
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOISE-ROBUST DENSITY ESTIMATION FOR TABULAR
DATA ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Density-based anomaly detection methods often provide accurate and interpretable
predictions but their performance can be severely affected by the inherent noise of
data. In this paper, we present a noise-robust density estimation (NRDE) method
for tabular data anomaly detection. We aim to estimate the density of pure data
with the influence of noises isolated, which is a non-trivial task since the data-
generating process is completely unknown. NRDE learns a Jacobian-regularized
normalizing flow to estimate the sources of data and categorizes sources into two
groups, where one group generates pure data and the other generates noise. Then
we can estimate the density of pure data and use it to detect anomalies caused by
the sources of pure data rather than the changes caused by the sources of noise.
Therefore, compared with other density-based methods, our NRDE is much more
robust to noise. In addition to the new algorithm, we also provide theoretical results
to support the effectiveness of NRDE. We compare NRDE with 15 baselines on 47
benchmark datasets under different settings, including vanilla anomaly detection,
anomaly detection with anomaly contamination, anomaly detection on noisy data,
and transductive outlier detection. The results demonstrate the effectiveness and
superiority of NRDE.

1 INTRODUCTION

In an increasingly data-driven world, the problem of identifying unusual patterns or deviations from
expected behavior—known as anomaly detection—has become paramount across diverse domains.
Anomaly detection (Chandola et al., 2009; Pang et al., 2021; Ruff et al., 2021), sometimes also
referred to as novelty or outlier detection (Breunig et al., 2000; Pimentel et al., 2014), involves the
identification of data points, events, or observations that significantly differ from the majority of
the data. These anomalies can signal critical incidents such as fraud (Ahmed et al., 2016), security
breaches (Breier & Branišová, 2017), system failures (Du et al., 2017), or novel insights, making
their accurate detection essential for timely intervention and decision-making.

In the past few years, a diverse range of deep learning-based anomaly detection methods have been
proposed (Ruff et al., 2018b; Deecke et al., 2019; Ruff et al., 2019; Wang et al., 2021; Pang et al.,
2019; Goyal et al., 2020; Qiu et al., 2021; Cai & Fan, 2022; Xu et al., 2023a; Zhang et al., 2024). For
instance, DeepSVDD (Ruff et al., 2018b) assumes that representations of normal data can be enclosed
within a small hypersphere and representations of anomalous data lie outside the hypersphere, where
the representations are given by a neural network. ICL (Shenkar & Wolf, 2022) assumes that a
subset of the feature vector is related to the rest and uses self-supervised learning to maximize the
mutual information between each sample and the masked-out part. SLAD (Xu et al., 2023b) performs
scale learning to embed high-level information into its ranking mechanism. Although these methods
often demonstrate impressive performance in various scenarios, several of them require making
assumptions on the structure or distribution of normal and anomalous data, which may not hold or
are difficult to guarantee by the training process. For instance, Zhang et al. (2024) analyzed the
limitations of the hypersphere assumption in high-dimensional spaces and proposed to project normal
data into the region bounded by two hyperspheres. Moreover, some of these methods are proposed to
solve the one-class classification (OCC) problem, which relies on the assumption that training data
originate from a single class or have a single manifold structure. Consequently, these methods can be
ineffective when the training data encompasses multiple clusters or lies on multiple disconnected
manifolds, as mentioned in (Khayatkhoei et al., 2018).
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(a) kNN (AUROC: 59.2) (b) KDE (AUROC: 58.2) (c) LOF (AUROC: 60.4)

(d) DSVDD (AUROC: 61.5) (e) RealNVP (AUROC: 75.4) (f) NRDE (AUROC: 83.3)

Figure 1: Detection performance on a synthetic dataset. The data were generated from a few data
sources and many noise sources. Points marked in green, blue, and red represent normal data, noisy
normal data (caused by noise change), and anomalous data, respectively. See (8) for definitions.
The five compared methods detect most of the noisy normal samples as anomalies, while our NRDE
is robust to the changes of noise. More details about this experiment are in Appendix F.

It should be noted that density-based methods make no assumptions about the shape or distribution
of the data and are capable of modeling complex data structures. This flexibility allows them to be
effective even when the training data encompasses multiple classes, and these methods use the local
or global density of the data as an anomaly score. Traditional density-based methods include Kernel
Density Estimation (KDE) (Parzen, 1962), Gaussian Mixture Models (GMM), etc. These methods
often suffer from the curse of dimensionality and are not effective in modeling complex data. To
address the problem, several deep learning based density estimation methods have been proposed.
For instance, DAGMM (Zong et al., 2018) combines deep auto-encoders with GMM, utilizing the
output density given by GMM in a low-dimensional space to detect anomalies. Normalizing flow
(Kobyzev et al., 2020), an effective generative model, is also effective in estimating the density of
complex data, and hence is useful for anomaly detection. Some flow-based image anomaly detection
methods (Gudovskiy et al., 2022; Kim et al., 2023) first employ feature extractors to derive semantic
representations of images and then implement normalizing flow to detect anomalies. In this work,
we focus on tabular data since data of other types can be converted into tabular formats using some
feature extractors or pre-trained deep models.

For standard anomaly detection, density-based methods, including normalizing flow and other shallow
and deep models, are sensitive to the changes of inherent noise in the data, yielding high false-positive
rates. It is noteworthy that such inherent noise can be largely different from artificial noise like
Gaussian noise, since they could represent minor changes from equipment or environment for data
collection. More specifically, real data have inherent noise and can be described by the model
x = G(sD, sN ), where sD and sN denote the pure data source and noise source respectively, and
G is the observation generating function. The changes of x caused by sN should not be treated
as anomalies, or at least should be distinguished from the concerned anomalies, and we call such
data noisy normal data for convenience. For instance, in a vehicle monitoring system, changes in
background noise may alter the observed data, but we are only concerned with the status of the
vehicle itself. Similarly, in medical diagnosis, we hope that changes in instruments and equipment
or the occasional noise do not affect the diagnostic results for diseases. In Figure 1, we use a
synthetic dataset to show the influence of inherent noise on the performance of five anomaly detection
methods and our proposed method Noise-Robust Density Estimation (NRDE). We observe that the
five methods fail to distinguish between noisy normal data and real anomalies, exhibiting high false
positive rates and low AUROC values, whereas our NRDE is robust to changes in the inherent noise
in the data and performs the best.

Our NRDE trains a neural network to estimate the density of pure data with the influence of noise
isolated. Specifically, we propose a Jacobian-regularized normalizing flow to estimate the density of
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Noised Normal Data
Anomalous Data
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Figure 2: Architecture of the proposed method NRDE. NRDE estimates the density of pure data by
utilizing a normalizing flow with Jacobian regularization, where the influence of noise sources is
isolated. Therefore, NRDE is robust to the changes of inherent noise in the data.

data and categorize the sources of data into two distinct groups: those that generate pure data and
those that produce noise. As a result, we can detect anomalies that are caused by pure data sources
without being affected by the noise. The framework of NRDE is shown in Figure 2. Our contributions
are summarized as follows:

• We propose a novel density-based AD method, NRDE, for tabular data based on a Jacobian-
regularized normalizing flow.

• NRDE categorize data sources into pure-data sources and noise sources and performs density
estimation for the pure data only, making it robust to the changes of noise.

• We provide some theoretical analysis for NRDE to support its effectiveness.

We conduct experiments on 47 tabular datasets to compare NRDE against 15 baseline methods. While
the primary evaluation is performed under the standard anomaly detection setting, our experimental
setup also includes anomaly detection with noise, anomaly detection with contaminated data, and
(transductive) outlier detection.

2 RELATED WORK AND PRELIMINARY KNOWLEDGE

2.1 GENERATIVE MODELS FOR ANOMALY DETECTION

Deep generative models (Schlegl et al., 2019; Kirichenko et al., 2020; Xia et al., 2022; Liu et al.,
2025) are useful in anomaly detection due to their ability to model complex data. For instance,
OCGAN (Perera et al., 2019) trains a generative adversarial network (Goodfellow et al., 2014) using
only normal data for one-class novelty detection. It constrains the latent space of an auto-encoder
to represent only the given class by bounding the space and using adversarial discriminators to
ensure latent codes and generated samples resemble the in-class data. The model is further refined by
exploring latent points that produce out-of-class samples, strengthening its ability to reject novelties.
(Yu et al., 2021) learns to transform the visual feature by deep feature extractors into a tractable
distribution and obtains the likelihood to recognize anomalies in the inference phase. RobustRealNVP
(Liu et al., 2022) ignores low-density points that are likely to be anomalies, by discarding the gradient
produced by these points in the training stage, and therefore obtains a robust density function. Kim
et al. (2023) trains a normalizing flow to map the feature distributions of each location in normal data
to distinct distributions, while mapping the distribution of abnormal data to one that is significantly
different from that of normal data, thereby enhancing discriminability. DTE (Livernoche et al., 2023)
estimates the distribution over diffusion time for a given input and uses the mode or mean of this
distribution as the anomaly score. In (Rozner et al., 2023), the authors found that density functions
around normal samples are relatively stable and proposed to use an autoregressive probabilistic model
to maximize the density of training samples while minimizing their density variance. Unfortunately,
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these works do not address the problem of sensitivity to inherent noise change in standard anomaly
detection shown by Figure 1.

2.2 INDEPENDENT COMPONENT ANALYSIS AND NORMALIZING FLOW

ICA (Hyvärinen & Oja, 2000) assumes that observed data is generated by an unknown mixing process
of several independent components (sources) which are from simple distributions, and tries to obtain
these components. By categorizing the mixing process, we can divide ICA methods into linear
ICA and nonlinear ICA. Linear ICA assumes that the mixing process is linear and the sources are
non-Gaussian, and often solves the problem by maximizing the non-Gaussianity. As for nonlinear
ICA, the mixing process is assumed to be nonlinear, and the main problem faced by the field is
that the model is unidentifiable or the sources are inseparable. In other words, there are infinitely
many ways to transform the data into independent components, which is still a mixture of underlying
sources. By utilizing additional structure in the data or introducing auxiliary variables, many methods
(Hyvärinen & Pajunen, 1999; Hyvarinen & Morioka, 2016; Zheng et al., 2022) have been developed.

Here, we briefly review the foundational concept of normalizing flows. Given a set of observations,
each of which, denoted as x, is drawn from some complex distribution X in Rd, normalizing
flow aims to learn a function FW : Rd → Rd composed of a sequence of invertible mappings
{fWt

}Tt=1, i.e., FW = fWT
◦ · · · ◦ fW2

◦ fW1
, that transforms complex distribution X into a simpler

one, denoted as Z , such as a standard Gaussian N (0, I). Here, T is the number of mappings and
W = {W1, . . . ,WT } denotes the set of all neural network parameters. Because FW is invertible, the
density pX (x) of x can be computed using the change-of-variables formula:

pX (x) = pZ(FW(x))| det(∇xFW(x))|, (1)

where det
(
∇xFW(x)

)
is the determinant of the Jacobian matrix of FW evaluated at x. One of the

coupling normalizing flows is the RealNVP proposed by (Dinh et al., 2016), where fWi
is called the

coupling transformation. Denoting x(i) ∈ Rd the input of fWi , x
(i) is usually split into two parts,

i.e., x(i)
α = [x

(i)
α1 , x

(i)
α2 , . . . , x

(i)
αqi

]⊤ and x
(i)
β = [x

(i)
β1
, x

(i)
β2
, . . . , x

(i)
βd−qi

]⊤, where 1 < qi < d. Then the

output y(i) of fWi is given as

y(i)
α = x(i)

α , y
(i)
β = x

(i)
β ⊙ exp(hi1(x

(i)
α )) + hi2(x

(i)
α ), (2)

where hi1 : Rqi → Rd−qi and hi2 : Rqi → Rd−qi are two multilayer neural networks.

3 PROPOSED METHOD

3.1 FORMULATION OF NOISE-ROBUST ANOMALY DETECTION

Let D = {x(1),x(2), . . . ,x(n)} be a set of d-dimensional training data, which is drawn from an
unknown distribution X . The primary goal of anomaly detection (AD) is to learn a model Φ : Rd → R
from the training set D, which can quantify the degree of anomaly or the dissimilarity of a new
sample xnew relative to the distribution X .

As mentioned in the technique of independent components analysis (ICA) (Hyvärinen & Oja, 2000;
Hyvärinen et al., 2009), an observation x can be regarded as given by an unknown invertible linear or
nonlinear transformation, denoted as G : Rd → Rd, on some unknown source s ∈ Rd, i.e.,

x = G(s), (3)

where s ∼ S. It is natural to assume that the source distribution S is simple and each dimension
of S is independent. For instance1, consider S = N (µ,Σ), where µ = [µ1, µ2, . . . , µd]

⊤, Σ =
diag(σ2

1 , σ
2
2 , . . . , σ

2
d), and σ1 ≥ σ2 ≥ · · · ≥ σd. For convenience, we consider that the primary

distinction among these sources resides in their variances, leading to the specification S = N (0,Σ).
Based on G, the ideal normalizing flow can be formulated as:

F ∗
W(x) := Σ− 1

2G−1(x), (4)
1Although the standard ICA requires an assumption that the sources are non-Gaussian, the Gaussian as-

sumption in this work makes sense because G may first convert each source to non-Gaussian and then perform
mixing.
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where z = F ∗
W(x) = Σ− 1

2 s ∼ N (0, I).

We split the source s into two distinct parts:

s = [sD; sN ] , (5)

where sD ∈ Rm denotes the pure data (or signal) source and sN ∈ Rd−m denotes the noise source.
It is natural to assume that the variances of sD are much greater than those of sN , namely,

σ1 ≥ σ2 · · · ≥ σm > cσm+1 ≥ cσm+2 · · · ≥ cσd, (6)

where c is some constant much greater than 1. The data with noise removed, i.e., pure data, is

xpure = G([sD;0]). (7)

Thus, the inherent noise in data is ϵ := x − xpure. Letting T denote the signal source distribution
deemed as normal, we have the following categorization for the data:

pure normal data : xpure = G([sD;0]), sD ∼ T
noisy normal data : xnorm = G([sD; sN ]), sD ∼ T , sN ̸= 0

anomalous data : xanom = G([sD; sN ]), sD ̸∼ T
(8)

In this work, given the observation x, we want to recover xpure, and evaluate whether xpure is normal
or anomalous, which is determined by sD only and is irrelevant to sN .

Rationality of the assumption in (6): This assumption is rational because a meaningful signal,
by definition, should contain structured information and variation that differentiates it from the
background. Noise, often arising from random and uncorrelated processes, tends to have its energy
dispersed without a dominant structure. Therefore, the variance of the signal, which captures its total
power and variability, is expected to be higher than that of the noise. This is a common and often
necessary condition for the signal to be detectable and analyzable amidst the random fluctuations.
For instance, in machine learning and statistics, PCA (Jolliffe & Cadima, 2016) assumes the most
important data patterns are the directions with the highest variance, effectively treating them as
the "signal" and discarding low-variance "noise." In signal processing, denoising filters work by
removing low-power (low-variance) frequencies assumed to be noise, while preserving high-power
(high-variance) frequencies considered to be the signal.

3.2 SIGNAL AND NOISE ISOLATION

To realize the aforementioned noise-robust anomaly detection, we need to calculate pX (xpure) or
pX̄ (xpure), where X denotes the distribution of x and X̄ denotes the distribution of xpure defined on
the m-dimensional manifold embedded in Rd. When pX (xpure) or pX̄ (xpure) are smaller, xpure, as
well as the corresponding noisy counterpart x, is more likely to be anomalous.

As the pX (xpure) and pX̄ (xpure) are closely related (see Appendix A.4) and they have very similar
performance in our experiments (see Appendix H.11), we here focus on pX (xpure). Let FW be the
flow model learned from D and suppose xpure can be identified from x, we can obtain

pX (xpure ) =pZ (FW(xpure ))
∣∣det(∇xpureFW(xpure))

∣∣ . (9)

Using (4), we have the ideal case for pX (xpure), i.e.,

log p∗X (xpure) = log pZ(F
∗
W(xpure)) + log | det(∇xpureF

∗
W(xpure))|

= log
(
(2π)−

d
2 exp(− 1

2s
⊤Σ−1s)

)
+ log |det(∇xpureF

∗
W(xpure))|

= log | det(∇xpureF
∗
W(xpure))| −

m∑
i=1

s2i
2σ2

i

− d

2
log(2π)

(10)

where we have used the fact that F ∗
W(xpure) = [zD;0] and z = Σ− 1

2 s. The challenge is that we
may never obtain F ∗

W . The learned FW from D can only ensure that z = FW(x) ∼ N (0, I). It is
difficult to determine which of z1, . . . , zd correspond to sD and which of z1, . . . , zd correspond to
sN . Moreover, the number of data sources m is unknown and is not easy to estimate. In the following
context, we show how to address these problems.

5
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Note that (4) indicates that
∂zj
∂x

= σ−1
j ×

∂G−1
j (x)

∂x
. (11)

We assume that

γ − δ ≤
∥∥∥∥∂G−1

j (x)

∂x

∥∥∥∥ ≤ γ + δ, ∀j ∈ [d], (12)

where γ and δ are some positive constants and δ ≪ γ. This assumption is reasonable because G
usually mixes the sources randomly and uniformly. Moreover, it is more general than the assumption
used in linear ICA (Hyvärinen et al., 2001), which assumes W⊤W = I in G(s) = Ws, meaning
γ = 1 and δ = 0. Combining (11) and (12), we have

(γ − δ)

∥∥∥∥∂zj∂x

∥∥∥∥−1

≤ σj ≤ (γ + δ)

∥∥∥∥∂zj∂x

∥∥∥∥−1

. (13)

If (γ − δ)
∥∥∥∂zj

∂x

∥∥∥−1

> c(γ + δ)
∥∥∥∂zj′

∂x

∥∥∥−1

or
∥∥∥∂zj′

∂x

∥∥∥ > cγ+δ
γ−δ

∥∥∥∂zj
∂x

∥∥∥ equivalently, then σj > cσj′ .

This means we may compare
∥∥∂z1

∂x

∥∥ , . . . ,∥∥∂zd
∂x

∥∥ to distinguish between sD and sN . However, a
clear gap may not exist between

∥∥∂z1
∂x

∥∥ , . . . ,∥∥∂zd
∂x

∥∥. An intuitive example is shown in Figure 3.
The reason is that the source s in (3) is not identifiable and there are many equivalent problems
(Hyvärinen & Pajunen, 1999; Hyvarinen et al., 2019; Zheng et al., 2022). For instance, let R be
an orthonormal matrix and FW(x) = RF ∗

W(x) is a normalizing flow learned from D. In this case,
FW(x) ∼ N (0, I) and the estimated density remains unchanged. However, FW(x) becomes a
combination of z, and the row norms of the Jacobian matrix do not reflect the variances of sources.

However, we can exploit the prior knowledge (6) to train FW and may consider the optimization

maximize
W,A,B

∑
x∈D

log
(
pZ(FW(x))| det(∇xFW(x))|

)
subject to min

j∈A

∥∥∥∥∂zj∂x

∥∥∥∥−1

> c′ max
j∈B

∥∥∥∥∂zj∂x

∥∥∥∥−1

, ∀x ∈ D

A ∪B = [d], A ∩B = ∅, |A| = m

(14)

where c′ = cγ+δ
γ−δ and A corresponds to sD and B corresponds to sN . It is very difficult to solve (14)

because c, γ, δ are unknown and the constraints are related to every x and min and max operations.
We also need to know m.

3.3 JACOBIAN-REGULARIZED NORMALIZING FLOW

The constraints in (14) indicate that some rows of the Jacobian matrix ∇xFW(x) have much smaller
norms than other rows, which is a kind of sparseness. Therefore, we propose to regularize ∇xFW(x)
during the optimization of FW and hence solve

minimize
W

1

n

∑
x∈D

− log
(
pZ(FW(x))| det(∇xFW(x))|

)
+ λR

(
1

n

∑
x∈D

|∇xFW(x)|

)
, (15)

where R denotes a sparse regularizer on matrix and λ > 0 is a hyperparameter. Instead of regularizing
for each x of D, we regularize the average of absolute Jacobian matrices. We use the following R:

R(Q) =

d∑
i=1

√
∥qi:∥1, (16)

where qi: denotes the ith row of Q ∈ Rd×d. Note that R2(Q) is the ℓ1,1/2 quasi-norm, which is
sharper than ℓ2,1 norm widely used in sparse optimization. Figure 3 illustrates the effect of R. More
details about R is provided in Appendix C.

An alternative to (16) is using R(Q) =
∑

j∈[B] ∥qj:∥ −
∑

j∈[A] ∥qj:∥, where A is the index set of
the m rows of Q with smaller norms and B is the index set of the d − m rows of Q with larger

6
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Figure 3: Visualization of row norms of the Jacobian matrix on a synthetic dataset with 50 pure data
sources and 50 noise sources. The left one shows the unregularized case, while the right one shows
the regularized case. More visualization results on real datasets are shown in Appendix G.1.

norms determined in each iteration. This method requires a good estimate of m and is sensitive to the
initialization. The performance is not as good as (16).

Although solving (15) makes sense, in real scenarios, m is hard to estimate, the obtained FW may
not provide a very clear gap between the norms of rows of the Jacobian matrix, and the gap depends
on λ. Therefore, we use a weighted log density u(x) to approximate log p∗X (xpure), which can be
regarded as an anomaly score. To be more precise, given a test sample xnew, we compute the anomaly
score as u(xnew) where a lower anomaly score indicates a higher probability of being an anomaly:

u(xnew) = log
∣∣det (∇xnewFW(xnew)

)∣∣− d

2
log 2π − 1

2

d∑
i=1

wiFW(xnew)
2
i , (17)

where the weights wi are

wi = exp
( 1

∥( 1n
∑

x∈D |∇xFW(x)|)i∥+ 1

)/ d∑
j=1

exp
( 1

∥( 1n
∑

x∈D |∇xFW(x)|)j∥+ 1

)
, (18)

and
1

∥( 1n
∑

x∈D |∇xFW(x)|)i∥+ 1
≈ σi

σi + γ + δ
, (19)

Note that wi is larger for the sources with a larger variance σi, which is more likely to be a data
source. Using such weighted log density achieves performance comparable to directly computing
pX (xpure) or pX̄ (xpure). However, the latter suffers from a practical limitation—its computation
depends explicitly on the number of data sources m. Detailed results are provided in Appendix H.11.

In summary, we train a Jacobian-regularized normalizing flow via (15). After the model is well-
trained, for any testing data, we can calculate u(xnew) using (17) to approximate the density of pure
data and use it as the anomaly score to determine whether xnew is anomalous or not. More details
about the algorithm of NRDE are shown in Appendix F.

3.4 THEORETICAL GUANRANTEES

We provide the following theoretical guarantee for u(x) to approximate log p∗X (xpure) and detect
anomaly successfully.
Theorem 3.1. Let x be a normal data point and x̂ be an anomaly. If ∥F ∗

W(x)∥ = ∥F ∗
W(x̂)∥ and

pX (x) = pX (x̂), then the weighted log-density u∗ based on F ∗
W satisfies u∗(x) > u∗(x̂).

Theorem 3.1 provides a guarantee for our proposed method to identify the anomalies and noisy
normal data that normalizing flow is unable to identify. When x and x̂ share the same estimated
density, normalizing flow is unable to detect such anomalies. Moreover, if their output norms are also
the same, the resulting misclassification is due to the presence of noise sources, implying that x is
a noisy normal data. By determining the weight w∗

i for each source, where noise sources naturally
receive much smaller weights, the influence of noise sources is minor. Consequently, the weighted
log density u∗ is dominated by the data sources, enabling reliable discrimination between x and x̂.
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Theorem 3.2. Let the Lipschitz constant of each f∗
Wi

and h∗
i1 be bounded above by τ+i and τiα

respectively and denote the weight and weighted log density estimated by F ∗
W(x) as {w∗

i }di=1 and
u∗(x) respectively. Suppose |u∗(x)− u(x)| ≤ η, then the following inequality holds:

| log p∗X (xpure)− u(x)| ≤
∑
i∈A

(
1− w∗

i

)
F ∗
W(x)2i +

∑
j∈B

w∗
jF

∗
W(x)2j

+

T∑
i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− xpure∥+ η

This theorem indicates that our method can approximate the density of the pure data. Note that when
σm > cσm+1, as defined before, the principal estimation error originates from noise ∥x− xpure∥ and
η, which are intrinsic properties of the data and the regularized normalizing flow respectively.

Assumption 3.3. For any xa,xb ∈ Rd, there exists a constant φ such that |u(xa) − u(xb)| ≥
φ∥xa − xb∥ and if x̂ is an anomaly, u(x̂) ≤ maxx∈D u(x).

This assumption is reasonable since φ can be calculated as infx∈Rd ∥∇xu(x)∥.

Theorem 3.4. Let x̂ be an anomaly. Suppose that xa,xb ∈ D such that argmaxx u(x) = xa and
argminx u(x) = xb and u(xa) = ς1, u(xb) = ς2. Then, under the Assumption 3.3, if ∥x̂− xa∥ >
ς1−ς2

φ , then x̂ can be detected as an anomaly.

Theorem 3.4 shows that our proposed method can detect anomalies that are significantly distant
from normal data. Furthermore, if an anomaly possesses a weighted log-density exceeding the
maximum weighted log-density observed in the training set, its detection becomes considerably more
challenging or even impossible. The proofs for the theorems are in Appendix A. Also, we compare
the time complexity of density-based Methods in Appendix B.

4 NUMERICAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets In our experiments, we evaluate the performance of 15 baseline methods on 47 widely
used real-world datasets spanning multiple domains in a popular benchmark for anomaly detection
proposed by (Han et al., 2022). Detailed descriptions and statistical information about these datasets
are provided in the Appendix E. In anomaly detection tasks, we follow the protocol of (Zong et al.,
2018; Bergman & Hoshen, 2020; Shenkar & Wolf, 2022; Xu et al., 2023b) by randomly partitioning
normal samples: 50% are training, while the remaining 50% are combined with all anomalous
samples to form the test set. For outlier detection, the model is trained on the entire dataset to identify
outliers, which is a transductive learning setting.

Baselines Our method is compared with 15 baselines, including DTE (Livernoche et al., 2023),
MCM (Yin et al., 2024), DPAD (Fu et al., 2024), SLAD (Xu et al., 2023b), ECOD (Li et al., 2022),
ICL (Shenkar & Wolf, 2022), NeutralAD (Qiu et al., 2021), DSVDD (Ruff et al., 2018a), RealNVP
(Dinh et al., 2016), IF (Liu et al., 2008), AE (Hinton & Salakhutdinov, 2006), LOF (Breunig et al.,
2000), kNN (Ramaswamy et al., 2000), KDE (Parzen, 1962). For DTE, MCM, DPAD, SLAD, ICL,
and NeutralAD, we use the code provided by the authors of the papers. For other methods, we
use the code from the Python library PyOD (Chen et al., 2024). All hyperparameters follow the
recommended settings.

Implementation We use the Area Under the Receiver Operating Characteristic Curve (AUROC) and
the Area Under the Precision-Recall Curve (AUPRC) as evaluation metrics, following (Xu et al.,
2023b; Han et al., 2022). These two metrics do not rely on specific thresholds of decision and are
capable of comprehensively assessing the performance of different methods. All experiments are
conducted using the PyTorch framework on a system equipped with an NVIDIA RTX 3090 GPU and
an Intel Core i9-12900K CPU. Each experiment is performed five times to obtain the mean value and
standard deviation. To ensure a consistent network architecture for fair comparison, we employ two
2-layer multilayer perceptrons (MLPs), corresponding to a parameter setting of T = 2 in (1). More
details are in Appendix D.
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4.2 RESULTS OF STANDARD ANOMALY DETECTION

Table 1: AUROC (%) and AUPRC (%) with the standard deviation of each method on several tabular
datasets of ADBench. The best results are marked in bold.

AUROC KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C Ours

annthyroid 91.4 ± 0.0 94.1 ± 0.0 92.9 ± 0.0 90.9 ± 0.0 91.8 ± 1.1 83.4 ± 2.0 79.4 ± 3.2 96.1 ± 0.5 78.9 ± 2.8 78.7 ± 0.0 64.0 ± 6.1 90.4 ± 2.9 91.2 ± 4.7 83.9 ± 0.6 97.8 ± 0.0 98.4 ± 0.0
breastw 98.9 ± 0.0 99.1 ± 0.0 96.7 ± 0.0 99.0 ± 0.0 99.5 ± 0.0 98.4 ± 0.3 99.1 ± 0.1 98.0 ± 0.0 81.4 ± 3.9 99.3 ± 0.0 90.2 ± 1.3 99.2 ± 0.1 98.9 ± 0.2 99.0 ± 0.0 96.3 ± 0.0 99.4 ± 0.0
cardio 95.7 ± 0.0 93.4 ± 0.0 93.0 ± 0.0 96.4 ± 0.0 94.9 ± 1.1 92.4 ± 3.2 96.1 ± 0.3 94.1 ± 0.4 81.0 ± 1.9 93.4 ± 0.0 83.9 ± 1.5 88.7 ± 3.0 90.0 ± 3.3 90.4 ± 0.8 93.6 ± 0.0 95.8 ± 0.6
Cardiotocography 75.0 ± 0.0 71.3 ± 0.0 72.7 ± 0.0 80.7 ± 0.0 79.3 ± 2.5 73.4 ± 2.4 83.4 ± 2.5 77.9 ± 1.8 58.2 ± 1.9 78.5 ± 0.0 54.7 ± 11.9 58.4 ± 2.1 68.0 ± 3.1 70.0 ± 0.9 72.4 ± 0.0 86.1 ± 2.4
celeba 70.5 ± 0.0 68.0 ± 0.0 44.9 ± 0.0 79.0 ± 0.0 70.8 ± 0.7 70.9 ± 1.0 48.4 ± 0.8 79.4 ± 0.6 66.4 ± 9.4 75.7 ± 0.0 69.5 ± 0.0 65.2 ± 2.1 56.3 ± 6.1 65.3 ± 3.3 82.7 ± 0.0 87.9 ± 0.7
census 72.0 ± 0.0 71.9 ± 0.0 60.5 ± 0.0 70.2 ± 0.0 62.7 ± 1.9 71.8 ± 0.1 51.9 ± 3.1 72.8 ± 0.3 72.9 ± 2.6 65.9 ± 0.0 66.8 ± 0.0 68.9 ± 0.6 50.7 ± 0.8 68.1 ± 0.2 69.6 ± 0.0 76.7 ± 3.0
speech 45.8 ± 0.0 48.5 ± 0.0 48.9 ± 0.0 45.9 ± 0.0 46.7 ± 1.2 46.8 ± 0.2 45.2 ± 1.2 50.0 ± 0.0 54.3 ± 4.2 46.1 ± 0.0 49.1 ± 2.9 50.7 ± 3.2 54.8 ± 4.6 49.9 ± 0.3 56.1 ± 0.0 64.7 ± 1.9
thyroid 98.3 ± 0.0 98.5 ± 0.0 94.6 ± 0.0 98.2 ± 0.0 99.0 ± 0.2 98.0 ± 0.3 97.5 ± 0.5 98.6 ± 0.1 65.2 ± 7.9 97.7 ± 0.0 82.2 ± 5.2 94.8 ± 1.8 96.1 ± 1.8 97.9 ± 0.3 99.2 ± 0.0 99.2 ± 0.1
vertebral 43.5 ± 0.0 42.5 ± 0.0 40.0 ± 0.0 52.7 ± 0.0 42.6 ± 4.5 48.0 ± 4.3 43.7 ± 4.5 53.6 ± 4.8 53.9 ± 3.0 41.8 ± 0.0 54.2 ± 5.8 44.4 ± 4.3 46.4 ± 3.5 47.2 ± 1.4 59.2 ± 0.0 72.7 ± 6.0
Waveform 76.0 ± 0.0 76.2 ± 0.0 76.6 ± 0.0 69.0 ± 0.0 72.5 ± 1.4 65.8 ± 2.5 69.6 ± 3.8 72.5 ± 1.6 71.5 ± 0.5 60.0 ± 0.0 59.8 ± 1.1 50.2 ± 4.0 61.0 ± 3.5 69.6 ± 1.2 65.6 ± 0.0 91.6 ± 1.1
AUPRC

annthyroid 66.2 ± 0.0 72.0 ± 0.0 66.7 ± 0.0 65.2 ± 0.0 63.8 ± 2.8 60.7 ± 2.1 54.8 ± 2.2 77.0 ± 2.8 29.4 ± 4.0 40.8 ± 0.0 31.3 ± 9.5 63.1 ± 5.8 64.5 ± 9.5 55.0 ± 0.6 84.1 ± 0.0 79.7 ± 2.0
breastw 98.8 ± 0.0 99.1 ± 0.0 93.7 ± 0.0 98.8 ± 0.0 99.5 ± 0.0 98.1 ± 0.5 99.1 ± 0.1 96.7 ± 0.1 71.2 ± 3.0 99.3 ± 0.0 86.3 ± 3.0 99.2 ± 0.2 98.7 ± 0.2 99.0 ± 0.1 92.1 ± 0.0 99.4 ± 0.0
cardio 84.0 ± 0.0 76.8 ± 0.0 69.3 ± 0.0 82.8 ± 0.0 78.4 ± 4.0 74.7 ± 5.9 83.0 ± 0.9 71.0 ± 2.6 48.9 ± 4.3 70.9 ± 0.0 60.7 ± 3.2 72.7 ± 3.0 73.5 ± 6.6 73.1 ± 1.0 69.5 ± 0.0 75.9 ± 4.3
Cardiotocography 68.1 ± 0.0 62.4 ± 0.0 59.9 ± 0.0 71.0 ± 0.0 67.6 ± 2.4 65.0 ± 2.5 75.1 ± 2.5 62.6 ± 2.1 40.3 ± 2.3 65.7 ± 0.0 45.4 ± 10.1 54.7 ± 1.5 61.5 ± 2.6 61.3 ± 1.0 61.1 ± 0.0 74.3 ± 2.7
celeba 8.9 ± 0.0 9.8 ± 0.0 3.7 ± 0.0 20.4 ± 0.0 12.5 ± 0.7 9.5 ± 0.2 4.0 ± 0.1 13.1 ± 0.6 6.6 ± 1.5 17.2 ± 0.0 8.9 ± 0.0 76.1 ± 0.4 5.8 ± 1.3 7.3 ± 1.0 15.7 ± 0.0 20.1 ± 1.6
census 21.6 ± 0.0 21.2 ± 0.0 14.3 ± 0.0 20.5 ± 0.0 14.2 ± 0.8 21.6 ± 0.1 11.9 ± 0.8 20.5 ± 0.6 23.3 ± 0.0 15.5 ± 0.0 17.4 ± 0.0 19.8 ± 0.2 12.1 ± 0.5 18.8 ± 0.2 18.0 ± 0.0 24.7 ± 1.6
speech 3.7 ± 0.0 3.7 ± 0.0 4.5 ± 0.0 3.6 ± 0.0 3.5 ± 0.2 3.6 ± 0.4 3.0 ± 0.2 3.2 ± 0.0 4.0 ± 0.0 3.8 ± 0.0 3.3 ± 0.2 3.8 ± 0.5 4.4 ± 1.1 4.4 ± 0.2 4.9 ± 0.0 5.3 ± 0.7
thyroid 73.8 ± 0.0 77.4 ± 0.0 58.8 ± 0.0 73.9 ± 0.0 83.7 ± 1.6 78.3 ± 5.5 78.9 ± 2.1 76.4 ± 1.9 6.2 ± 3.2 62.9 ± 0.0 28.8 ± 12.6 67.6 ± 7.7 60.6 ± 5.0 71.9 ± 2.8 86.4 ± 0.0 86.8 ± 1.4
vertebral 19.7 ± 0.0 20.3 ± 0.0 19.6 ± 0.0 23.1 ± 0.0 19.4 ± 1.6 21.6 ± 2.7 20.1 ± 1.7 25.3 ± 2.2 29.8 ± 1.4 19.5 ± 0.0 26.2 ± 4.0 21.4 ± 3.3 21.2 ± 1.3 20.9 ± 0.1 27.1 ± 0.0 41.0 ± 6.6
Waveform 27.6 ± 0.0 27.0 ± 0.0 31.7 ± 0.0 10.7 ± 0.0 10.8 ± 0.5 11.1 ± 1.3 9.5 ± 1.3 11.3 ± 0.6 47.4 ± 2.5 7.6 ± 0.0 29.6 ± 2.2 5.7 ± 1.0 12.0 ± 2.1 20.0 ± 0.8 10.3 ± 0.0 34.8 ± 3.5

(a) AUROC (b) AUPRC

Figure 4: The average AUROC and AUPRC performance of different methods on anomaly detection
across 47 datasets, along with the number of datasets where each method is ranked first. Higher
values of these metrics indicate better detection performance.

Table 1 reports the performance of different methods on several datasets, while Figure 4 reports the
average AUROC and AUPRC results across 47 datasets, with detailed results for each dataset available
in Appendix G.2. Our method achieves the best performance, outperforming the second-best method
by more than 2%. Compared to RealNVP, NRDE demonstrates a significant improvement, particularly
in terms of AUPRC. Additionally, NRDE outperforms other baseline methods on a larger number of
datasets. For example, on the Speech, Vertebral, and WPBC, other methods attain AUROC scores
around 50%, indicating anomaly detection is particularly challenging for these approaches. In contrast,
our method significantly outperforms baselines, highlighting its effectiveness in complex datasets.
Notably, density-based methods outperform many deep learning-based approaches, highlighting their
effectiveness in anomaly detection. Moreover, KDE and kNN—two traditional methods—outperform
all deep learning-based baseline methods. We attribute this phenomenon to two main factors. First,
as mentioned earlier, tabular data typically consists of features that inherently provide excellent
representations of semantic differences. As a result, even the simple Euclidean distance can capture
meaningful distinctions between samples. This is also consistent with the results shown in Figure
1, which illustrates the performance of these methods in challenging noisy scenarios. Second, as
demonstrated in (Jiang, 2017; Gu et al., 2019), these two methods provide more explicit predictions
for datasets with lower dimensions and more samples, which aligns with the experimental results and
the curse of dimensionality.

4.3 RESULTS OF ANOMALY DETECTION WITH ANOMALY CONTAMINATION

In real applications of AD, the training set often contains a small amount of anomalous data due
to various reasons. To evaluate the robustness and performance of all methods in this scenario, we
add different ratios of anomalies to the training set and conduct experiments on these contaminated
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Table 2: AUROC results (%) of the best-performing 5 methods of anomaly detection in noisy data.
The best results per dataset are in bold.

Dataset DSVDD KPCA IF kNN NRDE (ours)

Cardiotocography 83.7 75.8 80.7 71.3 82.1
Pima 72.5 77.0 75.8 78.1 79.6
Satellite 81.5 84.1 79.6 86.9 85.1
SpamBase 80.3 86.3 82.4 83.0 79.1
WPBC 47.5 52.2 51.7 51.5 62.9

AVG 73.1 75.1 74.0 74.2 77.2

datasets. The contamination ratio ranges from 1% to 10% of the training set size. We report the
average performance of all methods in Figure 5, where the detailed experimental results for each
dataset are in Appendix G.3. From the figure, we observe that as the anomaly ratio increases, the
performance of all methods decreases. In this scenario, our proposed method consistently achieves
superior performance over other methods, demonstrating its robustness to anomalies in the training
set. It should be noted that the AUROC performance of our proposed method remains unaffected
by the anomaly ratio. While its AUPRC performance is influenced, with a performance drop less
significant than that observed in other methods. Additionally, ECOD appears to be the baseline
method whose performance is least influenced by the anomaly ratio.

4.4 RESULTS OF ANOMALY DETECTION ON NOISY DATA

Figure 5: Average AUROC
values across 5 datasets of
AD experiments with anomaly
contamination, contamination
ratio ranging from 1% to 10%.

In real-world anomaly detection scenarios, data are often corrupted
by noise. To evaluate the performance of all methods in this com-
plex scenario, we perturb training data and anomalous testing data
with Gaussian noise drawn from N (0, 0.1Id) to training data and
anomalous testing data, while normal test samples receive stronger
noise N (0, 0.2Id). Note that the data is first normalized and then
corrupted by the noise. Table 2 illustrates the experimental results.
Our approach consistently outperforms competing methods, under-
scoring its robustness to noise.

4.5 MORE RESULTS

The time complexity comparison, more detailed results for visualiza-
tion, standard anomaly detection, anomaly detection with anomaly
contamination, outlier detection, ablation studies, hyperparameter
analysis, experiments to verify our assumptions and motivation are
in Appendices B, G.1, G.2, G.3, G.4, G.5 and G.6 respectively.

5 CONCLUSION

We proposed a novel and effective method NRDE for anomaly de-
tection in tabular data. Our key observation is that data is typically generated by independent sources,
which can be categorized into pure data sources and noise sources. By distinguishing these sources
using the Jacobian matrix, we can approximate the density of the pure data with a weighted log density
that is unaffected by noise. This allows NRDE to be robust to noise and effectively identify both
anomalous data and noisy normal data. We provided theoretical analysis on the estimation error, the
reliability of our proposed method, and the time complexity of density-based approaches. Numerical
experiments demonstrated that NRDE outperforms 15 baseline methods across 47 real-world datasets.
Furthermore, NRDE exhibits robustness to anomalies in the training set and noise inside the data.
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A PROOF FOR THEOREMS

A.1 PROOF FOR THEOREM 3.1

Proof. Let x̂ be an anomaly and x is a normal data point. Suppose their estimated densities are the
same, i.e., pX (x) = pX (x̂). In this situation, using merely the density will either detect both of them
as normal or anomalous.

We compare their weighted log density:

u∗(x)− u∗(x̂)

=−
∑
i∈A

w∗
i F

∗
W(x)2i −

∑
j∈B

w∗
jF

∗
W(x)2j + log |det∇xF

∗
W(x)|

+
∑
i∈A

w∗
i F

∗
W(x̂)2i +

∑
j∈B

w∗
jF

∗
W(x̂)2j − log |det∇x̂F

∗
W(x̂)|

(20)

Since pX (x) = pX (x̂), we have:

log |det∇xF
∗
W(x)| − log | det∇xF

∗
W(x̂)| = 1

2

d∑
i=1

(F ∗
W(x)2i − F ∗

W(x̂)2i ) (21)

Thus, we have:
u(x)− u(x̂)

=
∑
i∈A

(1− w∗
i )F

∗
W(x)2i +

∑
j∈B

(1− w∗
j )F

∗
W(x)2j

−
∑
i∈A

(1− w∗
i )F

∗
W(x̂)2i −

∑
j∈B

(1− w∗
j )F

∗
W(x̂)2j

(22)

∀j ∈ B, i ∈ A,we have F ∗
W(x)2j > F ∗

W(x̂)2j , F
∗
W(x)2i < F ∗

W(x̂)2i and w∗
i > w∗

j , this is because x
and x̂ have the same probability but x̂ is an anomaly, thus x contains more noise.

If ∥F ∗
W(x)∥2 = ∥F ∗

W(x̂)∥2, then we have:

d∑
i=1

F ∗
W(x)2i =

d∑
i=1

F ∗
W(x̂)2i∑

j∈B

(
F ∗
W(x)2j − F ∗

W(x̂)2j

)
=
∑
i∈A

(
F ∗
W(x̂)2i − F ∗

W(x)2i

) (23)

For ∀j ∈ B, i ∈ A, we have w∗
i > w∗

j ⇒ mini w
∗
i > maxj w

∗
j . Then:

u∗(x)− u∗(x̂)

≥(1−max
j∈B

w∗
j )
∑
j∈B

(
F ∗
W(x)2j − F ∗

W(x̂)2j

)
− (1−min

i∈A
w∗

i )
∑
i∈A

(
F ∗
W(x̂)2i − F ∗

W(x)2i

)
>(1−min

i∈A
w∗

i )
(∑
j∈B

(
F ∗
W(x)2j − F ∗

W(x̂)2j
)
−
∑
i∈A

(
F ∗
W(x̂)2i − F ∗

W(x)2i
))

=0

(24)

Thus, the two data points are distinguishable.
This finishes the proof.

A.2 PROOF FOR THEOREM 3.2

Lemma A.1. (Behrmann et al., 2021) Let fWi
be a coupling flow, the Lipschitz constant of the

forward fWi
can be locally bounded for x ∈ [a, b]d as:

Lip(fWi) ≤ max(1, cg) +M, (25)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Where exp(hi1(x)) ≤ cg and M = max(|a|, |b|) · cg′ ·Lip(hi1) +Lip(hi2). Similarly, the Lipschitz
constant of the reverse f−1

Wi
can be locally bounded for yi ∈ [a∗, b∗]d as:

Lip(f−1
Wi

) ≤ max(1, c 1
g
) +M∗, (26)

Where M∗ = max(|a∗|, |b∗|) · c( 1g
′
) · Lip(hi1) · ct + c 1

g
· Lip(hi2)

Proof. According to LemmaA.1, here we can assume that xi,yi are both bounded since data is
preprocessed and normalized, then we have the bi-Lipschitz constant of f∗

Wi
are bounded as:

τ−i ||x(i) − x̂(i)|| ≤ ||f∗
Wi

(x(i))− f∗
Wi

(x̂(i))|| ≤ τ+i ||x(i) − x̂(i)||, (27)

The determinant of ∇x(i)f∗
Wi

(x(i)) can be calculated as:

log |det∇x(i)f∗
Wi

(x(i))| = h∗
i1(x

(i)
α ) · 1, (28)

Suppose h∗
i1(x) = Wi,L (ϕ (· · · ϕ (Wi,2 ϕ (Wi,1x)) · · · )) and h∗

i2(x) =

Ŵi,L

(
ϕ
(
· · · ϕ

(
Ŵi,2 ϕ

(
Ŵi,1x

))
· · ·
))

are two neural networks comprising L layers

and ϕ represents the activation function. Consider different x(i), x̂(i), denote ρ the Lipschitz constant
of ϕ, we have:

| log | det∇x(i)f∗
Wi

(x(i))| − log | det∇x̂(i)f∗
Wi

(x̂(i))||
=∥h∗

i1(x
(i)
α )− h∗

i1(x̂
(i)
α )∥1

≤
√
d∥h∗

i1(x
(i)
α )− h∗

i1(x̂
(i)
α )∥

≤
√
dρL−1

L∏
l=1

∥Wi,l∥2∥x(i)
α − x̂(i)

α ∥

≤
√
dρL−1

L∏
l=1

∥Wi,l∥2∥x(i) − x̂(i)∥

=τiα
√
d∥x(i) − x̂(i)∥

≤τiα
√
d

i−1∏
j=1

τ+j ∥x− x̂∥

(29)

Where τiα = ρL−1
∏L

l=1 ∥Wi,l∥2 is the Lipschitz constant of h∗
i1. Then, we can conclude that

log |det(∇xF
∗
W(x))| has a Lipschitz constant:

| log | det(∇xF
∗
W(x))| − log | det(∇x̂F

∗
W(x̂))||

= |
T∑

i=1

(
log |det∇x(i)f∗

Wi
(x(i))| − log | det∇x̂(i)f∗

Wi
(x̂(i))|

)
|

≤
T∑

i=1

| log | det∇x(i)f∗
Wi

(x(i))| − log | det∇x̂(i)f∗
Wi

(x̂(i))||

≤
T∑

i=1

τiα
√
d∥x(i) − x̂(i)∥

≤
T∑

i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− x̂∥

(30)
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The estimation error between log p∗X (xpure) and u∗(x) is:

| log p∗X (xpure)− u∗(x)|

=|
∑
i∈A

(1− w∗
i )F

∗
W(x)2i −

∑
j∈B

w∗
jF

∗
W(x)2j − log

| det∇xF
∗
W(x)|

| det∇xpureF
∗
W(xpure)|

|

≤|
∑
i∈A

(1− w∗
i )F

∗
W(x)2i −

∑
j∈B

w∗
jF

∗
W(x)2j + | log | det∇xF

∗
W(x)|

| det∇xpureF
∗
W(xpure)|

|

≤
∑
i∈A

(
1− w∗

i

)
F ∗
W(x)2i +

∑
j∈B

w∗
jF

∗
W(x)2j +

T∑
i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− xpure∥

(31)

As for the estimation error between log p∗X (xpure) and u(x), we have the following inequality holds:

| log p∗X (xpure)− u(x)| = | log p∗X (xpure)− u∗(x) + u∗(x)− u(x)|
≤ | log p∗X (xpure)− u∗(x)|+ |u∗(x)− u(x)|

≤
∑
i∈A

(
1− w∗

i

)
F ∗
W(x)2i +

∑
j∈B

w∗
jF

∗
W(x)2j

+

T∑
i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− xpure∥+ η

(32)

This finishes the proof.

A.3 PROOF FOR THEOREM 3.4

Proof. By Assumption 3.3, we have that:

|u(x̂)− u(xa)| ≥ φ∥xa − x̂∥
u(xa)− u(x̂) ≥ φ∥xa − x̂∥ (33)

If ∥x̂− xa∥ > ς1−ς2
φ , then we have:

u(xa)− u(x̂) ≥ ς1 − ς2

u(x̂) ≤ u(xb)
(34)

Now we have the weighted log-density of x̂ is even smaller than the smallest weighted log-density of
data from D, thus it can be detected as an anomaly. This finishes the proof.

A.4 CONNECTION BETWEEN pX (xPURE) AND pX̄ (xPURE)

The support of xpure is an m-dimensional manifold M embedded in R. Let g (zD) := F−1 (zD,0)
The induced Riemannian metric on the manifold is given by:

M (zD) = Jg (zD)
⊤
Jg (zD) (35)

where Jg denote the Jacobian of g, i.e., ∇zD
g(zD). The volume element on the manifold, relative to

the parameter space sD is

dV =

√
det
[
Jg (zD)

T
Jg (zD)

]
dzD. (36)

The probability in the latent space is:

P (zD ∈ B) =

∫
B

pDZ (zD) dzD. (37)

This probability must equal the probability on the manifold M . For a measurable set A ⊂ M :

P (xpure ∈ A) =

∫
g−1(A)

pDZ (zD) dzD (38)
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We change the variable of integration from zD to xpure ∈ M and use the manifold volume element to
obtain

dzD =
dHm(xpure)√

det
[
Jg (zD)

⊤
Jg (zD)

] , (39)

where dHm is the m-dimensional Hausdorff measure on M . Substituting this into the integral, we
have

P (xpure ∈ A) =

∫
A

pDZ (zD)√
det
[
Jg (zD)

⊤
Jg (zD)

]dHm(x) (40)

Therefore, the probability density function on the manifold M with respect to the Hausdorff measure
is as follows

pX̄ (xpure ) =
pDZ (zD)√

det
[
Jg (zD)

⊤
Jg (zD)

] =
N (zD;0, Im)√

det
[
Jg (zD)

⊤
Jg (zD)

] (41)

where the second equality used the fact that sD and sN are independent.

On the other hand, we have

pX (xpure ) =pZ (zD,0) |det JF (xpure )|
=cN (zD;0, Im) |detJF (xpure )|

(42)

where c = 1
2π(d−m)/2 . It follows that

pX (xpure ) =pX̄ (xpure )× c |det JF (xpure )|
√

det
[
Jg (zD)

⊤
Jg (zD)

]
=pX̄ (xpure )× c |det JF−1 (zD,0)|−1

√
det
[
Jg (zD)

⊤
Jg (zD)

] (43)

B TIME COMPLEXITY OF DENSITY-BASED METHODS

Suppose that FW is a sequence of T flows defined in (2), and hi1, hi2 are two MLPs of L layers param-
eterized by {Wi,j}Lj=1, {Ŵi,j}Lj=1, where Wi,j ,Ŵi,j ∈ Rdi,j×di,j−1 , j ∈ [L]. Consider a batch of
B data points, the time complexity of our method per iteration is O(B

∑T
i=1(di,L

∑L−2
j=0 di,jdi,j+1)),

and the space complexity is O(B
∑T

i=1

∑L
j=0 di,jdi,j+1)) which primarily arises from the computa-

tion of the Jacobian matrix. Here, we also compare the testing time complexity of a few representative
density-based methods. We assume that DAGMM (Zong et al., 2018) contains K Gaussians and the
encoder and decoder have L̂ layers, with ith layer of encoder being WE,i ∈ Rdi×di−1 and ith layer
of decoder being WD,i ∈ RdL+1−i×dL−i . For DPAD (Fu et al., 2024), we assume that the size of its
neural network is the same as that of the encoder of DAGMM. Suppose we have one testing data, the
time complexity of density-based methods is shown in Table 3.

We notice that traditional density-based methods, such as KNN and KDE, require comparing test
data against the entire training set to generate anomaly scores. Consequently, these methods become
computationally inefficient as dataset sizes grow, since the time complexity grows linearly with the
number of training data. DPAD encounters a similar issue due to its reliance on KNN, although it
mitigates this by employing a neural network for dimensionality reduction. In contrast, methods like
DAGMM, RealNVP, and our proposed NRDE primarily utilize neural network outputs for anomaly
scoring, which do not depend on the training set.

C PROPERTY OF THE REGULARIZER R()

Briefly speaking, our objective is to construct a Jacobian matrix in which the row norms exhibit a clear
separation—some being significantly larger than others—so that we can distinguish between pure
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Table 3: Time complexity comparison of density-based methods in testing stage.

Testing Complexity

KNN O(nd)
KDE O(nd)
LOF O(nd)

DAGMM O
(∑L̂

l=1 dl−1dl + d3
L̂

)
DPAD O(

∑L̂
l=1 dl−1dl + dL̂n)

RealNVP O
(∑T

i=1(
∑L−1

j=0 di,jdi,j+1)
)

NRDE O
(∑T

i=1(
∑L−1

j=0 di,jdi,j+1)
)

data sources and noise sources. Consider the derivative ∂R(Q)
∂Qi,j

=
sign(Qi,j)√

||Qi:||
, where ||Qi:|| is ℓ1 norm.

In this formulation, rows with larger norms receive a smaller penalty from the regularizer, whereas
rows with smaller norms receive a larger penalty. This naturally encourages row-wise sparsity and
separation. Moreover, unlike the conventional ℓ2,1 norm, where smaller entries in the same row
receive smaller penalty, our regularizer R imposes the same penalty on all entries within a given
row—avoiding vanishing penalty problem for small entries—thereby enhancing both separation and
sparsity. Thus, in theory, the formulation is suitable for our task.

D IMPLEMENTATION DETAILS

To ensure a consistent network architecture for a fair comparison, we employ two MLPs with two
linear layers, where LeakyReLU is used as the activation function. Note that the outputs of hi1, hi2
are actually the split output from the same MLP. The detailed network architecture is shown in Table
5. Additionally, we use Adam as our optimizer and set the batch size to 2048 for all experiments,
while the training epoch is set to 100. Since the scale of the Jacobian norm in different datasets can
be largely different, as shown in Figure 7, we use a simple hyperparameter tuning strategy for NRDE:
(i) Fixing λ = 0, decrease learning rate from 0.01 to 0.001 until training becomes stable (i.e., no
loss explosion); (ii) Then, based on (15), viewed as minW L(λ,W), select λ ∈ 1, 0.1, 0.01 such that
the regularization term λR(·) is on a comparable scale with 0.1 · L(0,W). A detailed algorithm for
hyperparameter tuning is provided in Algorithm 2.

Algorithm 1 Training and Testing Procedure of NRDE
Training stage of NRDE:
Input: D = {x1,x2, . . . ,xn}, λ > 0, training epoch B

Output:FW , {wi}di=1
Initialize the parameters of flow network W
for b = 1, . . . , B do

for each batch D̂ do
Obtain the flow output {FW(x)}x∈D̂
Update parameters W using (15)

end for
end for

Testing stage of NRDE:
Input: xnew, FW , {wi}di=1

Output:anomaly score: u(xnew)
Obatain znew = FW(xnew)
Obtain anomaly score u(xnew) using (17)
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Table 4: Statistics of 47 real-world datasets in ADBench.

Data # Samples # Features # Anomaly % Anomaly Category
ALOI 49534 27 1508 3.04 Image
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
Cardiotocography 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 4.21 Forensic
Hepatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
InternetAds 1966 1555 368 18.72 Image
Ionosphere 351 32 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical
mammography 11183 6 260 2.32 Healthcare
mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
PageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 2.27 Image
Pima 768 8 268 34.90 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image
smtp 95156 3 30 0.03 Web
SpamBase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare
vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 3.43 Linguistics
Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4.48 Healthcare
WDBC 367 30 10 2.72 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry
WPBC 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology

E STATISTICS OF DATASETS

In our experiments, we evaluate the performance of 14 methods on 47 widely used real-world datasets
spanning multiple domains, including healthcare, audio, language processing, and finance, in a
popular benchmark for anomaly detection (Han et al., 2022). The statistics of these datasets are
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Table 5: Network architecture

Tabular

Dimension_input=2d
Dimension_firstlayer=b
Linear(2d, b), LeakyReLU()
Linear(b, 2d)

shown in Table 4. These datasets encompass a range of samples and features, from small to large,
providing comprehensive metrics and evaluations for the methods.

Algorithm 2 Hyperparameter tuning Strategy of NRDE
Input: D = {x1,x2, . . . ,xn}, FW

Output:lr∗, λ∗

Initialize the parameters of flow network W
Obtain the flow output {FW(x)}x∈D
Obtain L0 = L(0,W) using (15)
Obtain R

(
1
n

∑
x∈D |∇xFW(x)|

)
for lr ∈ {10−2, 5 ∗ 10−3, 10−3} do

Set lr∗ = lr
Initialize the parameters of flow network W
for b = 1, . . . , 10 do

Obtain the flow output {FW(x)}x∈D
Obtain loss Lb = L(0,W) using (15)
Update parameters W with step size lr using Lb

if Lb > L0 then
lr∗ = 10−3

end if
end for
if lr∗ ̸= 10−3 then

break the loop
end if

end for
Set λ∗ = 0.01
for λ ∈ {1, 0.1, 0.01} do

if 1 ≤ 0.1L0

λR( 1
n

∑
x∈D |∇xFW(x)|)

then
λ∗ = λ

end if
end for

F ALGORITHM DETAILS

The detailed algorithm of our proposed NRDE is illustrated in Algorithm 1.

The synthetic data is generated using Algorithm 3. We primarily use Gaussian or uniform dis-
tributions to generate data, where the variances of the data sources are significantly larger than
those of the noise sources. Specifically, SD = Unif

(
[−10, 50]d

)
,SN = Unif

(
[−40,−20]d

)
, ŜN =

Unif
(
[−10, 10]d

)
, ŜD = Unif

(
[10, 30]d

)
. Both the training and testing normal data are generated

using the normal data generative process. For noisy normal data, the data sources are distributed
according to SD, while the noise sources are distributed according to variables distributed in SN

and are perturbed by ŜN , introducing anomalies in the noise sources. In the case of anomalous
data, the generative process closely resembles that of noisy normal data, where the noise sources
are distributed in SN . However, the data sources are perturbed by variables distributed in SD and
perturbed by ŜD, leading to anomalies in the data sources. Moreover, Var(ŜN ) < Var(ŜD). Data
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Algorithm 3 Data Generative Process
Normal data generation:
Input: data source distribution SD, noise source distribution SN , number of data sources m, data

dimension d, mixing matrix W ∈ Rd×d

Output:normal data xi

Obtain data sources sD ∈ Rm by sD ∼ SD, obtain noise sources sN ∈ Rd−m by sN ∼ SN

Generate data using x = W [sD; sN ]T

Noisy normal data generation:
Input: number of data n̂, data source distribution SD, noise source distribution SN , noise pertur-

bation distribution ŜN , number of data sources m, data dimension d, mixing matrix W ∈ Rd×d

Output:noisy normal data x̃
Obtain data sources sD ∈ Rm by sD ∼ SD, obtain noise sources sN ∈ Rd−m by sN ∼ SN ,
obtain noise perturbation ŝN ∈ Rd−m by ŝN ∼ ŜN

Generate data using x̃ = W [sD; sN + ŝN ]T

Anomalous data generation:
Input: number of data n̂, data source distribution SD, data perturbation distribution ŜD,noise

source distribution SN , number of data sources m, data dimension d, mixing matrix W ∈ Rd×d

Output:anomalous data x̂

Obtain data sources sD ∈ Rm by sD ∼ SD, obtain data perturbation ŝD ∈ Rm by ŝD ∼ ŜD,
obtain noise sources sN ∈ Rd−m by sN ∼ SN

Generate data using x̂ = W [sD + ŝD; sN ]T
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Figure 6: Visualization of the Jacobian matrix row norms on several synthetic datasets with 50 total
sources. From left to right, the number of noise dimensions is 40, 25, and 10, respectively. The top
row corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.

shown in Figure 1 is generated using d = 100,m = 10. Note that here W is an orthogonal matrix.
All models are trained using 10000 normal data, and tested using 1000 normal data, 1000 noisy
normal data, and 1000 anomalous data.

G EXPERIMENTAL RESULTS

G.1 JACOBIAN ROW NORM VISUALIZATION

In this subsection, we present visualizations of the Jacobian row norms on both synthetic and real-
world datasets. Figures 6 and 7 illustrate these results. Notably, even without regularization, the row
norms already exhibit clear separability; this distinction becomes even more pronounced when the
regularizer is applied.
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Figure 7: Visualization of the Jacobian matrix row norms on several real datasets. The top row
corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.

G.2 STANDARD ANOMALY DETECTION

In this subsection, we provide the detailed experimental results of AD on 47 real-world datasets.
Table 6 and Table 7 show the detailed AUROC and AUPRC results on 47 datasets.

Table 6: Average AUROC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C Ours

ALOI 56.4 ± 0.0 63.4 ± 0.0 74.6 ± 0.0 55.0 ± 0.0 54.4 ± 0.1 55.8 ± 0.1 51.8 ± 0.2 56.2 ± 2.5 55.1 ± 0.9 53.0 ± 0.0 50.2 ± 2.5 54.8 ± 0.4 51.7 ± 0.6 63.2 ± 0.2 54.2 ± 0.0 56.7 ± 0.4
annthyroid 91.4 ± 0.0 94.1 ± 0.0 92.9 ± 0.0 90.9 ± 0.0 91.8 ± 1.1 83.4 ± 2.0 79.4 ± 3.2 96.1 ± 0.5 78.9 ± 2.8 78.7 ± 0.0 64.0 ± 6.1 90.4 ± 2.9 91.2 ± 4.7 83.9 ± 0.6 97.8 ± 0.0 98.4 ± 0.0
backdoor 90.5 ± 0.0 93.7 ± 0.0 95.7 ± 0.0 62.6 ± 0.0 75.1 ± 3.2 93.5 ± 0.3 92.5 ± 1.0 91.8 ± 0.4 87.1 ± 4.7 84.6 ± 0.0 95.2 ± 1.9 92.5 ± 0.2 94.6 ± 0.7 96.6 ± 0.1 91.8 ± 0.0 94.5 ± 2.0
breastw 98.9 ± 0.0 99.1 ± 0.0 96.7 ± 0.0 99.0 ± 0.0 99.5 ± 0.0 98.4 ± 0.3 99.1 ± 0.1 98.0 ± 0.0 81.4 ± 3.9 99.3 ± 0.0 90.2 ± 1.3 99.2 ± 0.1 98.9 ± 0.2 99.0 ± 0.0 96.3 ± 0.0 99.4 ± 0.0
campaign 77.3 ± 0.0 78.3 ± 0.0 69.8 ± 0.0 77.1 ± 0.0 72.0 ± 1.5 80.8 ± 0.7 1.1 ± 0.5 79.6 ± 0.3 62.3 ± 2.6 78.3 ± 0.0 80.5 ± 1.4 76.3 ± 0.6 64.2 ± 6.1 78.5 ± 0.2 76.7 ± 0.0 76.9 ± 0.1
cardio 95.7 ± 0.0 93.4 ± 0.0 93.0 ± 0.0 96.4 ± 0.0 94.9 ± 1.1 92.4 ± 3.2 96.1 ± 0.3 94.1 ± 0.4 81.0 ± 1.9 93.4 ± 0.0 83.9 ± 1.5 88.7 ± 3.0 90.0 ± 3.3 90.4 ± 0.8 93.6 ± 0.0 95.8 ± 0.6
Cardiotocography 75.0 ± 0.0 71.3 ± 0.0 72.7 ± 0.0 80.7 ± 0.0 79.3 ± 2.5 73.4 ± 2.4 83.4 ± 2.5 77.9 ± 1.8 58.2 ± 1.9 78.5 ± 0.0 54.7 ± 11.9 58.4 ± 2.1 68.0 ± 3.1 70.0 ± 0.9 72.4 ± 0.0 86.1 ± 2.4
celeba 70.5 ± 0.0 68.0 ± 0.0 44.9 ± 0.0 79.0 ± 0.0 70.8 ± 0.7 70.9 ± 1.0 48.4 ± 0.8 79.4 ± 0.6 66.4 ± 9.4 75.7 ± 0.0 69.5 ± 0.0 65.2 ± 2.1 56.3 ± 6.1 65.3 ± 3.3 82.7 ± 0.0 87.9 ± 0.7
census 72.0 ± 0.0 71.9 ± 0.0 60.5 ± 0.0 70.2 ± 0.0 62.7 ± 1.9 71.8 ± 0.1 51.9 ± 3.1 72.8 ± 0.3 72.9 ± 2.6 65.9 ± 0.0 66.8 ± 0.0 68.9 ± 0.6 50.7 ± 0.8 68.1 ± 0.2 69.6 ± 0.0 76.7 ± 3.0
cover 95.5 ± 0.0 98.5 ± 0.0 98.9 ± 0.0 96.2 ± 0.0 14.0 ± 1.8 98.3 ± 0.6 47.6 ± 1.6 83.8 ± 0.1 85.1 ± 3.8 92.0 ± 1.1 67.4 ± 3.4 79.2 ± 9.9 87.9 ± 5.9 96.4 ± 0.4 96.7 ± 0.0 84.1 ± 3.2
donors 97.4 ± 0.0 99.8 ± 0.0 98.2 ± 0.0 92.0 ± 0.0 88.4 ± 1.6 93.6 ± 2.1 97.7 ± 0.7 96.6 ± 0.4 95.8 ± 1.7 88.8 ± 0.0 94.0 ± 0.0 96.9 ± 0.6 98.7 ± 1.9 100.0 ± 0.0 98.9 ± 0.0 97.6 ± 1.2
fault 81.2 ± 0.0 76.9 ± 0.0 67.2 ± 0.0 61.4 ± 0.0 65.2 ± 0.9 73.3 ± 0.4 71.9 ± 1.1 50.8 ± 0.1 73.2 ± 0.3 47.4 ± 0.0 77.9 ± 1.0 79.2 ± 0.3 73.5 ± 2.5 71.2 ± 0.2 71.8 ± 0.0 62.7 ± 4.1
fraud 95.8 ± 0.0 96.0 ± 0.0 78.3 ± 0.0 95.6 ± 0.0 95.0 ± 0.2 95.7 ± 0.2 50.6 ± 12.1 54.4 ± 0.1 94.9 ± 3.0 94.9 ± 0.0 83.4 ± 0.0 94.6 ± 0.3 64.1 ± 13.9 95.8 ± 0.2 94.4 ± 0.0 95.9 ± 0.3
glass 83.5 ± 0.0 89.3 ± 0.0 74.0 ± 0.0 71.1 ± 0.0 81.3 ± 1.0 77.9 ± 2.3 79.8 ± 2.7 81.5 ± 1.3 92.1 ± 2.3 69.8 ± 0.0 90.8 ± 1.1 83.5 ± 1.0 88.8 ± 2.0 86.5 ± 0.1 78.4 ± 0.0 91.2 ± 0.9
Hepatitis 79.4 ± 0.0 85.0 ± 0.0 84.6 ± 0.0 84.2 ± 0.0 77.8 ± 1.9 83.9 ± 1.4 80.3 ± 3.2 59.4 ± 0.8 62.2 ± 5.8 71.5 ± 0.0 60.1 ± 4.1 77.6 ± 3.0 83.7 ± 2.5 81.2 ± 1.5 80.8 ± 0.0 85.3 ± 1.7
http 100.0 ± 0.0 99.9 ± 0.0 93.0 ± 0.0 100.0 ± 0.0 99.1 ± 0.3 99.8 ± 0.1 99.8 ± 0.1 99.6 ± 0.0 99.0 ± 1.9 97.8 ± 0.0 50.0 ± 0.0 99.9 ± 0.0 99.8 ± 0.2 99.9 ± 0.1 99.5 ± 0.0 99.8 ± 0.0
InternetAds 85.7 ± 0.0 73.8 ± 0.0 78.7 ± 0.0 73.8 ± 0.0 43.6 ± 3.2 88.2 ± 0.0 52.4 ± 1.1 81.2 ± 0.3 81.6 ± 0.9 68.9 ± 0.0 78.9 ± 1.0 86.7 ± 0.3 83.2 ± 0.6 82.3 ± 0.1 87.1 ± 0.0 79.1 ± 0.7
Ionosphere 97.4 ± 0.0 97.0 ± 0.0 94.7 ± 0.0 96.5 ± 0.0 93.6 ± 0.5 94.3 ± 1.0 78.7 ± 3.4 93.8 ± 0.2 96.4 ± 0.5 75.5 ± 0.0 94.1 ± 0.4 86.3 ± 0.2 97.3 ± 0.4 95.4 ± 0.1 95.4 ± 0.0 87.7 ± 2.0
landsat 72.7 ± 0.0 73.9 ± 0.0 75.4 ± 0.0 45.7 ± 0.0 59.9 ± 1.5 57.0 ± 1.8 58.1 ± 4.4 59.7 ± 2.0 70.7 ± 1.4 36.6 ± 0.0 73.8 ± 2.8 69.9 ± 0.1 69.7 ± 3.2 62.2 ± 0.1 58.8 ± 0.0 71.5 ± 4.1
letter 91.8 ± 0.0 84.1 ± 0.0 86.1 ± 0.0 60.9 ± 0.0 61.7 ± 2.0 80.1 ± 0.6 34.2 ± 2.3 83.1 ± 0.6 92.5 ± 0.8 56.0 ± 0.0 87.5 ± 1.4 90.3 ± 0.6 80.2 ± 5.5 89.0 ± 0.4 89.6 ± 0.0 70.2 ± 0.0
Lymphography 98.6 ± 0.0 98.6 ± 0.0 98.6 ± 0.0 98.4 ± 0.0 97.7 ± 0.5 98.5 ± 0.1 98.5 ± 0.2 94.3 ± 0.5 82.9 ± 3.3 98.5 ± 0.0 92.9 ± 5.1 98.5 ± 0.2 98.3 ± 0.2 98.5 ± 0.1 97.7 ± 0.0 98.7 ± 0.3
magic.gamma 75.7 ± 0.0 82.2 ± 0.0 83.2 ± 0.0 73.5 ± 0.0 77.3 ± 0.5 81.8 ± 0.8 76.1 ± 1.6 79.6 ± 0.5 77.5 ± 0.6 63.4 ± 0.0 71.7 ± 1.7 72.4 ± 1.2 79.8 ± 2.9 82.6 ± 0.3 85.8 ± 0.0 81.9 ± 1.1
mammography 88.1 ± 0.0 87.6 ± 0.0 83.8 ± 0.0 88.9 ± 0.0 88.3 ± 0.8 87.5 ± 2.3 81.3 ± 1.4 89.5 ± 0.4 70.9 ± 4.6 90.7 ± 0.0 57.3 ± 10.7 72.6 ± 3.2 84.8 ± 2.2 90.7 ± 0.4 87.8 ± 0.0 91.2 ± 0.3
mnist 94.8 ± 0.0 93.8 ± 0.0 92.6 ± 0.0 91.0 ± 0.0 86.6 ± 1.1 93.4 ± 0.2 85.1 ± 1.7 92.4 ± 0.4 77.8 ± 2.8 74.7 ± 0.0 86.7 ± 1.8 91.2 ± 0.6 85.8 ± 3.1 90.3 ± 0.4 84.9 ± 0.0 93.2 ± 4.3
musk 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0 100.0 ± 0.0 95.8 ± 3.3 1.0 ± 0.0 99.9 ± 0.1 99.4 ± 0.3 100.0 ± 0.0 95.8 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.9 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.2
optdigits 97.4 ± 0.0 92.7 ± 0.0 97.8 ± 0.0 60.9 ± 0.0 79.6 ± 4.8 88.7 ± 0.8 32.6 ± 13.0 94.2 ± 0.7 95.9 ± 0.5 60.4 ± 0.0 91.7 ± 2.5 91.4 ± 1.6 75.5 ± 10.8 87.8 ± 2.8 89.2 ± 0.0 94.5 ± 1.4
PageBlocks 95.0 ± 0.0 95.8 ± 0.0 96.7 ± 0.0 94.4 ± 0.0 92.8 ± 0.1 94.8 ± 0.6 94.7 ± 0.5 92.0 ± 0.9 93.7 ± 0.5 91.4 ± 0.0 79.5 ± 4.1 87.7 ± 0.0 95.4 ± 1.5 96.3 ± 0.2 96.2 ± 0.0 92.1 ± 2.2
pendigits 99.8 ± 0.0 99.8 ± 0.0 98.8 ± 0.0 96.1 ± 0.0 97.0 ± 0.5 98.0 ± 0.2 88.6 ± 4.5 98.5 ± 0.6 93.9 ± 1.5 92.7 ± 0.0 93.8 ± 4.6 92.7 ± 2.9 94.7 ± 2.8 98.6 ± 0.4 97.6 ± 0.0 98.1 ± 0.7
Pima 78.1 ± 0.0 78.0 ± 0.0 73.6 ± 0.0 73.1 ± 0.0 76.5 ± 0.5 73.9 ± 1.7 73.0 ± 2.6 79.3 ± 0.6 56.0 ± 2.6 61.5 ± 0.0 63.1 ± 3.6 54.6 ± 2.1 70.2 ± 3.4 74.1 ± 1.2 70.7 ± 0.0 81.7 ± 0.7
satellite 86.9 ± 0.0 87.3 ± 0.0 85.1 ± 0.0 75.4 ± 0.0 80.0 ± 1.2 80.3 ± 0.4 81.7 ± 2.9 83.6 ± 1.3 78.4 ± 2.5 58.3 ± 0.0 83.9 ± 1.8 87.0 ± 0.4 86.5 ± 1.6 82.0 ± 0.1 86.1 ± 0.0 86.8 ± 0.6
satimage-2 99.9 ± 0.0 99.9 ± 0.0 99.6 ± 0.0 99.7 ± 0.0 99.4 ± 0.0 99.8 ± 0.1 98.5 ± 0.6 98.9 ± 0.0 84.9 ± 1.4 96.6 ± 0.0 96.2 ± 1.7 99.7 ± 0.0 98.7 ± 1.3 98.9 ± 0.2 98.9 ± 0.0 99.7 ± 0.1
shuttle 99.8 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.7 ± 0.0 99.6 ± 0.1 99.8 ± 0.1 99.2 ± 0.1 99.8 ± 0.0 99.9 ± 0.0 99.3 ± 0.0 99.4 ± 0.4 99.9 ± 0.0 99.9 ± 178.7 100.0 ± 0.0 99.7 ± 0.0 99.9 ± 0.0
skin 89.1 ± 0.0 99.8 ± 0.0 92.5 ± 0.0 90.3 ± 0.0 88.8 ± 0.4 83.9 ± 2.3 69.6 ± 1.6 90.0 ± 0.1 88.4 ± 1.1 48.8 ± 0.0 50.0 ± 0.0 91.2 ± 1.8 99.3 ± 0.2 79.4 ± 3.3 92.4 ± 0.0 92.5 ± 0.4
smtp 88.2 ± 0.0 93.5 ± 0.0 94.2 ± 0.0 85.5 ± 0.0 90.1 ± 0.2 91.4 ± 3.4 89.5 ± 1.2 93.4 ± 0.1 91.0 ± 2.4 87.9 ± 0.0 53.0 ± 6.0 91.9 ± 3.2 93.4 ± 1.1 83.5 ± 3.2 95.2 ± 0.0 95.6 ± 0.1
SpamBase 85.7 ± 0.0 83.0 ± 0.0 81.7 ± 0.0 81.6 ± 0.0 83.6 ± 1.4 82.0 ± 0.1 79.4 ± 1.7 80.1 ± 0.3 79.2 ± 0.8 66.0 ± 0.0 81.4 ± 0.9 85.3 ± 0.8 76.8 ± 3.8 81.3 ± 0.3 84.5 ± 0.0 87.4 ± 0.5
speech 45.8 ± 0.0 48.5 ± 0.0 48.9 ± 0.0 45.9 ± 0.0 46.7 ± 1.2 46.8 ± 0.2 45.2 ± 1.2 50.0 ± 0.0 54.3 ± 4.2 46.1 ± 0.0 49.1 ± 2.9 50.7 ± 3.2 54.8 ± 4.6 49.9 ± 0.3 56.1 ± 0.0 64.7 ± 1.9
Stamps 95.1 ± 0.0 90.8 ± 0.0 87.2 ± 0.0 91.2 ± 0.0 91.9 ± 0.5 89.2 ± 1.3 91.9 ± 0.9 93.6 ± 1.4 74.2 ± 1.8 86.7 ± 0.0 88.1 ± 4.4 73.0 ± 5.2 90.9 ± 2.9 88.6 ± 1.3 67.5 ± 0.0 95.9 ± 1.5
thyroid 98.3 ± 0.0 98.5 ± 0.0 94.6 ± 0.0 98.2 ± 0.0 99.0 ± 0.2 98.0 ± 0.3 97.5 ± 0.5 98.6 ± 0.1 65.2 ± 7.9 97.7 ± 0.0 82.2 ± 5.2 94.8 ± 1.8 96.1 ± 1.8 97.9 ± 0.3 99.2 ± 0.0 99.2 ± 0.1
vertebral 43.5 ± 0.0 42.5 ± 0.0 40.0 ± 0.0 52.7 ± 0.0 42.6 ± 4.5 48.0 ± 4.3 43.7 ± 4.5 53.6 ± 4.8 53.9 ± 3.0 41.8 ± 0.0 54.2 ± 5.8 44.4 ± 4.3 46.4 ± 3.5 47.2 ± 1.4 59.2 ± 0.0 72.7 ± 6.0
vowels 96.5 ± 0.0 97.3 ± 0.0 96.8 ± 0.0 83.0 ± 0.0 77.7 ± 1.9 95.3 ± 0.9 41.3 ± 9.1 90.4 ± 1.1 98.7 ± 0.1 59.5 ± 0.0 98.2 ± 0.4 97.2 ± 0.6 93.4 ± 2.5 91.5 ± 1.6 97.3 ± 0.0 87.8 ± 4.3
Waveform 76.0 ± 0.0 76.2 ± 0.0 76.6 ± 0.0 69.0 ± 0.0 72.5 ± 1.4 65.8 ± 2.5 69.6 ± 3.8 72.5 ± 1.6 71.5 ± 0.5 60.0 ± 0.0 59.8 ± 1.1 50.2 ± 4.0 61.0 ± 3.5 69.6 ± 1.2 65.6 ± 0.0 91.6 ± 1.1
WBC 98.1 ± 0.0 99.4 ± 0.0 97.9 ± 0.0 99.0 ± 0.0 99.7 ± 0.1 99.0 ± 0.3 99.3 ± 0.4 98.8 ± 0.2 78.6 ± 4.7 99.0 ± 0.0 80.0 ± 6.7 98.8 ± 0.8 98.3 ± 0.7 99.1 ± 0.3 98.2 ± 0.0 99.9 ± 0.1
WDBC 99.4 ± 0.0 99.1 ± 0.0 99.4 ± 0.0 99.3 ± 0.0 99.3 ± 0.3 99.4 ± 0.3 98.9 ± 1.1 95.0 ± 0.3 32.5 ± 6.3 97.8 ± 0.0 83.7 ± 9.5 97.8 ± 0.3 97.2 ± 2.6 97.9 ± 0.2 38.9 ± 0.0 99.9 ± 0.0
Wilt 37.1 ± 0.0 60.8 ± 0.0 70.8 ± 0.0 33.9 ± 0.0 50.4 ± 1.6 56.2 ± 7.5 49.9 ± 2.3 59.9 ± 0.5 80.3 ± 3.9 40.3 ± 0.0 78.2 ± 3.7 66.8 ± 6.7 73.1 ± 2.0 66.0 ± 5.2 86.8 ± 0.0 77.9 ± 2.5
wine 92.2 ± 0.0 93.2 ± 0.0 92.2 ± 0.0 91.2 ± 0.0 88.5 ± 1.4 85.6 ± 2.7 90.2 ± 3.9 92.6 ± 1.6 78.5 ± 5.2 73.0 ± 0.0 82.6 ± 8.2 92.7 ± 4.5 85.3 ± 4.1 95.8 ± 1.2 92.3 ± 0.0 99.1 ± 1.0
WPBC 52.5 ± 0.0 51.3 ± 0.0 50.5 ± 0.0 49.1 ± 0.0 52.5 ± 0.6 49.6 ± 0.6 50.0 ± 1.8 58.0 ± 1.0 59.1 ± 2.1 47.0 ± 0.0 53.4 ± 5.9 50.4 ± 0.8 52.1 ± 2.5 52.3 ± 0.8 48.3 ± 0.0 65.3 ± 4.1
yeast 43.2 ± 0.0 46.6 ± 0.0 46.7 ± 0.0 44.9 ± 0.0 42.9 ± 0.7 47.9 ± 1.3 42.5 ± 1.6 51.0 ± 1.4 60.1 ± 1.8 45.3 ± 0.0 55.9 ± 2.1 52.7 ± 0.8 51.8 ± 1.9 45.7 ± 0.7 50.5 ± 0.0 61.1 ± 2.7
AVG 84.3 85.1 81.0 79.8 78.2 81.3 74.3 83.6 77.9 73.7 76.1 79.2 81.5 83.4 83.3 86.8

G.3 ANOMALY DETECTION WITH ANOMALY CONTAMINATION

Under this experimental setting, we conduct experiments on five datasets: Cardiotocography, Satellite,
SpamBase, Pima, and WPBC. The average AUPRC results are shown in Figure 8. Detailed results
for each dataset are shown in Figure 9. As the anomaly ratio increases, the performance variation
of our proposed method remains minimal, demonstrating its robustness to anomalous data in the
training set. We observe that when the anomaly ratio increases, the performance of some methods
does not decrease or even improves. The reason for this may be that, as the anomaly ratio increases,
the number of anomalies in the test set decreases, leading to different test sets for experiments at
varying anomaly ratios.
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Table 7: Average AUPRC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C Ours

ALOI 10.5±0.0 9.8±0.0 15.9±0.0 7.5±0.3 6.6±0.0 7.6±0.0 7.2±0.2 7.1±0.0 7.5±0.3 6.4±0.0 6.1±0.5 7.1±0.0 7.1±0.4 10.9±0.2 6.8±0.0 7.8±0.3
annthyroid 66.2±0.0 72.0±0.0 66.7±0.0 65.2±0.0 63.8±2.8 60.7±2.1 54.8±2.2 77.0±2.8 29.4±4.0 40.8±0.0 31.3±9.5 63.1±5.8 64.5±9.5 55.0±0.6 84.1±0.0 79.7±2.0
backdoor 44.7±0.0 45.0±0.0 59.9±0.0 7.8±0.0 9.6±1.8 86.8±0.1 71.4±1.1 77.9±5.8 55.8±2.3 16.7±0.0 89.6±1.2 86.0±0.6 65.1±3.0 81.8±0.3 63.2±0.0 83.5±1.4
breastw 98.8±0.0 99.1±0.0 93.7±0.0 98.8±0.0 99.5±0.0 98.1±0.5 99.1±0.1 96.7±0.1 71.2±3.0 99.3±0.0 86.3±3.0 99.2±0.2 98.7±0.2 99.0±0.1 92.1±0.0 99.4±0.0
campaign 47.7±0.0 48.8±0.0 39.6±0.0 48.9±0.0 43.7±1.8 49.2±0.8 42.5±0.6 50.3±0.1 28.9±3.2 50.0±0.0 49.5±1.3 48.4±0.4 33.0±6.5 50.0±0.2 48.7±0.0 49.4±1.6
cardio 84.0±0.0 76.8±0.0 69.3±0.0 82.8±0.0 78.4±4.0 74.7±5.9 83.0±0.9 71.0±2.6 48.9±4.3 70.9±0.0 60.7±3.2 72.7±3.0 73.5±6.6 73.1±1.0 69.5±0.0 75.9±4.3
Cardiotocography 68.1±0.0 62.4±0.0 59.9±0.0 71.0±0.0 67.6±2.4 65.0±2.5 75.1±2.5 62.6±2.1 40.3±2.3 65.7±0.0 45.4±10.1 54.7±1.5 61.5±2.6 61.3±1.0 61.1±0.0 74.3±2.7
celeba 8.9±0.0 9.8±0.0 3.7±0.0 20.4±0.0 12.5±0.7 9.5±0.2 4.0±0.1 13.1±0.6 6.6±1.5 17.2±0.0 8.9±0.0 76.1±0.4 5.8±1.3 7.3±1.0 15.7±0.0 20.1±1.6
census 21.6±0.0 21.2±0.0 14.3±0.0 20.5±0.0 14.2±0.8 21.6±0.1 11.9±0.8 20.5±0.6 23.3±0.0 15.5±0.0 17.4±0.0 19.8±0.2 12.1±0.5 18.8±0.2 18.0±0.0 24.7±1.6
cover 34.2±0.0 72.0±0.0 83.7±0.0 22.0±0.0 1.1±0.0 52.8±9.6 2.0±0.1 9.3±1.8 29.1±14.8 18.4±0.0 9.0±3.7 9.2±7.8 37.4±12.7 60.7±1.7 67.9±0.0 12.8±2.4
donors 70.9±0.0 95.3±0.0 76.3±0.0 42.4±0.0 37.6±3.4 49.8±8.2 82.3±3.4 66.2±1.1 64.3±0.0 41.2±0.0 88.5±2.3 65.6±4.9 96.6±3.5 99.7±0.0 77.8±0.0 75.0±5.1
fault 79.8±0.0 76.0±0.0 64.0±0.0 65.2±0.0 63.9±1.0 72.9±0.3 69.3±2.2 51.5±0.0 70.5±0.5 49.4±0.0 75.4±1.2 78.5±0.6 72.5±2.4 69.4±0.3 72.2±0.0 63.6±3.1
fraud 33.8±0.0 31.3±0.0 1.1±0.0 31.7±0.0 21.2±4.8 60.5±3.2 11.5±13.6 3.8±0.0 58.8±2.0 31.5±0.0 30.3±0.0 33.3±3.6 13.5±11.8 80.1±0.4 72.8±0.0 26.1±0.5
glass 27.9±0.0 29.9±0.0 18.8±0.0 19.2±0.0 22.6±1.8 20.8±0.2 21.2±1.2 24.5±1.4 49.7±1.9 25.1±0.0 38.7±6.8 26.1±0.9 33.3±3.6 26.1±0.2 23.4±0.0 31.8±1.5
Hepatitis 59.7±0.0 62.1±0.0 62.0±0.0 61.6±0.0 45.9±2.4 59.8±2.8 54.4±3.3 32.0±0.4 34.5±4.0 40.2±0.0 34.3±3.1 53.4±6.0 59.6±3.6 52.4±1.6 55.9±0.0 69.0±1.0
http 99.2±0.0 99.9±0.0 9.6±0.0 99.5±0.0 45.3±7.7 86.8±15.2 99.7±0.1 55.1±0.0 43.3±0.3 25.2±0.0 0.8±0.0 92.9±3.4 97.4±1.1 87.5±10.7 57.7±0.0 65.2±1.1
InternetAds 80.7±0.0 65.3±0.0 67.3±0.0 64.4±0.0 27.2±1.6 86.1±0.0 42.3±1.2 56.5±0.5 69.6±2.3 62.8±0.0 62.2±1.8 79.6±0.9 77.8±1.7 73.8±0.1 78.4±0.0 64.2±1.3
Ionosphere 97.9±0.0 98.3±0.0 95.2±0.0 97.3±0.0 94.0±0.4 95.5±0.1 80.6±3.5 90.9±0.3 96.9±0.5 77.9±0.0 94.4±0.9 97.1±0.1 97.7±0.4 96.6±0.1 96.1±0.0 90.8±1.9
landsat 54.8±0.0 58.0±0.0 70.4±0.0 32.1±0.0 43.2±2.4 40.0±1.5 42.5±5.0 46.4±0.4 49.4±1.3 27.8±0.0 68.9±2.8 48.3±1.2 50.6±3.8 44.0±0.2 39.4±0.0 55.6±8.4
letter 59.9±0.0 44.4±0.0 49.5±0.0 20.7±0.0 15.5±0.9 36.2±1.3 8.6±0.4 41.2±3.4 69.1±2.4 13.8±0.0 52.1±2.5 57.2±2.6 40.6±8.6 46.2±0.6 64.9±0.0 21.0±2.8
Lymphography 80.0±0.0 80.0±0.0 80.0±0.0 72.0±0.0 80.5±3.3 76.6±4.0 80.0±5.2 42.9±2.1 28.7±1.2 89.7±0.0 66.6±22.6 77.9±5.9 75.6±4.2 77.2±3.9 65.0±0.0 80.2±2.1
magic.gamma 80.4±0.0 85.4±0.0 86.2±0.0 78.5±0.0 80.2±0.3 84.9±0.6 80.3±1.3 83.2±0.3 80.5±0.3 67.6±0.0 77.6±1.4 77.9±1.2 84.0±1.9 86.4±0.2 87.9±0.0 84.7±0.8
mammography 43.7±0.0 41.9±0.0 32.7±0.0 41.2±0.0 38.8±5.0 37.2±9.0 34.9±2.7 44.8±2.2 10.0±0.7 54.0±0.0 15.9±5.3 15.4±3.6 36.9±5.6 41.2±1.7 39.3±0.0 46.0±2.6
mnist 78.7±0.0 77.1±0.0 72.3±0.0 69.4±0.0 55.8±2.4 74.0±0.3 58.1±1.8 67.1±1.2 49.7±2.0 29.9±0.0 63.0±2.6 74.0±0.1 64.8±4.7 69.1±1.0 58.7±0.0 76.7±0.3
musk 100.0±0.0 100.0±0.0 99.0±0.0 100.0±0.0 60.8±22.5 99.9±0.0 99.2±1.5 84.9±6.7 100.0±0.0 63.2±0.0 100.0±0.0 100.0±0.0 99.9±0.1 100.0±0.0 100.0±0.0 98.2±2.1
optdigits 49.7±0.0 33.6±0.0 53.2±0.0 6.5±0.0 14.1±2.6 19.8±1.1 4.0±0.8 40.5±3.6 55.5±6.0 7.0±0.0 34.0±7.1 26.0±3.4 16.7±7.9 19.9±2.8 22.4±0.0 57.4±1.3
PageBlocks 84.8±0.0 86.6±0.0 87.9±0.0 80.0±0.0 70.2±0.5 82.6±1.7 84.4±0.7 74.5±1.8 78.2±1.1 66.4±0.0 68.0±5.1 71.2±1.4 86.9±1.8 85.5±0.5 84.9±0.0 74.3±3.6
pendigits 96.7±0.0 95.9±0.0 69.7±0.0 47.4±0.0 48.9±3.7 56.7±3.1 27.5±9.1 68.0±8.1 30.2±2.8 38.5±0.0 48.3±10.4 32.6±4.5 58.1±16.3 66.6±5.8 45.9±0.0 79.5±8.1
Pima 77.0±0.0 76.9±0.0 73.0±0.0 74.3±0.0 77.0±0.4 73.9±2.0 73.4±2.2 77.6±0.8 56.8±3.2 65.7±0.0 63.0±4.1 58.7±1.9 71.0±2.9 74.1±1.4 70.2±0.0 79.7±0.6
satellite 89.2±0.0 89.3±0.0 88.5±0.0 82.3±0.0 84.3±0.6 85.8±0.1 84.4±2.5 86.8±1.1 74.5±2.2 65.7±0.0 87.2±1.3 87.8±0.3 87.6±1.4 85.7±0.1 87.7±0.0 88.0±0.6
satimage-2 98.3±0.0 97.9±0.0 99.6±0.0 97.4±0.0 93.9±1.0 94.2±2.5 93.7±2.2 57.2±2.5 7.3±0.5 77.3±0.0 82.5±4.4 91.8±3.0 89.0±5.8 61.0±3.1 52.4±0.0 96.3±1.1
shuttle 98.1±0.0 97.5±0.0 99.4±0.0 97.5±0.0 98.5±0.5 97.3±0.0 97.0±0.1 98.1±0.2 99.9±0.3 94.3±0.0 98.3±0.5 97.5±0.0 99.2±0.1 99.2±0.1 94.0±0.0 98.7±0.1
skin 65.0±0.0 99.5±0.0 73.0±0.0 66.3±0.0 63.5±0.9 64.0±6.4 48.6±0.7 65.7±2.5 67.4±2.4 30.3±0.0 34.4±0.0 80.3±5.0 98.3±0.5 63.3±8.5 70.7±0.0 73.3±2.4
smtp 58.8±0.0 42.0±0.0 29.3±0.0 60.5±0.0 0.9±0.0 28.9±12.4 16.0±6.8 32.0±2.0 62.8±4.3 52.6±0.0 6.1±12.0 52.1±9.0 58.5±5.6 43.7±0.1 44.1±0.0 51.5±0.0
SpamBase 87.7±0.0 86.6±0.0 82.9±0.0 84.9±0.0 87.3±1.2 84.8±0.1 82.6±1.4 80.5±0.4 80.8±0.9 68.9±0.0 86.3±0.8 88.9±0.4 82.3±2.9 84.7±0.3 86.2±0.0 88.7±0.4
speech 3.7±0.0 3.7±0.0 4.5±0.0 3.6±0.0 3.5±0.2 3.6±0.4 3.0±0.2 3.2±0.0 4.0±0.0 3.8±0.0 3.3±0.2 3.8±0.5 4.4±1.1 4.4±0.2 4.9±0.0 5.3±0.7
Stamps 63.7±0.0 54.2±0.0 44.2±0.0 51.0±0.0 50.9±1.3 47.4±2.4 52.8±2.6 61.8±6.1 26.8±7.1 45.2±0.0 56.2±10.8 33.6±4.3 52.8±6.1 48.4±2.9 26.9±0.0 72.7±8.3
thyroid 73.8±0.0 77.4±0.0 58.8±0.0 73.9±0.0 83.7±1.6 78.3±5.5 78.9±2.1 76.4±1.9 6.2±3.2 62.9±0.0 28.8±12.6 67.6±7.7 60.6±5.0 71.9±2.8 86.4±0.0 86.8±1.4
vertebral 19.7±0.0 20.3±0.0 19.6±0.0 23.1±0.0 19.4±1.6 21.6±2.7 20.1±1.7 25.3±2.2 29.8±1.4 19.5±0.0 26.2±4.0 21.4±3.3 21.2±1.3 20.9±0.1 27.1±0.0 41.0±6.6
vowels 77.7±0.0 76.3±0.0 74.3±0.0 44.2±0.0 25.4±3.0 69.9±6.3 6.0±1.2 63.6±3.6 87.6±2.0 14.2±0.0 84.5±2.2 76.6±6.9 64.1±11.0 56.4±3.3 79.6±0.0 51.0±4.5
Waveform 27.6±0.0 27.0±0.0 31.7±0.0 10.7±0.0 10.8±0.5 11.1±1.3 9.5±1.3 11.3±0.6 47.4±2.5 7.6±0.0 29.6±2.2 5.7±1.0 12.0±2.1 20.0±0.8 10.3±0.0 34.8±3.5
WBC 85.5±0.0 95.7±0.0 82.3±0.0 91.2±0.0 97.8±0.7 92.1±3.7 94.3±2.9 83.2±4.1 26.7±2.2 99.0±0.0 24.3±6.3 91.7±5.4 86.0±6.8 93.7±1.5 77.2±0.0 99.2±1.0
WDBC 90.9±0.0 81.5±0.0 89.9±0.0 87.7±0.0 86.5±6.2 90.0±6.4 80.8±15.5 36.0±1.4 4.0±0.3 73.9±0.0 34.3±23.2 70.3±2.8 76.4±11.5 66.8±2.4 17.1±0.0 99.4±1.1
Wilt 7.4±0.0 12.9±0.0 17.0±0.0 7.0±0.0 9.2±0.3 10.8±2.2 10.1±0.4 11.3±0.1 51.9±8.0 8.1±0.0 38.6±4.3 17.8±4.3 17.3±0.9 13.7±2.0 29.5±0.0 19.4±1.9
wine 58.2±0.0 60.8±0.0 52.7±0.0 55.0±0.0 57.3±2.6 42.4±6.0 56.5±11.4 56.6±7.1 33.8±1.5 30.5±0.0 44.4±14.6 64.0±18.8 39.8±6.6 80.2±6.5 59.6±0.0 95.2±4.0
WPBC 38.3±0.0 37.5±0.0 37.5±0.0 36.9±0.0 37.8±0.3 37.1±0.0 37.9±2.1 43.8±1.0 50.6±1.6 35.4±0.0 41.3±4.5 39±0.9 39.2±1.7 39.0±0.7 36.5±0.0 52.5±4.6
yeast 48.2±0.0 49.5±0.0 49.8±0.0 48.6±0.0 48.10.4 40.3±0.4 47.0±1.1 51.7±0.6 57.5±1.5 50±0.0 55.0±2.0 53.1±0.7 52.3±0.9 49.0±0.8 51.2±0.0 58.8±2.3
AVG 62.3 62.2 57.6 54.6 48.9 58.2 51.5 53.6 48.0 45.0 49.9 58.4 58.2 59.9 57.0 63.3

Figure 8: The average AUPRC performance of 13 methods across 5 datasets of AD experiments with
anomaly contamination, with anomaly ratio ranging from 1% to 10%.

G.4 OUTLIER DETECTION

To evaluate the effectiveness of our method in outlier detection (transductive learning), we conduct
experiments on several datasets where all data are used for both training and testing, and compare our
method with other outlier detection methods. We provide the detailed experimental results for outlier
detection on 5 datasets: Cardiotocography, Satellite, SpamBase, Pima, and WPBC. We compare
our proposed method with traditional density-based methods and state-of-the-art outlier detection
methods. The AUROC and AUPRC results are shown in Table 8.

G.5 ABLATION STUDIES

In this subsection, we investigate how each component of our proposed method affects its anomaly
detection performance and analyze the impact of different values of the hyperparameter λ on detection
performance. The two main components of our method are the regularizer R and the weighted log
density u(x). Notably, when these two components are ablated, the method reduces to a basic
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Figure 9: The detailed AUROC and AUPRC performance of 13 methods across 5 datasets of AD
experiments with anomaly contamination, with anomaly ratio ranging from 1% to 10%.

Table 8: Detailed AUROC performance of outlier detection on 5 datasets. The best results are marked
in bold.

AUROC Cardiotocography SpamBase Satellite Pima WPBC

IF 68.8 65.5 67.9 67.0 49.1
ECOD 78.5 65.5 58.2 59.4 48.1
OC-SVM 69.5 53.3 66.3 62.3 48.4
KPCA 53.4 52.1 48.2 53.8 45.5
LOF 52.3 45.6 54.1 60.1 52.0
KDE 50.2 49.5 76.0 72.2 49.9
kNN 57.9 52.9 65.0 65.1 47.2
RealNVP 62.7 56.5 74.6 70.7 59.1
COPOD 66.2 68.7 63.3 65.4 52.3
DeepIF 63.0 37.9 74.3 61.3 49.4

Ours 80.5 77.7 81.9 80.1 62.2

normalizing flow, i.e., RealNVP. Table 9 and 10 present the average performance results of different
components across five datasets. We observe that both components contribute positively to overall
performance. Specifically, the regularizer R primarily enhances the separability of sources, thus
exerting minimal influence on the basic normalizing flow.

We also investigate the impact of different values of the hyperparameter λ and learning rate on the
performance of standard AD. The detailed experimental results are shown in Table 11 and 12. We
observe that the method is not highly sensitive to changes in λ and learning rate; however, in some
datasets, large values of λ may affect the training process and lead to a decrease in performance.

G.6 MORE EXPERIMENTS ON SYNTHETIC AND REAL DATASETS TO VERIFY ASSUMPTIONS
AND MOTIVATIONS

In this subsection, we include several experiments on both synthetic and real datasets to further verify
our assumptions and motivations.

G.6.1 PERFORMANCE RESULTS WHEN VARIANCE DIFFERENCE IS NOT SATISFIED

Here, we analyze the performance of NRDE on synthetic datasets where the variance difference is
not satisfied. Suppose the variance of pure data sources is σ2

d, and the variance of noise sources is

σ2
n, we now report the performance results on synthetic datasets with different σ2

d

σ2
n

in Table 13. The
performance decline of NRDE verifies our assumptions and motivations.
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Table 9: Average AUROC and AUPRC performance of the proposed method containing different
components.

AUROC Cardiotocography SpamBase Satellite Pima WPBC

w/o u, R 77.9 80.1 83.6 79.3 58.0
w/o u 77.2 80.7 82.3 78.2 60.2
w/o R 84.6 84.7 84.1 80.8 61.9
Ours 86.1 87.4 86.8 81.7 65.3
AUPRC Cardiotocography SpamBase Satellite Pima WPBC

w/o u, R 62.6 80.5 86.8 77.6 43.8
w/o u 60.9 80.8 85.1 76.5 45.4
w/o R 73.2 86.8 85.0 79.1 47.8
Ours 74.3 88.7 88.0 81.7 52.5

Table 10: Average AUROC and AUPRC performance of the proposed method containing different
components across 5 datasets.

Components AUROC AUPRC

w/o u(x),R 75.7 70.2
w/o u(x) 75.7 69.7
w/o R 79.2 74.3

Ours 81.4 76.6

Table 11: Average AUROC and AUPRC performance of the proposed method with different values
of learning rate lr.

AUROC Cardiotocography SpamBase Satellite Pima WPBC

lr = 0.001 62.9 82.9 82.4 81.1 59.3
lr = 0.005 78.0 87.4 80.2 80.5 64.1
lr = 0.01 86.1 86.3 83.5 81.0 62.9

Table 12: Average AUROC and AUPRC performance of the proposed method with different values
of hyperparameter λ.

AUROC Cardiotocography SpamBase Satellite Pima WPBC

λ = 0 84.6 84.7 84.1 80.8 61.9
λ = 0.01 85.1 86.3 83.5 81.0 62.9
λ = 0.1 86.1 87.4 82.4 81.7 61.1
λ = 1 79.4 82.0 86.8 80.3 65.3
AUPRC Cardiotocography SpamBase Satellite Pima WPBC

λ = 0 73.2 86.8 85.0 79.1 47.8
λ = 0.01 74.3 86.9 85.2 79.2 50.9
λ = 0.1 74.3 88.7 84.7 79.7 47.7
λ = 1 67.1 83.8 88.0 79.0 52.5

Table 13: AUROC performance of NRDE on synthetic datasets with different σ2
d

σ2
n

ratios.

σ2
d/σ

2
n 9 6 4 2 1 0.5

NRDE 87.5 82.9 80.4 77.9 71.2 68.6
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G.6.2 PERFORMANCE RESULTS COMPARISON WITH IDEAL BASELINES.

In synthetic dataset where m the number of data sources is known, we compare the performance of
NRDE with KDE-C, DSVDD-C and KNN-C which are evaluated on datasets without noise compo-
nents and NRDE−m, where only the m sources with largest variance from set A are used for comput-
ing anomaly score: um(xnew) = log | det(∇xnew

FW(xnew))| − d
2 log 2π − 1

2

∑
i∈A wiFW(xnew)

2
i .

The results are shown in Table 14. Since NRDE is an approximation of NRDE−m, its performance
being close but not as good as NRDE−m and other ideal baselines supports our claim and motivation.

Table 14: AUROC (%) performance of NRDE and other baselines on the synthetic dataset.

Method NRDE NRDE-m KDE-C KNN-C DSVDD-C
AUROC 83.1 86.3 87.2 90.2 87.5

G.6.3 EXPERIMENTAL RESULTS USING CONTRADICTORY ASSUMPTION

If we make a contradictory assumption that the variances of data sources should be smaller, then the
weight for each source should be defined as:

wi = exp
(
||( 1

n

∑
x∈D

|∇xFW(x)|)i||
)
/

d∑
j=1

exp
(
||( 1

n

∑
x∈D

|∇xFW(x)|)j ||
)

where sources with smaller variances obtain larger weights. This method is denoted as NRDE-CON.
The performance of NRDE-CON and NRDE on several datasets is shown in Table 15, where the
results support the assumption in our paper.

Table 15: AUROC (%) performance of NRDE-CON and NRDE.

Method WPBC Thyroid Musk Annthyroid Wilt
NRDE-CON 60.1 59.6 76.5 53.3 63.1

NRDE 65.3 99.2 99.8 98.4 77.9

H MORE EXPERIMENTAL RESULTS DURING THE REBUTTAL PHASE

To facilitate the review process, this section consolidates all supplementary experiments conducted
and added during the rebuttal phase.

H.1 MORE EXPERIMENTAL COMPARISON BETWEEN λ = 0 AND λ ̸= 0

In this subsection, we provide a performance comparison of NRDE (λ ̸= 0)and NRDE (λ = 0) on 47
datasets in Table 16. Setting λ ̸= 0 results in performance improvement in most datasets.

H.2 HYPERPARAMETER CONFIGURATION OF NRDE ON 47 DATASETS

In this subsection, we provide the hyperparameter configuration of NRDE on all the 47 datasets in
Table 17.

H.3 DYNAMICS OF TRAINING LOSS AND AUROC ACROSS THE TRAINING PROCEDURE

In this subsection, we provide the dynamics of training loss and AUROC across the training procedure
for several datasets in Figure 10. As shown in the figure, the decrease in loss is consistent with the
improvement in performance.
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H.4 EXPERIMENTS USING SYMMETRIC DESIGN FOR ANOMALY DETECTION ON NOISY DATA

In this subsection, we consider a symmetric design in which stronger noise is added to the anomalous
test samples. We conduct experiments on the same five datasets, and the corresponding results
are presented in Table 18. In this scenario, NRDE consistently outperforms competing methods,
underscoring its robustness to noise.

H.5 A PRACTICAL DIAGNOSTIC TO VERIFY VARIANCE DIFFERENCE ON REAL DATA.

In this subsection, we provide a simple way to empirically verify the variance difference underlying
our assumption is as follows. We first train an unregularized normalizing flow FW on the real dataset
D and compute the average absolute Jacobian

J =
1

n

∑
x∈D

∣∣∇FW(x)
∣∣.

We then take the row norms {∥Ji∥}di=1 and sort them in ascending order, denoted by {∥Ji∗∥}di=1.

One simple way to measure the gap is to compute the gap ∆i =
J(i+1)∗−Ji∗

J(i+1)∗
, since the number of

data sources m can not be obtained, we use the expectation of such gap E(∆) =
∑d−1

i=1 ∆i/(d− 1)
to measure the variance difference where a large value of E(∆) indicates that the variance difference
is pronounced and that NRDE is particularly appropriate in such cases.

We conducted experiments to measure E(∆) on datasets where NRDE shows performance improve-
ments and on datasets where it exhibits performance drops compared to other density-based methods.
The results in Table 19 show that datasets with performance improvements tend to have larger values
of E(∆), illustrating that E(∆) is an effective diagnostic for measuring the variance difference.

H.6 SENSITIVITY ANALYSIS OF NRDE TO ARCHITECTURAL CHOICES

In this subsection, we include additional experiments on five representative datasets to evaluate the
sensitivity of our method to architectural choices in Table 20 and Table 21. Overall, NRDE remains
robust across different architectures in most cases.

H.7 PERFORMANCE COMPARISON BETWEEN NRDE AND OTHER HYPERPARAMETER-TUNED
BASELINES

For all baseline methods, We follow the widely-used setting in recent papers Yin et al. (2024); Xu et al.
(2023b); Livernoche et al. (2023); Shenkar & Wolf (2022) to use the recommended or best-performing
hyperparameter configuration given in their original paper. To further eliminate any concerns
regarding insufficient tuning, we perform grid search over the hyperparameters on several recent
methods: MCM, DTE-C and SLAD based on their original papers and report their best-performing
results on each datasets. For MCM, learning rate lr ∈ {0.001, 0.05, 0.01} and λ ∈ {0.1, 1, 10}. For
DTE-C, learning rate lr ∈ {0.001, 0.05, 0.01} and time stamps T ∈ {100, 400, 1000}. For SLAD,
lr ∈ {0.001, 0.05, 0.01} and hidden dimension d̂ ∈ {64, 128, 256}. Experimental results in Table 22
show that NRDE still outperforms these tuned baselines in most cases.

H.8 OUTLIER DETECTION ON MORE DATASETS

In this subsection, we conduct outlier detection experiments on the other 5 datasets. As shown
in Table 23, NRDE still outperforms these baselines in the transductive setting, demonstrating its
robustness to contamination by anomalies in the training set.

H.9 MORE STATISTICAL REPORTING FOR STANDARD AD

In this subsection, we now include box plots illustrating the performance distributions of different
methods across the 47 datasets in Figure 11, as well as the corresponding p-values for each comparison
with the baselines in Table 24. While the p-values indicate that the performance improvement of
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NRDE over simple methods such as KNN and KDE is not statistically significant, NRDE exhibits
statistically significant gains over the other deep learning–based baselines.

H.10 TRAINING TIME COST COMPARISON BETWEEN NRDE AND REALNVP (NORMALIZING
FLOW)

Since NRDE and RealNVP share the same inference procedure, we report only their training times
across datasets of varying dimensionality in Table 25. The main time consumption of NRDE
compared to RealNVP is the time for Jacobian matrix computation for each training data. The
results indicate that, even for large-scale or high-dimensional datasets, NRDE’s training time remains
comparable to RealNVP with no substantial increase.

H.11 PERFORMANCE COMPARISON BETWEEN NRDE, pX (xPURE ) AND pX̄ (xPURE )

In this subsection, we compare the performance of NRDE, pX (xpure ) and pX̄ (xpure ) on several
datasets. Since estimating pX (xpure ) and pX̄ (xpure ) requires explicitly measuring m, which is the
number of data sources, here we estimate m using a simple strategy. First, we compute the average
absolute Jacobian

J =
1

n

∑
x∈D

∣∣∇FW(x)
∣∣.

We then take the row norms {Ji}di=1 and sort them in ascending order, denoted by {Ji∗}di=1. Then
we measure the variance gap by computing ∆i =

J(i+1)∗−Ji∗

J(i+1)∗
, and find m by

m = argmax
i

∆i (44)

As shown in Table 26, the performance of using pX (xpure) and pX̄ (xpure) is very close to that of
NRDE. A paired t-test on 10 datasets shows that the performance differences between NRDE and
these two pure-data-based baselines are not statistically significant (p > 0.05).

(a) Ionosphere (b) letter (c) pendigits

Figure 10: Dynamics of training loss and AUROC across the training procedure for several datasets.
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Table 16: AUROC performance comparison of NRDE on 47 real-world datasets in ADBench with or
without R (λ is set to 0).

Data λ ̸= 0 λ = 0
ALOI 55.1 56.7
annthyroid 98.1 98.4
backdoor 86.7 94.5
breastw 99.3 99.4
campaign 76.4 76.9
cardio 76.1 95.8
Cardiotocography 84.6 86.1
celeba 84.3 87.9
census 73.4 76.7
cover 69.2 84.1
donors 97.3 97.6
fault 58.3 62.7
fraud 92.4 95.9
glass 89.0 91.2
Hepatitis 82.3 85.3
http 99.7 99.8
InternetAds 76.2 79.1
Ionosphere 87.6 87.7
landsat 71.1 71.5
letter 67.0 70.2
Lymphography 98.6 98.7
magic.gamma 80.6 81.9
mammography 89.7 91.2
mnist 91.8 93.2
musk 99.9 99.8
optdigits 94.2 94.5
PageBlocks 92.1 92.1
pendigits 96.2 98.1
Pima 80.8 81.7
satellite 84.0 86.8
satimage-2 99.6 99.7
shuttle 99.8 99.9
skin 92.1 92.5
smtp 95.7 95.6
SpamBase 86.6 87.4
speech 63.6 64.7
Stamps 93.7 95.9
thyroid 99.3 99.2
vertebral 67.8 72.7
vowels 83.3 87.8
Waveform 91.7 91.6
WBC 99.7 99.9
WDBC 99.6 99.9
Wilt 79.4 77.9
wine 97.2 99.1
WPBC 63.6 65.3
yeast 59.2 61.1
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Table 17: Hyperparameter configuration of NRDE on 47 real-world datasets in ADBench.

Data lr λ
ALOI 0.005 1
annthyroid 0.001 0.1
backdoor 0.001 0.1
breastw 0.001 0.1
campaign 0.005 0.01
cardio 0.005 0.1
Cardiotocography 0.01 0.01
celeba 0.001 0.01
census 0.005 0.01
cover 0.01 1
donors 0.001 0.1
fault 0.01 1
fraud 0.001 1
glass 0.005 0.1
Hepatitis 0.01 0.1
http 0.01 0.01
InternetAds 0.001 0.1
Ionosphere 0.001 0.01
landsat 0.005 0.1
letter 0.001 0.01
Lymphography 0.005 0.1
magic.gamma 0.01 0.1
mammography 0.005 1
mnist 0.001 1
musk 0.005 1
optdigits 0.005 1
PageBlocks 0.01 0.01
pendigits 0.01 0.1
Pima 0.001 0.1
satellite 0.001 1
satimage-2 0.001 0.1
shuttle 0.01 0.1
skin 0.001 0.1
smtp 0.01 0.1
SpamBase 0.01 0.1
speech 0.001 0.1
Stamps 0.01 0.1
thyroid 0.005 0.01
vertebral 0.005 0.1
vowels 0.005 1
Waveform 0.001 0.1
WBC 0.01 0.1
WDBC 0.01 0.1
Wilt 0.01 1
wine 0.005 1
WPBC 0.005 0.1
yeast 0.01 1
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Table 18: AUROC results (%) of the best-performing 5 methods on anomaly detection with noisy
data, where stronger noise is added to the anomalous test samples. The best results per dataset are in
bold.

Dataset DSVDD KPCA IF kNN NRDE (ours)

Cardiotocography 83.7 75.8 80.7 71.3 82.1
Pima 72.5 77.0 75.8 78.1 79.6
Satellite 81.5 84.1 79.6 86.9 85.1
SpamBase 80.3 86.3 82.4 83.0 79.1
WPBC 47.5 52.2 51.7 51.5 62.9

AVG 73.1 75.1 74.0 74.2 77.2

Table 19: Average gap values on datasets showing significant performance improvement or drop
compared to other density-based methods.

Datasets (Improvement) average gap

annthyroid 0.23
smtp 0.58
vertebral 0.16
Pima 0.35
Cardiotocography 0.14

Datasets (Drop) average gap

Ionosphere 0.04
landsat 0.03
letter 0.03
optdigits 0.07
pendigits 0.06

Table 20: Average AUROC performance of the proposed method with different numbers of coupling
layers (T).

AUROC SpamBase Satellite Pima WPBC Cardiotocography

T = 2 87.4 86.8 81.7 65.3 86.1
T = 3 84.2 87.4 83.0 63.9 75.7
T = 4 86.3 88.3 82.3 62.7 78.3

Table 21: Average AUROC performance of the proposed method with different width of coupling
layers (b).

AUROC SpamBase Satellite Pima WPBC Cardiotocography

b = 512 86.2 85.1 80.2 65.5 84.5
b = 1024 86.1 85.0 81.0 64.6 85.3
b = 2048 87.4 86.8 81.7 65.3 86.1
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Table 22: AUROC (%) comparison between tuned MCM, SLAD, DTE-C and our proposed method
on tabular datasets of different dimensionalities from ADBench.

Dataset SLAD MCM DTE-C Ours

Low-dimensional (<10 features)
annthyroid 91.3 98.5 98.0 98.4
glass 83.5 86.5 81.6 91.2
mammography 79.5 90.7 89.8 91.2
Pima 62.1 75.2 71.1 81.7
vertebral 46.7 56.0 67.9 72.7

Middle-dimensional (10–100 features)
Cardiotocography 61.1 79.5 75.1 86.1
fraud 94.8 95.8 95.8 95.9
satellite 88.1 85.7 83.0 86.8
satimage-2 99.7 99.9 99.0 99.7
shuttle 99.9 99.9 99.7 99.9

High-dimensional (>100 features)
backdoor 92.5 97.2 92.3 94.5
census 70.0 72.0 71.1 76.7
mnist 91.2 95.3 91.8 93.2
musk 100.0 100.0 100.0 99.8
speech 55.4 49.9 53.7 64.7

Table 23: Detailed AUROC performance of outlier detection on 10 datasets. The best results are
marked in bold.

AUROC Cardiotocography SpamBase Satellite Pima WPBC glass optdigits PageBlocks pendigits Waveform AVG

IF 68.8 65.5 67.9 67.0 49.1 78.2 74.1 89.1 95.5 72.8 72.8
ECOD 78.5 65.5 58.2 59.4 48.1 70.4 60.4 91.3 92.7 60.3 68.4
OC-SVM 69.5 53.3 66.3 62.3 48.4 59.9 50.7 91.4 93.1 67.1 66.2
KPCA 53.4 52.1 48.2 53.8 45.5 49.9 52.2 64.3 57.2 56.0 53.2
LOF 52.3 45.6 54.1 60.1 52.0 77.0 53.7 71.5 49.9 70.5 58.6
KDE 50.2 49.5 76.0 72.2 49.9 82.0 32.2 90.6 89.0 75.1 66.6
kNN 57.9 52.9 65.0 65.1 47.2 86.7 37.2 88.8 75.8 73.4 65.0
RealNVP 62.7 56.5 74.6 70.7 59.1 79.6 72.3 86.4 91.1 69.8 72.2
COPOD 66.2 68.7 63.3 65.4 52.3 75.5 68.2 87.5 90.4 73.3 71.0
DeepIF 63.0 37.9 74.3 61.3 49.4 84.5 56.3 87.5 95.3 78.6 68.8

Ours 80.5 77.7 81.9 80.1 62.2 85.0 75.3 82.7 88.3 91.8 80.5

Table 24: Paired t-test between NRDE and each baseline over 47 tabular datasets.

KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C

AUROC p 0.0547 0.0990 0.0184 2.3e-05 9.4e-06 0.0091 1.1e-06 0.0003 5.3e-05 2.1e-09 3.7e-06 0.0006 0.0004 0.0041 0.0269
AUPRC p 0.6429 0.8984 0.0419 0.0011 1.6e-07 0.0422 6.2e-06 5.0e-06 0.0018 2.1e-08 4.3e-04 0.0762 0.0360 0.1833 0.0674

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

(a) AUROC

(b) AUPRC

Figure 11: Box plots comparing the performance distributions of different methods across the 47
datasets

Table 25: 100 epoch training time cost (s) comparison between NRDE and RealNVP on different
dimensional datasets from ADBench.

Dataset NRDE RealNVP

annthyroid 4.12 2.03
glass 1.58 0.59
mammography 5.46 2.72
Pima 1.68 0.61
vertebral 1.45 0.59
Cardiotocography 4.29 0.90
fraud 388.80 75.21
satellite 30.31 18.8
satimage-2 31.40 19.04
shuttle 46.26 30.05
mnist 71.34 20.84
musk 70.41 18.03
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Table 26: Performance comparison between NRDE, pX (xpure ) and pX̄ (xpure ).

NRDE pX (xpure ) pX̄ (xpure )

Satellite 86.1 86.6 88.0
WPBC 65.3 71.4 65.6
Cardio 86.1 87.2 86.9
Pima 81.7 79.7 80.4

SpamBase 87.4 85.5 87.9
annthyroid 98.1 97.5 97.2

smtp 95.6 95.2 95.5
glass 91.2 91.5 92.6

mammography 91.2 91.4 90.9
vertebral 72.7 77.4 81.0

AVG 85.5 86.3 86.6
p−value - 0.36 0.24
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