ALFRED1084

dataset. In ALFRED-L, placing an object inside1085

the fridge was deemed successful when the object1086

is in the fridge. We enhanced this by adding a1087

subgoal "INSIDE(Fridge): 1" to ensure the object1088

is correctly placed inside fridge. For tasks like1089

"wash an apple" in ALFRED-L, the goal condi-1090

tions involve the apple being rinsed in the sink.1091

Fig. 9: The image stores at
”/short_term/images/Bread.jpg” was cap-
tured after the task of putting bread on the countertop
was executed.

This requires multiple conditions to be met, such as 1092

"INSIDE(apple, sink): 1", "TOGGLEON(Faucet): 1093

1", and "State(apple, clean): 1". Examples of in- 1094

structions and goal conditions from the dataset are 1095

shown in Tbl. 2. 1096

D Skill API and Action Code 1097

We provide detailed skill APIs and their corre- 1098

sponding action codes in the Listing2. 1099

E LANGUAGE MODELS 1100

Tbl. 3 lists the language models used in experi- 1101

ments and outlines their core functions. 1102

F Details of image analysis in short-term 1103

memory 1104

In Fig. 10, we present the prompt used to analyze 1105

images stored in short-term memory by the Vision- 1106

Language Model (VLM). The text highlighted in 1107

blue, [Image], represents the placeholder that will 1108

be filled with an image, while [task] will be re- 1109

placed with the actual instruction. We employed a 1110

step-by-step Chain of Thought approach to guide 1111

the VLM in identifying the relevant objects and 1112

their corresponding states. 1113

G An example result of KARMA on the 1114

ALFRED-L dataset 1115

In Fig. 11, we present images of the agent perform- 1116

ing tasks in the AI2-THOR simulator. 1117
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Listing 2: Full Skill API and Action CODE used in the prompts.
def GoToObject(robots , dest_obj):1118

# Navigate to the object.1119
1120

# If agent knows the location of object , the agent can use this function to1121
navigates to the object.1122
# If agent does not know the location of object , the robot should use the1123
Explore(robots , dest_obj) to find the object.1124

1125
# The function captures only those objects that are within the agent’s line of1126
sight.1127

1128
# Example:1129
# <Instruction > Go to the apple(The memory contains the location of apple).1130
# Python script:1131
# GoToObject(robot ,’Apple ’)1132
pass1133

1134
def PickupObject(robot , pick_obj):1135

# pickup the object.1136
# The function captures only those objects that are within the agent’s line of1137
sight.1138

1139
# Example:1140
# <Instruction > Go get the apple on the kitchen counter.1141
# Python script:1142
# Explore(robot ,’CounterTop ’)1143
# GoToObject(robot ,’CounterTop ’)1144
# PickupObject(robot ,’CounterTop ’)1145
pass1146

1147
def PutObject(robot , put_obj , recp):1148

# puts the current interactive object held by the agent in the designated1149
location.1150
# This function assumes the object is already picked up.1151

1152
# Example:1153
# <Instruction > put the apple on the Sink.1154
# Python script:1155
# Explore(robot ,’Sink ’)1156
# GoToObject(robot ,’Sink ’)1157
# PutObject(robot ,’Sink ’)1158
pass1159

1160
def SwitchOn(robot , sw_obj):1161

# Turn on a switch.1162
1163

# Example:1164
# <Instruction > Turn on the light.1165
# Python script:1166
# SwitchOn(robot ,’LightSwitch ’)1167
pass1168

1169
def SwitchOff(robot , sw_obj):1170

# Turn off a switch.1171
1172

# Example:1173
# <Instruction > Turn off the light.1174
# Python script:1175
# SwitchOn(robot ,’LightSwitch ’)1176
pass1177

1178
def OpenObject(robot , sw_obj):1179

# Open the interaction object.1180
# This function assumes the object is already closed and the agent has already1181
navigated to the object.1182
# Only some objects can be opened. Fridges , cabinets , and drawers are some1183
example of objects that can be closed.1184

1185
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#Example: 1186
# <Instruction > Get the apple in the fridge. 1187
# Python script: 1188
# Explore(robot ,’Fridge ’) 1189
# GoToObject(robot ,’Fridge ’) 1190
# OpenObject(robot ,’Fridge ’) 1191
# PickupObject(robot ,’apple ’) 1192
pass 1193

1194
def CloseObject(robot , sw_obj): 1195

# Close the interaction object. 1196
# This function assumes the object is already open and the agent has already 1197
navigated to the object. 1198
# Only some objects can be closed. Fridges , cabinets , and drawers are some 1199
example of objects that can be closed. 1200
pass 1201

1202
def BreakObject(robot , sw_obj): 1203

# Break the interactable object. 1204
pass 1205

1206
def SliceObject(robot , sw_obj): 1207

# Slice the interactable object. 1208
# Only some objects can be sliced. Apple , tomato , and bread are some example of 1209
objects that can be sliced. 1210

1211
#Example: 1212
# <Instruction > Slice an apple. 1213
# Python script: 1214
# Explore(robot ,’Knife ’) 1215
# GoToObject(robot ,’Knife ’) 1216
# PickupObject(robot ,’Knife ’) 1217
# Explore(robot ,’Apple ’) 1218
# GoToObject(robot ,’Apple ’) 1219
# SliceObject(robot ,’Apple ’) 1220
pass 1221

1222
def ThrowObject(robot , sw_obj): 1223

# Throw away the object. 1224
# This function assumes the object is already picked up. 1225
pass 1226

1227
def Explore(robot , sw_obj , position): 1228

# Explore the environment in the given sequence of locations until the target 1229
object becomes visible in the robot’s field of view. 1230
pass 1231

1232
def ToggleOn(robot , sw_obj): 1233

# Toggles on the interaction object. 1234
# This function assumes the interaction object is already off and the agent has 1235
navigated to the object. 1236
# Only some landmark objects can be toggled on. Lamps , stoves , and microwaves 1237
are some examples of objects that can be toggled on. 1238

1239
# Example: 1240
# <Instruction > Turn on the lamp. 1241
# Python script: 1242
# Explore(robot ,’Lamp ’) 1243
# GoToObject(robot ,’Lamp ’) 1244
# ToggleOn(robot ,’Lamp ’) 1245
pass 1246

1247
def ToggleOff(robot , sw_obj): 1248

# Toggles off the interaction object. 1249
pass 1250
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Table 2: Task types and samples for each type in the ALFRED-L dataset.

Task Type Goal Condition Instruction

Simple Tasks

ON(apple, plate): 1,
INSIDE(apple, sink): 1,
TOGGLEON(faucet): 1,
STATE(apple, clean): 1,
HOLDON(robot, frying pan): 1

place potato on the plate→ wash an apple→
get a frying pan.

Composite Tasks

STATE(tomato, sliced): 1,
INSIDE(knife, garbageCan): 1,
TOGGLEON(Faucet): 1,
ON(tomato, plate): 1

slice a tomato→ throw the knife in the trash
→ place the tomato on the plate.

Complex Tasks

INSIDE(tomato, sink): 1,
TOGGLEON(faucet): 1,
STATE(tomato, clean): 1,
INSIDE(potato, sink): 1,
TOGGLEON(faucet): 1,
STATE(potato, clean): 1,
STATE(bread, sliced): 1,
INSIDE(bread, fridge): 1,
ON(tomato, plate): 1

wash a tomato → wash a potato → slice a
bread→ put the bread in the fridge→ place
the clean, red food on the plate.

Table 3: List of language models used in the experiments and their respective roles.

Language Model Role Function

OpenAI GPT-4o VLM Analyzes the state of objects within the image of short-term memory.
OpenAI GPT-4o LLM as Planner Task decomposition.

OpenAI text-embedding-3-large Embedding Model Recalls memory units.

<System Rolo> As an image analysis expert, your task is to infer the state of objects in the 

image through step-by-step reasoning.

<User Role> 

1.Provide a detailed description of this image[Image].

2.From the given task[Task], extract the relevant content from the first step's image 

description that pertains to the mentioned objects.

3.Based on the object descriptions extracted in the second step, match each object to one 

of the following states: heated, cooked, sliced, cleaned, dirty, filled, used up, off, on, 

opened, closed, none.

4.Summarize the results from step three in the following format:  object: state.

Fig. 10: The prompt template for GPT-4, utilizing a step-by-step approach to guide VLM in identifying the relevant
objects and their corresponding states.
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Instruction: wash an tomato and place it on the countertop        find an apple and place it 
on the countertop        slice the clean tomato

Exlpore(robot, tomato) Exlpore(robot, tomato) find a tomato go to a tomato

pickup the tomato go to the sink put the tomato in the sink turn on the faucet wash the tomato

pickup the tomato go to the countertop go to the countertop put down the tomato Exlpore(robot, apple)

Exlpore(robot, apple) find an apple go to the apple pickup the apple put down the apple

go to the knife(using memory) pickup the knife go to the clean tomato(using 
memory)

slice the clean tomato slice the clean tomato

Fig. 11: An example result of KARMA on the ALFRED-L dataset.
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