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Abstract

Federated learning provides a framework to address the challenges of distributed computing,
data ownership, and privacy over a large number of distributed clients with low computational
and communication capabilities. In this paper, we study the problem of learning the
exact support of sparse linear regression in the federated learning setup. We provide a
simple communication e�cient algorithm that only needs one-shot communication with the
centralized server to compute the exact support by majority voting. Our method does not
require the clients to solve any optimization problem and thus, can be run on devices with
low computational capabilities. Our method is naturally robust to the problems of client
failure, model poisoning, and straggling clients. We formally prove that our method requires
a number of samples per client that is polynomial with respect to the support size, but
independent of the dimension of the problem. We require the number of distributed clients to
be logarithmic in the dimension of the problem. For certain classes of predictor variables (e.g.
mutually independent, correlated Gaussian, etc.), the overall sample complexity matches
the optimal sample complexity of the non-federated centralized setting. Furthermore, our
method is easy to implement and has an overall polynomial time complexity.

1 Introduction

Modern-day edge devices, with their data acquisition and storage ability, have pushed the need of distributed
computing beyond the realms of data centers. Devices such as mobile phones, sensor systems in vehicles,
wearable technology, and smart homes, within their limited storage and processing capabilities, can constantly
collect data and perform simple computations. However, due to data privacy concerns and limitations on
network bandwidth and power, it becomes impractical to transmit all the collected data to a centralized
server and conduct centralized training.

The nascent field of federated learning (Kone�nỳ et al., 2015; 2016; Brendan et al., 2017; Mohri et al.,
2019; Li et al., 2020a) tries to address these concerns. As described by Kone�nỳ et al. (2016), federated
learning is a machine learning setting where the goal is to train a high-quality centralized model with training
data distributed over a large number of clients. Unlike the data centers, the clients collect data samples
independently but in a non-i.i.d. fashion. The clients may be highly unbalanced, i.e., the number of samples
per client may vary significantly. The clients may also have hardware-related constraints. Although the
number of clients could be quite large, each client is typically a simple device that has access to a very small
number of data samples and can only conduct very basic computations due to limitations on its processing
and power capabilities. Furthermore, since battery power is at a premium, the communication between
the client and the centralized server acts as a major bottleneck. Due to these constraints, it is common to
encounter straggling and faulty clients in the federated learning setting.

1

https://openreview.net/forum?id=S5y26tKlf2


Published in Transactions on Machine Learning Research (01/2024)

In this work, we study the problem of exact support recovery of sparse linear regression in federated learning
without solving any optimization problem. Support recovery in sparse models is of great importance in
machine learning as it relates to feature selection. In our setting, none of the clients has the access to necessary
number of data samples required for exact support recovery or possess computational capabilities to run
complex algorithms. Furthermore, we only allow for one-shot communication between the clients and the
centralized server, i.e., clients can send information to the centralized server only once. We propose a novel
yet simple algorithm for this setting which uses majority voting and show that local clients can collaboratively
recover the exact support of the sparse linear regression model with provable theoretical guarantees.

1.1 Related work

The problem of support recovery in sparse linear regression has been well studied for the centralized setting
in compressive sensing (See e.g., Foucart & Rauhut, 2017 and references therein) and sparse regression
(See e.g., Wainwright, 2009b and references therein). In compressive sensing, for independent sub-Gaussian
predictors, �ps log dq samples are necessary for exact support recovery of a d-dimensional parameter vector
with s non-zero entries. For sparse regression, Wainwright (2009b) provided the same information-theoretic
lower bound for correlated Gaussian predictors. To the best of our knowledge, such a bound does not exist
for the general case of correlated sub-Gaussian predictors. In the federated setting, data is divided across
multiple clients. We define the overall sample complexity in the federated setting as the summation of the
sample complexity across all clients. Table 1 shows a comparison of the overall sample complexity of our
method in the federated setting to that of the tightest bounds available in the centralized setting running
lasso.

The federated learning framework has been used in many empirical studies (Kone�nỳ et al., 2015; 2016). As
it inherently facilitates distributed computing, it lends itself to be used in a vast range of applications which
include but are not limited to deep networks (Brendan et al., 2017), neural networks (Yurochkin et al., 2019;
Wang et al., 2020), principal component analysis (Grammenos et al., 2020) and fair resource allocation (Li
et al., 2020b). There are also empirical studies that analyze adversarial attacks under the federated learning
setting (Bhagoji et al., 2019). On the theoretical side, there are several application-based algorithms that
provide convergence rate guarantees. For example, He et al. (2018) provide convergence rate guarantees for
linear classification and regression models, Smith et al. (2017b;a) provide similar guarantees for lasso and
multi-task learning respectively. Mohri et al. (2019) provide Rademacher-based generalization bounds. Our
estimation method at the clients looks similar to marginal regression (See Fan et al., 2008; Genovese et al.,
2012 and the works that follow). However, compared to them, we focus on exact support recovery in the
federated learning setup. Besides, our analysis and theoretical guarantees hold in the non-asymptotic setting.
A detailed survey on the challenges and applications of federated learning can be found in McMahan et al.
(2021) and Wang et al. (2021).

Table 1: Comparison of our overall sample complexity of support recovery in sparse regression in the federated
setting with existing work in the centralized setting. Notation: s is the number of non-zero entries in the
regression parameter vector and d is its dimension. The terms which are independent of s and d are not
shown in the order notation.

Predictor type Bound in the centralized setting Our bound
Mutually independent �ps log dq (Wainwright, 2009b) �ps log dq, Theorem 1
Correlated Gaussian �ps log dq (Wainwright, 2009b) �ps log dq, Appendix G
Correlated sub-Gaussian Not Known �ps2 log s log dq, Theorem 2

1.2 Our contribution

All the works mentioned above are interesting in their own domain. The existing theoretical works provide
guarantees for convergence rates (which guarantees a small mean squared error in the training set provided
enough iterations) or generalization bounds (which guarantees a small mean squared error in the testing set
provided enough samples). However, the final solution may not match exactly with the true parameter vector.
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In this work, we provide provable theoretical guarantees for the exact recovery of the support of the true
sparse parameter vector of linear regression in federated learning. Support recovery, i.e., correctly detecting
the zero and nonzero entries of the parameter vector, is arguably a more challenging task. We show that
for some special classes of predictor variables which include mutually independent or correlated Gaussian
random variables, we can do exact support recovery with at least �plog dq clients and only �psq data samples
per client. Notice that in this case, the overall sample complexity is �ps log dq which matches the optimal
sample complexity of the centralized setting. We also provide novel theoretical results for a general class of
correlated sub-Gaussian predictors where we show that if the number of clients is at least �plog dq and each
client has access to at least �ps2 log sq data samples, then the support can be recovered exactly with high
probability. We propose a simple yet e�ective method for exact support recovery and prove that the method
is correct and e�cient in terms of time and sample complexity. McMahan et al. (2021) and Wang et al.
(2021) provided several key properties which make federated learning preferable over centralized systems.
Our method fulfills many of these key properties:

• No optimization - low computation: We do not solve any optimization problem at the client
level. All the computations are simple and let us use our method in devices with low computational
power.

• One shot communication and privacy: Our method is communication e�cient. We only
need one round communication of at most d´bits from the client to the centralized server. As
communication is kept to a minimum, very little information about the client is passed to the
centralized server.

• Fault tolerance and aversion to model poisoning and straggling: Our method is naturally
robust to client node failure and averse to rogue and straggling clients.

2 Notation and Problem Setup

In this section, we collect the notation which we use throughout this paper. We also formally define the
support recovery problem for sparse linear regression in federated learning.

Let w˚ P Rd be a d´dimensional parameter with sparsity s, i.e., only s out of d entries of w˚ are non-
zero. We use rrs as a shorthand notation to denote the set t1, 2, ¨ ¨ ¨ , ru. Let S˚ be the true support
set, i.e., S˚ “ tr|w˚

r ‰ 0, r P rdsu. We denote the corresponding complementary non-support set as
S˚

c “ tr|w˚
r “ 0, r P rdsu. We will assume that minjPS˚ |w˚

j | ° wl ° 0 and }w˚}8 † wh. The first condition
is the well-known minimum weight condition (Wainwright, 2009b) which ensures that non-zero entries of w˚

are not arbitrarily close to zero which will make inference di�cult for any method. The second condition can
be written in terms of any ¸p-norm where p • 1. We chose ¸8-norm to keep our analysis simple and clean. In
federated learning, the data is divided across multiple clients. Assume that there are g clients, each with ni

independent samples, for i P rgs. Note that the data distribution across g clients need not be identical. Each
client i P rgs contains each data sample in the format pXi, yiq where Xi P Rd are the predictor variables and
yi P R is the response variable. The data generation process for each client i P rgs is as follows:

yi “ X|
i w˚ ` ei , (1)

where ei is a zero mean sub-Gaussian additive noise with variance proxy ÷2

i , where ÷i ° 0. Note that all the
clients share the same parameter vector w˚. The j-th entry of Xi is denoted by Xij , @i P rgs, j P rds. Each
entry Xij of Xi is a zero mean sub-Gaussian random variable with variance proxy fl2

i , where fli ° 0. We
denote covariance matrix for Xi as �i P Rdˆd with diagonal entries �i

jj ” p‡i
jjq2

, @j P rds and non-diagonal
entries �i

jk ” ‡i
jk, @j, k P rds, j ‰ k. If predictor variables are mutually independent then ‡i

jk “ 0, @i P
rgs, j, k P rds, j ‰ k. The t-th sample of the i-th client is denoted by pXt

i , yt
iq, @i P rgs, t P rnis. We note that

Xt
i P Rd and yt

i P R and denote j-th entry of Xt
i as Xt

ij . Notice that the data distributions for pXi, yiq can
vary a lot across the clients by varying fli and ÷i, as well as the specific sub-Gaussian probability distribution.
The class of sub-Gaussian variates includes for instance Gaussian variables, any bounded random variable
(e.g., Bernoulli, multinomial, uniform), any random variable with strictly log-concave density, and any finite
mixture of sub-Gaussian variables. Similarly, data samples can be distributed unevenly across the clients by
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varying ni. In subsequent sections, we use PpAq to denote the probability of the event A and EpAq to denote
the expectation of the random variable A. Figure 1a shows our setup and compares it with a centralized
server running lasso in Figure 1b. Notice how each client only sends a maximum of d bits to the centralized
server in Figure 1a and maintains the confidentiality of locally collected data. This is unlike the centralized
setting where the centralized server has access to all the data.
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Figure 1: (Left 1a) Support recovery in our federated sparse regression framework. (Right 1b) Support
recovery in the centralized sparse regression framework using lasso.

3 Problem Statement

For our problem, we assume that each client has access to ni “ ops log dq samples, @i P rgs. That is, the
number of samples ni grows strictly slower than s log d. Otherwise, the support can be trivially recovered
by using compressed sensing methods in the client with ni “ Ops log dq which is the order of necessary and
su�cient number of samples required for exact support recovery in linear regression setup (Wainwright,
2009a;b). Furthermore, we assume that each of our clients can only do very simple computations and can only
do one-shot communication with the centralized server, i.e., each client can only send at most d-bits to the
centralized server. Considering the above requirements, we are interested in answering the following question:
Problem Statement 1 (Exact Support Recovery). Given that each client contains ni “ ops log dq data
samples generated through the process described in equation (1), is it possible to e�ciently recover the true
support of the s-sparse shared parameter vector w˚ P Rd by collecting d-bits of information from every client
only once with provable theoretical guarantees.

The e�ciency in exact recovery means that the sample complexity per client should be ops log dq and that
our algorithm should have polynomial time complexity and should also be easy to implement.

4 Our Method

In this section, we present a simple algorithm to solve problem 1. Our main idea is that estimation at the
client level can be incorrect for every client but this information can still be aggregated in a careful manner
to compute the true support.

4.1 Client level computations

Each client tries to estimate the support of w˚ using ni independent samples available to it. As mentioned
previously, ni, @i P rgs is not su�cient to compute correct support of w˚ using any method possible
(Wainwright, 2009a). Let ŵi P Rd be the estimate of w˚ computed by each client i. Let Si “ tj|ŵij ‰ 0, j P rdsu
be the support of ŵi. Each server communicates the computed support (at most d bits) to a centralized
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server which then computes the final support of w˚. The centralized server receives Si from each client and
computes the final support S “ fpS

1

, S
2

, ¨ ¨ ¨ , Sgq. Each client i, @i P rgs computes ŵi in the following way:

@i P rgs, j P rds, ŵij “ 1
‡̂ij

signp–̂ijq maxp0, |–̂ij | ´ ⁄ijq, (2)

where ŵij is j-th entry of ŵi and ⁄ij ° 0 is a regularization parameter. While it is possible to compute a
feasible ⁄ij for each client i and entry j, we will present a more practical choice of a single ⁄ij “ ⁄ across
all clients and entries. Moreover, computing ‡̂ij is not required to estimate the support but we keep all the
terms in equation 2 for clarity and completion. We define ‡̂ij and –̂ij as follows:

‡̂ij fi 1
ni

niÿ

t“1

pXt
ijq2, –̂ij fi 1

ni

niÿ

t“1

yt
iX

t
ij (3)

These are simple calculations and can be done in Opdniq run time at each client. If ni can be kept small
(which we will show later), this can be done even by a device with low computational ability. The choice of
this exact form of ŵij in equation (2) is not arbitrary. To get the intuition behind our choice, consider the
following ¸

1

-regularized (sparse) linear regression problem at each client.

p@i P rgsq, ŵi “ arg min
w

1
ni

niÿ

t“1

pw|Xt
i ´ yt

iq2 ` }�i d w}
1

, (4)

where } ¨ }
1

denotes the ¸
1

norm of a vector and d denotes the Hadamard product between vectors. The j-th
entry of the regularizer vector �i P Rd is ⁄ij . We can write equation (4) in expanded form as:

p@i P rgsq, ŵi “ arg min
w

w|
˜

1
ni

niÿ

t“1

Xt
i Xt

i
|

¸
w ´ 2w|

˜
1
ni

niÿ

t“1

yt
iX

t
i

¸
`

dÿ

j“1

⁄ij |wj |, (5)

Now, we intentionally replace
∞n

t“1

Xt
i Xt

i
| with diagp∞n

t“1

Xt
i Xt

i
|q. This allows us to write equation (5) as

sum of d independent optimization problems:

p@i P rgsq, ŵi “ arg min
w

dÿ

j“1

w2

j

˜
1
ni

niÿ

t“1

Xt
ij

2

¸
´ 2

dÿ

j“1

wj

˜
1
ni

niÿ

t“1

yt
iX

t
ij

¸
`

dÿ

j“1

⁄ij |wj |, (6)

and subsequently, we get equation (2) as the solution. This is an improper estimator that has the advantage
of working well when there are very few samples, i.e., ni “ Op1q with respect to dimension d. It is known
that estimating the covariance as needed in the mean squared error requires ni in Oplog dq (See Lemma 1 in
Ravikumar et al., 2011). Our simple estimator avoids any computation (or estimation) of the covariance
matrix which, in any case, would be incorrect if each client has access to only a few samples. Each client i
sends the support Si of ŵi to the centralized server. Even in the worst-case scenario, each client only sends d
bits to the centralized server.

4.2 Information aggregation and constructing the final support

We aggregate supports Si, @i P rgs from all the clients and construct the final support. Before we get to
the construction of the final support, we define a random variable Rij , @i P rgs, j P rds which takes value
1 if j P Si and 0 otherwise. Thus, random variable Rij indicates whether entry j is in the support Si of
client i. Using the random variables Rij , we construct the final support S using majority voting. This is
done by computing the median of Rij across i P rgs. If the median is 1 then we conclude that j is in the
support otherwise we conclude that j is not in the support. More formally, we define a random variable
Rj fi 1

g

∞g
i“1

Rij and if Rj • 1

2

, then we conclude that j P S. Otherwise, if Rj † 1

2

, then we conclude that
j R S. The above procedure can be compactly written as Algorithm 1.
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{Part I: Runs in client i, @i P rgs}
Input: Data samples pXt

i , yt
iq, @t P rnis

Output: Locally estimated support of shared pa-
rameter w˚

for each j P rds do
Compute ŵij using equation (2) and (3)
if ŵij ‰ 0 then

Rij – 1
else

Rij – 0
end if

end for
Send Rij to centralized server, @j P rds

{Part II: Runs in centralized server}
Input: Rij , @i P rgs, j P rds
Output: Globally estimated support S for shared
parameter w˚

S – tu
for each j P rds do

Compute Rj “ 1

g

∞g
i“1

Rij

if Rj • 1

2

then
S – S Y tju

end if
end for

Algorithm 1: getExactSupport

5 Main Result and Analysis

In this section, we describe and analyze our theoretical results. We present our results in two di�erent settings.
In the first setting, we assume that predictor variables are mutually independent. We tackle the more general
case of correlated predictors in the second setting. We deal with the special case of correlated Gaussian
predictors in Appendix G. Detailed proofs for lemmas and theorems are available in the supplementary
material.

5.1 Mutually independent predictors

In this setting, predictor variables are mutually independent of each other in all the clients, i.e., @i P rgs,
EpXijXikq “ 0, @j, k P rds, j ‰ k. In this setting, we state the following result:
Theorem 1 (Mutually Independent Predictors). For federated support learning in linear regression, as
described in Section 3, with at least g “ �plog dq clients and mutually independent predictor variables if each
client has at least ni “ �psq i.i.d. data samples and the following condition holds:

max
iPrgs

C?
s

¨

˝8fl2

i

d ÿ

kPS˚
w˚

k
2 ` 8|÷ifli|

˛

‚† ⁄ † min
jPS˚,iPrgs

|w˚
j p‡i

jjq2| ´ C?
s

`
8|w˚

j |fl2

i ` 8fl2

i

d ÿ

kPS˚,k‰j

w˚
k

2 ` 8|÷ifli|
˛

‚

(7)

where C ° 0 is an absolute constant independent of ni, s and d, then Algorithm 1 recovers the exact support
of the shared parameter vector w˚ with probability at least 1 ´ Op 1

d q.

Proof. Recall that Rj “ 1

g

∞g
i“1

Rij where Rij is defined in Section 4.2. We prove that, with high probability,
Rj • 1

2

, @j P S˚ and Rj † 1

2

, @j P S˚
c . We will provide the proof in two parts. First, we deal with entries j

which are in the support of w˚, i.e., j P S˚ and then we will deal with j P S˚
c .

For entries j in support S˚. We begin our proof by first stating the following lemma.

Lemma 1. For @j P S˚, let EpRjq ° 1

2

. With probability at least 1 ´ 2 expp´2gp´ 1

2

` EpRjqq2 ` log sq,
simultaneously @j P S˚,we have Rj • 1

2

.

For g “ �plog dq, Lemma 1 holds with probability at least 1 ´ Op 1

d q. Next we show that for any j P S˚,
EpRjq is indeed greater than 1

2

.
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Lemma 2. For i P rgs, j P S˚ and some 0 † ” § 1, if predictors are mutually independent of each
other and 0 † ⁄ij † |w˚

j p‡i
jjq2| ´ 8|w˚

j |fl2

i ” ´ 8fl2

i

b∞
kPS˚,k‰j w˚

k
2” ´ 8|÷ifli|” then we have EpRjq • 1 ´

6

g

∞g
i“1

expp´ni”
2q.

In the above lemma, we assume p‡i
jjq2 ° 0 for all i P rgs for clarity of exposition. In a more general setting,

since p‡i
jjq2 • 0 is the population covariance, it would easy to detect which clients i have ‡i

jj “ 0 through the
empirical covariance, which would also be zero. Assuming that the proportion of clients for which ‡i

jj “ 0 is
not too big, one could trivially extend our lemma above by using only the clients i for which p‡i

jjq2 ° 0.

For entries j in non-support S˚
c . Similar to the entries in the support, we begin this part by stating the

following result for entries in the non-support.

Lemma 3. For @j P S˚
c , let EpRjq † 1

2

. With probability at least 1 ´ 2 expp´2gp 1

2

´ EpRjqq2 ` logpd ´ sqq,
simultaneously @j P S˚

c , we have Rj § 1

2

.

Again, if g “ �plog dq, then Lemma 3 holds with probability at least 1 ´ Op 1

d q. It remains to show that for
@j P S˚

c , EpRjq is smaller than 1

2

. In particular, we use the result from the following lemma.

Lemma 4. For i P rgs, j P S˚
c and 0 † ” § 1, if predictors are mutually independent of each other and if

⁄ij ° 8”fl2

i

a∞
kPS˚ w2

k ` 8|÷ifli|” then we have EpRjq § 4

g

∞g
i“1

expp´ni”
2q.

It is important to note that the statements of Lemma 2 and Lemma 4 are not high probability statements and
therefore, a union bound is not required for them. We notice that as long as 4

g

∞g
i“1

expp´ni”
2q § 1

2

, then
@j P S˚

c ,EpRjq § 1

2

. Similarly, @j P S˚,EpRjq • 1

2

as long as 6

g

∞g
i“1

expp´ni”
2q § 1

2

. Results from Lemma
2 and 4 guarantee that the statements of Lemma 1 and 3 hold. Choosing ni “ �p 1

”2 q and ” “ C?
s
, C ° 0, we

prove Theorem 1.

5.2 Correlated predictors

The concentration inequalities used in mutually independent predictors case do not lend themselves directly
to the correlated predictors case which makes this analysis more challenging. As described previously, the
covariance matrix for Xi is denoted by �i P Rdˆd with diagonal entries �i

jj ” p‡i
jjq2, @j P rds and non-diagonal

entries �i
jk ” ‡i

jk, @j, k P rds, j ‰ k. While some of the lemmas from the previous subsection can be reused,
we had to come up with some new technical lemmas for this setting. Below, we state the main results for this
setting.
Theorem 2 (Correlated Predictors). For federated support learning in linear regression, as described in Section
3, with at least g “ �plog dq clients and correlated predictor variables, if each client has ni “ �ps2 log sq, s ° 1
i.i.d. data samples and the following condition holds:

max
jPS˚

c ,iPrgs
|

ÿ

kPS˚
w˚

k ‡i
jk| ` C

s

˜
ÿ

kPS˚
8
?

2|w˚
k |p1` 4 max

j

fl2

i

p‡i
jjq2

q max
j

p‡i
jjq2 ` 8|÷ifli|

¸
† ⁄ †

min
jPS˚,iPrgs

|pw˚
j p‡i

jjq2 `
ÿ

kPS˚,k‰j

w˚
k ‡i

jkq| ´ C

s

¨

˝8|w˚
j |fl2

i `
ÿ

kPS˚,k‰j

8
?

2 |w˚
k |p1 ` 4 max

j

fl2

i

p‡i
jjq2

q

max
j

p‡i
jjq2 ` 8|÷ifli|

˙

(8)

where C ° 0 is an absolute constant independent of ni, s and d, then Algorithm 1 recovers the exact support
of the shared parameter vector w˚ with probability at least 1 ´ Op 1

d q.

Proof. Recall that Rj “ 1

g

∞g
i“1

Rij where Rij is defined in Section 4.2. We will again prove that, with high
probability, Rj • 1

2

, @j P S˚ and Rj † 1

2

, @j P S˚
c . Some of the results from the previous Section 5.1 follow
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without any changes. We provide new results for the remaining parts. First, we deal with entries j which are
in the support of w˚, i.e., j P S˚ and then we will deal with j P S˚

c .

For entries j in support S˚. We observe that Lemma 1 holds even in this case. Thus, we start our proof
by stating the following lemma.

Lemma 5. For i P rgs, j P S˚ and some 0 † ” § 1?
2

, if 0 † ⁄ij † |pw˚
j p‡i

jjq2 ` ∞
kPS˚,k‰j w˚

k ‡i
jkq| ´

8|w˚
j |fl2

i ” ´ ∞
kPS˚,k‰j 8

?
2|w˚

k |p1 ` 4 maxj
fl2

i

p‡i
jj q2 q maxj p‡i

jjq2

” ´ 8|÷ifli|” then we have EpRjq • 1 ´
4s
g

∞g
i“1

expp´ni”
2q.

For entries j in non-support S˚
c . Again, Lemma 4 follows directly. Thus, we present the following

lemma to show that for the entries in the non-support EpRjq † 1

2

.

Lemma 6. For i P rgs, j P S˚
c and some 0 † ” § 1?

2

, if ⁄ij ° | ∞
kPS˚ w˚

k ‡i
jk| ` ∞

kPS˚ 8
?

2|w˚
k |p1 `

4 maxj
fl2

i

p‡i
jj q2 q maxj p‡i

jjq2

” ` 8|÷ifli|” then we have EpRjq § 4s`2

g

∞g
i“1

expp´ni”
2q.

The statements of Lemma 5 and Lemma 6 are not high probability statements and therefore, a union
bound is not required for them. Note that, as long as we have p4s ` 2q 1

g

∞g
i“1

expp´ni”
2q † 1

2

, we will have
EpRjq ° 1

2

, @j P S˚ and EpRjq † 1

2

, @j P S˚
c . Results from Lemmas 5 and 6 ensure that Lemma 1 and 3 hold.

Choosing ni “ �p 1

”2 log sq and ” “ C
s , C ° 0, we prove Theorem 2.

5.3 Time complexity

Each client does Opdniq basic calculations. Thus, the time complexity at each client is Opsdq for mutually
independent predictors and Ops2d log sq for correlated predictors. The centralized server gathers d-bits of
information from g clients in Opdgq “ Opd log dq time.

6 Choice of Regularizer

The conditions mentioned in Equations (7) and (8) provide su�cient theoretical conditions on the regularizers
⁄ij “ ⁄ for exact support recovery. It remains to be shown whether such a choice of ⁄ is feasible. If we
let minjPS˚ ‡i

jj “ ‡l
i, then it can be shown that equation (7) has a feasible solution as long as we choose

a C such that C?
s

† wl‡l
i

2

16fl2
i wh

?
s`8whfl2

i `16÷ifli
. This setting of ⁄ in equation (7) can be contrasted with the

setting of the regularizer ⁄
lasso

of a centralized-server lasso problem in Theorem 1 of Wainwright (2009b). In
particular, the lower bound on ⁄, Op1q ` Op 1?

ni
q, is analogous to the lower bound on the centralized-server

lasso regularizer ⁄
lasso

, i.e., ⁄
lasso

° Op
b

log d∞g
i“1 ni

q. However, our choice of ⁄ is independent of d. In Section 8,
we empirically validate the existence of a feasible range for ⁄. A similar analysis can be carried out for the
feasibility of equation (8). Let MAB P R|A|ˆ|B| be a matrix constructed by restricting rows of M to entries
in A and columns of M to entries in B for two sets A, B Ñ rds. Furthermore, for a matrix M P Rpˆq, let
}M}8 fi maxiPrps

∞
jPrqs |Mij |. We assume that }�i

S˚
c S˚ }8 ` }�i

S˚S˚ }8 † “ for some constant “ ° 0. We
further assume that “ is so small such that wl‡l

i
2 ´ wh“ ° 0. This assumption is similar to the incoherence

assumption in Wainwright (2009b) and it ensures that predictors within the support are not highly correlated,
as well as predictors outside the support do not exert a high influence on the predictors within the support.
For ease of notation, we will denote the term p1 ` 4 maxr

fl2
i

p‡i
rrq2 q maxr p‡i

rrq2 by a positive constant k
5

.

We observe that if C
s † wl‡l

i
2´wh“

16

?
2k5s`8whfl2

i `16÷ifli
, then the choice of ⁄ in equation (8) is feasible. Notice how

the upper bound ⁄ † wl‡l
i
2 ´ wh“ ° 0 is similar to a combination of the minimum weight condition and

the incoherence condition from Wainwright (2009b). Similarly, the lower bound ⁄ ° Op1q ` Op
b

log s
ni

q is
analogous to the setting of the centralized-server lasso regularizer in Wainwright (2009b). We provide the

8
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following illustrative example to explain the similarity between technical conditions required for the feasibility
of equation (8) and the standard mutual incoherence condition.

6.1 An illustrative example

Consider the data generation process given in equation (1), i.e., y “ XT w˚ ` e. We have dropped the
subscript i for brevity as the following argument holds for any client i P rgs. We take d “ 3, the parameter

vector w˚ P R3 looks like w˚ “
»

–
a
a
0

fi

fl where a ° 0, i.e., S˚ “ t1, 2u and S˚
c “ t3u. We assume that entries of

the design matrix Xk are in t´1, 1u@k “ 1, 2, 3. Furthermore, let EpX
1

X
2

q “ q, EpX
2

X
3

q “ p, EpX
1

X
3

q “ 0,
EpX

1

q “ 0 and EpX
3

q “ 0, where Ep.q denotes the expected value.

Let � be EpXT Xq where X “
»

–
X

1

X
2

X
3

fi

fl P t´1, 1u3. Then,

� “
»

–
1 q 0
q 1 p
0 p 1

fi

fl

Thus, the feasibility criteria for ⁄ in equation (8) becomes: |w˚
1

‡
31

` w˚
2

‡
32

| ` Apw˚, �, fl, ÷q C
s †

C
s minp|w˚

1

‡2

11

` w˚
2

‡
12

| ` Bpw˚, �, fl, ÷q, |w˚
2

‡2

22

` w˚
1

‡
21

| ` Dpw˚, �, fl, ÷qq,
where Apw˚, �, fl, ÷q, Bpw˚, �, fl, ÷q and Dpw˚, �, fl, ÷q are upper bounded by Opsq and thus these products
can be made arbitrarily small by choosing an appropriate C. In the worst-case scenario, the above equation
becomes (by replacing w˚ and �):

a|p| † a ´ a|q| ` Epw˚, �, fl, ÷qC

s

Again, Epw˚, �, fl, ÷q C
s can be made arbitrarily small by choosing an appropriate C. The above feasibility

criteria simplifies to :

|p| ` |q| † 1 ` ‘, (9)

where ‘ is an arbitrarily small quantity. We compare this with the mutual incoherence condition from Wain-
wright (2009b) which requires }�S˚

c S˚�´1

S˚S˚ }8 § 1 ´ –, for some – P p0, 1s. This simplifies to
›››››
“
0 p

‰ „
1 q
q 1

⇢´1

›››››
8

† 1

which is equivalent to

|p| ` |q| † 1 . (10)

Notice how for small values of p and q (say p “ 0.2, q “ 0.1) both equation (9) and (10) are easy to satisfy
while for the high value of p and q (say p “ 0.7, q “ 0.6) both conditions fail to hold.

7 Discussion on Robustness

Since our method only relies on the correct calculation of the median, it is naturally robust to the failure of
some clients. To simulate the e�ect of model poisoning (Bhagoji et al., 2019) and stragglers, we consider that

9
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a proportion 0 † — † 1

2

of clients have gone rogue (are straggling) and transmitting the wrong information
to the centralized server. For the worst-case scenario, we assume that they report the complement of the
support, i.e., they always send a bit “1” for entries in the non-support and a bit “0” for entries in the support.
To accommodate this change in the case of correlated predictors, we slightly change statements of Lemmas
5 and 6. Now we have, p@j P S˚q, EpRjq • p1 ´ —q ´ 4s

g

∞p1´—qg
i“1

expp´ni”
2q and p@j P S˚

c q, EpRjq §
4s`2

g

∞p1´—qg
i“1

expp´ni”
2q ` —. It is easy to see that, as long as, we have ni ° 1

”2 logp p8s`4qp1´—q
1´2— q data samples

per client, then we still have EpRjq ° 1

2

, @j P S˚ and EpRjq † 1

2

, @j P S˚
c and all our results still hold.

Similarly, for mutually independent predictors, our results hold as long as we have ni ° 1

”2 logp 12p1´—q
1´2— q.

8 Validating Theory with Synthetic Experiments

In this section, we validate our theoretical results by conducting computational experiments.

We provide the results for the experiments when predictors are correlated. Data in each client is generated
by following the generative process described in equation 1. Note that predictors and error term in di�erent
clients follow di�erent sub-Gaussian distributions. To make it more general, we keep the correlation between
entries in the support di�erent than the correlation between one entry in the support and the other entry
in the non-support and these further vary across clients. The regularization parameter ⁄i for each client is
chosen such that the condition in Theorem 2 is satisfied for every client. All the results reported here are
averaged over 30 independent runs. We conduct two separate experiments to verify that ni “ �ps2 log sq
independent samples per client and a total of g “ �plog dq clients are su�cient to recover the true support.

(a) Exact support recovery against numbers of samples

per client

(b) Exact support recovery against numbers of clients

Figure 2: Phase transition curves. Left: Exact support recovery averaged across 30 runs against varying
number of samples per client for dimension d “ 500, 1000, and 2000, sparsity s “ 3, g “ �plog dq clients. Right:
Exact support recovery averaged across 30 runs against varying number of clients for sparsity s “ 10, 20, 40,
and 50, dimension d “ 1000, n “ maxp30, �ps2 log sqq samples per server.

8.1 Exact support recovery against number of samples per client

This experiment was conducted for a varying number of predictors (d “ 500, 1000, and 2000). For each of
them, we fixed the number of clients to be g “ 2 log d. The sparsity s is kept fixed at 3. The number of
samples per client ni is varied with control parameter C as 10Cs2 log s. The performance of our method is
measured by assigning a value 1 for exact recovery and 0 otherwise. We can see in Figure 2a, that initially,
recovery remains at 0 and then there is a sharp jump after which recovery becomes 1. Notice how all three
curves align perfectly. This validates the result of our theorem and shows that given g “ �plog dq clients,
ni “ �ps2 log sq samples per client are su�cient to recover the true support.

10
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8.2 Exact support recovery against number of clients

The second experiment was conducted for a varying number of non-zero entries (s “ 10, 20, 40, and 50) in
the support of w˚. The experiments were run for a setup with d “ 1000 predictors. We fixed the number of
samples per client (ni) to be maxp30, �ps2 log sqq. This ensures that a minimum of 30 samples are available
to each client. This is inline with our previous experiment where exact recovery is achieved around 30
samples per client. The number of clients g is varied with control parameter C as 10C log d. Like the previous
experiment, performance is measured by assigning a value 1 for exact recovery and 0 otherwise. We can
again see in Figure 2b, that initially, recovery remains at 0 and then it goes to 1 as we increase the number of
clients. We also notice that all four curves align nicely. This validates that given ni “ �ps2 log sq independent
samples per server, g “ �plog dq clients are su�cient to recover the true support.

8.3 Robustness to straggling clients

Recall that since our method only relies on the correct calculation of the median, it is naturally robust to
the failure of some clients. Our next experiment simulates the e�ect of having a proportion 0 † — † 1

2

of
straggling clients which transmit the wrong information to the centralized server. For the worst-case scenario,
we assume that they report the complement of the support, i.e., they always send a bit “1” for entries in
the non-support and a bit “0” for entries in the support. Table 2 shows that our method is robust for a
proportion 0 † — † 0.3 of straggling clients.

Table 2: Exact support recovery averaged across 30 runs for di�erent proportions — of straggling clients for
dimension d “ 1000, sparsity s “ 3, g “ �plog dq clients, ni “ �ps2 log sq samples per client.

— 0.10 0.20 0.30 0.35 0.40
Mean exact support recovery 100% 100% 100% 80% 33%

8.4 Comparison with centralized lasso

We compared our method to the centralized-server lasso Wainwright (2009b), which has access to all the
data, unlike our method. Table 3 shows that both our method and centralized-server lasso are successful in
recovering the true support, but our method requires less computation.

Table 3: Exact support recovery and runtime averaged across 30 runs for dimension d “ 500, 1000, and 2000,
sparsity s “ 3, g “ �plog dq clients, ni “ �ps2 log sq samples per client. For easy comparison, runtime was
normalized with respect to our method for d “ 500.

d Mean exact support recovery Mean runtime
Our method Centralized lasso Our method Centralized lasso

500 100% 100% 1 4.1
1000 100% 100% 2.4 11.6
2000 100% 100% 4.6 26.7

9 Real World Experiment

In this section, we demonstrate the e�ectiveness of our method to determine the support of a sparse linear
regression setup in a real world data set. We used the BlogFeedback data set (Buza, K., 2014) from
https://archive.ics.uci.edu/ml/datasets/BlogFeedback. This data set contains features extracted
from blog posts and the task is to predict how many comments the post will receive using these features. We
divided data into training and test data by choosing 80% of all samples to be training data at random. The
details about the data set are as follows:

11
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• Number of training samples: 41917

• Number of test samples: 10480

• Number of features (after removing all zeros columns): 276

9.1 Comparing recovered support with centralized lasso

Since the true support of the parameter vector is unknown for real-world data, we constructed a “centralized”
support for comparison by running lasso on the complete training data set. This simulates a centralized
server with access to all the data. The “centralized” support contains 42 elements. We want to compare the
support recovered from our method, called “federated” support, with this ‘centralized’ support.

9.2 Performance measures

We defined the following performance measure for comparison:

Jaccard Index “
Number of common elements in the “federated” support and in the “centralized” support

Number of elements in the union of “centralized” support and “federated” support
(11)

9.3 Case 1

For the first experiment, we divided the dataset randomly into 419 clients with each client containing 100
samples (except the last one which contains more to account for imbalance). This is a highly distributed
setting where each client has access to a small number of samples. We conducted our experiment using
⁄ “ 0.08. Our method recovered support with 48 elements, with a Jaccard Index of 0.76.

To compare the generalization on the test data set, we computed parameter vectors w
fed

and w
cen

by running
simple linear regression on training samples restricted to “federated” support and “centralized” support
respectively. After that, Mean Square Error (MSE) is computed on the test samples using the recovered
w

fed

and w
cen

. We observed that MSE for our method, 0.71545, is slightly better than MSE for “centralized”
support, 0.71615.

9.4 Case 2

For the second experiment, we divided the dataset randomly into 41 clients with each client containing 1000
samples (except the last one which contains more to account for imbalance). This is a setting where we have
only a few clients. We again conducted our experiment using ⁄ “ 0.08. Our method recovered support with
49 elements, with a Jaccard Index of 0.8.

Again, we followed the same procedure as Case 1 to compute MSE in test samples. We observed that MSE
for our method, 0.70525, is slightly better than MSE for “centralized” support, 0.70548.

We see that in both cases, our method recovered a similar set of support as the support recovered by lasso
running in a centralized server. Our method also generalizes to the test dataset in a similar manner, even
performing better in terms of MSE.

Table 4: Jaccard index for di�erent regularizer values ⁄.

⁄ 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Case 1 0.46 0.83 0.76 0.73 0.76 0.77 0.63 0.53 0.42
Case 2 0.56 0.71 0.80 0.82 0.75 0.78 0.83 0.74 0.76
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9.5 Robustness to the choice of regularizer

To evaluate the robustness of our method to the choice of regularizer ⁄, we tested a range of regularizer values
in the real-world data. Table 4 shows that our method is relatively robust in a wide range of regularizer
values (i.e., 0.06 § ⁄ § 0.14).

10 Concluding Remark

In this paper, we propose a simple and easy-to-implement method for learning the exact support of parameter
vector of linear regression problem in a federated learning setup. We provide theoretical guarantees for the
correctness of our method. We also show that our method runs in polynomial sample and time complexity.
Furthermore, our method is averse to client failures, model poisoning, and straggling clients.

As a future direction, it would be interesting to apply our ideas to other estimation problems involving
sparse regression such as non-parametric regression (Ravikumar et al., 2007), learning probabilistic graphical
models (Ravikumar et al., 2010) and di�usion networks (Daneshmand et al., 2014). These problems are often
handled in the centralized setting but it would be interesting to tackle them in the federated setting without
compromising on the performance.
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