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ABSTRACT

Density-based anomaly detection methods often provide accurate and interpretable
predictions but their performance can be severely affected by the inherent noise of
data. In this paper, we present a noise-robust density estimation (NRDE) method
for tabular data anomaly detection. We aim to estimate density of pure data with
influence of noise isolated, which is a non-trivial task since data-generating process
is completely unknown. NRDE learns a Jacobian-regularized normalizing flow to
estimate the sources of data and categorizes sources into two groups, where one
group generates pure data and the other generates noise. Then we can estimate the
density of pure data and use it to detect anomalies caused by the sources of pure
data rather than the changes caused by the sources of noise. Therefore, compared
with other density based methods, our NRDE is much more robust to noise. Besides
the new algorithm, we also provide theoretical results to support the effectiveness
of NRDE. We compare NRDE with 15 baselines on 47 benchmark datasets under
different settings, including vanilla anomaly detection, anomaly detection with
anomaly contamination, anomaly detection on noisy data and transductive outlier
detection. The results demonstrate effectiveness and superiority of NRDE.

1 INTRODUCTION

In an increasingly data-driven world, the problem of identifying unusual patterns or deviations from
expected behavior—known as anomaly detection—has become paramount across diverse domains.
Anomaly detection Chandola et al. (2009); Pang et al. (2021); Ruff et al. (2021), sometimes also
referred to as novelty or outlier detection Breunig et al. (2000); Pimentel et al. (2014), involves the
identification of data points, events, or observations that significantly differ from the majority of
the data. These anomalies can signal critical incidents such as fraud Ahmed et al. (2016), security
breaches Breier & Branišová (2017), system failures Du et al. (2017), or novel insights, making their
accurate detection essential for timely intervention and decision-making.

In the past few years, a diverse range of deep learning-based anomaly detection methods have been
proposed Ruff et al. (2018b); Deecke et al. (2019); Ruff et al. (2019); Wang et al. (2021); Pang et al.
(2019); Goyal et al. (2020); Qiu et al. (2021); Cai & Fan (2022); Xu et al. (2023a); Zhang et al.
(2024). For instance, DeepSVDD Ruff et al. (2018b) assumes that representations of normal data
can be enclosed within a small hypersphere and representations of anomalous data lie outside the
hypersphere, where the representations are given by a neural network. ICL Shenkar & Wolf (2022)
assumes that a subset of the feature vector is related to the rest and uses self supervised learning
to maximizes the mutual information between each sample and the masked out part. SLAD Xu
et al. (2023b) performs scale learning to embed high-level information into its ranking mechanism.
Although these methods often demonstrate impressive performance in various scenarios, several of
them require making assumptions on the structure or distribution of normal and anomalous data,
which may not hold or are difficult to guarantee by the training process. For instance, Zhang et al.
(2024) analyzed the limitations of the hypersphere assumption in high-dimensional spaces and
proposed to project normal data into the region bounded by two hyperspheres. Moreover, some of
these methods are proposed to solve the one-class classification (OCC) problem, which relies on
the assumption that training data originate from a single class or have a single manifold structure.
Consequently, these methods can be ineffective when training data encompass multiple clusters or lie
on multiple disconnected manifolds as mentioned in Khayatkhoei et al. (2018).
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(a) kNN (AUROC: 59.2) (b) KDE (AUROC: 58.2) (c) LOF (AUROC: 60.4)

(d) DSVDD (AUROC: 61.5) (e) RealNVP (AUROC: 75.4) (f) NRDE (AUROC: 83.3)

Figure 1: Detection performance on a synthetic dataset. The data were generated from a few data
sources and many noise sources. Points marked in green, blue, and red represent normal data, noised
normal data (caused by noise change), and anomalous data, respectively. See (8) for definitions.
The five compared methods detect most of the noised normal samples as anomalies, while our NRDE
is robust to the changes of noise. More details about this experiment are in Appendix F.

It is worth noting that density-based methods make no assumptions about the shape or distribution
of the data and are capable of modeling complex data structures. This flexibility allows them to be
effective even when the training data encompasses multiple classes and these methods use the local
or global density of the data as an anomaly score. Traditional density-based methods include Kernel
Density Estimation (KDE) Parzen (1962), Gaussian Mixture Models (GMM), etc. These methods
often suffer from the curse of dimensionality and are not effective in modeling complex data. To
address the problem, several deep learning based density estimation methods have been proposed.
For instance, DAGMM Zong et al. (2018) combines deep auto-encoders with GMM, utilizing the
output density given by GMM in a low-dimensional space to detect anomalies. Normalizing flow
Kobyzev et al. (2020), an effective generative model, is also effective in estimating the density of
complex data, and hence is useful for anomaly detection. Some flow-based image anomaly detection
methods Gudovskiy et al. (2022); Kim et al. (2023) first employ feature extractors to derive semantic
representations of images and then implement normalizing flow to detect anomalies. In this work,
we focus on tabular data since data of other types can be converted into tabular formats using some
feature extractors or pre-trained deep models.

For standard anomaly detection, density-based methods, including normalizing flow and other shallow
and deep models, are sensitive to the changes of inherent noise in the data, yielding high false-positive
rates. It is note worthy that such inherent noise can be largely different from artificial noise like Gauss
noise, since they could represent minor changes from equipment or environment for data collection.
More specifically, real data have inherent noise and can be described by the model x = G(sD, sN ),
where sD and sN denote the pure data source and noise source respectively, and G is the observation
generating function. The changes of x caused by sN shouldn’t be treated as anomalies, or at least
should be distinguished from the concerned anomalies, and we call such data noised normal data for
convenience. For instance, in a vehicle monitoring system, changes in background noise may alter the
observed data, but we are only concerned with the status of the vehicle itself. Similarly, in medical
diagnosis, we hope that changes in instruments and equipment or the related occasional noise do not
affect the diagnostic results of diseases. In Figure 1, we use a synthetic dataset to show the influence
of inherent noise on the performance of five anomaly detection methods and our proposed method
Noise-Robust Density Estimation (NRDE). We see that the five methods fail to distinguish between
the noised normal data and real anomalies and have high false positive rates and low AUROC values,
while our NRDE is robust to the changes of the inherent noise in the data and performs the best.

Our NRDE trains a neural network to estimate the density of pure data with the influence of noise
isolated. Specifically, we propose a Jacobian-regularized normalizing flow to estimate the density of
data and categorizes the sources of data into two distinct groups: those that generate pure data and
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Noised Normal Data
Anomalous Data

Normal Data
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Figure 2: Architecture of the proposed method NRDE. NRDE estimates the density of pure data by
utilizing a normalizing flow with Jacobian regularization, where the influence of noise sources is
isolated. Therefore, NRDE is robust to the changes of inherent noise in the data.

those that produce noise. As a result, we are able to detect anomalies that are caused by the pure data
sources without being affected by the noise. The framework of NRDE is shown in Figure 2. Our
contributions are summarized as follows:

• We propose a novel density-based AD method, NRDE, for tabular data based on a Jacobian-
regularized normalizing flow.

• NRDE categorize data sources into pure-data sources and noise sources and performs density
estimation for the pure data only, making it robust to the changes of noise.

• We provide some theoretical analysis for NRDE to support its effectiveness.

We conduct experiments on 47 tabular datasets to compare NRDE against 15 baseline methods. While
the primary evaluation is performed under the standard anomaly detection setting, our experimental
setup also includes anomaly detection with noise, anomaly detection with contaminated data, and
(transductive) outlier detection.

2 RELATED WORK AND PRELIMINARY KNOWLEDGE

2.1 GENERATIVE MODELS FOR ANOMALY DETECTION

Deep generative models Schlegl et al. (2019); Kirichenko et al. (2020); Xia et al. (2022); Liu et al.
(2025) are useful in anomaly detection due to their ability to model complex data. For instance,
OCGAN Perera et al. (2019) trains a generative adversarial network Goodfellow et al. (2014) using
only normal data and forces all anomalous data to generate normal-data-looking samples thus
anomalous data shows high reconstruction error. Yu et al. (2021) learns to transform the visual
feature by deep feature extractors into a tractable distribution and obtains the likelihood to recognize
anomalies in the inference phase. RobustRealNVP Liu et al. (2022) ignores low-density points which
are likely to be anomalies, by discarding the gradient produced by these points in the training stage,
therefore obtains a robust density function. Kim et al. (2023) trains a normalizing flow to map the
feature distributions of each location in normal data to distinct distributions, while mapping the
distribution of abnormal data to one that is significantly different from that of normal data, thereby
enhancing discriminability. DTE Livernoche et al. (2023) estimates the distribution over diffusion
time for a given input and uses the mode or mean of this distribution as the anomaly score. In Rozner
et al. (2023), the authors found that density functions around normal samples are relatively stable and
proposed to use an autoregressive probabilistic model to maximize the density of training samples
while minimizing their density variance. Unfortunately, these works do not address the problem of
sensitivity to inherent noise change in standard anomaly detection shown by Figure 1.

2.2 INDEPENDENT COMPONENT ANALYSIS AND NORMALIZING FLOW

ICA Hyvärinen & Oja (2000) assumes that observed data is generated by an unknown mixing process
of several independent components (sources) which are from simple distributions, and tries to obtain
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these components. By categorizing the mixing process, we can divide ICA methods into linear
ICA and nonlinear ICA. Linear ICA assumes that the mixing process is linear and the sources are
non-Gaussian, and often solves the problem by maximizing the non-Gaussianity. As for nonlinear
ICA, the mixing process is assumed to be nonlinear, and the main problem faced by the field is that the
model is unidentifiable or the sources are inseparable. In other words, there are infinitely many ways
to transform the data into independent components, which is still a mixture of underlying sources. By
utilizing additional structure in the data or introducing auxiliary variables, many methods Hyvärinen
& Pajunen (1999); Hyvarinen & Morioka (2016); Zheng et al. (2022) have been developed.

Here, we briefly review foundational concepts of normalizing flows. Given a set of observations, each
of which, denoted as x, is drawn from some complex distribution X in Rd, normalizing flow aims
to learn a function FW : Rd → Rd composed of a sequence of invertible mappings {fWt

}Tt=1, i.e.,
FW = fWT

◦· · ·◦fW2
◦fW1

, that transforms complex distribution X into a simpler one, denoted as Z ,
such as a standard Gaussian N (0, I). Here, T is the number of mappings and W = {W1, . . . ,WT }
denotes the set of all neural network parameters. Because FW is invertible, the density pX (x) of x
can be computed using the change-of-variables formula:

pX (x) = pZ(FW(x))| det(∇xFW(x))|, (1)

where det
(
∇xFW(x)

)
is the determinant of the Jacobian matrix of FW evaluated at x. One of the

coupling normalizing flows is the RealNVP proposed by Dinh et al. (2016), where fWi
is called

coupling transformation. Denoting x(i) ∈ Rd the input of fWi
, x(i) is usually split into two parts,

i.e., x(i)
α = [x

(i)
α1 , x

(i)
α2 , . . . , x

(i)
αqi

]⊤ and x
(i)
β = [x

(i)
β1
, x

(i)
β2
, . . . , x

(i)
βd−qi

]⊤, where 1 < qi < d. Then the

output y(i) of fWi is given as

y(i)
α = x(i)

α , y
(i)
β = x

(i)
β ⊙ exp(hi1(x

(i)
α )) + hi2(x

(i)
α ), (2)

where hi1 : Rqi → Rd−qi and hi2 : Rqi → Rd−qi are two multilayer neural networks.

3 METHODOLOGY

3.1 PROPOSED METHOD

Let D = {x(1),x(2), . . . ,x(n)} be a set of d-dimensional training data, which is drawn from an
unknown distribution X . The primary goal of anomaly detection (AD) is to learn a model Φ : Rd → R
from the training set D, which can quantify the degree of anomaly or the dissimilarity of a new
sample xnew relative to the distribution X .

As mentioned in the technique of independent components analysis (ICA) Hyvärinen & Oja (2000);
Hyvärinen et al. (2009), an observation x can be regarded as given by an unknown invertible linear or
nonlinear transformation, denoted as G : Rd → Rd, on some unknown source s ∈ Rd, i.e.,

x = G(s), (3)

where s ∼ S. It is natural to assume that the source distribution S is simple and each dimension
of S is independent. For instance1, consider S = N (µ,Σ), where µ = [µ1, µ2, . . . , µd]

⊤, Σ =
diag(σ2

1 , σ
2
2 , . . . , σ

2
d), and σ1 ≥ σ2 ≥ · · · ≥ σd. For convenience, we consider that the primary

distinction among these sources resides in their variances, leading to the specification S = N (0,Σ).
Based on G, the ideal normalizing flow can be formulated as:

F ∗
W(x) := Σ− 1

2G−1(x), (4)

where z = F ∗
W(x) = Σ− 1

2 s ∼ N (0, I).

We split the source s into two distinct parts:

s = [sD; sN ] , (5)

where sD ∈ Rm denotes the pure data (or signal) source and sN ∈ Rd−m denotes the noise source.
It is natural to assume that variance of sD is much greater than that of sN , namely,

σ1 ≥ σ2 · · · ≥ σm > cσm+1 ≥ cσm+2 · · · ≥ cσd, (6)
1Although the standard ICA requires to assume that the sources are non-Gaussian, the Gaussian assumption

in this work makes sense because G may first convert each source to non-Gaussian and then perform mixing.
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where c is some constant much greater than 1. The data with noise removed, i.e., pure data, is
xpure = G([sD;0]) (7)

Thus, the inherent noise in data is ϵ := x − xpure. Letting T denote the signal source distribution
deemed as normal, we have the following categorization for the data:

pure normal data : xpure = G([sD;0]), sD ∼ T
noised normal data : xnorm = G([sD; sN ]), sD ∼ T , sN ̸= 0

anomalous data : xanom = G([sD; sN ]), sD ̸∼ T
(8)

In this work, given the observation x, we want to evaluate whether xpure is normal or anomalous,
which is determined by sD only and is irrelevant to sN . To this end, we propose to compute the
conditional probability pX (x | sN = 0), of which a smaller value indicates a higher possibility that
xpure is anomalous. We have

pX (x | sN = 0) =
p(x, sN = 0)

p(sN = 0)
=

pX (xpure)

p(sN = 0)
, (9)

where p(sN = 0) is a constant related to sources. Thus, pX (xpure) represents the value of the
conditional probability. Using (4), we have the ideal case for pX (xpure), i.e.,

log p∗X (xpure) = log pZ(F
∗
W(xpure)) + log | det(∇xpureF

∗
W(xpure))|

= log
(
(2π)−

d
2 exp(− 1

2s
⊤Σ−1s)

)
+ log |det(∇xpureF

∗
W(xpure))|

= log | det(∇xpureF
∗
W(xpure))| −

m∑
i=1

s2i
2σ2

i

− d

2
log(2π)

(10)

where we have used the fact that F ∗
W(xpure) = [zD;0]. The challenge is that we may never obtain F ∗

W .
Let FW be a normalizing flow learned from D, and we can only ensure that z = FW(x) ∼ N (0, I).
It is difficult to determine which of z1, . . . , zd correspond to sD and which of z1, . . . , zd correspond
to sN . Moreover, the number of data sources m is unknown and is not easy to estimate.

Note that (4) indicates that
∂zj
∂x

= σ−1
j ×

∂G−1
j (x)

∂x
, (11)

We assume that

γ − δ ≤
∥∥∥∥∂G−1

j (x)

∂x

∥∥∥∥ ≤ γ + δ, ∀j ∈ [d] (12)

where γ and δ are some positive constants and δ ≪ γ. This assumption is reasonable because G
usually mixes the sources randomly and uniformly. Moreover, it is more general than assumption
used in linear ICA Hyvärinen et al. (2001), which assumes W⊤W = I in G(s) = Ws, meaning
γ = 1 and δ = 0. Combining (11) (12), we have

(γ − δ)

∥∥∥∥∂zj∂x

∥∥∥∥−1

≤ σj ≤ (γ + δ)

∥∥∥∥∂zj∂x

∥∥∥∥−1

, (13)

If (γ − δ)
∥∥∥∂zj

∂x

∥∥∥−1

> c(γ + δ)
∥∥∥∂zj′

∂x

∥∥∥−1

or
∥∥∥∂zj′

∂x

∥∥∥ > cγ+δ
γ−δ

∥∥∥∂zj
∂x

∥∥∥ equivalently, then σj > cσj′ .

This means we may compare
∥∥∂z1

∂x

∥∥ , . . . ,∥∥∂zd
∂x

∥∥ to distinguish between sD and sN . Nevertheless,
there may not exist a clear gap between

∥∥∂z1
∂x

∥∥ , . . . ,∥∥∂zd
∂x

∥∥. An intuitive example is shown in Figure
3. The reason is that the source s in (3) is not identifiable and there are many equivalent problems
Hyvärinen & Pajunen (1999); Hyvarinen et al. (2019); Zheng et al. (2022). For instance, let R
be an orthonormal matrix and FW(x) = RF ∗

W(x) is a normalizing flow learned from D. In this
case, FW(x) ∼ N (0, I) and the estimated density remains unchanged. However, FW(x) becomes a
combination of z, and the row norms of the Jacobian matrix do not reflect the variances of sources.

However, we can exploit the prior knowledge (6) to train FW and may consider the optimization

maximize
W,A,B

∑
x∈D

log
(
pZ(FW(x))| det(∇xFW(x))|

)
subject to min

j∈A

∥∥∥∥∂zj∂x

∥∥∥∥−1

> c′ max
j∈B

∥∥∥∥∂zj∂x

∥∥∥∥−1

, ∀x ∈ D

A ∪B = [d], A ∩B = ∅, |A| = m

(14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

75 data sources

Jacobian Row Norm
0.6
0.5
0.4
0.3
0.2
0.1
0.0 0 20 40 60 80 100

Va
lu

es

Features

Jacobian Row Norm
0.6
0.5
0.4
0.3
0.2
0.1
0.0 0 20 40 60 80 100

Va
lu

es

Features

Figure 3: Visualization of row norms of the Jacobian matrix on a synthetic dataset with 50 pure data
sources and 50 noise sources. The left one shows the unregularized case while the right one shows
the regularized case. More visualization results on real datasets are shown in Appendix G.1.

where c′ = cγ+δ
γ−δ and A corresponds to sD and B corresponds to sN . It is very difficult to solve (14)

because c, γ, δ are unknown and the constraints are related to every x and min and max operations.
We also need to know m.

The constraints in (14) indicate that some rows of the Jacobian matrix ∇xFW(x) have much smaller
norms than other rows, which is a kind of sparseness. Therefore, we propose to regularize ∇xFW(x)
during the optimization of FW and hence solve

minimize
W

1

n

∑
x∈D

− log
(
pZ(FW(x))| det(∇xFW(x))|

)
+ λR

(
1

n

∑
x∈D

|∇xFW(x)|

)
(15)

where R denotes a sparse regularizer on matrix and λ > 0 is a hyperparameter. Instead of regularizing
for each x of D, we regularize the average of absolute Jacobian matrices. We use the following R:

R(Q) =

d∑
i=1

√
∥qi:∥1, (16)

where qi: denotes the ith row of Q ∈ Rd×d. Note that R2(Q) is the ℓ1,1/2 quasi-norm, which is
sharper than ℓ2,1 norm widely used in sparse optimization. Figure 3 illustrates the effect of R. More
details about R is provided in Appendix C.

Note that an alternative to (16) is using R(Q) =
∑

j∈[B] ∥qj:∥−
∑

j∈[A] ∥qj:∥, where A is the index
set of the m rows of Q with smaller norms and B is the index set of the d−m rows of Q with larger
norms determined in each iteration. This method requires a good estimate of m and is sensitive to the
initialization. The performance is not as good as (16).

Although solving (15) makes sense, in real scenarios, m is hard to estimate, the obtained FW may
not provide a very clear gap between the norms of rows of the Jacobian matrix, and the gap depends
on λ. Therefore, we use a weighted log density u(x) to approximate log p∗X (xpure), which can be
regarded as an anomaly score. To be more precise, given a test sample xnew, we compute the anomaly
score as u(xnew) where lower anomaly score indicates a higher probability of being anomaly:

u(xnew) = log
∣∣det (∇xnewFW(xnew)

)∣∣− d

2
log 2π − 1

2

d∑
i=1

wiFW(xnew)
2
i (17)

where the weights wi are

wi = exp
( 1

∥( 1n
∑

x∈D |∇xFW(x)|)i∥+ 1

)/ d∑
j=1

exp
( 1

∥( 1n
∑

x∈D |∇xFW(x)|)j∥+ 1

)
(18)

and
1

∥( 1n
∑

x∈D |∇xFW(x)|)i∥+ 1
≈ σi

σi + γ + δ
, (19)

Note that wi is larger for the sources with a larger variance σi, which is more likely to be a data
source. We provide the following theoretical guarantee for u(x) to approximate log p∗X (xpure) and
detect anomaly successfully.
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Theorem 3.1. Let x̂ be an anomaly and x be a noised normal data. If ∥F ∗
W(x)∥ = ∥F ∗

W(x̂)∥ and
pX (x) = pX (x̂), then the weighted log-density estimated by F ∗

W satisfies u∗(x) > u∗(x̂).

Theorem 3.1 provides a guarantee for our proposed method to identify the anomalies and noised
normal data that normalizing flow is unable to identify.

Theorem 3.2. Let the Lipschitz constant of each f∗
Wi

and h∗
i1 be bounded above by τ+i and τiα

respectively and denote the weight and weighted log density estimated by F ∗
W(x) as {w∗

i }di=1 and
u∗(x) respectively. Suppose |u∗(x)− u(x)| ≤ η, then the following inequality holds:

| log p∗X (xpure)− u(x)| ≤
∑
i∈A

(
1− w∗

i

)
F ∗
W(x)2i +

∑
j∈B

w∗
jF

∗
W(x)2j

+

T∑
i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− xpure∥+ η

This theorem indicates that our method can approximate the density of the pure data. Note that when
σm > cσm+1, as defined before, the principal estimation error originates from noise ∥x− xpure∥ and
η, which are intrinsic properties of the data and the regularized normalizing flow respectively.

Assumption 3.3. For any xa,xb ∈ Rd, there exists a constant φ such that |u(xa) − u(xb)| ≥
φ∥xa − xb∥ and if x̂ is an anomaly, u(x̂) ≤ maxx∈D u(x).

Theorem 3.4. Let x̂ be an anomaly. Suppose that xa,xb ∈ D such that argmaxx u(x) = xa and
argminx u(x) = xb and u(xa) = ς1, u(xb) = ς2. Then, under the assumption 3.3, if ∥x̂− xa∥ >
ς1−ς2

φ , then x̂ can be detected as an anomaly.

Theorem 3.4 shows that our proposed method can detect anomalies that are significantly distant
from normal data. The aforementioned assumption is reasonable since φ can be calculated as
infx∈Rd ∥∇xu(x)∥. Furthermore, if an anomaly possesses a weighted log-density exceeding the
maximum weighted log-density observed in the training set, its detection becomes considerably more
challenging or even impossible. Proofs for the theorems are provided in Appendix A. Also, we
provide the comparison of time complexity of density-based Methods in Appendix B.

In summary, we train a Jacobian-regularized normalizing flow via (15). After the model is well-
trained, for any testing data, we can calculate u(xnew) using (17) to approximate the density of pure
data and use it as the anomaly score to determine whether xnew is anomalous or not. More details
about the algorithm of NRDE is shown in Appendix F.

4 NUMERICAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets In our experiments, we evaluate the performance of 13 baseline methods on 47 widely
used real-world datasets spanning multiple domains in a popular benchmark for anomaly detection
proposed by Han et al. (2022). Detailed descriptions and statistical information about these datasets
are provided in the Appendix E. In anomaly detection tasks, we follow the protocol of Zong et al.
(2018); Bergman & Hoshen (2020); Shenkar & Wolf (2022); Xu et al. (2023b) by randomly partition-
ing normal samples: 50% are training, while the remaining 50% are combined with all anomalous
samples to form the test set. For outlier detection, the model is trained on the entire dataset to identify
outliers, which is a transductive learning setting.

Baselines Our method is compared with 13 baselines, including DTE Livernoche et al. (2023), MCM
Yin et al. (2024), DPAD Fu et al. (2024), SLAD Xu et al. (2023b), ECOD Li et al. (2022), ICL
Shenkar & Wolf (2022), NeutralAD Qiu et al. (2021), DSVDD Ruff et al. (2018a), RealNVP Dinh
et al. (2016), IF Liu et al. (2008), AE Hinton & Salakhutdinov (2006), LOF Breunig et al. (2000),
kNN Ramaswamy et al. (2000), KDE Parzen (1962). For DTE, MCM, DPAD, SLAD, ICL, and
NeutralAD, we use the code provided by the authors of the papers. For other methods, we use the
code from the Python library PyOD Chen et al. (2024). All hyperparameters follow the recommended
settings.
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Implementation We use the Area Under the Receiver Operating Characteristic Curve (AUROC)
and the Area Under the Precision-Recall Curve (AUPRC) as evaluation metrics, following Xu et al.
(2023b); Han et al. (2022). These two metrics do not rely on specific thresholds of decision and are
capable of comprehensively assessing the performance of different methods. All experiments are
conducted using the PyTorch framework on a system equipped with an NVIDIA RTX 3090 GPU and
an Intel Core i9-12900K CPU. Each experiment is performed five times to obtain the mean value and
standard deviation. To ensure a consistent network architecture for fair comparison, we employ two
2-layer multilayer perceptrons (MLPs), corresponding to a parameter setting of T = 2 in (1). More
details are in Appendix D.

4.2 RESULTS OF STANDARD ANOMALY DETECTION

Table 1: AUROC (%) and AUPRC (%) with the standard deviation of each method on several tabular
datasets of ADBench. The best results are marked in bold.

AUROC KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C Ours

annthyroid 91.4 ± 0.0 94.1 ± 0.0 92.9 ± 0.0 90.9 ± 0.0 91.8 ± 1.1 83.4 ± 2.0 79.4 ± 3.2 96.1 ± 0.5 78.9 ± 2.8 78.7 ± 0.0 64.0 ± 6.1 90.4 ± 2.9 91.2 ± 4.7 83.9 ± 0.6 97.8 ± 0.0 98.4 ± 0.0
breastw 98.9 ± 0.0 99.1 ± 0.0 96.7 ± 0.0 99.0 ± 0.0 99.5 ± 0.0 98.4 ± 0.3 99.1 ± 0.1 98.0 ± 0.0 81.4 ± 3.9 99.3 ± 0.0 90.2 ± 1.3 99.2 ± 0.1 98.9 ± 0.2 99.0 ± 0.0 96.3 ± 0.0 99.4 ± 0.0
cardio 95.7 ± 0.0 93.4 ± 0.0 93.0 ± 0.0 96.4 ± 0.0 94.9 ± 1.1 92.4 ± 3.2 96.1 ± 0.3 94.1 ± 0.4 81.0 ± 1.9 93.4 ± 0.0 83.9 ± 1.5 88.7 ± 3.0 90.0 ± 3.3 90.4 ± 0.8 93.6 ± 0.0 95.8 ± 0.6
Cardiotocography 75.0 ± 0.0 71.3 ± 0.0 72.7 ± 0.0 80.7 ± 0.0 79.3 ± 2.5 73.4 ± 2.4 83.4 ± 2.5 77.9 ± 1.8 58.2 ± 1.9 78.5 ± 0.0 54.7 ± 11.9 58.4 ± 2.1 68.0 ± 3.1 70.0 ± 0.9 72.4 ± 0.0 86.1 ± 2.4
celeba 70.5 ± 0.0 68.0 ± 0.0 44.9 ± 0.0 79.0 ± 0.0 70.8 ± 0.7 70.9 ± 1.0 48.4 ± 0.8 79.4 ± 0.6 66.4 ± 9.4 75.7 ± 0.0 69.5 ± 0.0 65.2 ± 2.1 56.3 ± 6.1 65.3 ± 3.3 82.7 ± 0.0 87.9 ± 0.7
census 72.0 ± 0.0 71.9 ± 0.0 60.5 ± 0.0 70.2 ± 0.0 62.7 ± 1.9 71.8 ± 0.1 51.9 ± 3.1 72.8 ± 0.3 72.9 ± 2.6 65.9 ± 0.0 66.8 ± 0.0 68.9 ± 0.6 50.7 ± 0.8 68.1 ± 0.2 69.6 ± 0.0 76.7 ± 3.0
speech 45.8 ± 0.0 48.5 ± 0.0 48.9 ± 0.0 45.9 ± 0.0 46.7 ± 1.2 46.8 ± 0.2 45.2 ± 1.2 50.0 ± 0.0 54.3 ± 4.2 46.1 ± 0.0 49.1 ± 2.9 50.7 ± 3.2 54.8 ± 4.6 49.9 ± 0.3 56.1 ± 0.0 64.7 ± 1.9
thyroid 98.3 ± 0.0 98.5 ± 0.0 94.6 ± 0.0 98.2 ± 0.0 99.0 ± 0.2 98.0 ± 0.3 97.5 ± 0.5 98.6 ± 0.1 65.2 ± 7.9 97.7 ± 0.0 82.2 ± 5.2 94.8 ± 1.8 96.1 ± 1.8 97.9 ± 0.3 99.2 ± 0.0 99.2 ± 0.1
vertebral 43.5 ± 0.0 42.5 ± 0.0 40.0 ± 0.0 52.7 ± 0.0 42.6 ± 4.5 48.0 ± 4.3 43.7 ± 4.5 53.6 ± 4.8 53.9 ± 3.0 41.8 ± 0.0 54.2 ± 5.8 44.4 ± 4.3 46.4 ± 3.5 47.2 ± 1.4 59.2 ± 0.0 72.7 ± 6.0
Waveform 76.0 ± 0.0 76.2 ± 0.0 76.6 ± 0.0 69.0 ± 0.0 72.5 ± 1.4 65.8 ± 2.5 69.6 ± 3.8 72.5 ± 1.6 71.5 ± 0.5 60.0 ± 0.0 59.8 ± 1.1 50.2 ± 4.0 61.0 ± 3.5 69.6 ± 1.2 65.6 ± 0.0 91.6 ± 1.1
AUPRC

annthyroid 66.2 ± 0.0 72.0 ± 0.0 66.7 ± 0.0 65.2 ± 0.0 63.8 ± 2.8 60.7 ± 2.1 54.8 ± 2.2 77.0 ± 2.8 29.4 ± 4.0 40.8 ± 0.0 31.3 ± 9.5 63.1 ± 5.8 64.5 ± 9.5 55.0 ± 0.6 84.1 ± 0.0 79.7 ± 2.0
breastw 98.8 ± 0.0 99.1 ± 0.0 93.7 ± 0.0 98.8 ± 0.0 99.5 ± 0.0 98.1 ± 0.5 99.1 ± 0.1 96.7 ± 0.1 71.2 ± 3.0 99.3 ± 0.0 86.3 ± 3.0 99.2 ± 0.2 98.7 ± 0.2 99.0 ± 0.1 92.1 ± 0.0 99.4 ± 0.0
cardio 84.0 ± 0.0 76.8 ± 0.0 69.3 ± 0.0 82.8 ± 0.0 78.4 ± 4.0 74.7 ± 5.9 83.0 ± 0.9 71.0 ± 2.6 48.9 ± 4.3 70.9 ± 0.0 60.7 ± 3.2 72.7 ± 3.0 73.5 ± 6.6 73.1 ± 1.0 69.5 ± 0.0 75.9 ± 4.3
Cardiotocography 68.1 ± 0.0 62.4 ± 0.0 59.9 ± 0.0 71.0 ± 0.0 67.6 ± 2.4 65.0 ± 2.5 75.1 ± 2.5 62.6 ± 2.1 40.3 ± 2.3 65.7 ± 0.0 45.4 ± 10.1 54.7 ± 1.5 61.5 ± 2.6 61.3 ± 1.0 61.1 ± 0.0 74.3 ± 2.7
celeba 8.9 ± 0.0 9.8 ± 0.0 3.7 ± 0.0 20.4 ± 0.0 12.5 ± 0.7 9.5 ± 0.2 4.0 ± 0.1 13.1 ± 0.6 6.6 ± 1.5 17.2 ± 0.0 8.9 ± 0.0 76.1 ± 0.4 5.8 ± 1.3 7.3 ± 1.0 15.7 ± 0.0 20.1 ± 1.6
census 21.6 ± 0.0 21.2 ± 0.0 14.3 ± 0.0 20.5 ± 0.0 14.2 ± 0.8 21.6 ± 0.1 11.9 ± 0.8 20.5 ± 0.6 23.3 ± 0.0 15.5 ± 0.0 17.4 ± 0.0 19.8 ± 0.2 12.1 ± 0.5 18.8 ± 0.2 18.0 ± 0.0 24.7 ± 1.6
speech 3.7 ± 0.0 3.7 ± 0.0 4.5 ± 0.0 3.6 ± 0.0 3.5 ± 0.2 3.6 ± 0.4 3.0 ± 0.2 3.2 ± 0.0 4.0 ± 0.0 3.8 ± 0.0 3.3 ± 0.2 3.8 ± 0.5 4.4 ± 1.1 4.4 ± 0.2 4.9 ± 0.0 5.3 ± 0.7
thyroid 73.8 ± 0.0 77.4 ± 0.0 58.8 ± 0.0 73.9 ± 0.0 83.7 ± 1.6 78.3 ± 5.5 78.9 ± 2.1 76.4 ± 1.9 6.2 ± 3.2 62.9 ± 0.0 28.8 ± 12.6 67.6 ± 7.7 60.6 ± 5.0 71.9 ± 2.8 86.4 ± 0.0 86.8 ± 1.4
vertebral 19.7 ± 0.0 20.3 ± 0.0 19.6 ± 0.0 23.1 ± 0.0 19.4 ± 1.6 21.6 ± 2.7 20.1 ± 1.7 25.3 ± 2.2 29.8 ± 1.4 19.5 ± 0.0 26.2 ± 4.0 21.4 ± 3.3 21.2 ± 1.3 20.9 ± 0.1 27.1 ± 0.0 41.0 ± 6.6
Waveform 27.6 ± 0.0 27.0 ± 0.0 31.7 ± 0.0 10.7 ± 0.0 10.8 ± 0.5 11.1 ± 1.3 9.5 ± 1.3 11.3 ± 0.6 47.4 ± 2.5 7.6 ± 0.0 29.6 ± 2.2 5.7 ± 1.0 12.0 ± 2.1 20.0 ± 0.8 10.3 ± 0.0 34.8 ± 3.5

(a) AUROC (b) AUPRC

Figure 4: The average AUROC and AUPRC performance of different
methods on anomaly detection across 47 datasets, along with the num-
ber of datasets where each method is ranked first. Higher values of
these metrics indicate better detection performance.

Table 1 reports the perfor-
mance of different meth-
ods on several datasets,
while Figure 4 reports
the average AUROC and
AUPRC results across 47
datasets, with detailed re-
sults for each dataset avail-
able in Appendix G.2. Our
method achieves the best
performance, outperform-
ing the second-best method
by more than 2%. Com-
pared to RealNVP, NRDE
demonstrates a significant
improvement, particularly
in terms of AUPRC. Addi-
tionally, NRDE outperforms other baseline methods on a larger number of datasets. For example,
on the Speech, Vertebral, and WPBC, other methods attain AUROC scores around 50%, indicat-
ing anomaly detection is particularly challenging for these approaches. In contrast, our method
significantly outperforms baselines, highlighting its effectiveness in complex datasets. Notably,
density-based methods outperform many deep learning-based approaches, highlighting their effec-
tiveness in anomaly detection. Moreover, KDE and kNN—two traditional methods—outperform
all deep learning-based baseline methods. We attribute this phenomenon to two main factors. First,
as mentioned earlier, tabular data typically consists of features that inherently provide excellent
representations of semantic differences. As a result, even the simple Euclidean distance can capture
meaningful distinctions between samples. This is also consistent with the results shown in Figure
1, which illustrates the performance of these methods in challenging noised scenarios. Second, as
demonstrated in Jiang (2017); Gu et al. (2019), these two methods provide more explicit predictions
for datasets with lower dimensions and more samples, which aligns with the experimental results and
the curse of dimensionality.
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4.3 RESULTS OF ANOMALY DETECTION WITH ANOMALY CONTAMINATION

Figure 5: Average AUROC
values across 5 datasets of
AD experiments with anomaly
contamination, contamination
ratio rangeing from 1% to
10%.

In real applications of AD, the training set often contains a small
amount of anomalous data due to various reasons. To evaluate the
robustness and performance of all methods in this scenario, we add
different ratios of anomalies to the training set and conduct exper-
iments on these contaminated datasets. The contamination ratio
ranges from 1% to 10% of the training set size. We report the av-
erage performance of all methods in Figure 5, where the detailed
experimental results for each dataset are in Appendix G.3. From
the figure, we observe that as the anomaly ratio increases, the per-
formance of all methods decreases. In this scenario, our proposed
method consistently achieves superior performance over other meth-
ods, demonstrating its robustness to anomalies in the training set.
It should be noted that the AUROC performance of our proposed
method remains unaffected by the anomaly ratio. While its AUPRC
performance is influenced, with performance drop less significant
than that observed in other methods. Additionally, ECOD appears
to be the baseline method whose performance is least influenced by
the anomaly ratio.

4.4 RESULTS OF ANOMALY DETECTION ON NOISY DATA

Table 2: AUROC results (%) of the best-
performing 5 methods on anomaly detection with
noisy data. The best results per dataset is in bold.

Dataset DSVDD KPCA IF kNN NRDE (ours)

Cardiotocography 83.7 75.8 80.7 71.3 82.1
Pima 72.5 77.0 75.8 78.1 79.6
Satellite 81.5 84.1 79.6 86.9 85.1
SpamBase 80.3 86.3 82.4 83.0 79.1
WPBC 47.5 52.2 51.7 51.5 62.9

AVG 73.1 75.1 74.0 74.2 77.2

In real-world anomaly detection scenarios, data
are often corrupted by noise. To evaluate the
performance of all methods in this complex
scenario, we perturb training data and anoma-
lous testing data with Gaussian noise drawn
from N (0, 0.1Id) to training data and anoma-
lous testing data, while normal test samples re-
ceive stronger noise N (0, 0.2Id), note that data
is first normalized then noise is added. Table 2 il-
lustrates the experimental results. Our approach
consistently outperforms competing methods,
underscoring its robustness to noise.

4.5 MORE RESULTS

The time complexity comparison, more detailed results for visualization, standard anomaly detection,
anomaly detection with anomaly contamination, outlier detection, ablation studies, hyperparameter
analysis, experiments to verify our assumptions and motivation are in Appendices B, G.1, G.2, G.3,
G.4, G.5 and G.6 respectively.

5 CONCLUSION

We proposed a novel and effective method NRDE for anomaly detection in tabular data. Our key
observation is that data is typically generated by independent sources, which can be categorized into
pure data sources and noise sources. By distinguishing these sources using the Jacobian matrix, we
can approximate the density of the pure data with a weighted log density that is unaffected by noises.
This allows NRDE to be robust to noise and effectively identify both anomalous data and noised
normal data. We provided theoretical analysis on the estimation error, the reliability of our proposed
method, and the time complexity of density-based approaches. Numerical experiments demonstrated
that NRDE outperforms 15 baseline methods across 47 real-world datasets. Furthermore, NRDE
exhibits robustness to anomalies in the training set and noise inside the data.
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A PROOF FOR THEOREMS

A.1 PROOF FOR THEOREM 3.1

Proof. Assume two samples x,x̂ with the same estimated density pX (x) = pX (x̂) where x̂ is
anomaly and x is normal data. In this situation, using merely the density can either detect both of
them as normal or anomaly. But if we consider their weighted log density, we have:

u∗(x)− u∗(x̂)

=−
∑
i∈A

w∗
i F

∗
W(x)2i −

∑
j∈B

w∗
jF

∗
W(x)2j + log |det∇xF

∗
W(x)|

+
∑
i∈A

w∗
i F

∗
W(x̂)2i +

∑
j∈B

w∗
jF

∗
W(x̂)2j − log |det∇x̂F

∗
W(x̂)|

(20)

Since pX (x) = pX (x̂), we have:

log |det∇xF
∗
W(x)| − log | det∇xF

∗
W(x̂)| = 1

2

d∑
i=1

(F ∗
W(x)2i − F ∗

W(x̂)2i ) (21)

Thus, we have:
u(x)− u(x̂)

=
∑
i∈A

(1− w∗
i )F

∗
W(x)2i +

∑
j∈B

(1− w∗
j )F

∗
W(x)2j

−
∑
i∈A

(1− w∗
i )F

∗
W(x̂)2i −

∑
j∈B

(1− w∗
j )F

∗
W(x̂)2j

(22)

∀j ∈ B, i ∈ A,we have F ∗
W(x)2j > F ∗

W(x̂)2j , F
∗
W(x)2i < F ∗

W(x̂)2i and w∗
i > w∗

j , this is because x
and x̂ have the same probability but x̂ is anomaly, thus x contains more noise.

If ∥F ∗
W(x)∥2 = ∥F ∗

W(x̂)∥2, then we have:
d∑

i=1

F ∗
W(x)2i =

d∑
i=1

F ∗
W(x̂)2i∑

j∈B

(
F ∗
W(x)2j − F ∗

W(x̂)2j

)
=
∑
i∈A

(
F ∗
W(x̂)2i − F ∗

W(x)2i

) (23)

For ∀j ∈ B, i ∈ A, we have w∗
i > w∗

j ⇒ mini w
∗
i > maxj w

∗
j . Then:

u∗(x)− u∗(x̂)

≥(1−max
j∈B

w∗
j )
∑
j∈B

(
F ∗
W(x)2j − F ∗

W(x̂)2j

)
− (1−min

i∈A
w∗

i )
∑
i∈A

(
F ∗
W(x̂)2i − F ∗

W(x)2i

)
>(1−min

i∈A
w∗

i )
(∑
j∈B

(
F ∗
W(x)2j − F ∗

W(x̂)2j
)
−
∑
i∈A

(
F ∗
W(x̂)2i − F ∗

W(x)2i
))

=0

(24)

Thus, the two data are identifiable.
This finishes proof.

A.2 PROOF FOR THEOREM 3.2

Lemma A.1. Behrmann et al. (2021) Let fWi be a coupling flow, the Lipschitz constant of the
forward fWi can be locally bounded for x ∈ [a, b]d as:

Lip(fWi) ≤ max(1, cg) +M (25)
Where exp(hi1(x)) ≤ cg and M = max(|a|, |b|) · cg′ ·Lip(hi1) +Lip(hi2). Similarly, the Lipschitz
constant of the reverse f−1

Wi
can be locally bounded for yi ∈ [a∗, b∗]d as:

Lip(f−1
Wi

) ≤ max(1, c 1
g
) +M∗ (26)

Where M∗ = max(|a∗|, |b∗|) · c( 1g
′
) · Lip(hi1) · ct + c 1 g · Lip(hi2)
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Proof. According to LemmaA.1, here we can assume that xi,yi are both bounded since data is
preprocessed and normalized, then we have the bi-Lipschitz constant of f∗

Wi
are bounded as:

τ−i ||x(i) − x̂(i)|| ≤ ||f∗
Wi

(x(i))− f∗
Wi

(x̂(i))|| ≤ τ+i ||x(i) − x̂(i)|| (27)

The determinant of ∇x(i)f∗
Wi

(x(i)) can be calculated as:

log |det∇x(i)f∗
Wi

(x(i))| = h∗
i1(x

(i)
α ) · 1 (28)

Suppose h∗
i1(x) = Wi,L (ϕ (· · · ϕ (Wi,2 ϕ (Wi,1x)) · · · )) and h∗

i2(x) =

Ŵi,L

(
ϕ
(
· · · ϕ

(
Ŵi,2 ϕ

(
Ŵi,1x

))
· · ·
))

are two neural networks comprising L layers

and ϕ represents the activation function. Consider different x(i), x̂(i), denote ρ the Lipschitz constant
of ϕ, we have:

| log | det∇x(i)f∗
Wi

(x(i))| − log | det∇x̂(i)f∗
Wi

(x̂(i))||
=∥h∗

i1(x
(i)
α )− h∗

i1(x̂
(i)
α )∥1

≤
√
d∥h∗

i1(x
(i)
α )− h∗

i1(x̂
(i)
α )∥

≤
√
dρL−1

L∏
l=1

∥Wi,l∥2∥x(i)
α − x̂(i)

α ∥

≤
√
dρL−1

L∏
l=1

∥Wi,l∥2∥x(i) − x̂(i)∥

=τiα
√
d∥x(i) − x̂(i)∥

≤τiα
√
d

i−1∏
j=1

τ+j ∥x− x̂∥

(29)

Where τiα = ρL−1
∏L

l=1 ∥Wi,l∥2 is the Lipschitz constant of h∗
i1. Then, we can conclude that

log |det(∇xF
∗
W(x))| has a Lipschitz constant:

| log | det(∇xF
∗
W(x))| − log | det(∇x̂F

∗
W(x̂))||

= |
T∑

i=1

(
log |det∇x(i)f∗

Wi
(x(i))| − log | det∇x̂(i)f∗

Wi
(x̂(i))|

)
|

≤
T∑

i=1

| log | det∇x(i)f∗
Wi

(x(i))| − log | det∇x̂(i)f∗
Wi

(x̂(i))||

≤
T∑

i=1

τiα
√
d∥x(i) − x̂(i)∥

≤
T∑

i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− x̂∥

(30)

The estimation error between log p∗X (xpure) and u∗(x) is:

| log p∗X (xpure)− u∗(x)|

=|
∑
i∈A

(1− w∗
i )F

∗
W(x)2i −

∑
j∈B

w∗
jF

∗
W(x)2j − log

| det∇xF
∗
W(x)|

| det∇xpureF
∗
W(xpure)|

|

≤|
∑
i∈A

(1− w∗
i )F

∗
W(x)2i −

∑
j∈B

w∗
jF

∗
W(x)2j + | log | det∇xF

∗
W(x)|

| det∇xpureF
∗
W(xpure)|

|

≤
∑
i∈A

(
1− w∗

i

)
F ∗
W(x)2i +

∑
j∈B

w∗
jF

∗
W(x)2j +

T∑
i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− xpure∥

(31)
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As for the estimation error between log p∗X (xpure) and u(x), we have the following inequality holds:

| log p∗X (xpure)− u(x)| = | log p∗X (xpure)− u∗(x) + u∗(x)− u(x)|
≤ | log p∗X (xpure)− u∗(x)|+ |u∗(x)− u(x)|

≤
∑
i∈A

(
1− w∗

i

)
F ∗
W(x)2i +

∑
j∈B

w∗
jF

∗
W(x)2j

+

T∑
i=1

(τiα
√
d

i−1∏
j=1

τ+j )∥x− xpure∥+ η

(32)

This finishes proof.

A.3 PROOF FOR THEOREM 3.4

Proof. By Assumption 3.3, we have that:

|u(x̂)− u(xa)| ≥ φ∥xa − x̂∥
u(xa)− u(x̂) ≥ φ∥xa − x̂∥ (33)

If ∥x̂− xa∥ > ς1−ς2
φ , then we have:

u(xa)− u(x̂) ≥ ς1 − ς2

u(x̂) ≤ u(xb)
(34)

Now we have the weighted log-density of x̂ is even smaller than the smallest weighted log-density of
data from D, thus it can be detected as anomaly. This finishes proof.

B TIME COMPLEXITY OF DENSITY-BASED METHODS

Suppose that FW is a sequence of T flows defined in (2), and hi1, hi2 are two MLPs of L layers param-
eterized by {Wi,j}Lj=1, {Ŵi,j}Lj=1, where Wi,j ,Ŵi,j ∈ Rdi,j×di,j−1 , j ∈ [L]. Consider a batch of
B data points, the time complexity of our method per iteration is O(B

∑T
i=1(di,L

∑L−2
j=0 di,jdi,j+1)),

and the space complexity is O(B
∑T

i=1

∑L
j=0 di,jdi,j+1)) which primarily arises from the computa-

tion of the Jacobian matrix. Here, we also compare the testing time complexity of a few representative
density-based methods. We assume that DAGMM Zong et al. (2018) contains K Gaussians and the
encoder and decoder have L̂ layers, with ith layer of encoder being WE,i ∈ Rdi×di−1 and ith layer
of decoder being WD,i ∈ RdL+1−i×dL−i . For DPAD Fu et al. (2024), we assume that the size of its
neural network is the same as that of the encoder of DAGMM. Suppose we have one testing data,
time complexity of density-based methods is shown in Table 3.

Table 3: Time complexity comparison of density-based methods in testing stage.

Testing Complexity

KNN O(nd)
KDE O(nd)
LOF O(nd)

DAGMM O
(∑L̂

l=1 dl−1dl + d3
L̂

)
DPAD O(

∑L̂
l=1 dl−1dl + dL̂n)

RealNVP O
(∑T

i=1(
∑L−1

j=0 di,jdi,j+1)
)

NRDE O
(∑T

i=1(
∑L−1

j=0 di,jdi,j+1)
)

We notice that traditional density-based methods, such as KNN and KDE, require comparing test
data against the entire training set to generate anomaly scores. Consequently, these methods become
computationally inefficient as dataset sizes grow, since the time complexity grows linearly with the
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number of training data. DPAD encounters a similar issue due to its reliance on KNN, although it
mitigates this by employing a neural network for dimensionality reduction. In contrast, methods like
DAGMM, RealNVP, and our proposed NRDE primarily utilize neural network outputs for anomaly
scoring, which does not depend on training set.

Table 4: Statistics of 47 real-world datasets in ADBench.

Data # Samples # Features # Anomaly % Anomaly Category
ALOI 49534 27 1508 3.04 Image
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
Cardiotocography 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 4.21 Forensic
Hepatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
InternetAds 1966 1555 368 18.72 Image
Ionosphere 351 32 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical
mammography 11183 6 260 2.32 Healthcare
mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
PageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 2.27 Image
Pima 768 8 268 34.90 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image
smtp 95156 3 30 0.03 Web
SpamBase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare
vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 3.43 Linguistics
Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4.48 Healthcare
WDBC 367 30 10 2.72 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry
WPBC 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology
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C PROPERTY OF THE REGULARIZER R()

Briefly speaking, our objective is to construct a Jacobian matrix in which the row norms exhibit a clear
separation—some being significantly larger than others—so that we can distinguish between pure
data sources and noise sources. Consider the derivative ∂R(Q)

∂Qi,j
=

sign(Qi,j)√
||Qi:||

, where ||Qi:|| is ℓ1 norm.

In this formulation, rows with larger norms receive a smaller penalty from the regularizer, whereas
rows with smaller norms receive a larger penalty. This naturally encourages row-wise sparsity and
separation. Moreover, unlike the conventional ℓ2,1 norm, where smaller entries in the same row
receive smaller penalty, our regularizer R imposes the same penalty on all entries within a given
row—avoiding vanishing penalty problem for small entries—thereby enhancing both separation and
sparsity. Thus, in theory the formulation is suitable for our task.

D IMPLEMENTATION DETAILS

Table 5: Network architecture

Tabular

Dimension_input=2d
Dimension_firstlayer=b
Linear(2d, b), LeakyReLU()
Linear(b, 2d)

To ensure a consistent network architecture for a fair comparison, we employ two MLPs with two
linear layers, where LeakyReLU is used as the activation function. Note that the outputs of hi1, hi2
are actually the split output from the same MLP. The detailed network architecture is shown in
Table 5. Additionally, we use Adam as our optimizer and set batch size to 2048 for all experiments,
while training epoch is set to 100. Since the scale of Jacobian norm in different datasets can be
largely different as shown in Figure 7, We use a simple hyperparameter tuning strategy for NRDE: (i)
Fixing λ = 0, decrease learning rate from 0.01 to 0.001 until training becomes stable (i.e., no loss
explosion); (ii) Then, based on (15), viewed as minW L(λ,W), select λ ∈ 1, 0.1, 0.01 such that the
regularization term λR(·) is on a comparable scale with 0.1 · L(0,W).

E STATISTICS OF DATASETS

In our experiments, we evaluate the performance of 14 methods on 47 widely used real-world datasets
spanning multiple domains, including healthcare, audio, language processing, and finance, in a
popular benchmark for anomaly detection Han et al. (2022). The statistics of these datasets are shown
in Table 4. These datasets encompass a range of samples and features, from small to large, providing
comprehensive metrics and evaluations for the methods.

F ALGORITHM DETAILS

The detailed algorithm of our proposed NRDE is illustrated in Aligorithm 1.

The synthetic data is generated using Algorithm 2. We primarily use Gaussian or uniform dis-
tributions to generate data, where the variances of the data sources are significantly larger than
those of the noise sources. Specifically, SD = Unif

(
[−10, 50]d

)
,SN = Unif

(
[−40,−20]d

)
, ŜN =

Unif
(
[−10, 10]d

)
, ŜD = Unif

(
[10, 30]d

)
. Both the training and testing normal data are generated

using the normal data generative process. For noised normal data, the data sources are distributed ac-
cording to SD, while the noise sources are perturbed by variables distributed in SN , ŜN , introducing
anomalies in the noise sources. In the case of anomalous data, the generative process closely resem-
bles that of noised normal data, where the noise sources are distributed in SN . However, the noise
sources are perturbed by variables distributed in SD, ŜD, leading to anomalies in the data sources.
Moreover, Var(ŜN ) < Var(ŜD). Data shown in Figure 1 is generated using d = 100,m = 10. Note
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Algorithm 1 Training and Testing Procedure of NRDE
Training stage of NRDE:
Input: D = {x1,x2, . . . ,xn}, λ > 0, training epoch B

Output:FW , {wi}di=1
Initialize the parameters of flow network W
for b = 1, . . . , B do

for each batch D̂ do
Obtain the flow output {FW(x)}x∈D̂
Update parameters W using (15)

end for
end for

Testing stage of NRDE:
Input: xnew, FW , {wi}di=1

Output:anomaly score: u(xnew)
Obatain znew = FW(xnew)
Obtain anomaly score u(xnew) using (17)

Algorithm 2 Data Generative Process
Normal data generation:
Input: number of data n̂, data source distribution SD, noise source distribution SN , number of data

sources m, data dimension d, mixing matrix W ∈ Rd×d

Output:{x̂i}n̂i=1

Obtain data sources sD ∈ Rn̂×m by sD ∼ SD, obtain noise sources sN ∈ Rn̂×d−m by sN ∼ SN

Generate data using [x̂1, . . . , x̂n̂] = W [sD; sN ]T

Noised normal data generation:
Input: number of data n̂, data source distribution SD, noise source distribution SN , noise pertur-

bation distribution ŜN , number of data sources m, data dimension d, mixing matrix W ∈ Rd×d

Output:{x̂i}n̂i=1

Obtain data sources sD ∈ Rn̂×m by sD ∼ SD, obtain noise sources sN ∈ Rn̂×d−m by sN ∼ SN ,
obtain noise perturbation ŝN ∈ Rn̂×d−m by ŝN ∼ ŜN

Generate data using [x̂1, . . . , x̂n̂] = W [sD; sN + ŝN ]T

Anomalous data generation:
Input: number of data n̂, data source distribution SD, data perturbation distribution ŜD,noise

source distribution SN , number of data sources m, data dimension d, mixing matrix W ∈ Rd×d

Output:{x̂i}n̂i=1

Obtain data sources sD ∈ Rn̂×m by sD ∼ SD, obtain data perturbation ŝD ∈ Rn̂×m by ŝD ∼ ŜD,
obtain noise sources sN ∈ Rn̂×d−m by sN ∼ SN

Generate data using [x̂1, . . . , x̂n̂] = W [sD + ŝD; sN ]T

that here W is an orthogonal matrix. All models are trained using 10000 normal data, and tested
using 1000 normal data, 1000 noised normal data and 1000 anomalous data.

G EXPERIMENTAL RESULTS

G.1 JACOBIAN ROW NORM VISUALIZATION

In this subsection, we present visualizations of the Jacobian row-norms on both synthetic and real-
world datasets. Figures 6 and 7 illustrate these results. Notably, even without regularization, the row
norms already exhibit clear separability; this distinction becomes even more pronounced when the
regularizer is applied.
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Figure 6: Visualization of the Jacobian matrix row norms on several synthetic datasets with 50 total
sources. From left to right, the number of noise dimensions is 10,25, and 40 respectively. The top
row corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.
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Figure 7: Visualization of the Jacobian matrix row norms on several real datasets. The top row
corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.
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G.2 STANDARD ANOMALY DETECTION

In this subsection, we provide the detailed experimental results of AD on 47 real-world datasets.
Table 6 and Table 7 show the detailed AUORC and AUPRC results on 47 datasets.

Table 6: Average AUROC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C Ours

ALOI 56.4 ± 0.0 63.4 ± 0.0 74.6 ± 0.0 55.0 ± 0.0 54.4 ± 0.1 55.8 ± 0.1 51.8 ± 0.2 56.2 ± 2.5 55.1 ± 0.9 53.0 ± 0.0 50.2 ± 2.5 54.8 ± 0.4 51.7 ± 0.6 63.2 ± 0.2 54.2 ± 0.0 56.7 ± 0.4
annthyroid 91.4 ± 0.0 94.1 ± 0.0 92.9 ± 0.0 90.9 ± 0.0 91.8 ± 1.1 83.4 ± 2.0 79.4 ± 3.2 96.1 ± 0.5 78.9 ± 2.8 78.7 ± 0.0 64.0 ± 6.1 90.4 ± 2.9 91.2 ± 4.7 83.9 ± 0.6 97.8 ± 0.0 98.4 ± 0.0
backdoor 90.5 ± 0.0 93.7 ± 0.0 95.7 ± 0.0 62.6 ± 0.0 75.1 ± 3.2 93.5 ± 0.3 92.5 ± 1.0 91.8 ± 0.4 87.1 ± 4.7 84.6 ± 0.0 95.2 ± 1.9 92.5 ± 0.2 94.6 ± 0.7 96.6 ± 0.1 91.8 ± 0.0 94.5 ± 2.0
breastw 98.9 ± 0.0 99.1 ± 0.0 96.7 ± 0.0 99.0 ± 0.0 99.5 ± 0.0 98.4 ± 0.3 99.1 ± 0.1 98.0 ± 0.0 81.4 ± 3.9 99.3 ± 0.0 90.2 ± 1.3 99.2 ± 0.1 98.9 ± 0.2 99.0 ± 0.0 96.3 ± 0.0 99.4 ± 0.0
campaign 77.3 ± 0.0 78.3 ± 0.0 69.8 ± 0.0 77.1 ± 0.0 72.0 ± 1.5 80.8 ± 0.7 1.1 ± 0.5 79.6 ± 0.3 62.3 ± 2.6 78.3 ± 0.0 80.5 ± 1.4 76.3 ± 0.6 64.2 ± 6.1 78.5 ± 0.2 76.7 ± 0.0 76.9 ± 0.1
cardio 95.7 ± 0.0 93.4 ± 0.0 93.0 ± 0.0 96.4 ± 0.0 94.9 ± 1.1 92.4 ± 3.2 96.1 ± 0.3 94.1 ± 0.4 81.0 ± 1.9 93.4 ± 0.0 83.9 ± 1.5 88.7 ± 3.0 90.0 ± 3.3 90.4 ± 0.8 93.6 ± 0.0 95.8 ± 0.6
Cardiotocography 75.0 ± 0.0 71.3 ± 0.0 72.7 ± 0.0 80.7 ± 0.0 79.3 ± 2.5 73.4 ± 2.4 83.4 ± 2.5 77.9 ± 1.8 58.2 ± 1.9 78.5 ± 0.0 54.7 ± 11.9 58.4 ± 2.1 68.0 ± 3.1 70.0 ± 0.9 72.4 ± 0.0 86.1 ± 2.4
celeba 70.5 ± 0.0 68.0 ± 0.0 44.9 ± 0.0 79.0 ± 0.0 70.8 ± 0.7 70.9 ± 1.0 48.4 ± 0.8 79.4 ± 0.6 66.4 ± 9.4 75.7 ± 0.0 69.5 ± 0.0 65.2 ± 2.1 56.3 ± 6.1 65.3 ± 3.3 82.7 ± 0.0 87.9 ± 0.7
census 72.0 ± 0.0 71.9 ± 0.0 60.5 ± 0.0 70.2 ± 0.0 62.7 ± 1.9 71.8 ± 0.1 51.9 ± 3.1 72.8 ± 0.3 72.9 ± 2.6 65.9 ± 0.0 66.8 ± 0.0 68.9 ± 0.6 50.7 ± 0.8 68.1 ± 0.2 69.6 ± 0.0 76.7 ± 3.0
cover 95.5 ± 0.0 98.5 ± 0.0 98.9 ± 0.0 96.2 ± 0.0 14.0 ± 1.8 98.3 ± 0.6 47.6 ± 1.6 83.8 ± 0.1 85.1 ± 3.8 92.0 ± 1.1 67.4 ± 3.4 79.2 ± 9.9 87.9 ± 5.9 96.4 ± 0.4 96.7 ± 0.0 84.1 ± 3.2
donors 97.4 ± 0.0 99.8 ± 0.0 98.2 ± 0.0 92.0 ± 0.0 88.4 ± 1.6 93.6 ± 2.1 97.7 ± 0.7 96.6 ± 0.4 95.8 ± 1.7 88.8 ± 0.0 94.0 ± 0.0 96.9 ± 0.6 98.7 ± 1.9 100.0 ± 0.0 98.9 ± 0.0 97.6 ± 1.2
fault 81.2 ± 0.0 76.9 ± 0.0 67.2 ± 0.0 61.4 ± 0.0 65.2 ± 0.9 73.3 ± 0.4 71.9 ± 1.1 50.8 ± 0.1 73.2 ± 0.3 47.4 ± 0.0 77.9 ± 1.0 79.2 ± 0.3 73.5 ± 2.5 71.2 ± 0.2 71.8 ± 0.0 62.7 ± 4.1
fraud 95.8 ± 0.0 96.0 ± 0.0 78.3 ± 0.0 95.6 ± 0.0 95.0 ± 0.2 95.7 ± 0.2 50.6 ± 12.1 54.4 ± 0.1 94.9 ± 3.0 94.9 ± 0.0 83.4 ± 0.0 94.6 ± 0.3 64.1 ± 13.9 95.8 ± 0.2 94.4 ± 0.0 95.9 ± 0.3
glass 83.5 ± 0.0 89.3 ± 0.0 74.0 ± 0.0 71.1 ± 0.0 81.3 ± 1.0 77.9 ± 2.3 79.8 ± 2.7 81.5 ± 1.3 92.1 ± 2.3 69.8 ± 0.0 90.8 ± 1.1 83.5 ± 1.0 88.8 ± 2.0 86.5 ± 0.1 78.4 ± 0.0 91.2 ± 0.9
Hepatitis 79.4 ± 0.0 85.0 ± 0.0 84.6 ± 0.0 84.2 ± 0.0 77.8 ± 1.9 83.9 ± 1.4 80.3 ± 3.2 59.4 ± 0.8 62.2 ± 5.8 71.5 ± 0.0 60.1 ± 4.1 77.6 ± 3.0 83.7 ± 2.5 81.2 ± 1.5 80.8 ± 0.0 85.3 ± 1.7
http 100.0 ± 0.0 99.9 ± 0.0 93.0 ± 0.0 100.0 ± 0.0 99.1 ± 0.3 99.8 ± 0.1 99.8 ± 0.1 99.6 ± 0.0 99.0 ± 1.9 97.8 ± 0.0 50.0 ± 0.0 99.9 ± 0.0 99.8 ± 0.2 99.9 ± 0.1 99.5 ± 0.0 99.8 ± 0.0
InternetAds 85.7 ± 0.0 73.8 ± 0.0 78.7 ± 0.0 73.8 ± 0.0 43.6 ± 3.2 88.2 ± 0.0 52.4 ± 1.1 81.2 ± 0.3 81.6 ± 0.9 68.9 ± 0.0 78.9 ± 1.0 86.7 ± 0.3 83.2 ± 0.6 82.3 ± 0.1 87.1 ± 0.0 79.1 ± 0.7
Ionosphere 97.4 ± 0.0 97.0 ± 0.0 94.7 ± 0.0 96.5 ± 0.0 93.6 ± 0.5 94.3 ± 1.0 78.7 ± 3.4 93.8 ± 0.2 96.4 ± 0.5 75.5 ± 0.0 94.1 ± 0.4 86.3 ± 0.2 97.3 ± 0.4 95.4 ± 0.1 95.4 ± 0.0 87.7 ± 2.0
landsat 72.7 ± 0.0 73.9 ± 0.0 75.4 ± 0.0 45.7 ± 0.0 59.9 ± 1.5 57.0 ± 1.8 58.1 ± 4.4 59.7 ± 2.0 70.7 ± 1.4 36.6 ± 0.0 73.8 ± 2.8 69.9 ± 0.1 69.7 ± 3.2 62.2 ± 0.1 58.8 ± 0.0 71.5 ± 4.1
letter 91.8 ± 0.0 84.1 ± 0.0 86.1 ± 0.0 60.9 ± 0.0 61.7 ± 2.0 80.1 ± 0.6 34.2 ± 2.3 83.1 ± 0.6 92.5 ± 0.8 56.0 ± 0.0 87.5 ± 1.4 90.3 ± 0.6 80.2 ± 5.5 89.0 ± 0.4 89.6 ± 0.0 70.2 ± 0.0
Lymphography 98.6 ± 0.0 98.6 ± 0.0 98.6 ± 0.0 98.4 ± 0.0 97.7 ± 0.5 98.5 ± 0.1 98.5 ± 0.2 94.3 ± 0.5 82.9 ± 3.3 98.5 ± 0.0 92.9 ± 5.1 98.5 ± 0.2 98.3 ± 0.2 98.5 ± 0.1 97.7 ± 0.0 98.7 ± 0.3
magic.gamma 75.7 ± 0.0 82.2 ± 0.0 83.2 ± 0.0 73.5 ± 0.0 77.3 ± 0.5 81.8 ± 0.8 76.1 ± 1.6 79.6 ± 0.5 77.5 ± 0.6 63.4 ± 0.0 71.7 ± 1.7 72.4 ± 1.2 79.8 ± 2.9 82.6 ± 0.3 85.8 ± 0.0 81.9 ± 1.1
mammography 88.1 ± 0.0 87.6 ± 0.0 83.8 ± 0.0 88.9 ± 0.0 88.3 ± 0.8 87.5 ± 2.3 81.3 ± 1.4 89.5 ± 0.4 70.9 ± 4.6 90.7 ± 0.0 57.3 ± 10.7 72.6 ± 3.2 84.8 ± 2.2 90.7 ± 0.4 87.8 ± 0.0 91.2 ± 0.3
mnist 94.8 ± 0.0 93.8 ± 0.0 92.6 ± 0.0 91.0 ± 0.0 86.6 ± 1.1 93.4 ± 0.2 85.1 ± 1.7 92.4 ± 0.4 77.8 ± 2.8 74.7 ± 0.0 86.7 ± 1.8 91.2 ± 0.6 85.8 ± 3.1 90.3 ± 0.4 84.9 ± 0.0 93.2 ± 4.3
musk 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0 100.0 ± 0.0 95.8 ± 3.3 1.0 ± 0.0 99.9 ± 0.1 99.4 ± 0.3 100.0 ± 0.0 95.8 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.9 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.2
optdigits 97.4 ± 0.0 92.7 ± 0.0 97.8 ± 0.0 60.9 ± 0.0 79.6 ± 4.8 88.7 ± 0.8 32.6 ± 13.0 94.2 ± 0.7 95.9 ± 0.5 60.4 ± 0.0 91.7 ± 2.5 91.4 ± 1.6 75.5 ± 10.8 87.8 ± 2.8 89.2 ± 0.0 94.5 ± 1.4
PageBlocks 95.0 ± 0.0 95.8 ± 0.0 96.7 ± 0.0 94.4 ± 0.0 92.8 ± 0.1 94.8 ± 0.6 94.7 ± 0.5 92.0 ± 0.9 93.7 ± 0.5 91.4 ± 0.0 79.5 ± 4.1 87.7 ± 0.0 95.4 ± 1.5 96.3 ± 0.2 96.2 ± 0.0 92.1 ± 2.2
pendigits 99.8 ± 0.0 99.8 ± 0.0 98.8 ± 0.0 96.1 ± 0.0 97.0 ± 0.5 98.0 ± 0.2 88.6 ± 4.5 98.5 ± 0.6 93.9 ± 1.5 92.7 ± 0.0 93.8 ± 4.6 92.7 ± 2.9 94.7 ± 2.8 98.6 ± 0.4 97.6 ± 0.0 98.1 ± 0.7
Pima 78.1 ± 0.0 78.0 ± 0.0 73.6 ± 0.0 73.1 ± 0.0 76.5 ± 0.5 73.9 ± 1.7 73.0 ± 2.6 79.3 ± 0.6 56.0 ± 2.6 61.5 ± 0.0 63.1 ± 3.6 54.6 ± 2.1 70.2 ± 3.4 74.1 ± 1.2 70.7 ± 0.0 81.7 ± 0.7
satellite 86.9 ± 0.0 87.3 ± 0.0 85.1 ± 0.0 75.4 ± 0.0 80.0 ± 1.2 80.3 ± 0.4 81.7 ± 2.9 83.6 ± 1.3 78.4 ± 2.5 58.3 ± 0.0 83.9 ± 1.8 87.0 ± 0.4 86.5 ± 1.6 82.0 ± 0.1 86.1 ± 0.0 86.8 ± 0.6
satimage-2 99.9 ± 0.0 99.9 ± 0.0 99.6 ± 0.0 99.7 ± 0.0 99.4 ± 0.0 99.8 ± 0.1 98.5 ± 0.6 98.9 ± 0.0 84.9 ± 1.4 96.6 ± 0.0 96.2 ± 1.7 99.7 ± 0.0 98.7 ± 1.3 98.9 ± 0.2 98.9 ± 0.0 99.7 ± 0.1
shuttle 99.8 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.7 ± 0.0 99.6 ± 0.1 99.8 ± 0.1 99.2 ± 0.1 99.8 ± 0.0 99.9 ± 0.0 99.3 ± 0.0 99.4 ± 0.4 99.9 ± 0.0 99.9 ± 178.7 100.0 ± 0.0 99.7 ± 0.0 99.9 ± 0.0
skin 89.1 ± 0.0 99.8 ± 0.0 92.5 ± 0.0 90.3 ± 0.0 88.8 ± 0.4 83.9 ± 2.3 69.6 ± 1.6 90.0 ± 0.1 88.4 ± 1.1 48.8 ± 0.0 50.0 ± 0.0 91.2 ± 1.8 99.3 ± 0.2 79.4 ± 3.3 92.4 ± 0.0 92.5 ± 0.4
smtp 88.2 ± 0.0 93.5 ± 0.0 94.2 ± 0.0 85.5 ± 0.0 90.1 ± 0.2 91.4 ± 3.4 89.5 ± 1.2 93.4 ± 0.1 91.0 ± 2.4 87.9 ± 0.0 53.0 ± 6.0 91.9 ± 3.2 93.4 ± 1.1 83.5 ± 3.2 95.2 ± 0.0 95.6 ± 0.1
SpamBase 85.7 ± 0.0 83.0 ± 0.0 81.7 ± 0.0 81.6 ± 0.0 83.6 ± 1.4 82.0 ± 0.1 79.4 ± 1.7 80.1 ± 0.3 79.2 ± 0.8 66.0 ± 0.0 81.4 ± 0.9 85.3 ± 0.8 76.8 ± 3.8 81.3 ± 0.3 84.5 ± 0.0 87.4 ± 0.5
speech 45.8 ± 0.0 48.5 ± 0.0 48.9 ± 0.0 45.9 ± 0.0 46.7 ± 1.2 46.8 ± 0.2 45.2 ± 1.2 50.0 ± 0.0 54.3 ± 4.2 46.1 ± 0.0 49.1 ± 2.9 50.7 ± 3.2 54.8 ± 4.6 49.9 ± 0.3 56.1 ± 0.0 64.7 ± 1.9
Stamps 95.1 ± 0.0 90.8 ± 0.0 87.2 ± 0.0 91.2 ± 0.0 91.9 ± 0.5 89.2 ± 1.3 91.9 ± 0.9 93.6 ± 1.4 74.2 ± 1.8 86.7 ± 0.0 88.1 ± 4.4 73.0 ± 5.2 90.9 ± 2.9 88.6 ± 1.3 67.5 ± 0.0 95.9 ± 1.5
thyroid 98.3 ± 0.0 98.5 ± 0.0 94.6 ± 0.0 98.2 ± 0.0 99.0 ± 0.2 98.0 ± 0.3 97.5 ± 0.5 98.6 ± 0.1 65.2 ± 7.9 97.7 ± 0.0 82.2 ± 5.2 94.8 ± 1.8 96.1 ± 1.8 97.9 ± 0.3 99.2 ± 0.0 99.2 ± 0.1
vertebral 43.5 ± 0.0 42.5 ± 0.0 40.0 ± 0.0 52.7 ± 0.0 42.6 ± 4.5 48.0 ± 4.3 43.7 ± 4.5 53.6 ± 4.8 53.9 ± 3.0 41.8 ± 0.0 54.2 ± 5.8 44.4 ± 4.3 46.4 ± 3.5 47.2 ± 1.4 59.2 ± 0.0 72.7 ± 6.0
vowels 96.5 ± 0.0 97.3 ± 0.0 96.8 ± 0.0 83.0 ± 0.0 77.7 ± 1.9 95.3 ± 0.9 41.3 ± 9.1 90.4 ± 1.1 98.7 ± 0.1 59.5 ± 0.0 98.2 ± 0.4 97.2 ± 0.6 93.4 ± 2.5 91.5 ± 1.6 97.3 ± 0.0 87.8 ± 4.3
Waveform 76.0 ± 0.0 76.2 ± 0.0 76.6 ± 0.0 69.0 ± 0.0 72.5 ± 1.4 65.8 ± 2.5 69.6 ± 3.8 72.5 ± 1.6 71.5 ± 0.5 60.0 ± 0.0 59.8 ± 1.1 50.2 ± 4.0 61.0 ± 3.5 69.6 ± 1.2 65.6 ± 0.0 91.6 ± 1.1
WBC 98.1 ± 0.0 99.4 ± 0.0 97.9 ± 0.0 99.0 ± 0.0 99.7 ± 0.1 99.0 ± 0.3 99.3 ± 0.4 98.8 ± 0.2 78.6 ± 4.7 99.0 ± 0.0 80.0 ± 6.7 98.8 ± 0.8 98.3 ± 0.7 99.1 ± 0.3 98.2 ± 0.0 99.9 ± 0.1
WDBC 99.4 ± 0.0 99.1 ± 0.0 99.4 ± 0.0 99.3 ± 0.0 99.3 ± 0.3 99.4 ± 0.3 98.9 ± 1.1 95.0 ± 0.3 32.5 ± 6.3 97.8 ± 0.0 83.7 ± 9.5 97.8 ± 0.3 97.2 ± 2.6 97.9 ± 0.2 38.9 ± 0.0 99.9 ± 0.0
Wilt 37.1 ± 0.0 60.8 ± 0.0 70.8 ± 0.0 33.9 ± 0.0 50.4 ± 1.6 56.2 ± 7.5 49.9 ± 2.3 59.9 ± 0.5 80.3 ± 3.9 40.3 ± 0.0 78.2 ± 3.7 66.8 ± 6.7 73.1 ± 2.0 66.0 ± 5.2 86.8 ± 0.0 77.9 ± 2.5
wine 92.2 ± 0.0 93.2 ± 0.0 92.2 ± 0.0 91.2 ± 0.0 88.5 ± 1.4 85.6 ± 2.7 90.2 ± 3.9 92.6 ± 1.6 78.5 ± 5.2 73.0 ± 0.0 82.6 ± 8.2 92.7 ± 4.5 85.3 ± 4.1 95.8 ± 1.2 92.3 ± 0.0 99.1 ± 1.0
WPBC 52.5 ± 0.0 51.3 ± 0.0 50.5 ± 0.0 49.1 ± 0.0 52.5 ± 0.6 49.6 ± 0.6 50.0 ± 1.8 58.0 ± 1.0 59.1 ± 2.1 47.0 ± 0.0 53.4 ± 5.9 50.4 ± 0.8 52.1 ± 2.5 52.3 ± 0.8 48.3 ± 0.0 65.3 ± 4.1
yeast 43.2 ± 0.0 46.6 ± 0.0 46.7 ± 0.0 44.9 ± 0.0 42.9 ± 0.7 47.9 ± 1.3 42.5 ± 1.6 51.0 ± 1.4 60.1 ± 1.8 45.3 ± 0.0 55.9 ± 2.1 52.7 ± 0.8 51.8 ± 1.9 45.7 ± 0.7 50.5 ± 0.0 61.1 ± 2.7
AVG 84.3 85.1 81.0 79.8 78.2 81.3 74.3 83.6 77.9 73.7 76.1 79.2 81.5 83.4 83.3 86.8

Table 7: Average AUPRC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods KDE KNN LOF OC-SVM IF AE DSVDD RealNVP NeutralAD ECOD ICL SLAD DPAD MCM DTE-C Ours

ALOI 10.5±0.0 9.8±0.0 15.9±0.0 7.5±0.3 6.6±0.0 7.6±0.0 7.2±0.2 7.1±0.0 7.5±0.3 6.4±0.0 6.1±0.5 7.1±0.0 7.1±0.4 10.9±0.2 6.8±0.0 7.8±0.3
annthyroid 66.2±0.0 72.0±0.0 66.7±0.0 65.2±0.0 63.8±2.8 60.7±2.1 54.8±2.2 77.0±2.8 29.4±4.0 40.8±0.0 31.3±9.5 63.1±5.8 64.5±9.5 55.0±0.6 84.1±0.0 79.7±2.0
backdoor 44.7±0.0 45.0±0.0 59.9±0.0 7.8±0.0 9.6±1.8 86.8±0.1 71.4±1.1 77.9±5.8 55.8±2.3 16.7±0.0 89.6±1.2 86.0±0.6 65.1±3.0 81.8±0.3 63.2±0.0 83.5±1.4
breastw 98.8±0.0 99.1±0.0 93.7±0.0 98.8±0.0 99.5±0.0 98.1±0.5 99.1±0.1 96.7±0.1 71.2±3.0 99.3±0.0 86.3±3.0 99.2±0.2 98.7±0.2 99.0±0.1 92.1±0.0 99.4±0.0
campaign 47.7±0.0 48.8±0.0 39.6±0.0 48.9±0.0 43.7±1.8 49.2±0.8 42.5±0.6 50.3±0.1 28.9±3.2 50.0±0.0 49.5±1.3 48.4±0.4 33.0±6.5 50.0±0.2 48.7±0.0 49.4±1.6
cardio 84.0±0.0 76.8±0.0 69.3±0.0 82.8±0.0 78.4±4.0 74.7±5.9 83.0±0.9 71.0±2.6 48.9±4.3 70.9±0.0 60.7±3.2 72.7±3.0 73.5±6.6 73.1±1.0 69.5±0.0 75.9±4.3
Cardiotocography 68.1±0.0 62.4±0.0 59.9±0.0 71.0±0.0 67.6±2.4 65.0±2.5 75.1±2.5 62.6±2.1 40.3±2.3 65.7±0.0 45.4±10.1 54.7±1.5 61.5±2.6 61.3±1.0 61.1±0.0 74.3±2.7
celeba 8.9±0.0 9.8±0.0 3.7±0.0 20.4±0.0 12.5±0.7 9.5±0.2 4.0±0.1 13.1±0.6 6.6±1.5 17.2±0.0 8.9±0.0 76.1±0.4 5.8±1.3 7.3±1.0 15.7±0.0 20.1±1.6
census 21.6±0.0 21.2±0.0 14.3±0.0 20.5±0.0 14.2±0.8 21.6±0.1 11.9±0.8 20.5±0.6 23.3±0.0 15.5±0.0 17.4±0.0 19.8±0.2 12.1±0.5 18.8±0.2 18.0±0.0 24.7±1.6
cover 34.2±0.0 72.0±0.0 83.7±0.0 22.0±0.0 1.1±0.0 52.8±9.6 2.0±0.1 9.3±1.8 29.1±14.8 18.4±0.0 9.0±3.7 9.2±7.8 37.4±12.7 60.7±1.7 67.9±0.0 12.8±2.4
donors 70.9±0.0 95.3±0.0 76.3±0.0 42.4±0.0 37.6±3.4 49.8±8.2 82.3±3.4 66.2±1.1 64.3±0.0 41.2±0.0 88.5±2.3 65.6±4.9 96.6±3.5 99.7±0.0 77.8±0.0 75.0±5.1
fault 79.8±0.0 76.0±0.0 64.0±0.0 65.2±0.0 63.9±1.0 72.9±0.3 69.3±2.2 51.5±0.0 70.5±0.5 49.4±0.0 75.4±1.2 78.5±0.6 72.5±2.4 69.4±0.3 72.2±0.0 63.6±3.1
fraud 33.8±0.0 31.3±0.0 1.1±0.0 31.7±0.0 21.2±4.8 60.5±3.2 11.5±13.6 3.8±0.0 58.8±2.0 31.5±0.0 30.3±0.0 33.3±3.6 13.5±11.8 80.1±0.4 72.8±0.0 26.1±0.5
glass 27.9±0.0 29.9±0.0 18.8±0.0 19.2±0.0 22.6±1.8 20.8±0.2 21.2±1.2 24.5±1.4 49.7±1.9 25.1±0.0 38.7±6.8 26.1±0.9 33.3±3.6 26.1±0.2 23.4±0.0 31.8±1.5
Hepatitis 59.7±0.0 62.1±0.0 62.0±0.0 61.6±0.0 45.9±2.4 59.8±2.8 54.4±3.3 32.0±0.4 34.5±4.0 40.2±0.0 34.3±3.1 53.4±6.0 59.6±3.6 52.4±1.6 55.9±0.0 69.0±1.0
http 99.2±0.0 99.9±0.0 9.6±0.0 99.5±0.0 45.3±7.7 86.8±15.2 99.7±0.1 55.1±0.0 43.3±0.3 25.2±0.0 0.8±0.0 92.9±3.4 97.4±1.1 87.5±10.7 57.7±0.0 65.2±1.1
InternetAds 80.7±0.0 65.3±0.0 67.3±0.0 64.4±0.0 27.2±1.6 86.1±0.0 42.3±1.2 56.5±0.5 69.6±2.3 62.8±0.0 62.2±1.8 79.6±0.9 77.8±1.7 73.8±0.1 78.4±0.0 64.2±1.3
Ionosphere 97.9±0.0 98.3±0.0 95.2±0.0 97.3±0.0 94.0±0.4 95.5±0.1 80.6±3.5 90.9±0.3 96.9±0.5 77.9±0.0 94.4±0.9 97.1±0.1 97.7±0.4 96.6±0.1 96.1±0.0 90.8±1.9
landsat 54.8±0.0 58.0±0.0 70.4±0.0 32.1±0.0 43.2±2.4 40.0±1.5 42.5±5.0 46.4±0.4 49.4±1.3 27.8±0.0 68.9±2.8 48.3±1.2 50.6±3.8 44.0±0.2 39.4±0.0 55.6±8.4
letter 59.9±0.0 44.4±0.0 49.5±0.0 20.7±0.0 15.5±0.9 36.2±1.3 8.6±0.4 41.2±3.4 69.1±2.4 13.8±0.0 52.1±2.5 57.2±2.6 40.6±8.6 46.2±0.6 64.9±0.0 21.0±2.8
Lymphography 80.0±0.0 80.0±0.0 80.0±0.0 72.0±0.0 80.5±3.3 76.6±4.0 80.0±5.2 42.9±2.1 28.7±1.2 89.7±0.0 66.6±22.6 77.9±5.9 75.6±4.2 77.2±3.9 65.0±0.0 80.2±2.1
magic.gamma 80.4±0.0 85.4±0.0 86.2±0.0 78.5±0.0 80.2±0.3 84.9±0.6 80.3±1.3 83.2±0.3 80.5±0.3 67.6±0.0 77.6±1.4 77.9±1.2 84.0±1.9 86.4±0.2 87.9±0.0 84.7±0.8
mammography 43.7±0.0 41.9±0.0 32.7±0.0 41.2±0.0 38.8±5.0 37.2±9.0 34.9±2.7 44.8±2.2 10.0±0.7 54.0±0.0 15.9±5.3 15.4±3.6 36.9±5.6 41.2±1.7 39.3±0.0 46.0±2.6
mnist 78.7±0.0 77.1±0.0 72.3±0.0 69.4±0.0 55.8±2.4 74.0±0.3 58.1±1.8 67.1±1.2 49.7±2.0 29.9±0.0 63.0±2.6 74.0±0.1 64.8±4.7 69.1±1.0 58.7±0.0 76.7±0.3
musk 100.0±0.0 100.0±0.0 99.0±0.0 100.0±0.0 60.8±22.5 99.9±0.0 99.2±1.5 84.9±6.7 100.0±0.0 63.2±0.0 100.0±0.0 100.0±0.0 99.9±0.1 100.0±0.0 100.0±0.0 98.2±2.1
optdigits 49.7±0.0 33.6±0.0 53.2±0.0 6.5±0.0 14.1±2.6 19.8±1.1 4.0±0.8 40.5±3.6 55.5±6.0 7.0±0.0 34.0±7.1 26.0±3.4 16.7±7.9 19.9±2.8 22.4±0.0 57.4±1.3
PageBlocks 84.8±0.0 86.6±0.0 87.9±0.0 80.0±0.0 70.2±0.5 82.6±1.7 84.4±0.7 74.5±1.8 78.2±1.1 66.4±0.0 68.0±5.1 71.2±1.4 86.9±1.8 85.5±0.5 84.9±0.0 74.3±3.6
pendigits 96.7±0.0 95.9±0.0 69.7±0.0 47.4±0.0 48.9±3.7 56.7±3.1 27.5±9.1 68.0±8.1 30.2±2.8 38.5±0.0 48.3±10.4 32.6±4.5 58.1±16.3 66.6±5.8 45.9±0.0 79.5±8.1
Pima 77.0±0.0 76.9±0.0 73.0±0.0 74.3±0.0 77.0±0.4 73.9±2.0 73.4±2.2 77.6±0.8 56.8±3.2 65.7±0.0 63.0±4.1 58.7±1.9 71.0±2.9 74.1±1.4 70.2±0.0 79.7±0.6
satellite 89.2±0.0 89.3±0.0 88.5±0.0 82.3±0.0 84.3±0.6 85.8±0.1 84.4±2.5 86.8±1.1 74.5±2.2 65.7±0.0 87.2±1.3 87.8±0.3 87.6±1.4 85.7±0.1 87.7±0.0 88.0±0.6
satimage-2 98.3±0.0 97.9±0.0 99.6±0.0 97.4±0.0 93.9±1.0 94.2±2.5 93.7±2.2 57.2±2.5 7.3±0.5 77.3±0.0 82.5±4.4 91.8±3.0 89.0±5.8 61.0±3.1 52.4±0.0 96.3±1.1
shuttle 98.1±0.0 97.5±0.0 99.4±0.0 97.5±0.0 98.5±0.5 97.3±0.0 97.0±0.1 98.1±0.2 99.9±0.3 94.3±0.0 98.3±0.5 97.5±0.0 99.2±0.1 99.2±0.1 94.0±0.0 98.7±0.1
skin 65.0±0.0 99.5±0.0 73.0±0.0 66.3±0.0 63.5±0.9 64.0±6.4 48.6±0.7 65.7±2.5 67.4±2.4 30.3±0.0 34.4±0.0 80.3±5.0 98.3±0.5 63.3±8.5 70.7±0.0 73.3±2.4
smtp 58.8±0.0 42.0±0.0 29.3±0.0 60.5±0.0 0.9±0.0 28.9±12.4 16.0±6.8 32.0±2.0 62.8±4.3 52.6±0.0 6.1±12.0 52.1±9.0 58.5±5.6 43.7±0.1 44.1±0.0 51.5±0.0
SpamBase 87.7±0.0 86.6±0.0 82.9±0.0 84.9±0.0 87.3±1.2 84.8±0.1 82.6±1.4 80.5±0.4 80.8±0.9 68.9±0.0 86.3±0.8 88.9±0.4 82.3±2.9 84.7±0.3 86.2±0.0 88.7±0.4
speech 3.7±0.0 3.7±0.0 4.5±0.0 3.6±0.0 3.5±0.2 3.6±0.4 3.0±0.2 3.2±0.0 4.0±0.0 3.8±0.0 3.3±0.2 3.8±0.5 4.4±1.1 4.4±0.2 4.9±0.0 5.3±0.7
Stamps 63.7±0.0 54.2±0.0 44.2±0.0 51.0±0.0 50.9±1.3 47.4±2.4 52.8±2.6 61.8±6.1 26.8±7.1 45.2±0.0 56.2±10.8 33.6±4.3 52.8±6.1 48.4±2.9 26.9±0.0 72.7±8.3
thyroid 73.8±0.0 77.4±0.0 58.8±0.0 73.9±0.0 83.7±1.6 78.3±5.5 78.9±2.1 76.4±1.9 6.2±3.2 62.9±0.0 28.8±12.6 67.6±7.7 60.6±5.0 71.9±2.8 86.4±0.0 86.8±1.4
vertebral 19.7±0.0 20.3±0.0 19.6±0.0 23.1±0.0 19.4±1.6 21.6±2.7 20.1±1.7 25.3±2.2 29.8±1.4 19.5±0.0 26.2±4.0 21.4±3.3 21.2±1.3 20.9±0.1 27.1±0.0 41.0±6.6
vowels 77.7±0.0 76.3±0.0 74.3±0.0 44.2±0.0 25.4±3.0 69.9±6.3 6.0±1.2 63.6±3.6 87.6±2.0 14.2±0.0 84.5±2.2 76.6±6.9 64.1±11.0 56.4±3.3 79.6±0.0 51.0±4.5
Waveform 27.6±0.0 27.0±0.0 31.7±0.0 10.7±0.0 10.8±0.5 11.1±1.3 9.5±1.3 11.3±0.6 47.4±2.5 7.6±0.0 29.6±2.2 5.7±1.0 12.0±2.1 20.0±0.8 10.3±0.0 34.8±3.5
WBC 85.5±0.0 95.7±0.0 82.3±0.0 91.2±0.0 97.8±0.7 92.1±3.7 94.3±2.9 83.2±4.1 26.7±2.2 99.0±0.0 24.3±6.3 91.7±5.4 86.0±6.8 93.7±1.5 77.2±0.0 99.2±1.0
WDBC 90.9±0.0 81.5±0.0 89.9±0.0 87.7±0.0 86.5±6.2 90.0±6.4 80.8±15.5 36.0±1.4 4.0±0.3 73.9±0.0 34.3±23.2 70.3±2.8 76.4±11.5 66.8±2.4 17.1±0.0 99.4±1.1
Wilt 7.4±0.0 12.9±0.0 17.0±0.0 7.0±0.0 9.2±0.3 10.8±2.2 10.1±0.4 11.3±0.1 51.9±8.0 8.1±0.0 38.6±4.3 17.8±4.3 17.3±0.9 13.7±2.0 29.5±0.0 19.4±1.9
wine 58.2±0.0 60.8±0.0 52.7±0.0 55.0±0.0 57.3±2.6 42.4±6.0 56.5±11.4 56.6±7.1 33.8±1.5 30.5±0.0 44.4±14.6 64.0±18.8 39.8±6.6 80.2±6.5 59.6±0.0 95.2±4.0
WPBC 38.3±0.0 37.5±0.0 37.5±0.0 36.9±0.0 37.8±0.3 37.1±0.0 37.9±2.1 43.8±1.0 50.6±1.6 35.4±0.0 41.3±4.5 39±0.9 39.2±1.7 39.0±0.7 36.5±0.0 52.5±4.6
yeast 48.2±0.0 49.5±0.0 49.8±0.0 48.6±0.0 48.10.4 40.3±0.4 47.0±1.1 51.7±0.6 57.5±1.5 50±0.0 55.0±2.0 53.1±0.7 52.3±0.9 49.0±0.8 51.2±0.0 58.8±2.3
AVG 62.3 62.2 57.6 54.6 48.9 58.2 51.5 53.6 48.0 45.0 49.9 58.4 58.2 59.9 57.0 63.3
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G.3 ANOMALY DETECTION WITH ANOMALY CONTAMINATION

Under this experimental setting, we conduct experiments on five datasets: Cardiotocography, Satellite,
SpamBase, Pima, and WPBC. The average AUPRC results are shown in Figure 8. Detailed results
for each dataset are shown in Figure 9. As the anomaly ratio increases, the performance variation
of our proposed method remains minimal, demonstrating its robustness to anomalous data in the
training set. We observe that when the anomaly ratio increases, the performance of some methods
does not decrease or even improves. The reason for this may be that, as the anomaly ratio increases,
the number of anomalies in the test set decreases, leading to different test sets for experiments at
varying anomaly ratios.

Figure 8: The average AUPRC performance of 13 methods across 5 datasets of AD experiments with
anomaly contamination, with anomaly ratio ranging from 1% to 10%.

Figure 9: The detailed AUROC and AUPRC performance of 13 methods across 5 datasets of AD
experiments with anomaly contamination, with anomaly ratio ranging from 1% to 10%.

G.4 OUTLIER DETECTION

To evaluate whether our proposed method is effective for outlier detection (transductive learning), we
conduct experiments on several datasets where all data are used for both training and testing, and
compare our method with other outlier detection methods. We provide the detailed experimental
results for outlier detection on 5 datasets: Cardiotocography, Satellite, SpamBase, Pima and WPBC.
We compare our proposed method with traditional density-based methods and state-of-the-art outlier
detection methods. The AUROC and AUPRC results are shown in Table 8.

G.5 ABLATION STUDIES

In this subsection, we investigate how each component of our proposed method affects its anomaly
detection performance and analyze the impact of different values of the hyperparameter λ on detection
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Table 8: Detailed AUROC performance of outlier detection on 5 datasets. The best results are marked
in bold.

AUROC Cardiotocography SpamBase Satellite Pima WPBC

IF 68.8 65.5 67.9 67.0 49.1
ECOD 78.5 65.5 58.2 59.4 48.1
OC-SVM 69.5 53.3 66.3 62.3 48.4
KPCA 53.4 52.1 48.2 53.8 45.5
LOF 52.3 45.6 54.1 60.1 52.0
KDE 50.2 49.5 76.0 72.2 49.9
kNN 57.9 52.9 65.0 65.1 47.2
RealNVP 62.7 56.5 74.6 70.7 59.1
COPOD 66.2 68.7 63.3 65.4 52.3
DeepIF 63.0 37.9 74.3 61.3 49.4

Ours 80.5 77.7 81.9 80.1 62.2

performance. The two main components of our method are the regularizer R and the weighted log
density u(x). Notably, when these two components are ablated, the method reduces to a basic
normalizing flow, i.e., RealNVP. Table 9 and 10 presents the average performance results of different
components across five datasets. We observe both components contribute positively to overall
performance. Specifically, the regularizer R primarily enhances the separability of sources, thus
exerting minimal influence on the basic normalizing flow.

We also investigate the impact of different values of the hyperparameter λ and learning rate on
performance of standard AD. The detailed experimental results are shown in Table 11 and 12 . We
observe that the method is not highly sensitive to changes in λ and learning rate; however, in some
datasets, large values of λ may affect the training process and lead to a decrease in performance.

Table 9: Average AUROC and AUPRC performance of the proposed method containing different
components.

AUROC Cardiotocography SpamBase Satellite Pima WPBC

w/o u, R 77.9 80.1 83.6 79.3 58.0
w/o u 77.2 80.7 82.3 78.2 60.2
w/o R 84.6 84.7 84.1 80.8 61.9
Ours 86.1 87.4 86.8 81.7 65.3
AUPRC Cardiotocography SpamBase Satellite Pima WPBC

w/o u, R 62.6 80.5 86.8 77.6 43.8
w/o u 60.9 80.8 85.1 76.5 45.4
w/o R 73.2 86.8 85.0 79.1 47.8
Ours 74.3 88.7 88.0 81.7 52.5

Table 10: Average AUROC and AUPRC performance of the proposed method containing different
components across 5 datasets.

Components AUROC AUPRC

w/o u(x),R 75.7 70.2
w/o u(x) 75.7 69.7
w/o R 79.2 74.3

Ours 81.4 76.6
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Table 11: Average AUROC and AUPRC performance of the proposed method with different value of
learning rate lr.

AUROC SpamBase Satellite Pima WPBC

lr = 0.001 82.9 82.4 81.1 59.3
lr = 0.005 87.4 80.2 80.5 64.1
lr = 0.01 86.3 83.5 81.0 62.9

Table 12: Average AUROC and AUPRC performance of the proposed method with different value of
hyperparamter λ.

AUROC SpamBase Satellite Pima WPBC

λ = 0 84.7 84.1 80.8 61.9
λ = 0.01 86.3 83.5 81.0 62.9
λ = 0.1 87.4 82.4 81.7 61.1
λ = 1 82.0 86.8 80.3 65.3
AUPRC SpamBase Satellite Pima WPBC

λ = 0 86.8 85.0 79.1 47.8
λ = 0.01 86.9 85.2 79.2 50.9
λ = 0.1 88.7 84.7 79.7 47.7
λ = 1 83.8 88.0 79.0 52.5

G.6 MORE EXPERIMENTS ON SYNTHETIC AND REAL DATASETS TO VERIFY ASSUMPTIONS
AND MOTIVATIONS

In subsection, we include several experiments on both synthetic and real datasets to further verify our
assumptions and motivations.

G.6.1 PERFORMANCE RESULTS WHEN VARIANCE DIFFERENCE IS NOT SATISFIED

Here, we analysis the performance of NRDE on synthetic datasets where variance difference is not
satisfied. Suppose the variance of pure data sources is σ2

d, and variance of noise sources is σ2
n, we now

report the performance results on synthetic datasets with different σ2
d

σ2
n

in Table 13. The performance
decline of NRDE verifies our assumptions and motivations.

Table 13: AUROC performance of NRDE on synthetic datasets with different σ2
d

σ2
n

ratios.

σ2
d/σ

2
n 9 6 4 2 1 0.5

NRDE 87.5 82.9 80.4 77.9 71.2 68.6

G.6.2 PERFORMANCE RESULTS COMPARISON WITH IDEAL BASELINES.

In synthetic dataset where m the number of data sources is known, we compare the performance of
NRDE with KDE-C, DSVDD-C and KNN-C which are evaluated on datasets without noise compo-
nents and NRDE−m, where only the m sources with largest variance from set A are used for comput-
ing anomaly score: um(xnew) = log | det(∇xnew

FW(xnew))| − d
2 log 2π − 1

2

∑
i∈A wiFW(xnew)

2
i .

The results are shown in Table 14. Since NRDE is an approximation of NRDE−m, its performance
being close but not as good as NRDE−m and other ideal baselines supports our claim and motivation.
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Table 14: AUROC (%) performance of NRDE and other baselines on synthetic dataset.

Method NRDE NRDE-m KDE-C KNN-C DSVDD-C
AUROC 83.1 86.3 87.2 90.2 87.5

G.6.3 EXPERIMENTS RESULTS USING CONTRADICTIVE ASSUMPTION

If we make a contradictive assumption that variances of data sources should be smaller, then the
weight for each sources should be defined as:

wi = exp
(
||( 1

n

∑
x∈D

|∇xFW(x)|)i||
)
/

d∑
j=1

exp
(
||( 1

n

∑
x∈D

|∇xFW(x)|)j ||
)

where sources with smaller variances obtain larger weights. This method is denoted as NRDE-CON.
The performance of NRDE-CON and NRDE on several datasets is shown in Table 15, where the
results support the assumption in our paper.

Table 15: AUROC (%) performance of NRDE-CON and NRDE.

Method WPBC Thyroid Musk Annthyroid Wilt
NRDE-CON 60.1 59.6 76.5 53.3 63.1

NRDE 65.3 99.2 99.8 98.4 77.9
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