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ABSTRACT

Density-based anomaly detection methods often provide accurate and interpretable
predictions but their performance can be severely affected by the inherent noise of
data. In this paper, we present a noise-robust density estimation (NRDE) method
for tabular data anomaly detection. We aim to estimate the density of pure data
with the influence of noises isolated, which is a non-trivial task since the data-
generating process is completely unknown. NRDE learns a Jacobian-regularized
normalizing flow to estimate the sources of data and categorizes sources into two
groups, where one group generates pure data and the other generates noise. Then
we can estimate the density of pure data and use it to detect anomalies caused by
the sources of pure data rather than the changes caused by the sources of noise.
Therefore, compared with other density-based methods, our NRDE is much more
robust to noise. In addition to the new algorithm, we also provide theoretical results
to support the effectiveness of NRDE. We compare NRDE with 15 baselines on 47
benchmark datasets under different settings, including vanilla anomaly detection,
anomaly detection with anomaly contamination, anomaly detection on noisy data,
and transductive outlier detection. The results demonstrate the effectiveness and
superiority of NRDE.

1 INTRODUCTION

In an increasingly data-driven world, the problem of identifying unusual patterns or deviations from
expected behavior—known as anomaly detection—has become paramount across diverse domains.
Anomaly detection (Chandola et al.l 2009; Pang et al., 2021} Ruff et al., |2021), sometimes also
referred to as novelty or outlier detection (Breunig et al., [2000; Pimentel et al.,[2014)), involves the
identification of data points, events, or observations that significantly differ from the majority of
the data. These anomalies can signal critical incidents such as fraud (Ahmed et al., [2016), security
breaches (Breier & BraniSoval, [2017), system failures (Du et al., 2017), or novel insights, making
their accurate detection essential for timely intervention and decision-making.

In the past few years, a diverse range of deep learning-based anomaly detection methods have been
proposed (Ruff et al., 2018b; [Deecke et al.,|2019; Ruff et al.,[2019; |Wang et al.l 2021} [Pang et al.|
2019; |Goyal et al., [2020; |Qiu et al., |2021; /Cai1 & Fanl [2022; Xu et al.||2023a; [Zhang et al., 2024). For
instance, DeepSVDD (Ruff et al.,|2018b) assumes that representations of normal data can be enclosed
within a small hypersphere and representations of anomalous data lie outside the hypersphere, where
the representations are given by a neural network. ICL (Shenkar & Wolfl, 2022) assumes that a
subset of the feature vector is related to the rest and uses self-supervised learning to maximize the
mutual information between each sample and the masked-out part. SLAD (Xu et al., 2023b) performs
scale learning to embed high-level information into its ranking mechanism. Although these methods
often demonstrate impressive performance in various scenarios, several of them require making
assumptions on the structure or distribution of normal and anomalous data, which may not hold or
are difficult to guarantee by the training process. For instance, Zhang et al.| (2024)) analyzed the
limitations of the hypersphere assumption in high-dimensional spaces and proposed to project normal
data into the region bounded by two hyperspheres. Moreover, some of these methods are proposed to
solve the one-class classification (OCC) problem, which relies on the assumption that training data
originate from a single class or have a single manifold structure. Consequently, these methods can be
ineffective when the training data encompasses multiple clusters or lies on multiple disconnected
manifolds, as mentioned in (Khayatkhoei et al., 2018)).
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Figure 1: Detection performance on a synthetic dataset. The data were generated from a few data
sources and many noise sources. Points marked in green, blue, and red represent normal data, noisy
normal data (caused by noise change), and anomalous data, respectively. See (8)) for definitions.
The five compared methods detect most of the noisy normal samples as anomalies, while our NRDE
is robust to the changes of noise. More details about this experiment are in Appendix E'}

It should be noted that density-based methods make no assumptions about the shape or distribution
of the data and are capable of modeling complex data structures. This flexibility allows them to be
effective even when the training data encompasses multiple classes, and these methods use the local
or global density of the data as an anomaly score. Traditional density-based methods include Kernel
Density Estimation (KDE) (Parzenl [1962), Gaussian Mixture Models (GMM), etc. These methods
often suffer from the curse of dimensionality and are not effective in modeling complex data. To
address the problem, several deep learning based density estimation methods have been proposed.
For instance, DAGMM (Zong et al., 2018)) combines deep auto-encoders with GMM, utilizing the
output density given by GMM in a low-dimensional space to detect anomalies. Normalizing flow
(Kobyzev et al.|2020), an effective generative model, is also effective in estimating the density of
complex data, and hence is useful for anomaly detection. Some flow-based image anomaly detection
methods (Gudovskiy et al.,[2022; |[Kim et al.| 2023)) first employ feature extractors to derive semantic
representations of images and then implement normalizing flow to detect anomalies. In this work,
we focus on tabular data since data of other types can be converted into tabular formats using some
feature extractors or pre-trained deep models.

For standard anomaly detection, density-based methods, including normalizing flow and other shallow
and deep models, are sensitive to the changes of inherent noise in the data, yielding high false-positive
rates. It is noteworthy that such inherent noise can be largely different from artificial noise like
Gaussian noise, since they could represent minor changes from equipment or environment for data
collection. More specifically, real data have inherent noise and can be described by the model
x = G(sp,sn), where sp and s denote the pure data source and noise source respectively, and
G is the observation generating function. The changes of x caused by sy should not be treated
as anomalies, or at least should be distinguished from the concerned anomalies, and we call such
data noisy normal data for convenience. For instance, in a vehicle monitoring system, changes in
background noise may alter the observed data, but we are only concerned with the status of the
vehicle itself. Similarly, in medical diagnosis, we hope that changes in instruments and equipment
or the occasional noise do not affect the diagnostic results for diseases. In Figure [I] we use a
synthetic dataset to show the influence of inherent noise on the performance of five anomaly detection
methods and our proposed method Noise-Robust Density Estimation (NRDE). We observe that the
five methods fail to distinguish between noisy normal data and real anomalies, exhibiting high false
positive rates and low AUROC values, whereas our NRDE is robust to changes in the inherent noise
in the data and performs the best.

Our NRDE trains a neural network to estimate the density of pure data with the influence of noise
isolated. Specifically, we propose a Jacobian-regularized normalizing flow to estimate the density of
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Figure 2: Architecture of the proposed method NRDE. NRDE estimates the density of pure data by
utilizing a normalizing flow with Jacobian regularization, where the influence of noise sources is
isolated. Therefore, NRDE is robust to the changes of inherent noise in the data.

data and categorize the sources of data into two distinct groups: those that generate pure data and
those that produce noise. As a result, we can detect anomalies that are caused by pure data sources
without being affected by the noise. The framework of NRDE is shown in Figure[2] Our contributions
are summarized as follows:

* We propose a novel density-based AD method, NRDE, for tabular data based on a Jacobian-
regularized normalizing flow.

* NRDE categorize data sources into pure-data sources and noise sources and performs density
estimation for the pure data only, making it robust to the changes of noise.

* We provide some theoretical analysis for NRDE to support its effectiveness.

We conduct experiments on 47 tabular datasets to compare NRDE against 15 baseline methods. While
the primary evaluation is performed under the standard anomaly detection setting, our experimental
setup also includes anomaly detection with noise, anomaly detection with contaminated data, and
(transductive) outlier detection.

2 RELATED WORK AND PRELIMINARY KNOWLEDGE

2.1 GENERATIVE MODELS FOR ANOMALY DETECTION

Deep generative models (Schlegl et al., [2019; |Kirichenko et al.| 2020; Xia et al.| 2022; [Liu et al.|
2025) are useful in anomaly detection due to their ability to model complex data. For instance,
OCGAN (Perera et al}2019) trains a generative adversarial network (Goodfellow et al.,|2014) using
only normal data for one-class novelty detection. It constrains the latent space of an auto-encoder
to represent only the given class by bounding the space and using adversarial discriminators to
ensure latent codes and generated samples resemble the in-class data. The model is further refined by
exploring latent points that produce out-of-class samples, strengthening its ability to reject novelties.
(Yu et al.l [2021)) learns to transform the visual feature by deep feature extractors into a tractable
distribution and obtains the likelihood to recognize anomalies in the inference phase. RobustRealNVP
(Liu et al.| [2022)) ignores low-density points that are likely to be anomalies, by discarding the gradient
produced by these points in the training stage, and therefore obtains a robust density function. [Kim
et al.[(2023)) trains a normalizing flow to map the feature distributions of each location in normal data
to distinct distributions, while mapping the distribution of abnormal data to one that is significantly
different from that of normal data, thereby enhancing discriminability. DTE (Livernoche et al.l |2023)
estimates the distribution over diffusion time for a given input and uses the mode or mean of this
distribution as the anomaly score. In (Rozner et al.| 2023)), the authors found that density functions
around normal samples are relatively stable and proposed to use an autoregressive probabilistic model
to maximize the density of training samples while minimizing their density variance. Unfortunately,
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these works do not address the problem of sensitivity to inherent noise change in standard anomaly
detection shown by Figure|[T]

2.2 INDEPENDENT COMPONENT ANALYSIS AND NORMALIZING FLOW

ICA (Hyvirinen & Ojal |2000) assumes that observed data is generated by an unknown mixing process
of several independent components (sources) which are from simple distributions, and tries to obtain
these components. By categorizing the mixing process, we can divide ICA methods into linear
ICA and nonlinear ICA. Linear ICA assumes that the mixing process is linear and the sources are
non-Gaussian, and often solves the problem by maximizing the non-Gaussianity. As for nonlinear
ICA, the mixing process is assumed to be nonlinear, and the main problem faced by the field is
that the model is unidentifiable or the sources are inseparable. In other words, there are infinitely
many ways to transform the data into independent components, which is still a mixture of underlying
sources. By utilizing additional structure in the data or introducing auxiliary variables, many methods
(Hyvirinen & Pajunen, [1999; Hyvarinen & Moriokal, 20165 Zheng et al.,[2022) have been developed.

Here, we briefly review the foundational concept of normalizing flows. Given a set of observations,
each of which, denoted as x, is drawn from some complex distribution X in R4, normalizing
flow aims to learn a function )y : R? — R? composed of a sequence of invertible mappings
{fw, Y, ie., Fyy = fyy, o -+ 0 fiy, o fyy, , that transforms complex distribution X into a simpler
one, denoted as Z, such as a standard Gaussian A/(0,I). Here, T is the number of mappings and

W = {Wx,...,Wr} denotes the set of all neural network parameters. Because Fyy, is invertible, the
density px (x) of x can be computed using the change-of-variables formula:
px(x) = pz(Fw(x))| det(VxF(x))], (D

where det (VXFW (x)) is the determinant of the Jacobian matrix of ), evaluated at x. One of the
coupling normalizing flows is the RealNVP proposed by (Dinh et al., 2016)), where fyy, is called the
coupling transformation. Denoting x(*) € R? the input of fwis x() is usually split into two parts,
ie,x) = [ngl),ngg, . ,o:(ofg]T and xg) = [x(ﬁ?,x(gg, . ,x(ld)iqv]T, where 1 < ¢; < d. Then the

output y(¥) of fyy, is given as
yO =x0. vy =% ©exp(ha(x)) + hia(x), @

where h;; : R% — R9™% and h;o : R% — R?~% are two multilayer neural networks.

3 PROPOSED METHOD

3.1

Let D = {x(M,x® ... x(™} be a set of d-dimensional training data, which is drawn from an
unknown distribution X'. The primary goal of anomaly detection (AD) is to learn a model ® : RY — R
from the training set D, which can quantify the degree of anomaly or the dissimilarity of a new
sample Xy relative to the distribution X'.

As mentioned in the technique of independent components analysis (ICA) (Hyvérinen & Oja, [2000;
Hyvérinen et al.l 2009), an observation x can be regarded as given by an unknown invertible linear or
nonlinear transformation, denoted as G : R? — R<, on some unknown source s € R, i.e.,

x = G(s), (3)
where s ~ S. It is natural to assume that the source distribution S is simple and each dimension
of S is independent. For instanc consider S = N (p, X), where g1 = (1, fig, -, pta) ', = =
diag(o?,03,...,02),and 01 > 03 > --- > 04. For convenience, we consider that the primary

distinction among these sources resides in their variances, leading to the specification S = N'(0, X).
Based on G, the ideal normalizing flow can be formulated as:

Fy(x) = 272G (x), O)

! Although the standard ICA requires an assumption that the sources are non-Gaussian, the Gaussian as-
sumption in this work makes sense because G may first convert each source to non-Gaussian and then perform
mixing.
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where z = F},(x) = =7 7s ~ N(0,1).
We split the source s into two distinct parts:
s = [sp;sn], ®)

where sp € R™ denotes the pure data (or signal) source and sy € R?~™ denotes the noise source.
It is natural to assume that the variances of sp are much greater than those of sy, namely,

01202 2 0m > COmql 2 COpqp - 2 COg, (6)
where c is some constant much greater than 1. The data with noise removed, i.e., pure data, is
Xpure = G([SD; 0]) )

Thus, the inherent noise in data is € := X — Xpyr. Letting 7 denote the signal source distribution
deemed as normal, we have the following categorization for the data:

pure normal data : Xpue = G([sp;0]), sp ~ T
noisy normal data : Xporm = G([sp;sn]), sp ~ T, sy #0 )
anomalous data : Xaem = G([Sp;sn]), sp % T

In this work, given the observation x, we want to recover Xpyre, and evaluate whether Xpyre is normal
or anomalous, which is determined by sp only and is irrelevant to sy .

Rationality of the assumption in (6): This assumption is rational because a meaningful signal,
by definition, should contain structured information and variation that differentiates it from the
background. Noise, often arising from random and uncorrelated processes, tends to have its energy
dispersed without a dominant structure. Therefore, the variance of the signal, which captures its total
power and variability, is expected to be higher than that of the noise. This is a common and often
necessary condition for the signal to be detectable and analyzable amidst the random fluctuations.
For instance, in machine learning and statistics, PCA (Jolliffe & Cadima] [2016)) assumes the most
important data patterns are the directions with the highest variance, effectively treating them as
the "signal" and discarding low-variance "noise." In signal processing, denoising filters work by
removing low-power (low-variance) frequencies assumed to be noise, while preserving high-power
(high-variance) frequencies considered to be the signal.

3.2 SIGNAL AND NOISE ISOLATION

To realize the aforementioned noise-robust anomaly detection, we need to calculate [,)x(XPUFJ or
p‘,\;(xpu,c), where X denotes the distribution of x and &” denotes the distribution of xpy. defined on
the m-dimensional manifold embedded in R%. When pyy(ch) or p‘\y(xpurc) are smaller, Xy, as
well as the corresponding noisy counterpart x, is more likely to be anomalous.

As the py (Xpure) and p g (Xpure) are closely related (see Appendix and they have very similar
performance in our experiments (see Appendix , we here focus on px (Xpure ). Let Fyy be the
flow model learned from D and suppose Xpyr. can be 1dentified from x, we can obtain

bx (xpure) =pz (FW (Xpure )) |det(vxmeW (Xpure))} . )

Using (EI), we have the ideal case for px (Xpure ), 1.€.,

log % (Xpure) = log pz(FYyy (Xpure)) + log | det(prmF W (Xpure))|
=log ((2m) "% exp(—L1sT=1s)) + log | det(Vx,. Fiy (Xpure))|

m 2

=log | det(vxwre Fy (XPure))| - Z 201-2
i=1""t

(10)

- g log(27)

where we have used the fact that F}),(Xpue) = [2p;0] and z = >~ 2s. The challenge is that we
may never obtain F},,. The learned Fyy from D can only ensure that z = Fyy(x) ~ N(0,I). It is
difficult to determine which of 21, ..., z4 correspond to sp and which of z1, ..., z4 correspond to
sn. Moreover, the number of data sources m is unknown and is not easy to estimate. In the following
context, we show how to address these problems.
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Note that (@) indicates that
82] o —1 8G;1(X)
x % Tk (an
We assume that )
oG (x)
ox

where - and J are some positive constants and § < . This assumption is reasonable because G
usually mixes the sources randomly and uniformly. Moreover, it is more general than the assumption
used in linear ICA (Hyvérinen et al., [2001), which assumes WTW =Tin G(s) = Ws, meaning
~v=1and § = 0. Combining and (12] , we have

0 0
(v~ 0) H 57, < (7 +6) H = (13)
Oz Oz;1 -1 Oz.1
If (v — 9) ‘ =L > c(y +9) H—’H or || =2 ’ equivalently, then o; > coj.
This means we may compare H H H 9zq H to distlngulsh between sp and sy. However, a

clear gap may not exist between HEE: azd H An intuitive example is shown in Figure |3

The reason is that the source s in is not 1dent1ﬁable and there are many equivalent problems
(Hyvirinen & Pajunen, |1999; Hyvarinen et al.| 2019; |[Zheng et al., |2022). For instance, let R be
an orthonormal matrix and Fyy(x) = RFV*V(X) is a normalizing flow learned from D. In this case,
Fyw(x) ~ N(0,I) and the estimated density remains unchanged. However, F)y(x) becomes a
combination of z, and the row norms of the Jacobian matrix do not reflect the variances of sources.

However, we can exploit the prior knowledge (6) to train Fyy and may consider the optimization

m%umlze Z log (pz(FW( ))|det(vxFW(X))|>

xED
, oz |t oz || (14)
subject to min || =~ > max || =2|| ,vxeD
JEA || Ox JjEB || Ox

AUB=[d], AnNB=0, |Al=m

where ¢’ = c;’—fg and A corresponds to sp and B corresponds to sy. It is very difficult to solve li

because ¢, y, 6 are unknown and the constraints are related to every x and min and max operations.
We also need to know m.

3.3

The constraints in (14) indicate that some rows of the Jacobian matrix Vy Fyy (x) have much smaller
norms than other rows, which is a kind of sparseness. Therefore, we propose to regularize Vy Fyy (x)
during the optimization of Fjy and hence solve

min%nize % Z —log (pZ(FW(x))| det(VxFW(X))|) + AR (i Z VxFW(X)|> , (15)

xeD xeD

where R denotes a sparse regularizer on matrix and A > 0 is a hyperparameter. Instead of regularizing
for each x of D, we regularize the average of absolute Jacobian matrices. We use the following R:

d

R(Q) = Vil (16)

i=1

where q;; denotes the ith row of Q € R?*?. Note that R*(Q) is the ¢; ; /> quasi-norm, which is
sharper than /5 ; norm widely used in sparse optimization. Figure [3| I illustrates the effect of R. More
details about R is provided in Appendix[C]

An alternative to (16) is using R(Q) = > g Il — 2= ;¢4 [l95: ]I, where A is the index set of
the m rows of Q with smaller norms and B is the index set of the d — m rows of Q with larger
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Figure 3: Visualization of row norms of the Jacobian matrix on a synthetic dataset with 50 pure data
sources and 50 noise sources. The left one shows the unregularized case, while the right one shows
the regularized case. More visualization results on real datasets are shown in Appendix @

norms determined in each iteration. This method requires a good estimate of m and is sensitive to the
initialization. The performance is not as good as (I6).

Although solving makes sense, in real scenarios, m is hard to estimate, the obtained Fyy may
not provide a very clear gap between the norms of rows of the Jacobian matrix, and the gap depends
on \. Therefore, we use a weighted log density «(x) to approximate log p* (Xpure ), Which can be
regarded as an anomaly score. To be more precise, given a test sample Xy, We compute the anomaly
score as u(Xpew) Where a lower anomaly score indicates a higher probability of being an anomaly:

d
d 1
U(Xpew) = log |det (Vx“ewFW(xneW))‘ ~3 log 2 — 3 ZwiFW(xneW)f, 17
i=1
where the weights w; are
d
1 1
w; = exp exp , (18)
(II(% >oxep [VxFw(X)[)ill + 1)/; (II(% 2 oxep | VW (X))l + 1>
and
1 ag;

19)

1 Soxen VW@l +1 oi+vy+4°
Note that w; is larger for the sources with a larger variance o;, which is more likely to be a data
source.

.11}

In summary, we train a Jacobian-regularized normalizing flow via (I5)). After the model is well-
trained, for any testing data, we can calculate u(Xpew) using to approximate the density of pure
data and use it as the anomaly score to determine whether x,.y is anomalous or not. More details
about the algorithm of NRDE are shown in Appendix [F}

3.4 THEORETICAL GUANRANTEES

We provide the following theoretical guarantee for u(x) to approximate log p’% (Xpure) and detect
anomaly successfully.
|

Theorem 3.1. Let x be a normal data point and X be an anomaly. If || Fy,, (x)||

— | Py (R)] and
px(x) = px(X), then the weighted log-density u* based on FY}, satisfies u*(x) > u*(X).

|
(%
Theorem provides a guarantee for our proposed method to identify the anomalies and noisy
normal data that normalizing flow is unable to identify.
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Theorem 3.2. Let the Lipschitz constant of each fy,, and h}, be bounded above by T;F and Tiq

respectively and denote the weight and weighted log density estimated by Fy,,(x) as {w] le and
u*(x) respectively. Suppose |u*(x) — u(x)| < n, then the following inequality holds:

| 10g e (Xpure) = u(x)| <D (1 —w]) By ()7 + Y wjFyy(x);

icA jeB
T i—1

+ Z(Tm\/g H T;r)HX — Xpure|| + 1
i=1 j=1

This theorem indicates that our method can approximate the density of the pure data. Note that when
Om > COmy1, as defined before, the principal estimation error originates from noise ||x — Xpure|| and
7, which are intrinsic properties of the data and the regularized normalizing flow respectively.

Assumption 3.3. For any x,,x, € RY, there exists a constant ¢ such that |u(x,) — u(xp)| >
©llxa — Xp|| and if X is an anomaly, u(X) < maxxep u(x).

Theorem 3.4. Let X be an anomaly. Suppose that X,,xp € D such that arg max, u(x) = x, and
arg miny u(x) = xp and u(X,) = s1,u(xp) = <o. Then, under the Assumption[3.3} if ||x — x| >
%, then x can be detected as an anomaly.

Theorem [3.4] shows that our proposed method can detect anomalies that are significantly distant
from normal data. Furthermore, if an anomaly possesses a weighted log-density exceeding the
maximum weighted log-density observed in the training set, its detection becomes considerably more
challenging or even impossible. The proofs for the theorems are in Appendix [A] Also, we compare
the time complexity of density-based Methods in Appendix [B]

4 NUMERICAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets In our experiments, we evaluate the performance of 15 baseline methods on 47 widely
used real-world datasets spanning multiple domains in a popular benchmark for anomaly detection
proposed by (Han et al.,[2022). Detailed descriptions and statistical information about these datasets
are provided in the Appendix [E|] In anomaly detection tasks, we follow the protocol of (Zong et al.
2018} [Bergman & Hoshen, [2020; |Shenkar & Wolf] 2022} Xu et al.,|2023b) by randomly partitioning
normal samples: 50% are training, while the remaining 50% are combined with all anomalous
samples to form the test set. For outlier detection, the model is trained on the entire dataset to identify
outliers, which is a transductive learning setting.

Baselines Our method is compared with 15 baselines, including DTE (Livernoche et al., [2023]),
MCM (Yin et al.,[2024), DPAD (Fu et al.|[2024)), SLAD (Xu et al.} 2023b), ECOD (Li et al.}[2022]),
ICL (Shenkar & Wolf],2022), NeutralAD (Qiu et al., 2021), DSVDD (Ruff et al.,2018al), ReaINVP
(Dinh et al. 2016), IF (Liu et al.| 2008)), AE (Hinton & Salakhutdinov, 2006), LOF (Breunig et al.|
2000), kNN (Ramaswamy et al.,[2000), KDE (Parzen, |1962). For DTE, MCM, DPAD, SLAD, ICL,
and Neutral AD, we use the code provided by the authors of the papers. For other methods, we
use the code from the Python library PyOD (Chen et al.| [2024)). All hyperparameters follow the
recommended settings.

Implementation We use the Area Under the Receiver Operating Characteristic Curve (AUROC) and
the Area Under the Precision-Recall Curve (AUPRC) as evaluation metrics, following (Xu et al.|
2023bj |Han et al., [2022). These two metrics do not rely on specific thresholds of decision and are
capable of comprehensively assessing the performance of different methods. All experiments are
conducted using the PyTorch framework on a system equipped with an NVIDIA RTX 3090 GPU and
an Intel Core 19-12900K CPU. Each experiment is performed five times to obtain the mean value and
standard deviation. To ensure a consistent network architecture for fair comparison, we employ two
2-layer multilayer perceptrons (MLPs), corresponding to a parameter setting of 7' = 2 in (IJ). More
details are in Appendix [D}
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4.2 RESULTS OF STANDARD ANOMALY DETECTION

Table 1: AUROC (%) and AUPRC (%) with the standard deviation of each method on several tabular
datasets of ADBench. The best results are marked in bold.

AUROC KDE KNN LOF OC-SVM 1F AE DSVDD  RealNVP  NeutralAD ECOD IcL SLAD DPAD MCM DTE-C Ours
annthyroid 91400 941+00 929+00 909+00 918+1.1 834+20 794+32 96.1+05 789+28 787+00 640+6.1 904+29 912+47 839+06 97.8+00 | 984+0.0
breastw 98900 99.1£0.0 967£0.0 99.0+00 99500 984%03 99.1x0.1 98.0£00 81.4%39 993+00 902£13 99201 989£02 99.0£00 96300 | 99.4£0.0
cardio 95.7+0.0 93400 93.0+£00 964+00 949+1.1 924432 96103 941+04 81019 934+0.0 839+15 887430 90.0+33 904+08 93.6+£00 [ 958+0.6
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Figure 4: The average AUROC and AUPRC performance of different methods on anomaly detection
across 47 datasets, along with the number of datasets where each method is ranked first. Higher
values of these metrics indicate better detection performance.

Table[T]reports the performance of different methods on several datasets, while Figure [ reports the
average AUROC and AUPRC results across 47 datasets, with detailed results for each dataset available
in Appendix[G.2] Our method achieves the best performance, outperforming the second-best method
by more than 2%. Compared to ReaNVP, NRDE demonstrates a significant improvement, particularly
in terms of AUPRC. Additionally, NRDE outperforms other baseline methods on a larger number of
datasets. For example, on the Speech, Vertebral, and WPBC, other methods attain AUROC scores
around 50%), indicating anomaly detection is particularly challenging for these approaches. In contrast,
our method significantly outperforms baselines, highlighting its effectiveness in complex datasets.
Notably, density-based methods outperform many deep learning-based approaches, highlighting their
effectiveness in anomaly detection. Moreover, KDE and kNN—two traditional methods—outperform
all deep learning-based baseline methods. We attribute this phenomenon to two main factors. First,
as mentioned earlier, tabular data typically consists of features that inherently provide excellent
representations of semantic differences. As a result, even the simple Euclidean distance can capture
meaningful distinctions between samples. This is also consistent with the results shown in Figure
[1] which illustrates the performance of these methods in challenging noisy scenarios. Second, as
demonstrated in (Jiang}, 2017} |Gu et al.l|2019), these two methods provide more explicit predictions
for datasets with lower dimensions and more samples, which aligns with the experimental results and
the curse of dimensionality.

4.3 RESULTS OF ANOMALY DETECTION WITH ANOMALY CONTAMINATION

In real applications of AD, the training set often contains a small amount of anomalous data due
to various reasons. To evaluate the robustness and performance of all methods in this scenario, we
add different ratios of anomalies to the training set and conduct experiments on these contaminated
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Table 2: AUROC results (%) of the best-performing 5 methods of anomaly detection in noisy data.
The best results per dataset are in bold.

Dataset DSVDD KPCA IF kNN NRDE (ours)
Cardiotocography 83.7 75.8 80.7 713 82.1
Pima 72.5 77.0 758 78.1 79.6
Satellite 81.5 84.1 79.6  86.9 85.1
SpamBase 80.3 86.3 82.4 83.0 79.1
WPBC 47.5 522 51.7 515 62.9
AVG 73.1 75.1 740 742 77.2

datasets. The contamination ratio ranges from 1% to 10% of the training set size. We report the
average performance of all methods in Figure [5] where the detailed experimental results for each
dataset are in Appendix [G.3] From the figure, we observe that as the anomaly ratio increases, the
performance of all methods decreases. In this scenario, our proposed method consistently achieves
superior performance over other methods, demonstrating its robustness to anomalies in the training
set. It should be noted that the AUROC performance of our proposed method remains unaffected
by the anomaly ratio. While its AUPRC performance is influenced, with a performance drop less
significant than that observed in other methods. Additionally, ECOD appears to be the baseline
method whose performance is least influenced by the anomaly ratio.

4.4 RESULTS OF ANOMALY DETECTION ON NOISY DATA

In real-world anomaly detection scenarios, data are often corrupted
by noise. To evaluate the performance of all methods in this com-
plex scenario, we perturb training data and anomalous testing data
with Gaussian noise drawn from N(0, 0.11,) to training data and R e S
anomalous testing data, while normal test samples receive stronger g, Swee .o,
noise A (0,0.21,;). Note that the data is first normalized and then =~ = AS e g S
corrupted by the noise. Table [2|illustrates the experimental results. 065 Tt ee—e—e L
Our approach consistently outperforms competing methods, under- 0.60

scoring its robustness to noise. % Contamination Ratiotst)

Ours  —e— DPAD SLAD —e— OCSVM  —e— DSVDD
—=— KDE icL RealNVP ECcoD AE
KNN  —— LOF NeutralAD

4.5 MORE RESULTS
Figure 5: Average AUROC

values across 5 datasets of
AD experiments with anomaly
contamination, contamination
ratio ranging from 1% to 10%.

The time complexity comparison, more detailed results for visualiza-
tion, standard anomaly detection, anomaly detection with anomaly
contamination, outlier detection, ablation studies, hyperparameter
analysis, experiments to verify our assumptions and motivation are

in Appendices[B|[G.1][G.2} [G.3} [G.4} [G.5]and [G.€ respectively.

5 CONCLUSION

We proposed a novel and effective method NRDE for anomaly de-

tection in tabular data. Our key observation is that data is typically generated by independent sources,
which can be categorized into pure data sources and noise sources. By distinguishing these sources
using the Jacobian matrix, we can approximate the density of the pure data with a weighted log density
that is unaffected by noise. This allows NRDE to be robust to noise and effectively identify both
anomalous data and noisy normal data. We provided theoretical analysis on the estimation error, the
reliability of our proposed method, and the time complexity of density-based approaches. Numerical
experiments demonstrated that NRDE outperforms 15 baseline methods across 47 real-world datasets.
Furthermore, NRDE exhibits robustness to anomalies in the training set and noise inside the data.

10
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A PROOF FOR THEOREMS

A.1 PROOF FOR THEOREM[3.1]

Proof. Let X be an anomaly and x is a normal data point. Suppose their estimated densities are the
same, i.e., px(X) = px(X). In this situation, using merely the density will either detect both of them
as normal or anomalous.

We compare their weighted log density:

u'(x) - U*(i)

==Y wiFy(x)7 =Y wiFy(x)7 + log | det Vy 3y (x)|
i€A jEB (20)
+ Y wiFy(R)7 + > wi Fy(R)F - log | det Vi Fyy (%))
€A jEB

Since px (x) = px (%), we have:

d

1
log | det Vi Eyy (x)| — log | det Vi Fyy (%)] = 5 Y (By(x)7 = Fy(%)7) 21
i=1
Thus, we have:
u(x )—u(“)
=» (1- 2+) (1- )
;x JEZB (22)
= (A —w)Fp(®); =Y (1 —w)Fy ()]
icA jEB

Vj € B,i € Awehave Fy, (x)] > Fy,(X)3, Fyy(x); < Fyy,(%)7 and w} > w}, this is because x
and X have the same probability but X is an anomaly, thus x contains more noise.

If || Fy, (x)]|2 = ||y (X)]]2, then we have:

ZFW ZFch

(23)
> (B0 Fw<fc>2) = Z (Fv)? - Fu(0?)
jeB icA
ForVj € B,i € A, we have w; > w} = min; w; > max; w;. Then:
u*(x) = u*(%)
> (1 - maxws) Y- (Fy()} - By(®)3) - (- minw)) Y- (By(®)? - Fu?)
jEB i€A (24)
— 2)2 N
>(1 = minw)) (3 (B2 = Fy(®2) = 3 (Fy(R) - Fy(x)?))
jeB €A
=0
Thus, the two data points are distinguishable.
This finishes the proof. O

A.2 PROOF FOR THEOREM[3.2]

Lemma A.1. (Behrmann et al.| 2021) Let fyy, be a coupling flow, the Lipschitz constant of the
forward fyy, can be locally bounded for x € [a, b]* as

LZp(ny) S max(l,cg) + Ma (25)
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Where exp(hi1(x)) < ¢g and M = max(|al, |b]) - ¢g - Lip(hi1) + Lip(hsz). Similarly, the Lipschitz
constant of the reverse fv_vi can be locally bounded fory; € [a*,b*]¢ as

Llp(f;vl) < max(l,c1) + M*, (26)

Where M* = max(|a*|, |b*|) - c(é/) - Lip(hi1) - ¢ + c1 - Lip(hi2)

Proof. According to LemmgA-T] here we can assume that x;,y; are both bounded since data is
preprocessed and normalized, then we have the bi-Lipschitz constant of fy,, are bounded as:

7 | = W < 1, (xP) = Sy, G| < 7 IxD = 2@, 27)

The determinant of V) 5}, (x()) can be calculated as:

log | det Vi fy, (x| = by (x0) - 1, (28)
Suppose  h};(x) = Wi (@G- d(Wi2¢0(W;1x))---)) and  hj(x) =

VAVLL (qb ( ¢(Wi72¢(wi71x)> )) are two neural networks comprising L layers

and ¢ represents the activation function. Consider different x(V), %(¥), denote p the Lipschitz constant
of ¢, we have:

|log | det Vo iy, (x)] — log | det Ve fiy, (X))
=[hyy (x5)) = By (D)1
S\[Hhﬂ(xop) - h;kl(f{(al))”

L
<Vdp" T IWiallallxS — %]

=1

L
<V T Wil = 5]

=1

=TiaVd[x" — x|
1—1
<rmiaVd [ 7 Ix - %|

(29)

j=1
Where 7;, = pl~1 H 11 II'Wi |2 is the Lipschitz constant of h};. Then, we can conclude that
log | det(V,FY,,(x))| has a Lipschitz constant:

|log | det(VxFyy (x))| — log | det(VFyy (%))

T
= 1> (Tog | det Vi fiy, (x)| — log | det Vo fiy, (X)) )|

i=1

!

<3 [log | det Vi fy, (x )| — log | det Voo fiy, (X))

ﬂ
I

(30)
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The estimation error between log p*% (Xpure) and u*(x) is:

| log P (Xpure) — ™ (x)]

* * * Tk |det vxF{;\;(X”
=/ (1 —wi)FW(x)? — w~FW(x)2 — log ) |
ieZA J%; ! ! | det Vi Fyy (Xpure)|
det Vi F)h, (x)|
< 1—w))Fyy(x)? — A (x)2 4+ |1 | xI'y 31)
= Z( wi) Ew(x): ij w(x)j +[log |det V. FY(x urc)|‘
€A jEB pure P!

T i—1
<3 (1wt )P+ 30 w50+ 3 (VA T e

icA jEB
As for the estimation error between log p% (Xpure) and u(x), we have the following inequality holds:

|log py (Xpure) — u(x)| = |log p (Xpure) — u*(x) + u* (x) — u(x)|
< |log ply (Xpure) — " (x)] + [u* (x) — u(x)]

<D (1wl ) B2 + 3w (o)

iCA jEB (32)
T 1—1
+ Z(Tm\/;’j H T;)HX — Xpure|| + 7
i=1 j=1
This finishes the proof. O
A.3 PROOF FOR THEOREM [3.4]
Proof. By Assumption we have that:
u(X) —u(xy)| > ¢llxq — X%
u(3) — u(sea)| > s =5 )
u(Xa) — u(X) = ¢l[xa — X||
If ||x — xq|| > *7°2, then we have:
a) X) > -
w(xq) — u(x) > ¢ — 6o (34)

u(X) < u(xp)
Now we have the weighted log-density of X is even smaller than the smallest weighted log-density of
data from D, thus it can be detected as an anomaly. This finishes the proof.

A.4 CONNECTION BETWEEN px (Xpyre) AND p ¢ (Xpure)

The support of Xpye is an m-dimensional manifold M embedded in R. Let g (zp) := F~! (zp,0)
The induced Riemannian metric on the manifold is given by:

M (zp) = Jy (zp) " Jy (2p) (35)

where J,; denote the Jacobian of g, i.e., V,,g(zp). The volume element on the manifold, relative to
the parameter space sp is

dv = \/ det [Jg (zp)" J, (zD)} dzp. (36)
The probability in the latent space is:
P(zp GB):/pg (zp)dzp. 37
B

This probability must equal the probability on the manifold M. For a measurable set A C M :

P (xpure € 4) = / pg (zp)dzp (38)
g~ 1(A)

17
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We change the variable of integration from zp to Xpue € M and use the manifold volume element to
obtain
dH™ (Xpure)
\/det [Jg (zp)" Jy (zD)}

where dH™ is the m-dimensional Hausdorff measure on M. Substituting this into the integral, we
have

dzp = ; (39)

PZ (2p) dH™ (x) (40)

/ \/det T, (zD)}

Therefore, the probability density function on the manifold M with respect to the Hausdorff measure
is as follows

P (Xpure € A)

D .
p)? (Xpure ) = pz (ZD) — N(ZD7 07 Im) (41)

\/det {Jg (zp) ' Jy (zD)} \/det {Jg (zp)" Jg (zp)

where the second equality used the fact that sp and s are independent.

On the other hand, we have

bx (Xpure) =pz (ZD7 O) ‘det Jr (Xpure )‘

=cN(2p;0,1,) [det Jr (Xpure )| (42)

where ¢ = It follows that

1
or@—m)/z -

Pt (Kpue ) =t (Xpue ) X cldet Jie (e )| /et [T, (2)" T, (20)]
(43)

—p 3 (Xpure ) % ¢ |det Jp-1 (zp,0)] " \/det [Jg (zp)" J, (zD)]

B TIME COMPLEXITY OF DENSITY-BASED METHODS

Suppose that Fyy is a sequence of T flows defined in (2), and h;1, h;o are two MLPs of L layers param-
eterized by {W, ;}2_ |, {W,;}L_ |, where W; j,W € Rdis*dii-1 j ¢ [L]. Consider a batch of

B data points, the time complexity of our method per iteration is O(B Zz 1(dir ZL > d;, idij+1))s

and the space complexity is O(B Zz’:l Z =0 di,jdi,j+1)) which primarily arises from the computa-
tion of the Jacobian matrix. Here, we also compare the testing time complexity of a few representative
density-based methods. We assume that DAGMM (Zong et al.,2018)) contains K Gaussians and the
encoder and decoder have L layers, with ith layer of encoder being W ; € R%*i-1 and ith layer
of decoder being Wp ; € R¥z+1-iXdi—i For DPAD (Fu et al.,2024), we assume that the size of its
neural network is the same as that of the encoder of DAGMM. Suppose we have one testing data, the
time complexity of density-based methods is shown in Table 3]

We notice that traditional density-based methods, such as KNN and KDE, require comparing test
data against the entire training set to generate anomaly scores. Consequently, these methods become
computationally inefficient as dataset sizes grow, since the time complexity grows linearly with the
number of training data. DPAD encounters a similar issue due to its reliance on KNN, although it
mitigates this by employing a neural network for dimensionality reduction. In contrast, methods like
DAGMM, RealNVP, and our proposed NRDE primarily utilize neural network outputs for anomaly
scoring, which do not depend on the training set.

C PROPERTY OF THE REGULARIZER R()

Briefly speaking, our objective is to construct a Jacobian matrix in which the row norms exhibit a clear
separation—some being significantly larger than others—so that we can distinguish between pure

18
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Table 3: Time complexity comparison of density-based methods in testing stage.

| Testing Complexity

KNN O(nd)
KDE O(nd)
LOF O(nd)
DAGMM | O( L, dioadi +d} )
DPAD O(E dyvdy +dyn)
RealNVP (9( Y (i dz‘,jdz‘,jﬂ))
NRDE ‘ O( Y (25 dz‘,jdz‘,jﬂ))

OR(Q) _ sign(Qi )
9Qi; VIIQa]]
In this formulation, rows with larger norms receive a smaller penalty from the regularizer, whereas
rows with smaller norms receive a larger penalty. This naturally encourages row-wise sparsity and
separation. Moreover, unlike the conventional £ ; norm, where smaller entries in the same row
receive smaller penalty, our regularizer R imposes the same penalty on all entries within a given
row—avoiding vanishing penalty problem for small entries—thereby enhancing both separation and
sparsity. Thus, in theory, the formulation is suitable for our task.

data sources and noise sources. Consider the derivative

, where ||Q;.]| is ¢1 norm.

D IMPLEMENTATION DETAILS

To ensure a consistent network architecture for a fair comparison, we employ two MLPs with two
linear layers, where LeakyReLU is used as the activation function. Note that the outputs of h;;, hi2
are actually the split output from the same MLP. The detailed network architecture is shown in Table
[l Additionally, we use Adam as our optimizer and set the batch size to 2048 for all experiments,
while the training epoch is set to 100. Since the scale of the Jacobian norm in different datasets can
be largely different, as shown in Figure [/} we use a simple hyperparameter tuning strategy for NRDE:
(i) Fixing A = 0, decrease learning rate from 0.01 to 0.001 until training becomes stable (i.e., no
loss explosion); (ii) Then, based on , viewed as minyy L(A, W), select A € 1,0.1,0.01 such that
the regularization term AR () is on a comparable scale with 0.1 - £(0, W). A detailed algorithm for
hyperparameter tuning is provided in Algorithm 2]

Algorithm 1 Training and Testing Procedure of NRDE

Training stage of NRDE:

Input: D = {x1,X2,...,Xp}, A > 0, training epoch B
Output: Fyy, {w; }L,

Initialize the parameters of flow network W
forb=1,...,Bdo
for each batch D do
Obtain the flow output { Fyy (x)}
Update parameters WV using
end for
end for

Testing stage of NRDE:

Input: Xpew, Py, {w; }L
Output:anomaly score: u(Xpew)
Obatain Zpew = Fyy (Xnew)

Obtain anomaly score u(Xpey ) Using

xef)
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Table 4: Statistics of 47 real-world datasets in ADBench.

Data # Samples | # Features | # Anomaly | % Anomaly | Category
ALOI 49534 27 1508 3.04 Image
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 244 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
Cardiotocography | 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 4.21 Forensic
Hepeatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
InternetAds 1966 1555 368 18.72 Image
Ionosphere 351 32 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical
mammography 11183 6 260 2.32 Healthcare
mnist 7603 100 700 9.21 Image

musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
PageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 227 Image

Pima 768 8 268 34.90 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image

smtp 95156 3 30 0.03 Web
SpamBase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 247 Healthcare
vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 343 Linguistics
Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4.48 Healthcare
WDBC 367 30 10 2.72 Healthcare
Wilt 4819 5 257 5.33 Botany

wine 129 13 10 7.75 Chemistry
WPBC 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology

E STATISTICS OF DATASETS

In our experiments, we evaluate the performance of 14 methods on 47 widely used real-world datasets
spanning multiple domains, including healthcare, audio, language processing, and finance, in a
popular benchmark for anomaly detection (Han et al.| [2022). The statistics of these datasets are
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Table 5: Network architecture

Tabular

Dimension_input=2d
Dimension_firstlayer=b
Linear(2d, b), LeakyReLLU()
Linear(b, 2d)

shown in Table[d] These datasets encompass a range of samples and features, from small to large,
providing comprehensive metrics and evaluations for the methods.

Algorithm 2 Hyperparameter tuning Strategy of NRDE

Imput: D = {x1,X2,...,X,}, Fw
Output:Ir™, \*
Initialize the parameters of flow network W
Obtain the flow output { Fiy (X) }xep
Obtain Lo = £(0, W) using
Obtain R (£ 3" 5 [V Fw(x)|)
forIr € {1072,5%1073,1073} do
SetIr* =1Ir
Initialize the parameters of flow network WW
forb=1,...,10do
Obtain the flow output { Fyy (x) }xep
Obtain loss £, = £(0, V) using
Update parameters YV with step size Ir using £,
if £, > L( then

Ir* =103
end if
end for
if Ir* # 1073 then
break the loop
end if
end for
Set A* = 0.01
for A € {1,0.1,0.01} do
s O.LCQ
ifl < (LS e VT o) then
AF =)
end if
end for

F ALGORITHM DETAILS

The detailed algorithm of our proposed NRDE is illustrated in Algorithm [I]

The synthetic data is generated using Algorithm [3] We primarily use Gaussian or uniform dis-
tributions to generate data, where the variances of the data sources are significantly larger than

those of the noise sources. Specifically, Sp = Unif ([~10,50]%), Sy = Unif ([-40, —20]%), Sy =
Unif ([-10, 10]%), Sp = Unif ([10,30]%). Both the training and testing normal data are generated
using the normal data generative process. For noisy normal data, the data sources are distributed
according to Sp, while the noise sources are distributed according to variables distributed in Sy

and are perturbed by Sy, introducing anomalies in the noise sources. In the case of anomalous
data, the generative process closely resembles that of noisy normal data, where the noise sources
are distributed in Sy. However, the data sources are perturbed by variables distributed in Sp and

perturbed by S, leading to anomalies in the data sources. Moreover, Var(Sy) < Var(Sp). Data
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Algorithm 3 Data Generative Process

Normal data generation:

Input: data source distribution Sp, noise source distribution Sy, number of data sources m, data
dimension d, mixing matrix W &€ Rdxd
Output:normal data x;

Obtain data sources sp € R™ by sp ~ Sp, obtain noise sources sy € R4-™ by sy ~ Sy
Generate data using x = W(sp;sy]T

Noisy normal data generation:

Input: number of data 7, data source distribution Sp, noise source distribution Sy, noise pertur-
bation distribution S N, number of data sources m, data dimension d, mixing matrix W € Raxd
Output:noisy normal data x
Obtain data sources sp € R by sp ~ Sp, obtain noise sources sy € R4-™ by sy ~ Sn,
obtain noise perturbation S € R4-™ by Sy ~ S N
Generate data using X = Wisp;sy + 8n]7

Anomalous data generation:

Input: number of data 7, data source distribution Sp, data perturbation distribution S D,hoise
source distribution Sy, number of data sources m, data dimension d, mixing matrix W &€ Raxd
Output:anomalous data x
Obtain data sources sp € R by sp ~ Sp, obtain data perturbation Sp € R™ by §p ~ Sp,
obtain noise sources sy € R~ by sy ~ Sy
Generate data using X = W(sp +8p;sy]|T

Jacobian Row Norm Jacobian Row Norm Jacobian Row Norm
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. 2 [l 4 |
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202 1 S02 =
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Figure 6: Visualization of the Jacobian matrix row norms on several synthetic datasets with 50 total
sources. From left to right, the number of noise dimensions is 40, 25, and 10, respectively. The top
row corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.

shown in Figure[I)is generated using d = 100, m = 10. Note that here W is an orthogonal matrix.
All models are trained using 10000 normal data, and tested using 1000 normal data, 1000 noisy
normal data, and 1000 anomalous data.

G EXPERIMENTAL RESULTS

G.1 JACOBIAN ROW NORM VISUALIZATION

In this subsection, we present visualizations of the Jacobian row norms on both synthetic and real-
world datasets. Figures[6]and [7)illustrate these results. Notably, even without regularization, the row
norms already exhibit clear separability; this distinction becomes even more pronounced when the
regularizer is applied.
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Figure 7: Visualization of the Jacobian matrix row norms on several real datasets. The top row

corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.

G.2 STANDARD ANOMALY DETECTION

In this subsection, we provide the detailed experimental results of AD on 47 real-world datasets.
Table [6land Table [7] show the detailed AUROC and AUPRC results on 47 datasets.

Table 6: Average AUROC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods KDE KNN LOF OC-SVM IF AE DSVDD ~ RealNVP  Neutral AD ECOD ICL SLAD DPAD MCM DTE-C Ours

ALOIL 564£0.0 63400 74600 550+00 544+0.1 558+0.1 51.8£02 562£25 551£09 53.0+00 50225 54804 51.7+0.6 632202 54200 | 56.7+04
annthyroid 914200 941+00 929200 90900 d 834£20 79432 961£05 78928 78700 64.06.1 91247 839206 97.8+00 | 98.420.0
backdoor 90.5£0.0 937+00 95700 62600 93.5+03 92510 91.8x04 87147 84600 952+£19 94.6 +0.7 96.6£0.1  91.8+00 | 94520
breastw 98.9£0.0 99100 96.7+00 99.0+0.0 984403 99.1+0.1 980+00 814+39 993+0.0 902+1.3 98.9+0.2 99.0+£00  963+0.0 | 99.4£0.0
campaign 773£00 783+00 69800 77.1%00 80807 11+£05 79.6+03 623%26 783+00 80.5%14 642261 785202 767+00 | 769+0.1
cardio 957400 93400 93000 96400 924432 96103 94104 81019 934£00 839+£15 90.0+3.3 90408 93.6+00 | 958£0.6
Cardiotocography | 75.0£00  713+00 72700 80.7£0.0 73424 83425 582219 785+00 547119 68031  700£09 724%00 | 86124
celeba 70.5£0.0 68000 449200 79.0x0.0 70.9+10 48408 66494  757£0.0 56.3 % 6.1 653+£33 82700 | 87907
census 720£00  71.9+00 605+00 70200 71.8+0.1 519%3.1 729£26 65.9+0.0 50.7+0.8 68.1£02  69.6+00 | 76.7+3.0
cover 95500 985+00 989:00 96200 98306 47.6+1.6 85138 920%1.1 87959 96404 967400 | 841232
donors 974£00 99800 98200 92000 97.7+0.7 95817 88800 98.7+19  100.0£0.0 989£0.0 |976%1.2
fault 812200 769+00 67200 61.4£00 719+ 1.1 732203 474£00 73525 712202 71.8+00 | 627%4.1
fraud 95800 960+00 78300 956%00 506+ 12.1 94930 94.9+0.0 946+03  64.1£139 958+02 944%00 | 95903
glass 83.5+£0.0 89.3+00 740x00 7L1x0.0 79827 92123 69800 88.8+2.0 86.5+0.1 78400 | 91.2+09
Hepatitis 794200 85.0+00 84600 84200 80332 62258 T1.5+0.0 §37+25 81215 808+00 | 85317
itp 100.0£0.0 99900 93000 100.0+0.0 99.8+0.1 99.0+19 97800 99.8+0.2 99.9£0.1  995+00 | 998+0.0
InternetAds 857+0.0 73.8+00 787x00 73800 81.6+09 689+00 832406 823+0.1 87100 | 79.1+0.7
Tonosphere 974200 97.0£00 94700 96500 96405 755%0.0 973+04 95401 954£00 | 87720
landsat 727£00 73900 75400 45700 70714 36.6+0.0 69.7+3.2 622£0.1 58800 | 71.5+4.1
letter 91800 841+00 861200 60900 80.1%0.6 925+08 560+0.0 802%55  89.0+04 89.6+00 | 702200
Lymphography 98.6+£0.0 98600 98600 98400 98.5+0.1 829£33 98500 983402 98.5£0.1  97.7+00 | 98.7+0.3
magic.gamma 757+£00 82200 832200 735+00 81.8+0.8 77.5£0.6 63.4+00 79.8+29 826+03 85800 | 819x1.1
mammography 88.1£00 87.6+00 838+00 88900 875423 709446  90.7+0.0 848422 907+04 878400 | 91203
mnist 94.8+£0.0 938+00 92600 91.0x0.0 X 934402 82, 747400 85.8+3.1 90.3+0.4 93243
my 100.0£0.0 100.0£0.0 1.0£00 1000200 958+33 1.0+0.0 100.0£0.0 95800 99.9£0.9  100.0 £ 0.0 99.8+0.2
optdigits 97.4 20, 927+00 978£00 60900 8874038 95905 604%00 91416 755+£108 87.8%28 945+ 1.4
PageBlocks 950£0.0 95800 96.7+00 94400 94.8+0.6 93705 91.4+0.0 954+ 1.5 96.3+0.2 92122
pendigits 99.8£00 99800 98800 96.1+0.0 98.0%0.2 93915 927+0.0 947+28  98.6+04 98.1+0.7
Pima 78.1£00 78000 73.6x00 73100 73.9+ 1.7 560£26 61500 70.2+3.4 741£12  70.7+00 | 8L.7£0.7
satellite 86900 87.3+00 85100 754£00 803+04 784£25 583£00 865+ 1.6 82001 86.1£00 | 86806
satimage-2 999400  99.9+00 99.6+00 99.7£00 99.840.1 849+14  966+00 987413 98902 98900 | 99.7+0.1
shuttle 99.8£0.0 99900 99900 99.7+0.0 99.8 0.1 99.9+00 99.3+0.0 . . 99.9£178.7 100.0£0.0 99.7+0.0 | 99.9£0.0
skin 89.1£00 99800 92500 90300 839423 884+ 1.1 48800 50.0+0.0 99302 79433 924400 | 92504
smtp 882£0.0 935+00 94200 914434 91.0+£24 879£00 53.0£6.0 934+ 1.1 835432 O 95.6 £ 0.1
SpamBase 857+00 83.0+00 81.7+0.0 82.0+0.1 792+£08 66.0+00 81.4+09 76.8+3.8 81.3£03 87405
speech 458+00 485£00 48900 46.8+0.2 54342 461£00 49.1%29 548446  499%03 647 1.9
Stamps. 951+£00 90800 87200 89.2+1.3 742+18 867+00 88.1+44 90.9+29 88.6+ 1.3 959+ 1.5
thyroid 983200 985+00 94.6%0.0 98.0%0.3 652+79 97.7+00 82252 96.1+1.8  97.9+03 992 0.1
vertebral 43500 425£0.0 40.0£0.0 48.0+4.3 539£30 41.8£00 542%58 464 +3.5 47214 727+ 6.0
vowels 96.5+0.0 97.3+00 968+0.0 953409 98.7+0.1 595+00 982+04 934425 915+1.6 87.8+4.3
Waveform 76.0£00 762+00 76.6+0.0 658425 71505 60.0+00 598+ 1.1 61.0£35  69.6%1.2 916+ 1.1
WBC 98.1£0.0 99400 97900 99.0+0.3 78647 99.0+£0.0 80.0+6.7 98.3+0.7 99.1+£0.3 99.9+0.1
WDBC 994200  99.1+00 99.4£0.0 32563 97.8+00 837%95 97226 979202 99.9 0.0
Wilt 37.1£00 60800 70800 33900 9+05 803x39 40300 782£37 73120 66.0 £5.2 779£25
wine 922£0.0 93200 92200 91.2+0.0 3. 92616 785+52 73.0+00 826+82 853+4.1 958+1.2 3£0. 99.1+1.0
WPBC 52500 513+00 505+00 49.1%00 + 500+ 1.8 S80+1.0 59.01+21 47.0+£00 534%59 521425 52308 483£00 | 65341
yeast 43200 466+0.0 467£0.0 449£00 429407 47913 42516 510x14 60118 45300 559£2.1 51.8+19 45707  505+£00 | 61.1£2.7
AVG 84.3 85.1 81.0 79.8 78.2 81.3 74.3 83.6 71.9 73.7 76.1 81.5 83.4 83.3 86.8

G.3 ANOMALY DETECTION WITH ANOMALY CONTAMINATION

Under this experimental setting, we conduct experiments on five datasets: Cardiotocography, Satellite,
SpamBase, Pima, and WPBC. The average AUPRC results are shown in Figure[8] Detailed results
for each dataset are shown in Figure[9] As the anomaly ratio increases, the performance variation
of our proposed method remains minimal, demonstrating its robustness to anomalous data in the
training set. We observe that when the anomaly ratio increases, the performance of some methods
does not decrease or even improves. The reason for this may be that, as the anomaly ratio increases,
the number of anomalies in the test set decreases, leading to different test sets for experiments at
varying anomaly ratios.
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Table 7: Average AUPRC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods ‘ KDE KNN LOF OC-SVM IF AE DSVDD  RealNVP  NeutralAD  ECOD ICL SLAD DPAD MCM DTE-C ‘ Ours
ALOI 10.5+0.0 9.840.0  15.940.0  7.5+0.3 7.6£0.0 7.240.2 7.540.3 6.4+0.0 6.1£0.5 7.1£0.0 7.1£0.4 10.9£0.2 6.840.0
annthyroid 66.2£0.0  72.020.0 66.7£0.0  65.2+0.0 60.7+2.1 54.842.2 29.4+4.0  40.8£0.0 31395 8 645495 55.0£0.6  84.1x0.0
backdoor 44.7£0.0 45000 59.9+00  7.8+0.0 T14x1.1 558423 16.7£0.0  89.6%1.2 65.1£3.0  81.8+03  63.2+0.0
breastw 98.8£0.0  99.1x0.0  93.7£0.0  98.8+0.0 99.1£0.1 71.2£3.0  99.3x0.0 . 98.7£0.2  99.0£0.1 92.1x0.0
campaign 47.740.0  48.8+0.0 39.6+0.0  48.9+0.0 42.5+0.6 289432 50.0£0.0 33.0+6.5 50.0£0.2  48.7+0.0
cardio 84.0£0.0  76.8£0.0 69.3x0.0  82.8+0.0 83.0:0.9 489443 70.9+0.0 73.5£6.6 69.5+0.0
Cardiotocography | 68.1£0.0  62.420.0  59.9£0.0 75.1£2.5 61.5£2.6 61.1x0.0
celeba 8.9x0.0 9.8+0.0 3.7£0.0 4.0£0.1 5.8£1.3 . 15.7£0.0
census. 21.6+0.0  21.2+0.0  14.3+0.0 11.9+0.8 12.1+0.5 18.8+0.2 18.0+0.0
cover 342400 72000 83.7£0.0 22.0+0.0 2.0£0.1 37.4£127  60.7£1.7  67.9£0.0
donors, 709400 953200 76.3+0.0  42.4x0.0 823434 96.6£3.5  99.7+0.0  77.8+0.0
fault 79.8£0.0  76.0+0.0  64.0£0.0 5.2+0.0 69.3+2.2 7. 24 69.4x03  72.2+0.0
fraud 33.8+0.0 313200 11200 31.7£0.0 11.5£13.6 13.5¢11.8  80.1£04  72.8+0.0
glass 279400  29.9+0.0 18.8+0.0 19.2+0.0 21.2£¢1.2 333436 26.1£02  23.4+0.0
Hepatitis 59.7£0.0  62.120.0  62.0£0.0  61.6+0.0 544433 55.9+0.0
http 99.240.0  99.9:0.0  9.6£0.0 99.7£0.1 57.7£0.0
InternetAds 80.7+0.0  65.3x0.0  67.3£0.0 7 0
Tonosphere 97.940.0  98.3x0.0  95.2+0.0 96.1+0.0
landsat 54.8+0.0  58.0£0.0  70.4%0.0 39.4+0.0
59.940.0 444200  49.5+0.0 64.9£0.0

letter 8.
Lymphography 80.0£0.0  80.0£0.0  80.0£0.0 75.6¢4.2 772439 65.0£0.0

80.5£03

magic.gamma 80.4£0.0 85400 86.2+0.0 .5+0.3 84.0+1.9 864402  87.9+0.0
‘mammography 43.740.0 419400 32.7+0.0 10.0£0.7 36.9+5.6  41.2¢1.7  39.3+0.0

mnist 78.7£0.0  77.1x0.0 72300  69.4+0.0 49.7+2.0 64.844.7  69.1x1.0  58.7+0.0

musk 100.0£0.0  100.0£0.0  99.0+0.0  100.0£0.0  60.8+22.5 100.0£0.0 99.9£0.1  100.0£0.0  100.0£0.0

optdigits 49.7£0.0  33.620.0 532300  6.5+0.0 14.1£2.6 . K 19.9+2.8  22.420.0
PageBlocks 84.840.0  86.6+0.0 87.9+0.0 80.0£0.0  70.240.5 82.6+1.7 84.4+0.7 66.4+0.0  68.0£5.1 85.5+0.5  84.9+0.0 | 74.3+3.6
pendigits 96.70.0  95.9£0.0  69.7£0.0 48.9+3.7  56.7£3.1 27.549.1 38.5+0.0 48.3+10.4 66.6£5.8  45.9+0.0 | 79.548.1
Pima 77.0£0.0  76.930.0  73.0£0.0 65.7£0.0  63.0+4.1 74114 70.2+0.0

satellite 89.2+¢0.0  89.3x0.0  88.5£0.0 65.70.0  87.2%1.3 85.70.1 87.7+0.0

satimage-2 98.3+0.0  97.9+0.0  99.6+0.0 77.3+0.0  82.5+4.4 61 .1 52.4+0.0

shuttle 98.1£0.0  97.5+0.0  99.4+0.0 94.3+0.0  98.3+0.5 99.2+0.1 94.0+0.0

skin 65.0£0.0  99.5+0.0  73.0£0.0  66.3x0.0 303100  34.4:0.0 63.3+8.5  70.7+0.0

smtp 58.8+0.0  42.0£0.0 29300 60.5£0.0 52.6+0.0 61120  52.139.0 43.7£0.1  44.120.0

SpamBase 87.7+0.0  86.6+0.0 82.9+0.0 84.9+0.0 68.9+0.0 88.9+0.4 84.7+0.3  86.2+0.0

speech 3.7£0.0 4.5+0.0 3.6£0.0 4.440.2 4.940.0

Stamps 63.7+0.0 44200 51.0£0.0 6. 216.8 48.4£29  26.9+0.0
thyroid 73.8+0.0 58.8+0.0  73.9£0.0 +0.0  28.8+12.6 71.9£28  86.4+0.0
vertebral 19.7+0.0 19.6+0.0  23.1+0.0 19.5+0.0  26.2+4.0 20.9+0.1 27.10.0
vowels 77.7£0.0 743+0.0  44.240.0 142400  84.5+2.2 64. 56.443.3 79.6+0.0
Waveform 27.6£0.0 31.7£0.0  10.7£0.0 7.6£0.0 29.6+2.2 5.7£1.0 12.0£2.1 20.0£0.8 10.320.0
WBC 85.5+0.0 82.3x0.0  91.2+0.0 99.0£0.0  24.3+6.3 4 86.0£6.8 93715  77.2+0.0
WDBC 90.9+0.0 89.9+0.0  87.7+0.0 +15.5 73.9+0.0 34.3+232 8  764%11.5 66.8+2.4 17.1+0.0
Wilt 7.4+0.0 17.0£0.0 7.0£0.0 10.1£0.4 8. 0 38.6+4.3 3 17.3+0.9 13.742.0 29.5+0.0
wine 58.240.0 52.740.0  55.0£0.0 . 56.5+11.4 30.5£0.0 44.4£14.6 64.0+188 39.846.6 80.246.5 59.6+0.0
WPBC 504 36.9x0.0  37.8+0.3 K 354200 41.3x45 39+0.9 39.2¢1.7 39.0£0.7  36.5£0.0
yeast 49.5+0.0 48.6x0.0 48.10.4 . 57.5¢1.5 50+0.0 +2.0  53.1x0.7 523209  49.0£08  51.2%0.0
AVG \ 622 576 54.6 489 582 536 48.0 45.0 499 58.4 582 59.9 57.0 \
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Contamination Ratio(%)
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Figure 8: The average AUPRC performance of 13 methods across 5 datasets of AD experiments with
anomaly contamination, with anomaly ratio ranging from 1% to 10%.

G.4 OUTLIER DETECTION

To evaluate the effectiveness of our method in outlier detection (transductive learning), we conduct
experiments on several datasets where all data are used for both training and testing, and compare our
method with other outlier detection methods. We provide the detailed experimental results for outlier
detection on 5 datasets: Cardiotocography, Satellite, SpamBase, Pima, and WPBC. We compare
our proposed method with traditional density-based methods and state-of-the-art outlier detection
methods. The AUROC and AUPRC results are shown in Table 8]

G.5 ABLATION STUDIES

In this subsection, we investigate how each component of our proposed method affects its anomaly
detection performance and analyze the impact of different values of the hyperparameter A on detection
performance. The two main components of our method are the regularizer R and the weighted log
density u(x). Notably, when these two components are ablated, the method reduces to a basic
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Figure 9: The detailed AUROC and AUPRC performance of 13 methods across 5 datasets of AD
experiments with anomaly contamination, with anomaly ratio ranging from 1% to 10%.

Table 8: Detailed AUROC performance of outlier detection on 5 datasets. The best results are marked
in bold.

AUROC | Cardiotocography ~SpamBase Satellite Pima WPBC

IF 68.8 65.5 67.9 67.0 49.1
ECOD 78.5 65.5 58.2 594 48.1
OC-SVM 69.5 533 66.3 62.3 48.4
KPCA 53.4 52.1 48.2 53.8 45.5
LOF 523 45.6 54.1 60.1 52.0
KDE 50.2 49.5 76.0 72.2 49.9
kNN 57.9 52.9 65.0 65.1 47.2
RealNVP 62.7 56.5 74.6 70.7 59.1
COPOD 66.2 68.7 63.3 65.4 52.3
DeeplF 63.0 37.9 74.3 61.3 494
Ours \ 80.5 71.7 81.9 80.1 62.2

normalizing flow, i.e., ReaNVP. Table[9]and [I0] present the average performance results of different
components across five datasets. We observe that both components contribute positively to overall
performance. Specifically, the regularizer R primarily enhances the separability of sources, thus
exerting minimal influence on the basic normalizing flow.

We also investigate the impact of different values of the hyperparameter A and learning rate on the
performance of standard AD. The detailed experimental results are shown in Table[TT|and [T2] We
observe that the method is not highly sensitive to changes in A and learning rate; however, in some
datasets, large values of A may affect the training process and lead to a decrease in performance.

G.6 MORE EXPERIMENTS ON SYNTHETIC AND REAL DATASETS TO VERIFY ASSUMPTIONS
AND MOTIVATIONS

In this subsection, we include several experiments on both synthetic and real datasets to further verify
our assumptions and motivations.

G.6.1 PERFORMANCE RESULTS WHEN VARIANCE DIFFERENCE IS NOT SATISFIED

Here, we analyze the performance of NRDE on synthetic datasets where the variance difference is
not satisfied. Suppose the variance of pure data sources is 0%, and the variance of noise sources is

2
o2, we now report the performance results on synthetic datasets with different jg in Table The

performance decline of NRDE verifies our assumptions and motivations.
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Table 9: Average AUROC and AUPRC performance of the proposed method containing different

components.
AUROC | Cardiotocography =~ SpamBase Satellite Pima WPBC
wlou, R 77.9 80.1 83.6 79.3 58.0
w/o u 71.2 80.7 82.3 78.2 60.2
w/o R 84.6 84.7 84.1 80.8 61.9
Ours 86.1 87.4 86.8 81.7 65.3
AUPRC | Cardiotocography ~SpamBase Satellite Pima WPBC
wlou, R 62.6 80.5 86.8 77.6 43.8
wlo u 60.9 80.8 85.1 76.5 45.4
w/io R 73.2 86.8 85.0 79.1 47.8
Ours 74.3 88.7 88.0 81.7 52.5

Table 10: Average AUROC and AUPRC performance of the proposed method containing different

components across 5 datasets.

Components | AUROC ~ AUPRC

wlou(x),R | 757 70.2
w/o u(x) 75.7 69.7
wio R 79.2 74.3
Ours ‘ 81.4 76.6

Table 11: Average AUROC and AUPRC performance of the proposed method with different values

of learning rate [r.

AUROC | Cardiotocography ~SpamBase Satellite Pima WPBC
lr =0.001 62.9 82.9 82.4 81.1 59.3
lr =0.005 78.0 87.4 80.2 80.5 64.1
Ir=0.01 86.1 86.3 83.5 81.0 62.9

Table 12: Average AUROC and AUPRC performance of the proposed method with different values

of hyperparameter \.
AUROC | Cardiotocography ~SpamBase Satellite Pima WPBC
A=0 84.6 84.7 84.1 80.8 61.9
A=0.01 85.1 86.3 83.5 81.0 62.9
A=0.1 86.1 87.4 82.4 81.7 61.1
A=1 79.4 82.0 86.8 80.3 65.3
AUPRC | Cardiotocography ~SpamBase Satellite Pima WPBC
A=0 73.2 86.8 85.0 79.1 47.8
A=0.01 74.3 86.9 85.2 79.2 50.9
A=0.1 74.3 88.7 84.7 79.7 47.7
A=1 67.1 83.8 88.0 79.0 52.5

Table 13: AUROC performance of NRDE on synthetic datasets with different g—fji ratios.

| o3/on

| 9

| 6 | 4

2 11

| 05 |

| NRDE | 87.5 | 82.9 | 80.4 | 77.9 | 71.2 | 68.6 |
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G.6.2 PERFORMANCE RESULTS COMPARISON WITH IDEAL BASELINES.

In synthetic dataset where m the number of data sources is known, we compare the performance of
NRDE with KDE-C, DSVDD-C and KNN-C which are evaluated on datasets without noise compo-
nents and NRDE—m, where only the m sources with largest variance from set A are used for comput-
ing anomaly score: ty, (Tnew) = 10g | det(Va,,, Fw (Tnew))| — $log 2m — 37, 4 w; Fyy (Xnew) 7.
The results are shown in Table Since NRDE is an approximation of NRDE—m, its performance
being close but not as good as NRDE—m and other ideal baselines supports our claim and motivation.

Table 14: AUROC (%) performance of NRDE and other baselines on the synthetic dataset.

Method | NRDE | NRDE-m | KDE-C | KNN-C | DSVDD-C
AUROC | 83.1 86.3 87.2 90.2 87.5

G.6.3 EXPERIMENTAL RESULTS USING CONTRADICTORY ASSUMPTION

If we make a contradictory assumption that the variances of data sources should be smaller, then the
weight for each source should be defined as:

d
wi= e (G Y 19BN/ S e (1G-S [WaRweoD; )

xeD x€D
where sources with smaller variances obtain larger weights. This method is denoted as NRDE-CON.

The performance of NRDE-CON and NRDE on several datasets is shown in Table where the
results support the assumption in our paper.

Table 15: AUROC (%) performance of NRDE-CON and NRDE.

Method WPBC | Thyroid | Musk | Annthyroid | Wilt
NRDE-CON | 60.1 59.6 76.5 533 63.1
NRDE 65.3 99.2 99.8 98.4 71.9

H

To facilitate the review process, this section consolidates all supplementary experiments conducted
and added during the rebuttal phase.

H.1 MORE EXPERIMENTAL COMPARISON BETWEEN A = 0 AND A # 0

In this subsection, we provide a performance comparison of NRDE (A # 0)and NRDE (A = 0) on 47
datasets in Table[T6] Setting A # 0 results in performance improvement in most datasets.

H.2 HYPERPARAMETER CONFIGURATION OF NRDE ON 47 DATASETS

In this subsection, we provide the hyperparameter configuration of NRDE on all the 47 datasets in
Table

H.3 DYNAMICS OF TRAINING LOSS AND AUROC ACROSS THE TRAINING PROCEDURE
In this subsection, we provide the dynamics of training loss and AUROC across the training procedure

for several datasets in Figure[I0] As shown in the figure, the decrease in loss is consistent with the
improvement in performance.
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H.4 EXPERIMENTS USING SYMMETRIC DESIGN FOR ANOMALY DETECTION ON NOISY DATA

In this subsection, we consider a symmetric design in which stronger noise is added to the anomalous
test samples. We conduct experiments on the same five datasets, and the corresponding results
are presented in Table[I8] In this scenario, NRDE consistently outperforms competing methods,
underscoring its robustness to noise.

H.5 A PRACTICAL DIAGNOSTIC TO VERIFY VARIANCE DIFFERENCE ON REAL DATA.

In this subsection, we provide a simple way to empirically verify the variance difference underlying
our assumption is as follows. We first train an unregularized normalizing flow F)y on the real dataset
D and compute the average absolute Jacobian

1
J=- :
-3 V)|
xeD
We then take the row norms {||.J;||}¢_, and sort them in ascending order, denoted by {||Ji-||}%;.

Jtnys —Ji

One simple way to measure the gap is to compute the gap A; = i since the number of

Jii+ny*
data sources m can not be obtained, we use the expectation of such gap E(A) = Z?;ll A;/(d-1)
to measure the variance difference where a large value of E(A) indicates that the variance difference
is pronounced and that NRDE is particularly appropriate in such cases.

We conducted experiments to measure E(A) on datasets where NRDE shows performance improve-
ments and on datasets where it exhibits performance drops compared to other density-based methods.
The results in Table [I9]show that datasets with performance improvements tend to have larger values
of E(A), illustrating that E(A) is an effective diagnostic for measuring the variance difference.

H.6 SENSITIVITY ANALYSIS OF NRDE TO ARCHITECTURAL CHOICES

In this subsection, we include additional experiments on five representative datasets to evaluate the
sensitivity of our method to architectural choices in Table[20|and Table Overall, NRDE remains
robust across different architectures in most cases.

H.7 PERFORMANCE COMPARISON BETWEEN NRDE AND OTHER HYPERPARAMETER-TUNED
BASELINES

For all baseline methods, We follow the widely-used setting in recent papers|Yin et al.|(2024); Xu et al.
(2023b)); |[Livernoche et al.|(2023)); Shenkar & Wolf](2022) to use the recommended or best-performing
hyperparameter configuration given in their original paper. To further eliminate any concerns
regarding insufficient tuning, we perform grid search over the hyperparameters on several recent
methods: MCM, DTE-C and SLAD based on their original papers and report their best-performing
results on each datasets. For MCM, learning rate I € {0.001,0.05,0.01} and A € {0.1,1,10}. For
DTE-C, learning rate [r € {0.001, 0.05,0.01} and time stamps 7' € {100, 400, 1000}. For SLAD,

Ir € {0.001,0.05,0.01} and hidden dimension d € {64, 128, 256}. Experimental results in Table
show that NRDE still outperforms these tuned baselines in most cases.

H.8 OUTLIER DETECTION ON MORE DATASETS
In this subsection, we conduct outlier detection experiments on the other 5 datasets. As shown

in Table NRDE still outperforms these baselines in the transductive setting, demonstrating its
robustness to contamination by anomalies in the training set.

H.9 MORE STATISTICAL REPORTING FOR STANDARD AD
In this subsection, we now include box plots illustrating the performance distributions of different

methods across the 47 datasets in Figure[IT] as well as the corresponding p-values for each comparison
with the baselines in Table While the p-values indicate that the performance improvement of

28



Under review as a conference paper at ICLR 2026

NRDE over simple methods such as KNN and KDE is not statistically significant, NRDE exhibits
statistically significant gains over the other deep learning—based baselines.

H.10 TRAINING TIME COST COMPARISON BETWEEN NRDE AND REALNVP (NORMALIZING
FLOW)

Since NRDE and RealNVP share the same inference procedure, we report only their training times
across datasets of varying dimensionality in Table 25] The main time consumption of NRDE
compared to RealNVP is the time for Jacobian matrix computation for each training data. The
results indicate that, even for large-scale or high-dimensional datasets, NRDE’s training time remains
comparable to ReaNVP with no substantial increase.

H.11 PERFORMANCE COMPARISON BETWEEN NRDE, px (Xpyre ) AND D5 (Xpure )

In this subsection, we compare the performance of NRDE, px (Xpure ) and p g (Xpure ) On several
datasets. Since estimating px (Xpure ) and p ¢ (Xpure ) requires explicitly measuring m, which is the
number of data sources, here we estimate m using a simple strategy. First, we compute the average
absolute Jacobian

J = % > VA ().

xeD

We then take the row norms {J;}¢_; and sort them in ascending order, denoted by {.J;+ }¢_,. Then

Ty — i

we measure the variance gap by computing A; = , and find m by

J(ig1y*

m = arg max 4\; (44)

As shown in Table 26 the performance of using px (Xpure) and px (Xpure) is very close to that of
NRDE. A paired t-test on 10 datasets shows that the performance differences between NRDE and
these two pure-data-based baselines are not statistically significant (p > 0.05).
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Figure 10: Dynamics of training loss and AUROC across the training procedure for several datasets.
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Table 16: AUROC performance comparison of NRDE on 47 real-world datasets in ADBench with or
without R (A is set to 0).

Data AZ0 | A=0
ALOI 55.1 56.7
annthyroid 98.1 98.4
backdoor 86.7 94.5
breastw 99.3 99.4
campaign 76.4 76.9
cardio 76.1 95.8
Cardiotocography | 84.6 86.1
celeba 84.3 87.9
census 73.4 76.7
cover 69.2 84.1
donors 97.3 97.6
fault 58.3 62.7
fraud 92.4 95.9
glass 89.0 91.2
Hepatitis 82.3 85.3
http 99.7 99.8
InternetAds 76.2 79.1
Tonosphere 87.6 87.7
landsat 71.1 71.5
letter 67.0 70.2
Lymphography 98.6 98.7
magic.gamma 80.6 81.9
mammography 89.7 91.2
mnist 91.8 93.2
musk 99.9 99.8
optdigits 942 94.5
PageBlocks 92.1 92.1
pendigits 96.2 98.1
Pima 80.8 81.7
satellite 84.0 86.8
satimage-2 99.6 99.7
shuttle 99.8 99.9
skin 92.1 92.5
smtp 95.7 95.6
SpamBase 86.6 87.4
speech 63.6 64.7
Stamps 93.7 95.9
thyroid 99.3 99.2
vertebral 67.8 72.7
vowels 83.3 87.8
Waveform 91.7 91.6
WBC 99.7 99.9
WDBC 99.6 99.9
Wilt 79.4 77.9
wine 97.2 99.1
WPBC 63.6 65.3
yeast 59.2 61.1
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Table 17: Hyperparameter configuration of NRDE on 47 real-world datasets in ADBench.

Data Ir A
ALOI 0.005 | 1
annthyroid 0.001 | 0.1
backdoor 0.001 | 0.1
breastw 0.001 | 0.1
campaign 0.005 | 0.01
cardio 0.005 | 0.1
Cardiotocography | 0.01 0.01
celeba 0.001 | 0.01
census 0.005 | 0.01
cover 0.01 1
donors 0.001 | 0.1
fault 0.01 1
fraud 0.001 | 1
glass 0.005 | 0.1
Hepeatitis 0.01 | 0.1
http 0.01 0.01
InternetAds 0.001 | 0.1
Tonosphere 0.001 | 0.01
landsat 0.005 | 0.1
letter 0.001 | 0.01
Lymphography 0.005 | 0.1
magic.gamma 0.01 0.1
mammography 0.005 | 1
mnist 0.001 | 1
musk 0.005 | 1
optdigits 0.005 | 1
PageBlocks 0.01 0.01
pendigits 0.01 | 0.1
Pima 0.001 | 0.1
satellite 0.001 | 1
satimage-2 0.001 | 0.1
shuttle 0.01 0.1
skin 0.001 | 0.1
smtp 0.01 0.1
SpamBase 0.01 0.1
speech 0.001 | 0.1
Stamps 0.01 0.1
thyroid 0.005 | 0.01
vertebral 0.005 | 0.1
vowels 0.005 | 1
Waveform 0.001 | 0.1
WBC 0.01 0.1
WDBC 0.01 0.1
Wilt 0.01 1
wine 0.005 | 1
WPBC 0.005 | 0.1
yeast 0.01 1
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Table 18: AUROC results (%) of the best-performing 5 methods on anomaly detection with noisy
data, where stronger noise is added to the anomalous test samples. The best results per dataset are in

bold.
Dataset DSVDD KPCA IF kNN NRDE (ours)
Cardiotocography 83.7 75.8 80.7 713 82.1
Pima 72.5 77.0 75.8 78.1 79.6
Satellite 81.5 84.1 79.6  86.9 85.1
SpamBase 80.3 86.3 82.4 83.0 79.1
WPBC 47.5 522 517 515 62.9
AVG 73.1 75.1 740 742 77.2

Table 19: Average gap values on datasets showing significant performance improvement or drop

compared to other density-based methods.

Datasets (Improvement)

average gap

annthyroid

smtp

vertebral

Pima
Cardiotocography

0.23
0.58
0.16
0.35
0.14

Datasets (Drop)

average gap

Ionosphere
landsat
letter
optdigits
pendigits

0.04
0.03
0.03
0.07
0.06

Table 20: Average AUROC performance of the proposed method with different numbers of coupling

layers (T).
AUROC \ SpamBase Satellite Pima WPBC Cardiotocography
T=2 87.4 86.8 81.7 65.3 86.1
T=3 84.2 87.4 83.0 63.9 75.7
T=4 86.3 88.3 82.3 62.7 78.3

Table 21: Average AUROC performance of the proposed method with different width of coupling

layers (b).

AUROC | SpamBase Satellite Pima WPBC Cardiotocography
b =512 86.2 85.1 80.2 65.5 84.5
b=1024 86.1 85.0 81.0 64.6 85.3
b = 2048 87.4 86.8 81.7 65.3 86.1
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Table 22: AUROC (%) comparison between tuned MCM, SLAD, DTE-C and our proposed method
on tabular datasets of different dimensionalities from ADBench.

Table 23: Detailed AUROC performance of outlier

Dataset SLAD MCM DTE-C Ours
Low-dimensional (<10 features)
annthyroid 91.3 98.5 98.0 98.4
glass 83.5 86.5 81.6 91.2
mammography 79.5 90.7 89.8 91.2
Pima 62.1 75.2 71.1 81.7
vertebral 46.7 56.0 67.9 72.7

Middle-dimensional (10-100 features)

Cardiotocography  61.1 79.5 75.1 86.1
fraud 94.8 95.8 95.8 95.9
satellite 88.1 85.7 83.0 86.8
satimage-2 99.7 99.9 99.0 99.7
shuttle 99.9 99.9 99.7 99.9
High-dimensional (>100 features)
backdoor 92.5 97.2 92.3 94.5
census 70.0 72.0 71.1 76.7
mnist 91.2 95.3 91.8 93.2
musk 100.0  100.0 100.0 99.8
speech 554 49.9 53.7 64.7

detection on 10 datasets. The best results are

marked in bold.

AUROC \ Cardiotocography ~ SpamBase Satellite Pima WPBC glass optdigits PageBlocks pendigits Waveform AVG
IF 68.8 65.5 67.9  67.0 49.1 782 741 89.1 95.5 72.8 72.8
ECOD 78.5 65.5 582 594 481 704 604 91.3 92.7 60.3 68.4
0C-SVM 69.5 53.3 663 623 484 599 507 91.4 93.1 67.1 66.2
KPCA 534 52.1 482 538 455 499 522 64.3 57.2 56.0 53.2
LOF 523 45.6 541 601 520 770 537 715 49.9 70.5 58.6
KDE 50.2 49.5 760 722 499 820 322 90.6 89.0 75.1 66.6
kNN 579 52.9 650 651 472 867 372 88.8 75.8 734 65.0
RealNVP 62.7 56.5 746 707 591 796 723 86.4 91.1 69.8 722
COPOD 66.2 68.7 633 654 523 755 682 87.5 90.4 733 71.0
DeeplIF 63.0 379 743 613 494 845 563 87.5 953 78.6 68.8
Ours | 80.5 717 819 801 622 850 753 827 88.3 91.8 80.5

Table 24: Paired t-test between NRDE and each baseline over 47 tabular datasets.

KDE KNN LOF 0OC-SVM IF AE DSVDD RealNVP  NeutralAD ECOD ICL SLAD DPAD MCM DTE-C

AUROCp 0.0547 0.0990 0.0184
AUPRCp 0.6429 0.8984 0.0419

2.3e-05
0.0011

9.4e-06 0.

.0091

1.1e-06
1.6e-07 0.0422  6.2e-06

0.0003 5.3e-05 2.1e-09 3.7e-06  0.0006 0.0004 0.0041 0.0269
5.0e-06 0.0018 2.1e-08 4.3e-04 0.0762 0.0360 0.1833 0.0674
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Figure 11: Box plots comparing the performance distributions of different methods across the 47
datasets

Table 25: 100 epoch training time cost (s) comparison between NRDE and RealNVP on different
dimensional datasets from ADBench.

Dataset NRDE RealNVP
annthyroid 4.12 2.03
glass 1.58 0.59
mammography 5.46 2.72
Pima 1.68 0.61
vertebral 1.45 0.59
Cardiotocography ~ 4.29 0.90
fraud 388.80 75.21
satellite 30.31 18.8
satimage-2 31.40 19.04
shuttle 46.26 30.05
mnist 71.34 20.84
musk 70.41 18.03
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Table 26: Performance comparison between NRDE, px (Xpure ) and p 5 (Xpure )-

| NRDE  px (Xpue) P (Xpure )

Satellite 86.1 86.6 88.0
WPBC 65.3 71.4 65.6
Cardio 86.1 87.2 86.9
Pima 81.7 79.7 80.4
SpamBase 87.4 85.5 87.9
annthyroid 98.1 97.5 97.2
smtp 95.6 95.2 95.5
glass 91.2 91.5 92.6
mammography | 91.2 91.4 90.9
vertebral 72.7 77.4 81.0
AVG 85.5 86.3 86.6
p—value - 0.36 0.24
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