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ABSTRACT

Density-based anomaly detection methods often provide accurate and interpretable
predictions but their performance can be severely affected by the inherent noise of
data. In this paper, we present a noise-robust density estimation (NRDE) method
for tabular data anomaly detection. We aim to estimate density of pure data with
influence of noise isolated, which is a non-trivial task since data-generating process
is completely unknown. NRDE learns a Jacobian-regularized normalizing flow to
estimate the sources of data and categorizes sources into two groups, where one
group generates pure data and the other generates noise. Then we can estimate the
density of pure data and use it to detect anomalies caused by the sources of pure
data rather than the changes caused by the sources of noise. Therefore, compared
with other density based methods, our NRDE is much more robust to noise. Besides
the new algorithm, we also provide theoretical results to support the effectiveness
of NRDE. We compare NRDE with 15 baselines on 47 benchmark datasets under
different settings, including vanilla anomaly detection, anomaly detection with
anomaly contamination, anomaly detection on noisy data and transductive outlier
detection. The results demonstrate effectiveness and superiority of NRDE.

1 INTRODUCTION

In an increasingly data-driven world, the problem of identifying unusual patterns or deviations from
expected behavior—known as anomaly detection—has become paramount across diverse domains.
Anomaly detection |(Chandola et al.| (2009); |Pang et al.| (2021)); Ruff et al.| (2021), sometimes also
referred to as novelty or outlier detection Breunig et al.| (2000); [Pimentel et al.|(2014)), involves the
identification of data points, events, or observations that significantly differ from the majority of
the data. These anomalies can signal critical incidents such as fraud Ahmed et al.|(2016), security
breaches [Breier & BranisSova (2017)), system failures |Du et al.|(2017)), or novel insights, making their
accurate detection essential for timely intervention and decision-making.

In the past few years, a diverse range of deep learning-based anomaly detection methods have been
proposed [Ruff et al.| (2018b); Deecke et al.|(2019); Ruff et al.| (2019); [Wang et al.|(2021); |Pang et al.
(2019); |Goyal et al.| (2020); |Q1iu et al.[ (2021); |Cai & Fan| (2022); Xu et al. (2023a); [Zhang et al.
(2024)). For instance, DeepSVDD |Ruff et al.|(2018b) assumes that representations of normal data
can be enclosed within a small hypersphere and representations of anomalous data lie outside the
hypersphere, where the representations are given by a neural network. ICL Shenkar & Wolf](2022)
assumes that a subset of the feature vector is related to the rest and uses self supervised learning
to maximizes the mutual information between each sample and the masked out part. SLAD Xu
et al.| (2023b)) performs scale learning to embed high-level information into its ranking mechanism.
Although these methods often demonstrate impressive performance in various scenarios, several of
them require making assumptions on the structure or distribution of normal and anomalous data,
which may not hold or are difficult to guarantee by the training process. For instance, Zhang et al.
(2024) analyzed the limitations of the hypersphere assumption in high-dimensional spaces and
proposed to project normal data into the region bounded by two hyperspheres. Moreover, some of
these methods are proposed to solve the one-class classification (OCC) problem, which relies on
the assumption that training data originate from a single class or have a single manifold structure.
Consequently, these methods can be ineffective when training data encompass multiple clusters or lie
on multiple disconnected manifolds as mentioned in Khayatkhoei et al.| (2018).
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Figure 1: Detection performance on a synthetic dataset. The data were generated from a few data
sources and many noise sources. Points marked in green, blue, and red represent normal data, noised
normal data (caused by noise change), and anomalous data, respectively. See (8)) for definitions.
The five compared methods detect most of the noised normal samples as anomalies, while our NRDE
is robust to the changes of noise. More details about this experiment are in Appendix E'}

It is worth noting that density-based methods make no assumptions about the shape or distribution
of the data and are capable of modeling complex data structures. This flexibility allows them to be
effective even when the training data encompasses multiple classes and these methods use the local
or global density of the data as an anomaly score. Traditional density-based methods include Kernel
Density Estimation (KDE) |Parzen| (1962), Gaussian Mixture Models (GMM), etc. These methods
often suffer from the curse of dimensionality and are not effective in modeling complex data. To
address the problem, several deep learning based density estimation methods have been proposed.
For instance, DAGMM [Zong et al.| (2018 combines deep auto-encoders with GMM, utilizing the
output density given by GMM in a low-dimensional space to detect anomalies. Normalizing flow
Kobyzev et al.| (2020)), an effective generative model, is also effective in estimating the density of
complex data, and hence is useful for anomaly detection. Some flow-based image anomaly detection
methods |Gudovskiy et al.|(2022); Kim et al.|(2023)) first employ feature extractors to derive semantic
representations of images and then implement normalizing flow to detect anomalies. In this work,
we focus on tabular data since data of other types can be converted into tabular formats using some
feature extractors or pre-trained deep models.

For standard anomaly detection, density-based methods, including normalizing flow and other shallow
and deep models, are sensitive to the changes of inherent noise in the data, yielding high false-positive
rates. It is note worthy that such inherent noise can be largely different from artificial noise like Gauss
noise, since they could represent minor changes from equipment or environment for data collection.
More specifically, real data have inherent noise and can be described by the model x = G(sp,sy),
where sp and sy denote the pure data source and noise source respectively, and G is the observation
generating function. The changes of x caused by s,y shouldn’t be treated as anomalies, or at least
should be distinguished from the concerned anomalies, and we call such data noised normal data for
convenience. For instance, in a vehicle monitoring system, changes in background noise may alter the
observed data, but we are only concerned with the status of the vehicle itself. Similarly, in medical
diagnosis, we hope that changes in instruments and equipment or the related occasional noise do not
affect the diagnostic results of diseases. In Figure[I] we use a synthetic dataset to show the influence
of inherent noise on the performance of five anomaly detection methods and our proposed method
Noise-Robust Density Estimation (NRDE). We see that the five methods fail to distinguish between
the noised normal data and real anomalies and have high false positive rates and low AUROC values,
while our NRDE is robust to the changes of the inherent noise in the data and performs the best.

Our NRDE trains a neural network to estimate the density of pure data with the influence of noise
isolated. Specifically, we propose a Jacobian-regularized normalizing flow to estimate the density of
data and categorizes the sources of data into two distinct groups: those that generate pure data and
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Figure 2: Architecture of the proposed method NRDE. NRDE estimates the density of pure data by
utilizing a normalizing flow with Jacobian regularization, where the influence of noise sources is
isolated. Therefore, NRDE is robust to the changes of inherent noise in the data.

those that produce noise. As a result, we are able to detect anomalies that are caused by the pure data
sources without being affected by the noise. The framework of NRDE is shown in Figure 2] Our
contributions are summarized as follows:

* We propose a novel density-based AD method, NRDE, for tabular data based on a Jacobian-
regularized normalizing flow.

* NRDE categorize data sources into pure-data sources and noise sources and performs density
estimation for the pure data only, making it robust to the changes of noise.

* We provide some theoretical analysis for NRDE to support its effectiveness.

We conduct experiments on 47 tabular datasets to compare NRDE against 15 baseline methods. While
the primary evaluation is performed under the standard anomaly detection setting, our experimental
setup also includes anomaly detection with noise, anomaly detection with contaminated data, and
(transductive) outlier detection.

2 RELATED WORK AND PRELIMINARY KNOWLEDGE

2.1 GENERATIVE MODELS FOR ANOMALY DETECTION

Deep generative models Schlegl et al.| (2019)); Kirichenko et al.| (2020); Xia et al.[(2022); Liu et al.
(2025) are useful in anomaly detection due to their ability to model complex data. For instance,
OCGAN |Perera et al.|(2019) trains a generative adversarial network |(Goodfellow et al.|(2014) using
only normal data and forces all anomalous data to generate normal-data-looking samples thus
anomalous data shows high reconstruction error. [Yu et al.| (2021)) learns to transform the visual
feature by deep feature extractors into a tractable distribution and obtains the likelihood to recognize
anomalies in the inference phase. RobustRealNVP Liu et al.| (2022)) ignores low-density points which
are likely to be anomalies, by discarding the gradient produced by these points in the training stage,
therefore obtains a robust density function. |Kim et al.[(2023)) trains a normalizing flow to map the
feature distributions of each location in normal data to distinct distributions, while mapping the
distribution of abnormal data to one that is significantly different from that of normal data, thereby
enhancing discriminability. DTE |Livernoche et al.|(2023) estimates the distribution over diffusion
time for a given input and uses the mode or mean of this distribution as the anomaly score. In|Rozner
et al.| (2023), the authors found that density functions around normal samples are relatively stable and
proposed to use an autoregressive probabilistic model to maximize the density of training samples
while minimizing their density variance. Unfortunately, these works do not address the problem of
sensitivity to inherent noise change in standard anomaly detection shown by Figure I]

2.2 INDEPENDENT COMPONENT ANALYSIS AND NORMALIZING FLOW

ICA Hyvarinen & Ojal (2000) assumes that observed data is generated by an unknown mixing process
of several independent components (sources) which are from simple distributions, and tries to obtain
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these components. By categorizing the mixing process, we can divide ICA methods into linear
ICA and nonlinear ICA. Linear ICA assumes that the mixing process is linear and the sources are
non-Gaussian, and often solves the problem by maximizing the non-Gaussianity. As for nonlinear
ICA, the mixing process is assumed to be nonlinear, and the main problem faced by the field is that the
model is unidentifiable or the sources are inseparable. In other words, there are infinitely many ways
to transform the data into independent components, which is still a mixture of underlying sources. By
utilizing additional structure in the data or introducing auxiliary variables, many methods |[Hyvirinen
& Pajunen| (1999); Hyvarinen & Morioka) (2016)); Zheng et al.|(2022) have been developed.

Here, we briefly review foundational concepts of normalizing flows. Given a set of observations, each
of which, denoted as x, is drawn from some complex distribution X in R4, normalizing flow aims
to learn a function Fyy : RY — R? composed of a sequence of invertible mappings { fyy, } 21, i.e.,
Fyw = fwgo- -0 fw,o fu,, that transforms complex distribution X" into a simpler one, denoted as Z,
such as a standard Gaussian NV (0, I). Here, T is the number of mappings and W = {W;,... , Wr}
denotes the set of all neural network parameters. Because F)y is invertible, the density px (x) of x
can be computed using the change-of-variables formula:

px (%) = pz(Fw(x))| det(VxFw (x))], M
where det (VXFW(X)) is the determinant of the Jacobian matrix of Iy evaluated at x. One of the
coupling normalizing flows is the RealNVP proposed by Dinh et al.| (2016), where fyy, is called
coupling transformation. Denoting x() € R? the input of fyy,, x(*) is usually split into two parts,

ie.,x® = [w((fl),w((fg, . 733(()2]T and x(ﬁi) = [xgl)wg, 29 ]T, where 1 < ¢; < d. Then the

d—gq;

output y) of fyy, is given as
v =xP, y§ = x{ ©explha (xP)) + hiz(x1), ®

where h;; : R% — R4% and h;s : R% — R4 are two multilayer neural networks.

3 METHODOLOGY

3.1 PROPOSED METHOD

LetD = {x(l)7 x3@ . ,x(")} be a set of d-dimensional training data, which is drawn from an
unknown distribution X'. The primary goal of anomaly detection (AD) is to learn a model ® : R¢ — R
from the training set D, which can quantify the degree of anomaly or the dissimilarity of a new
sample X, relative to the distribution X

As mentioned in the technique of independent components analysis (ICA) Hyvirinen & Ojal (2000);
Hyvirinen et al.|(2009), an observation x can be regarded as given by an unknown invertible linear or
nonlinear transformation, denoted as G : R% — R<, on some unknown source s € R%, i.e.,

x = G(s), 3)

where s ~ S. It is natural to assume that the source distribution S is simple and each dimension
of § is independent. For instanc consider S = N(u, X), where i = [u1, 2, ..., pal |, 2 =
diag(o?,03,...,03), and 01 > 02 > --- > 04. For convenience, we consider that the primary
distinction among these sources resides in their variances, leading to the specification S = N'(0, X).
Based on G, the ideal normalizing flow can be formulated as:

Fy(x) = %726 (x), (4)
where z = F3j,(x) = 7 %s ~ NV(0,1).
We split the source s into two distinct parts:

s = [sp;sn], &)

where sp € R™ denotes the pure data (or signal) source and sy € R4~ denotes the noise source.
It is natural to assume that variance of sp is much greater than that of s, namely,

012> 02+ 2> Om > COmg1 > COmaq2 " > CO4, (6)

! Although the standard ICA requires to assume that the sources are non-Gaussian, the Gaussian assumption
in this work makes sense because GG may first convert each source to non-Gaussian and then perform mixing.
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where c is some constant much greater than 1. The data with noise removed, i.e., pure data, is
Xpure = G([SD§ 0]) @)
Thus, the inherent noise in data is € := x — Xpye. Letting 7 denote the signal source distribution
deemed as normal, we have the following categorization for the data:
pure normal data : Xpue = G([sp;0]), sp ~ T
noised normal data : Xyorm = G([sSp;sn]), sp ~ T, sy #0 8)
anomalous data : Xunom = G([sp;sn]), sp # T
In this work, given the observation x, we want to evaluate whether Xpur is normal or anomalous,
which is determined by sp only and is irrelevant to sy . To this end, we propose to compute the

conditional probability py(x | sy = 0), of which a smaller value indicates a higher possibility that
Xpure 18 anomalous. We have
p(X7 SN = 0) Px (Xpure)

e I TED) ®

where p(sy = 0) is a constant related to sources. Thus, px (Xpure) represents the value of the
conditional probability. Using (E]) we have the ideal case for py (Xpure ), i.€.,

log py (Xpure) =logpz (FW (Xpure)) + log | det(vXpure Fy (Xpure))|

=log ((277)—% eXp(—%sTE—ls)) + log | det(V .. Fyy (Xpure) ) | 10

N 2 d
= log | det(vXpure FW (XPUre>)| - 1:21 20_22 9 10g(277'>
where we have used the fact that F},(Xpue) = [2p; 0]. The challenge is that we may never obtain F7),.
Let F}y be a normalizing flow learned from D, and we can only ensure that z = Fyy(x) ~ N (0, I).
It is difficult to determine which of z1, ..., z4 correspond to sp and which of 21, . .., z4 correspond
to sy. Moreover, the number of data sources m is unknown and is not easy to estimate.

Note that (@) indicates that
22— 5T —J 7 11
ox i ox (n
We assume that

97 (x) ,
vos< 8XH<7+57 vjeld (12)

where v and § are some positive constants and & < ~. This assumption is reasonable because G
usually mixes the sources randomly and uniformly. Moreover, it is more general than assumption
used in linear ICA Hyvirinen et al[(2001), which assumes W'W = Iin G (s) = Ws, meaning
v = 1and § = 0. Combining (12), we have

dz||~" dz || 7"
-0 |2l <o;< §) || =2 13
(-0 —"J—”*)Hax , (13)
Oz; a -1 +4 || 024 .
If (v — 9) ‘ =i > e(y+9) ‘ . or c7 ‘ =2 || equivalently, then o; > cojr.
This means we may compare H G || H || to distinguish between sp and sy . Nevertheless,

there may not exist a clear gap between || | . H 9zq H An intuitive example is shown in Figure

[3l The reason is that the source s in (3) is not 1dent1ﬁable and there are many equivalent problems
Hyvirinen & Pajunen| (1999); [Hyvarinen et al.| (2019); Zheng et al.| (2022). For instance, let R
be an orthonormal matrix and Fyy(x) = RFy),(x) is a normalizing flow learned from D. In this
case, Fyy(x) ~ N(0,I) and the estimated density remains unchanged. However, Fyy (x) becomes a
combination of z, and the row norms of the Jacobian matrix do not reflect the variances of sources.

However, we can exploit the prior knowledge (6) to train Fyy and may consider the optimization

maximize Z log (pg (Fw(x))| det(VxFyw (X))|>

W.AB
x€D
. ozt -1 (14)
subject to min || =2 || > ¢ max||=2| ,Vx€D
JEA || Ox jeB || Ox

AUB=[d], AnNB=0, |Al=m
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Figure 3: Visualization of row norms of the Jacobian matrix on a synthetic dataset with 50 pure data
sources and 50 noise sources. The left one shows the unregularized case while the right one shows
the regularized case. More visualization results on real datasets are shown in Appendix @

where ¢’ = c”"'o and A corresponds to sp and B corresponds to sy. It is very difficult to solve

because c, v, 5 are unknown and the constraints are related to every x and min and max operatlons.
We also need to know m.

The constraints in (14) indicate that some rows of the Jacobian matrix V Fyy (x) have much smaller
norms than other rows, which is a kind of sparseness. Therefore, we propose to regularize Vx Fyy (X)
during the optimization of Fjy and hence solve

min)i/{/nize % Z —log (pZ(FW(x))| det(VxFW(X))|> + AR <i Z |Vwa(X)> (15)
x€D x€D

where R denotes a sparse regularizer on matrix and A > 0 is a hyperparameter. Instead of regularizing
for each x of D, we regularize the average of absolute Jacobian matrices. We use the following R:

d
Q) =>_ Vla:lh, (16)
=1

where q;; denotes the ith row of Q € R**?. Note that R*(Q) is the ¢; 1 ;> quasi-norm, which is
sharper than /5 ; norm widely used in sparse optimization. Figure 3] l illustrates the effect of R. More
details about R is provided in Appendix[C]

Note that an alternative to (16) is using R(Q) = de[B] lla:ll = > jer4) llay:ll, where Ais the index
set of the m rows of Q with smaller norms and B is the index set of the d — m rows of Q with larger
norms determined in each iteration. This method requires a good estimate of m and is sensitive to the
initialization. The performance is not as good as (T6).

Although solving (I5) makes sense, in real scenarios, m is hard to estimate, the obtained Fyy, may
not provide a very clear gap between the norms of rows of the Jacobian matrix, and the gap depends
on \. Therefore, we use a weighted log density «(x) to approximate log p* (Xpure), Which can be
regarded as an anomaly score. To be more precise, given a test sample Xy, We compute the anomaly
score as u(Xnew) Where lower anomaly score indicates a higher probability of being anomaly:

d
d 1
U(Xnew) =log ’det (Vx,,ewFW(XneW))‘ ~3 log 2w — 3 Z Wi Fyy (Xnew )? (17)
i=1
where the weights w; are

1 1
we=exp (frs— e ||+1)/Z (oo mmenrrn)

n
and
1 - ag;
1 Xsen [VxFw )il +1 0+ 7+
Note that w; is larger for the sources with a larger variance o;, which is more likely to be a data
source. We provide the following theoretical guarantee for u(x) to approximate log p% (Xpure) and
detect anomaly successfully.

(19)



Under review as a conference paper at ICLR 2026

|F:

Theorem 3.1. Let X be an anomaly and x be a noised normal data. If || Fy,,(x)|| = || Fyy, (%) and
px(x) = px(X), then the weighted log-density estimated by Fy,, satisfies u*(x) > u*(X).

Theorem provides a guarantee for our proposed method to identify the anomalies and noised
normal data that normalizing flow is unable to identify.

Theorem 3.2. Let the Lipschitz constant of each [y, and hj; be bounded above by T;r and Tiq,

respectively and denote the weight and weighted log density estimated by F3},(x) as {w} ;»1:1 and
u*(x) respectively. Suppose |u*(x) — u(x)| < n, then the following inequality holds:

| 1og Pl (Xpure) = u(x)| <D (1= w]) By ()7 + Y wj (%)

icA jeB
T i—1

3 (o VA [ 7l — e+
i=1 j=1

This theorem indicates that our method can approximate the density of the pure data. Note that when
Om > COmy1, as defined before, the principal estimation error originates from noise ||x — Xpure|| and
71, which are intrinsic properties of the data and the regularized normalizing flow respectively.

Assumption 3.3. For any x,,x, € RY, there exists a constant p such that |u(x,) — u(xp)| >
©l|xa — Xp|| and if X is an anomaly, u(%X) < maxyep u(X).

Theorem 3.4. Let X be an anomaly. Suppose that X,,xp € D such that arg max, u(x) = x, and
arg miny u(x) = x, and u(x,) = <1, u(xp) = s2. Then, under the assumption[3.3] if |x — x| >
3 ;Q, then X can be detected as an anomaly.

Theorem [3.4] shows that our proposed method can detect anomalies that are significantly distant
from normal data. The aforementioned assumption is reasonable since ¢ can be calculated as
infycpa || Vxu(x)||. Furthermore, if an anomaly possesses a weighted log-density exceeding the
maximum weighted log-density observed in the training set, its detection becomes considerably more
challenging or even impossible. Proofs for the theorems are provided in Appendix [A] Also, we
provide the comparison of time complexity of density-based Methods in Appendix

In summary, we train a Jacobian-regularized normalizing flow via (I3). After the model is well-
trained, for any testing data, we can calculate u(Xpey) using to approximate the density of pure
data and use it as the anomaly score to determine whether x;.y is anomalous or not. More details
about the algorithm of NRDE is shown in Appendix [F|

4 NUMERICAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets In our experiments, we evaluate the performance of 13 baseline methods on 47 widely
used real-world datasets spanning multiple domains in a popular benchmark for anomaly detection
proposed by |Han et al.|(2022). Detailed descriptions and statistical information about these datasets
are provided in the Appendix [E] In anomaly detection tasks, we follow the protocol of [Zong et al.
(2018); [Bergman & Hoshen| (2020); |Shenkar & Wolf] (2022)); Xu et al.|(2023b)) by randomly partition-
ing normal samples: 50% are training, while the remaining 50% are combined with all anomalous
samples to form the test set. For outlier detection, the model is trained on the entire dataset to identify
outliers, which is a transductive learning setting.

Baselines Our method is compared with 13 baselines, including DTE |Livernoche et al.{(2023), MCM
Yin et al.| (2024), DPAD |Fu et al.| (2024), SLAD [Xu et al.| (2023b), ECOD |L1 et al.| (2022)), ICL
Shenkar & Wolf] (2022), Neutral AD |Qiu et al.|(2021), DSVDD [Ruff et al.| (2018a)), ReaINVP Dinh
et al.| (2016)), IF Liu et al.| (2008)), AE Hinton & Salakhutdinov|(2006), LOF Breunig et al. (2000),
kNN Ramaswamy et al.| (2000), KDE [Parzen| (1962)). For DTE, MCM, DPAD, SLAD, ICL, and
Neutral AD, we use the code provided by the authors of the papers. For other methods, we use the
code from the Python library PyOD |Chen et al.|(2024)). All hyperparameters follow the recommended
settings.
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Implementation We use the Area Under the Receiver Operating Characteristic Curve (AUROC)
and the Area Under the Precision-Recall Curve (AUPRC) as evaluation metrics, following [Xu et al.
(2023b); Han et al.|(2022). These two metrics do not rely on specific thresholds of decision and are
capable of comprehensively assessing the performance of different methods. All experiments are
conducted using the PyTorch framework on a system equipped with an NVIDIA RTX 3090 GPU and
an Intel Core 19-12900K CPU. Each experiment is performed five times to obtain the mean value and
standard deviation. To ensure a consistent network architecture for fair comparison, we employ two
2-layer multilayer perceptrons (MLPs), corresponding to a parameter setting of 7 = 2 in (T). More
details are in Appendix

4.2 RESULTS OF STANDARD ANOMALY DETECTION

Table 1: AUROC (%) and AUPRC (%) with the standard deviation of each method on several tabular
datasets of ADBench. The best results are marked in bold.

AUROC | KDE KNN LOF OC-SVM IF AE DSVDD ~ RealNVP  NeutralAD ~ ECOD ICL SLAD DPAD MCM DTE-C | Ours
annthyroid 91.4+0.0 94100 929+00 909+00 918+1.1 834420 79432 96105 789+28 787+0.0 640+£6.1 904£29 912+47 839206 97.8+00 | 98.4£0.0
breastw 989+0.0 99.1+0.0 96.7+0.0 99.0+0.0 995+£0.0 984+03 99.1+0.1 98.0+00 81.4+39 993+0.0 902+13 992+0.1 989+02 99.0+0.0 963+0.0 | 99.4+0.0
cardio 95700 934x00 93.0£00 96400 949x1.1 924£32 96103 941x04 81.0x19 93400 839%15 887x30 90.0£33 904%08 93600 |958%0.6
Cardiotocography | 75.0£0.0 71.3£0.0 72700 80700 793%25 734+24 83425 779+18 582%19 785+00 547£119 58421 680£3.1 700+£09 72400 |86.1+24
celeba 705+0.0 680+0.0 449+00 79.0+£00 708+07 709+1.0 484+08 794+06 664+94 757+00 695+00 652+£2.1 563+6.1 653+33 827+00 |87.9+0.7
census. 72000 719%0.0 605+£00 702+00 62719 71.8+0.1 51931 728%03 7’9+26 65.9 0.0 68906 507+08 681£02 69.6+00 | 76.7+3.0
speech 458+0.0 485x0.0 48900 459£00 46 12 468+02 45212 50.0£00 . 46.1 0.0 50.7+£32 54846 49903 56.1+00 9
thyroid 983+0.0 985+0.0 946+00 982+0.0 99. 98.0+03 97.5+05 98.6+0.1 97.7+0.0 948+1.8 96.1+1.8 97.9+03 99.2+0.0

vertebral 435+00 425+0.0 40.0+00 527+00 42 480+43 437+45 53.6+48 41.8+0.0 444+43 464+35 472+14 592+00

Waveform 76000 76200 76600 69.0£00 72514 65825 69638 725%16 7I. 5 +05 60.0+0.0 598* 1. l 502+40 61035 696%12 656%00

AUPRC

annthyroid 66200 720£0.0 66700 652+00 638+28 60.7+£2]1 54822 77028 294+40 408x00 313£95 631x58 645£95 550%06 84100 |797£2.0
breastw 988+0.0 99.1+0.0 93.7+00 988+0.0 995£0.0 981+05 99.1+0.1 967+0.1 71.2+3.0 993+0.0 863+£30 992£02 987402 99.0+0.1 92.1£00 | 99.4+0.0
cardio 84.0£00 768+00 693+£00 82800 784+40 747+£59 83.0£09 71.0£26 489+43 709+00 607+£32 727+30 735+£66 T31+£10 69.5+00 | 759+43
Cardiotocography | 68.1£0.0 624+0.0 59.9%00 71000 676+24 650+25 75125 626+21 403%23 65700 454%10.]1 54715 61.5£26 61310 61.1£00 |743£27
celeba 8900 98£00 37£00 20400 12507 9502 4001 131206  66%1.5 172£00 8900 761%04 58%13 7310 157£00 |20.1%16
census 216+00 212+0.0 143+£00 205+00 142£08 21.6+0.1 11.9+08 205+06 233+0.0 155+0.0 17400 198£02 121+05 188+02 18.0+00 |24.7£16
speech 3700 37400 4500 36+00 35+02 36+04 30+02 32+00 4.0+0.0 3800 3302 38+£05 44+1.1 44402 4900 | 53£0.7
thyroid 73800 77400 588x00 739£00 837£16 78355 78921 764x19 6232 62900 288x126 676%7.7 719£28 86400 | 86.8+1.4
vertebral 197400 203+£00 196+£00 23.1+00 194+1.6 21.6£27 20.1+£17 253+£22 298414 195+£00 262440 21433 209+£0.1 27.14£0.0 | 4.0+ 6.6
‘Waveform 276+00 270+0.0 31700 107£00 108+05 1L1+13 95+13 11.3+06 474+25 76+00 296+22 57+10 IZOiZ.l 200+£08 10300 | 348+3.5

Table [T] reports the perfor-
mance of different meth-

00 2! X
ods on several datasets, o7 . . 5 100 rage AUPRC 200
Whlle Flgure @ reports O 90 [ Times Ranked First zo.g U 90/ =1 Times Ranked First 1750
o i < . 15.0i0
the average AUROC and 5 = “ i1l W3 3 % 125
£ 70
AUPRC results across 47 g 7 | | c PR 10.0E
datasets, with detailed re- £ e | | ‘°; g 7‘52
. .0
sults for each dataset avail- % s ‘ ‘ 5 E I, 1 H % \ as E
able in Appendix [G.2] Our ‘ | il H 0 0 hlﬂ n‘ U oo

method achieves the best @\@ W RIS S Q‘?” «“M&g"o‘a‘*’g’% 5
performance, outperform-
ing the second-best method

by Igore liha?NQVng. N?{(]))H]g Figure 4: The average AUROC and AUPRC performance of different
gare to Rea . A methods on anomaly detection across 47 datasets, along with the num-
emonstrates a significant .. ¢ garasets where each method is ranked first. Higher values of

improvement, particularly these metrics indicate better detection performance
in terms of AUPRC. Addi- P '

tionally, NRDE outperforms other baseline methods on a larger number of datasets. For example,
on the Speech, Vertebral, and WPBC, other methods attain AUROC scores around 50%, indicat-
ing anomaly detection is particularly challenging for these approaches. In contrast, our method
significantly outperforms baselines, highlighting its effectiveness in complex datasets. Notably,
density-based methods outperform many deep learning-based approaches, highlighting their effec-
tiveness in anomaly detection. Moreover, KDE and kNN—two traditional methods—outperform
all deep learning-based baseline methods. We attribute this phenomenon to two main factors. First,
as mentioned earlier, tabular data typically consists of features that inherently provide excellent
representations of semantic differences. As a result, even the simple Euclidean distance can capture
meaningful distinctions between samples. This is also consistent with the results shown in Figure
[1] which illustrates the performance of these methods in challenging noised scenarios. Second, as
demonstrated in Jiang| (2017); |Gu et al.|(2019), these two methods provide more explicit predictions
for datasets with lower dimensions and more samples, which aligns with the experimental results and
the curse of dimensionality.

(a) AUROC (b) AUPRC
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4.3 RESULTS OF ANOMALY DETECTION WITH ANOMALY CONTAMINATION

In real applications of AD, the training set often contains a small
amount of anomalous data due to various reasons. To evaluate the
robustness and performance of all methods in this scenario, we add
different ratios of anomalies to the training set and conduct exper- Lo e . .
iments on these contaminated datasets. The contamination ratio g ., & %w—- ..
.. . 30 g
ranges from 1% to 10% of the training set size. We report the av- = N
erage performance of all methods in Figure [5] where the detailed 085 TP e——e—e I

experimental results for each dataset are in Appendix @ From 0.60

the figure, we observe that as the anomaly ratio increases, the per- % Contaminatio Ratiost)
formance of all methods decreases. In this scenario, our proposed o« w0~ omw - oso
method consistently achieves superior performance over other meth- 10T NewtahD

ods, demonstrating its robustness to anomalies in the training set.
It should be noted that the AUROC performance of our proposed
method remains unaffected by the anomaly ratio. While its AUPRC
performance is influenced, with performance drop less significant
than that observed in other methods. Additionally, ECOD appears
to be the baseline method whose performance is least influenced by
the anomaly ratio.

Figure 5: Average AUROC
values across 5 datasets of
AD experiments with anomaly
contamination, contamination
ratio rangeing from 1% to
10%.

4.4 RESULTS OF ANOMALY DETECTION ON NOISY DATA

In real-world anomaly detection scenarios, data

are often corrupted by noise. To evaluate the Taple 2: AUROC results (%) of the best-
performance of all methods in this complex performing 5 methods on anomaly detection with

scenario, we perturb training data and anoma- pojsy data. The best results per dataset is in bold.
lous testing data with Gaussian noise drawn

from A(0,0.11;) to training data and anoma-  Dagaset DSVDD KPCA IF kNN NRDE (ours)
lous testing data, while normal test samples re-  “Cardiotocography  83.7 758 807 713 2.1
ceive stronger noise A/(0, 0.21;), note that data ~ Pima_ 725 770 758 781 796
. . A . Satellite 815 841 796 869 85.1
is first normalized then noise is added. Tablelil- SpamBase 803 863 824 830 79.1
lustrates the experimental results. Our approach ~_WPBC 415 522 517 515 62.9
consistently outperforms competing methods, _AYG 731 751 740 742 77.2

underscoring its robustness to noise.

4.5 MORE RESULTS

The time complexity comparison, more detailed results for visualization, standard anomaly detection,
anomaly detection with anomaly contamination, outlier detection, ablation studies, hyperparameter
analysis, experiments to verify our assumptions and motivation are in Appendices[B][G.1}[G.2} [G.3]

[G.4[G.5]and[G.@| respectively.

5 CONCLUSION

We proposed a novel and effective method NRDE for anomaly detection in tabular data. Our key
observation is that data is typically generated by independent sources, which can be categorized into
pure data sources and noise sources. By distinguishing these sources using the Jacobian matrix, we
can approximate the density of the pure data with a weighted log density that is unaffected by noises.
This allows NRDE to be robust to noise and effectively identify both anomalous data and noised
normal data. We provided theoretical analysis on the estimation error, the reliability of our proposed
method, and the time complexity of density-based approaches. Numerical experiments demonstrated
that NRDE outperforms 15 baseline methods across 47 real-world datasets. Furthermore, NRDE
exhibits robustness to anomalies in the training set and noise inside the data.
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A PROOF FOR THEOREMS

A.1 PROOF FOR THEOREM [3.1]

Proof. Assume two samples x,%X with the same estimated density py(x) = px(X) where X is
anomaly and x is normal data. In this situation, using merely the density can either detect both of
them as normal or anomaly. But if we consider their weighted log density, we have:

u(x) —u* (5()

=— Z w; Fyy,(x Z wi Fyy (x + log | det Vx Fyy,(x)]
icA jeB (20)
+Zw*FW 2+ Zw*FW — log | det V& Fyy (%)
€A JjEB

Since px (x) = px (X), we have:

d
1
log | det Vx Iy (x)| — log| det Vi Fyy (%) = 5 > (By(x)7 = Fy(%)7) 21
i=1
Thus, we have:
u(x) — u(“)
=Y 1-w 2+) 1-w (x)7
;x J%:B (22)
= (A —w)Fp®); =Y (1 —w)Fy(%);
icA jeB

Vj € B,i € Awehave Fy, (x)] > Fy,(X)3, Fyy(x); < Fy,(%)7 and w} > w}, this is because x
and X have the same probability but x is anomaly, thus x contains more noise.

If || Fy, (x)||2 = || Fyy (%) ]2, then we have:

ZFW ZFch

(23)
> (P2 FW<>*<>2) - Z (Fv(®?2 - Ry(x)?)
je€B icA
ForVj € B,i1 € A, we have w; > w} = min; w; > max; w;. Then:
u* (%) = u (%)
« * (52 * 2
>(1 - Ijneagwﬂ ; (FW( ) — By (R)5 ) (1- r}é{{‘lw ); (FW(X)i - FW(X)Z‘)
J
(24)
>(1 = minw)) (3 (B2 = Fy(®)2) = 3 (Fy(R) - Fy(x)2))
jeB icA
=0
Thus, the two data are identifiable.
This finishes proof. O

A.2 PROOF FOR THEOREM [3.2]

Lemma A.1. |Behrmann et al.| (2021) Let fy, be a coupling flow, the Lipschitz constant of the
forward fyy, can be locally bounded for x € [a, b]* as:

Lip(fw,) < max(1,¢q) + M (25)
Where exp(hi1(x)) < ¢g and M = max(|al, |b]) - ¢g - Lip(hi1) + Lip(hiz). Similarly, the Lipschitz
constant of the reverse f;vl can be locally bounded for y; € [a*,b*]¢

sz(f;\,l) < max(l,c1)+ M* (26)
Where M* = max(|a*|, |b*]) - c(g Y. Lip(ha) - ¢t + 1y - Lip(hiz)

14



Under review as a conference paper at ICLR 2026

Proof. According to LemmgA_.T] here we can assume that x;,y; are both bounded since data is
preprocessed and normalized, then we have the bi-Lipschitz constant of fy,, are bounded as:

7 | = %O < [ £y, (xD) = iy, GO < 77 |Ix@ = =) 27)

The determinant of V) fyy,. (x()) can be calculated as:

log| det Vo fyy, (x)] = hy (x) -1 (28)
Suppose  hj;(x) = Wir (@ ¢ (Wi20(Wiix))---)) and  hj(x) =

VAVi’L <¢ ( ) (W” 10} (W“X)) )) are two neural networks comprising L layers

and ¢ represents the activation function. Consider different x(), %(*) denote p the Lipschitz constant
of ¢, we have:

| log | det Vi fiy, (x| — log | det Vg fy, (D)
=|lhj (x0) = by )]
<Vd||hj (x8)) — by (x|

L
<Vdp" T T IWiallallx — %5

=1 29)

L
<Vdp" T TTIWialllx® = %@
=1

=TiaVd||x® — %)
1—1
<miaVd [] 7 Ix - %|

j=1

Where 7, = pl! Hlel [I'W.1]|2 is the Lipschitz constant of h};. Then, we can conclude that
log | det(V, Fy;,(x))| has a Lipschitz constant:

| log | det(Vi Fyy (x))| — log | det(V Fyy (X))]|

Mﬂﬁ'gﬂ

(10 det Vo fiy, (D)) = log| det Vo fiv, (£D)1)|
1

| log | det Vo fiv, (x7)] — log | det Vo fi, (D)

i=1 (30)
T
<N T Vd|x? — x|
i=1
T
<> rme ) |x — ||
i=1
The estimation error between log p% (Xpure) and u*(x) is:
| log Py (Xpure) — u” (x)]
« | det Vi Fyy, (x)]
=2 _(1-wj =D Wi F(0f —log |
ieA jeb | det Vi Py (Xpure)|
| det Vx F{,kv(x)| 31
<5 a- w? Fyy(x)% + | log | (31)
;4 ];3 W | det vxpure (Xpure)|
<30 (1wt ) Rt + 3 wi R meﬂrw:mm
i€A jEB =1
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As for the estimation error between log p% (Xpure) and u(x), we have the following inequality holds:

|log py (Xpure) — u(x)| = [log p (Xpure) — u*(x) + u* (x) — u(x)|
< |log ply (Xpure) — " (x)] + [u* (x) — u(x)]

<30 (1wl ) R+ 3 w03 2
icA j€B ¢y

T i—1
+ Z(Tm\/;i H T;)HX — Xpure|| + 77
i=1 j=1

This finishes proof. O

A.3 PROOF FOR THEOREM [3.4]

Proof. By Assumption[3.3] we have that:
u(3) ~ ux)] > plx, — %] 5
u(xa) — u(X) > ¢llxq — |

If [|X — x4l > *17°2, then we have:
u(xa) = 6(%) > 1 — &
u(x) < u(xp)

Now we have the weighted log-density of X is even smaller than the smallest weighted log-density of
data from D, thus it can be detected as anomaly. This finishes proof.

(34)

B TIME COMPLEXITY OF DENSITY-BASED METHODS

Suppose that Fyy is a sequence of T flows defined in (2), and h;1, h;o are two MLPs of L layers param-
eterized by {W; ;}2_ | {W;;}X_ |, where W”,W” € Rduixdii-1 5 e [L]. Consider a batch of

B data points, the time complexity of our method per iteration is O(B ZZ 1(dir ZL 2 d; jdij+1)),

and the space complexity is O(B Zi:l sk =0 di,jdi j+1)) which primarily arises from the computa-
tion of the Jacobian matrix. Here, we also compare the testing time complexity of a few representative
density-based methods. We assume that DAGMM |Zong et al.| (2018)) contains K Gaussians and the
encoder and decoder have L layers, with ith layer of encoder being Wg ; € R¥:*di-1 and jth layer
of decoder being Wp ; € Rér+1-iXdr—i For DPAD [Fu et al.|(2024), we assume that the size of its
neural network is the same as that of the encoder of DAGMM. Suppose we have one testing data,
time complexity of density-based methods is shown in Table 3]

Table 3: Time complexity comparison of density-based methods in testing stage.

| Testing Complexity

KNN O(nd)
KDE O(nd)
LOF 0(nd)
DAGMM | O( Sl dimdi +d})
DPAD O(E, dyvdy + dyn)
RealNVP | O( L, (S0 digdigin) )

NRDE ‘O( YT (St ds dwﬂ))

We notice that traditional density-based methods, such as KNN and KDE, require comparing test
data against the entire training set to generate anomaly scores. Consequently, these methods become
computationally inefficient as dataset sizes grow, since the time complexity grows linearly with the
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number of training data. DPAD encounters a similar issue due to its reliance on KNN, although it
mitigates this by employing a neural network for dimensionality reduction. In contrast, methods like
DAGMM, RealNVP, and our proposed NRDE primarily utilize neural network outputs for anomaly
scoring, which does not depend on training set.

Table 4: Statistics of 47 real-world datasets in ADBench.

Data # Samples | # Features | # Anomaly | % Anomaly | Category
ALOI 49534 27 1508 3.04 Image
annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 244 Network
breastw 683 9 239 34.99 Healthcare
campaign 41188 62 4640 11.27 Finance
cardio 1831 21 176 9.61 Healthcare
Cardiotocography | 2114 21 466 22.04 Healthcare
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
cover 286048 10 2747 0.96 Botany
donors 619326 10 36710 5.93 Sociology
fault 1941 27 673 34.67 Physical
fraud 284807 29 492 0.17 Finance
glass 214 7 9 4.21 Forensic
Hepatitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web
InternetAds 1966 1555 368 18.72 Image
Ionosphere 351 32 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics
letter 1600 32 100 6.25 Image
Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical
mammography 11183 6 260 2.32 Healthcare
mnist 7603 100 700 9.21 Image

musk 3062 166 97 3.17 Chemistry
optdigits 5216 64 150 2.88 Image
PageBlocks 5393 10 510 9.46 Document
pendigits 6870 16 156 2.27 Image

Pima 768 8 268 34.90 Healthcare
satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics
shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image

smtp 95156 3 30 0.03 Web
SpamBase 4207 57 1679 39.91 Document
speech 3686 400 61 1.65 Linguistics
Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 247 Healthcare
vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 343 Linguistics
Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4.48 Healthcare
WDBC 367 30 10 2.72 Healthcare
Wilt 4819 5 257 5.33 Botany

wine 129 13 10 7.75 Chemistry
WPBC 198 33 47 23.74 Healthcare
yeast 1484 8 507 34.16 Biology
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C PROPERTY OF THE REGULARIZER R()

Briefly speaking, our objective is to construct a Jacobian matrix in which the row norms exhibit a clear
separation—some being significantly larger than others—so that we can distinguish between pure
data sources and noise sources. Consider the derivative %%(YQ) = Sl\g/ﬁg’*ﬁ), where ||Q;:|| is ¢1 norm.
v i
In this formulation, rows with larger norms receive a smaller penalty from the regularizer, whereas
rows with smaller norms receive a larger penalty. This naturally encourages row-wise sparsity and
separation. Moreover, unlike the conventional /5 ; norm, where smaller entries in the same row
receive smaller penalty, our regularizer R imposes the same penalty on all entries within a given
row—avoiding vanishing penalty problem for small entries—thereby enhancing both separation and

sparsity. Thus, in theory the formulation is suitable for our task.

D IMPLEMENTATION DETAILS

Table 5: Network architecture

Tabular

Dimension_input=2d
Dimension_firstlayer=b
Linear(2d, b), LeakyReLLU()
Linear(b, 2d)

To ensure a consistent network architecture for a fair comparison, we employ two MLPs with two
linear layers, where LeakyReL U is used as the activation function. Note that the outputs of h;1, hi2
are actually the split output from the same MLP. The detailed network architecture is shown in
Table[5} Additionally, we use Adam as our optimizer and set batch size to 2048 for all experiments,
while training epoch is set to 100. Since the scale of Jacobian norm in different datasets can be
largely different as shown in Figure [/} We use a simple hyperparameter tuning strategy for NRDE: (i)
Fixing A = 0, decrease learning rate from 0.01 to 0.001 until training becomes stable (i.e., no loss
explosion); (ii) Then, based on , viewed as minyy L£(A, W), select A € 1,0.1,0.01 such that the
regularization term AR(-) is on a comparable scale with 0.1 - £(0, W).

E STATISTICS OF DATASETS

In our experiments, we evaluate the performance of 14 methods on 47 widely used real-world datasets
spanning multiple domains, including healthcare, audio, language processing, and finance, in a
popular benchmark for anomaly detection Han et al.|(2022)). The statistics of these datasets are shown
in Table[d These datasets encompass a range of samples and features, from small to large, providing
comprehensive metrics and evaluations for the methods.

F ALGORITHM DETAILS

The detailed algorithm of our proposed NRDE is illustrated in Aligorithm [T}

The synthetic data is generated using Algorithm [2} We primarily use Gaussian or uniform dis-
tributions to generate data, where the variances of the data sources are significantly larger than
those of the noise sources. Specifically, Sp = Unif ([~10,50]%), Sy = Unif ([-40, —20]%), Sy =
Unif ([-10, 10]%), Sp = Unif ([10,30]4). Both the training and testing normal data are generated
using the normal data generative process. For noised normal data, the data sources are distributed ac-
cording to Sp, while the noise sources are perturbed by variables distributed in Sy, SN, introducing
anomalies in the noise sources. In the case of anomalous data, the generative process closely resem-
bles that of noised normal data, where the noise sources are distributed in Sy. However, the noise
sources are perturbed by variables distributed in Sp, Sp, leading to anomalies in the data sources.
Moreover, Var(Sy) < Var(Sp). Data shown in Figureis generated using d = 100, m = 10. Note
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Algorithm 1 Training and Testing Procedure of NRDE

Training stage of NRDE:
Input: D = {x1,X2,...,X,}, A > 0, training epoch B
Output: Fyy, {w; }L_,
Initialize the parameters of flow network W
forb=1,...,Bdo
for each batch D do
Obtain the flow output { Fiy (%)}, .
Update parameters WV using (13)
end for
end for
Testing stage of NRDE:
Input: Xjew, Fiv, {wi}?zl
Output:anomaly score: u(Xpew)
Obatain Zpew = Fyy (Xnew)
Obtain anomaly score ©(Xpey ) Using

Algorithm 2 Data Generative Process

Normal data generation:

Input: number of data 7, data source distribution Sp, noise source distribution Sy, number of data
sources m, data dimension d, mixing matrix W € Raxd
Output:{x;}7
Obtain data sources sp € R?*™ by sp ~ Sp, obtain noise sources sy € RAxd—m by sy ~ Sy
Generate data using [X1, . ..,%3] = Wisp;sy]T

Noised normal data generation:

Input: number of data n, data source distribution Sp, noise source distribution Sy, noise pertur-
bation distribution S N, number of data sources m, data dimension d, mixing matrix W € Rdxd
Output:{x;}7_,

Obtain data sources sp € R"*™ by sp ~ Sp, obtain noise sources sy € R"*4~" by sy ~ Sy,
obtain noise perturbation §y € R**4=" by §5 ~ Sy
Generate data using [X1,...,%3] = W(sp;sy + 8n]7

Anomalous data generation:

Input: number of data 7, data source distribution Sp, data perturbation distribution S D,Noise
source distribution Sy, number of data sources m, data dimension d, mixing matrix W &€ Rdxd
Output:{x;}7
Obtain data sources spp € R?*™ by sp ~ Sp, obtain data perturbation Sp € RAxm by sp ~ S D,
obtain noise sources sy € R4~ by sy ~ Sy
Generate data using [X1,...,%3] = Wlsp + 8p;sn]|’

that here W is an orthogonal matrix. All models are trained using 10000 normal data, and tested
using 1000 normal data, 1000 noised normal data and 1000 anomalous data.

G EXPERIMENTAL RESULTS

G.1 JACOBIAN ROW NORM VISUALIZATION

In this subsection, we present visualizations of the Jacobian row-norms on both synthetic and real-
world datasets. Figures[6]and [7)illustrate these results. Notably, even without regularization, the row
norms already exhibit clear separability; this distinction becomes even more pronounced when the
regularizer is applied.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Jacobian Row Norm Jacobian Row Norm Jacobian Row Norm

0.6 0.6 0.6

0.5 0.5 0.5

04 04 f L 04

8 8 8

Regularized 503 1 203 503
€ 502 ] S 02 So2 I
ol S il i
0.0 0.0 “I 00 ]

10 20 30 40 0 0 30 40 0

0 50 10 2 50 10 20 30 40 50
Features Features Features
Jacobian Row Norm Jacobian Row Norm Jacobian Row Norm
0. 0.6 06 y
0.5 0.5 05 y
04 ” 0.4 0.4 |
Unregularized = 03 £03 §03 ’
S 02 02 S 02
0.1 "l 0.1 01
00 00 00 I|||""““'“""|
0 10 20 30 40 50 0 1020 30 40 50 0 0 20 30 40 50
Features Features Features

Figure 6: Visualization of the Jacobian matrix row norms on several synthetic datasets with 50 total
sources. From left to right, the number of noise dimensions is 10,25, and 40 respectively. The top
row corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.
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Figure 7: Visualization of the Jacobian matrix row norms on several real datasets. The top row
corresponds to the regularized case, whereas the bottom row illustrates the unregularized case.
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G.2 STANDARD ANOMALY DETECTION

In this subsection, we provide the detailed experimental results of AD on 47 real-world datasets.

Table [6] and Table [7] show the detailed AUORC and AUPRC results on 47 datasets.

Table 6: Average AUROC (%) with the standard deviation of each method on 47 tabular datasets of
ADBench. The best results are marked in bold.

Methods | KDE KNN LOF 0C-SVM IF AE DSVDD  RealNVP  NeutralAD ~ ECOD ICL SLAD DPAD MCM DTE-C | Ours
ALOI 56400 634+00 74.6£00 550200 544+0.0 S558+0. 51802 551209 S53.0+£00 502+25 548204 517406 632%02 542+00 | 56704
annthyroid 91.4£00 94100 90.9 0.0 79432 789+£28 787400 64061 90429 91.2+4.7 83.9£06 97.8+00 | 9840.0
backdoor 90.5+0.0 93.7+0.0 62.6 0.0 87.1£47 846+00 952+19 92502 94.6+0.7 96.6+0.1  91.8+0.0 | 945+2.0
breastw 98.9%00  99.1+00 99.0£0.0 814£39 993+00 902%13 99201 989402 99.0£00 963+00 | 99400
campaign 77.3£00 78300 77.1£0.0 62326 783+00 80514 763£0.6 64.2+6.1 785+£02  76.7+00 | 76.9+0.1
cardio 95700 93400 96.4+0.0 810219 934+00 83915 88730 90.0+33  904x08 93.6+00 | 95806
Cardiotocography | 75.0£00  71.3£0.0 80.7£0.0 58219 785£00 547£11.9 584£2.1 68.0+3.1 700£09 72400 | 86124
celeba 70.5+00 68000 79.0+0.0 66.4+94 75700 695+00 652+£2.1 56.3+6.1 653+33 827+00 | 87.9x0.7
census 720400  71.9+00 702£0.0 729426 659+00 668+00 689+06 507+08  681%02 69.6+00 |76.7+3.0
cover 95500 9850.0 96.2+0.0 851£38 920%1.1 674+34 79299 87.9+59 96404  96.7+0.0
donors 974200 99800 92000 95817 888+00 940+00 969£06 987+19 100.0£0.0 98.9+00
fault 81.2£0.0 76900 61.4£0.0 732£03 47400 77910 79203 735425 712£02 71800
fraud 95.8+0.0  96.00.0 95.6+0.0 94930 949+00 834+00 946£03 641£139 95802 944+0.0
glass 83500 89300 71.1£0.0 92123 69.8+00 908+ 1.1 88.8+20 86501 784£00
Hepdtm\ 794+00 85000 84.240.0 62258 71.5£00 60.1+4.1 K 837425 81215 80800
hitp 100.0£0.0  99.9%0.0 100.0 0.0 99.0£19 978200 500+00 99.9£00  99.8+0. 99.9+0.1  99.5£0.0
InternetAds 857£00 73800 73.8+0.0 81.6£09 68900 78910 86703 83206 823£0.1 87100
Tonosphere 97400 97000 96.5+0.0 96405 75500 941+04 863£02 97.3+04 95401  954+0.0
landsat 727200 73900 45700 70714 366+00 73828 69901  69.7+£32  622%0.0 588+00
letter 91.8£00 84100 60.9 0.0 92508 560+00 875+14 903£0.6 80.2+5.5 89.0£04 89600
Lymphography 98.6+0.0 98.6+0.0 98.4+0.0 829+33 985400 929+51 98502 98.3+0.2 985+0.1  97.7+0.0
magic.gamma 757400 82200 73.5£0.0 775406 634£00 71717 T724%12  798+29  826%03 858%00
mammography 88.1£00 87600 88.9+0.0 709+46 90.7+00 573+£10.7 726£3.2 84.8+22 90.7+04  87.8+0.0
mnist 948200 93800 91.0£0.0 77828 747+00 86718 912206 858+31 903%04 849:00
100.0£ 0.0  100.0+0.0 100.0 £ 0.0 100.0£0.0 958%0.0 100000 100.0£0.0 999£0.9 100.0£0.0 100.0+0.0 | 998 0.2
974£00 927+00 60.9 £0.0 95905 604+00 91.7+£25 914£16 755+108 87.8+28 89.2+0.0
PageBlocks 950400  958+0.0 94.4£00 937+05 914+£00 795+41 877£00 954+15 96302 962+00
pendigits 99.8+0.0 99.8+0.0 96.1+0.0 93915 927+00 938+46 927£29 94.7+28 98604  97.6+0.0
Pima 781200  78.0+00 73.1£0.0 560+£26 61.5+00 63136 546+21 702+34 741%12  707+00
satellite 86.9+£00 87300 754 £0.0 784£25 58300 . 86.5% 1.6 820£0.1  86.1+0.0
satimage-2 99.9£0.0  999+0.0 99.7+0.0 . . 849+14 96.6+0.0 . 98.7+ 1.3 98902  98.9+0.0
shuttle 99.8£0.0  99.9+0.0 997500 996+0.0 99801 992:0.1 99800 999200 99300 994+04 999200 99.9%1787 1000200 99700
skin 89.1£00  99.8x0.0 9 69616 90001 884x1.1 488+00 50.0£0.0 794 £33
smtp 882200 935+00 89512 934£00 91024 87.9£00 53060 835£32
SpamBase 85700 83000 79417 80103 792x08 66000 81.4£09 81.3£0.3
speech 45800  485+0.0 452+12 500+00 543+42 46.1+00 49.1+29 + . 49903
Stamps. 951200  90.8+0.0 919409 ©036+14 742418 867+00 881444 730452 909+29 886413 675400
thyroid 98.3+£0.0 98500 97.5+05 98601 65279 97.7+£00 822+£52 948£18 96.1+ 1.8 979£03  99.2+0.0
vertebral 435£00 425£00 43745 536+48 53930 418+00 54258 44443  464+35  472%14 592200
vowels 96500 97.3+00 413£91 904%11 98701 595£00 98204 972x06 934£25 915%16 97300
Waveform 76.0+£0.0 76200 6! . 69.6+38 725x16 71505 600+£00 598+1.1 502£4.0 61.0+3.5 69.6+1.2  656+00
WBC 981200 99400 99.0£03 993+£04 988202 786%47 99.0+00 80.0£67 98808 983+07  99.1+03 98200
WDBC 99400  99.1£00 994*01 989+ 1.1 325+£63 97800 97226 979£02  389+0.0
Wilt 37.1£00  60.8+0.0 499+23 59905 803+39 403+00 73120 660+£52  86.8+0.0
wine 922400 93200 856‘27 902439 926+16 785+52 73.0£00 95812  923+0.0
WPBC 525+00 51300 . .6 49.6+06 50018 58010 59121 47.0£0.0 . 523+£08 48300
yeast 432400  46.6+0.0 449400 429+07 479413 25416 510414 601418 453400 559+21 527408 SI8419 457+07  50.5+0.0
AVG | 843 85.1 79.8 782 81.3 743 83.6 719 737 76.1 79.2 815 83. |

Table 7: Average AUPRC (%) with the standard deviation of each method on 47 tabular

ADBench. The best results are marked in bold.

datasets of

Methods | LOF F AE DSVDD RealNVP NeutralAD ~ ECOD ICL SLAD  DPAD MCM  DTEC | Ours
ALOI 15.9:0.0 6.6+0. o 7600 72802  7.1200  75:03 64200 61305  7.1x00 71204 109302  6.8£0.0
annthyroid 60.742.1 77.0£28  29.4%4.0 64.5£9.5
backdoor 86.8+0.1 779458 65.143.0
breastw 96.7+0.1 98.740.2
campaign 50.3£0.1 33.0£6.5
cardio 71.0£2.6 735£6.6
Cardiotocography 62.652.1 615£2.6
celeba 9:0, 9.5+0.2 5.8¢1
census 21.6£0.0 21.620.1 12,1205

34240.0 52849.6 37.4£12.7

70.920. 0 49.8+8.2

72.9+0.3

Hspmus

http

Imcmcu\de
Tonosphere
landsat

letter
Lymphography
magic.gamma

868*]52
0

66. 6+ZZ 6
77.6+1.4

97.4%1.1

77.8+1.7
97.7+0.4

mammography 10.040.7 15.9+5.3
mist 49.742.0 63.042.6
musk 100.0£0.0 100.0£0.0
optdigits 55.5£6.0 34.07.1
PageBlocks . 78.2+1.1
pendigits 48.9+3.7 30.2+2.8 79.548.1
Pima 77.0:04 56.8+3.2 79.7+0.6
satellite 843+0.6 74.542.2 88.0+0.6
satimage-2 93.9+1.0 7305
shuttle 985405 973£00 99.9+0.3
skin 63.5:09  64.0£6.4 67.442.4
smtp 0900 28.9+12.4 62.8+4.3
SpamBase 87.3+1.2  84.8%0.1 80.8£0.9
speech 35602 3.6:04 4.0£0.0
Stamps 509+1.3 474424 26.8+7.1
thyroid 837416 783%55 6.2:
vertebral 19.4£1.6 29.8+1.4
vowels 25.4+3.0 87.6:2.0
Waveform 10.8£0.5 474425
BC 97.8+0.7 26.7+2.2
WDBC 90. 9+0 0 4.0£0.3
Wwilt 7.4£0.0 51.9:8.0 +
wine 58.20.0 56 S11.4 33.8+1.5 4444146
WPBC 38.3£0.0 36.9:0. 7.942.1 50.6+1.6 41.34.
yeast 482400 495200 49 8:0.0  48.6£0.0 47 011 51 7406 575415 50800 55042, 523:09
AVG | 623 62.2 57.6 54.6 48.9 58.2 515 53.6 48.0 45.0 49.9 58.4 58.2 59.9
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G.3 ANOMALY DETECTION WITH ANOMALY CONTAMINATION

Under this experimental setting, we conduct experiments on five datasets: Cardiotocography, Satellite,
SpamBase, Pima, and WPBC. The average AUPRC results are shown in Figure[8] Detailed results
for each dataset are shown in Figure[9] As the anomaly ratio increases, the performance variation
of our proposed method remains minimal, demonstrating its robustness to anomalous data in the
training set. We observe that when the anomaly ratio increases, the performance of some methods
does not decrease or even improves. The reason for this may be that, as the anomaly ratio increases,
the number of anomalies in the test set decreases, leading to different test sets for experiments at
varying anomaly ratios.
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Figure 8: The average AUPRC performance of 13 methods across 5 datasets of AD experiments with
anomaly contamination, with anomaly ratio ranging from 1% to 10%.
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Figure 9: The detailed AUROC and AUPRC performance of 13 methods across 5 datasets of AD
experiments with anomaly contamination, with anomaly ratio ranging from 1% to 10%.

G.4 OUTLIER DETECTION

To evaluate whether our proposed method is effective for outlier detection (transductive learning), we
conduct experiments on several datasets where all data are used for both training and testing, and
compare our method with other outlier detection methods. We provide the detailed experimental
results for outlier detection on 5 datasets: Cardiotocography, Satellite, SpamBase, Pima and WPBC.
We compare our proposed method with traditional density-based methods and state-of-the-art outlier
detection methods. The AUROC and AUPRC results are shown in Table[8]

G.5 ABLATION STUDIES

In this subsection, we investigate how each component of our proposed method affects its anomaly
detection performance and analyze the impact of different values of the hyperparameter A on detection
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Table 8: Detailed AUROC performance of outlier detection on 5 datasets. The best results are marked
in bold.

AUROC | Cardiotocography =~ SpamBase Satellite Pima WPBC

IF 68.8 65.5 67.9 67.0 49.1
ECOD 78.5 65.5 58.2 59.4 48.1
OC-SVM 69.5 533 66.3 62.3 48.4
KPCA 534 52.1 48.2 53.8 45.5
LOF 523 45.6 54.1 60.1 52.0
KDE 50.2 49.5 76.0 72.2 49.9
kNN 57.9 52.9 65.0 65.1 47.2
RealNVP 62.7 56.5 74.6 70.7 59.1
COPOD 66.2 68.7 63.3 65.4 523
DeeplIF 63.0 37.9 74.3 61.3 49.4
Ours \ 80.5 717.7 81.9 80.1 62.2

performance. The two main components of our method are the regularizer R and the weighted log
density u(x). Notably, when these two components are ablated, the method reduces to a basic
normalizing flow, i.e., ReaINVP. Table [0 and [I0| presents the average performance results of different
components across five datasets. We observe both components contribute positively to overall
performance. Specifically, the regularizer R primarily enhances the separability of sources, thus
exerting minimal influence on the basic normalizing flow.

We also investigate the impact of different values of the hyperparameter A and learning rate on
performance of standard AD. The detailed experimental results are shown in Table[IT)and[I2]. We
observe that the method is not highly sensitive to changes in A\ and learning rate; however, in some
datasets, large values of A may affect the training process and lead to a decrease in performance.

Table 9: Average AUROC and AUPRC performance of the proposed method containing different
components.

AUROC | Cardiotocography =~ SpamBase Satellite Pima WPBC

wlou, R 77.9 80.1 83.6 79.3 58.0
w/o u 77.2 80.7 82.3 78.2 60.2
w/o R 84.6 84.7 84.1 80.8 61.9
Ours 86.1 874 86.8 81.7 65.3
AUPRC | Cardiotocography ~SpamBase Satellite Pima WPBC
w/o u, R 62.6 80.5 86.8 77.6 43.8
wlo u 60.9 80.8 85.1 76.5 454
w/o R 73.2 86.8 85.0 79.1 47.8
Ours 74.3 88.7 88.0 81.7 52.5

Table 10: Average AUROC and AUPRC performance of the proposed method containing different
components across 5 datasets.

Components | AUROC ~ AUPRC

wlo u(x), R 75.7 70.2
w/o u(x) 75.7 69.7
w/o R 79.2 74.3
Ours | 814 76.6
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Table 11: Average AUROC and AUPRC performance of the proposed method with different value of
learning rate [7.

AUROC | SpamBase Satellite Pima WPBC

Ir =0.001 82.9 82.4 81.1 59.3
Ir =0.005 87.4 80.2 80.5 64.1
Ir =0.01 86.3 83.5 81.0 62.9

Table 12: Average AUROC and AUPRC performance of the proposed method with different value of
hyperparamter .

AUROC | SpamBase Satellite Pima WPBC

A=0 84.7 84.1 80.8 61.9
A=0.01 86.3 83.5 81.0 62.9
A=0.1 87.4 82.4 81.7 61.1
A=1 82.0 86.8 80.3 65.3
AUPRC | SpamBase Satellite Pima WPBC
A=0 86.8 85.0 79.1 47.8
A=0.01 86.9 85.2 79.2 50.9
A=0.1 88.7 84.7 79.7 47.7
A= 83.8 88.0 79.0 52.5

G.6 MORE EXPERIMENTS ON SYNTHETIC AND REAL DATASETS TO VERIFY ASSUMPTIONS
AND MOTIVATIONS

In subsection, we include several experiments on both synthetic and real datasets to further verify our
assumptions and motivations.

G.6.1 PERFORMANCE RESULTS WHEN VARIANCE DIFFERENCE IS NOT SATISFIED

Here, we analysis the performance of NRDE on synthetic datasets where variance difference is not
satisfied. Suppose the variance of pure data sources is o2, and variance of noise sources is o2, we now

n’

2
report the performance results on synthetic datasets with different j—g in Table The performance
decline of NRDE verifies our assumptions and motivations.

Table 13: AUROC performance of NRDE on synthetic datasets with different Z—g’ ratios.

o329 | 6 [ 4] 2| 1 ]05]
| NRDE | 87.5 | 82.9 | 80.4 | 77.9 | 71.2 | 68.6 |

G.6.2 PERFORMANCE RESULTS COMPARISON WITH IDEAL BASELINES.

In synthetic dataset where m the number of data sources is known, we compare the performance of
NRDE with KDE-C, DSVDD-C and KNN-C which are evaluated on datasets without noise compo-
nents and NRDE—m, where only the m sources with largest variance from set A are used for comput-
ing anomaly score: Uy, (Tnew) = log|det(Vy, . Fw(Znew))| — % log 27 — % Yica w; Fyy (Xnew ) 2.
The results are shown in Table[I4] Since NRDE is an approximation of NRDE—m, its performance
being close but not as good as NRDE—m and other ideal baselines supports our claim and motivation.
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Table 14: AUROC (%) performance of NRDE and other baselines on synthetic dataset.

Method | NRDE | NRDE-m | KDE-C | KNN-C | DSVDD-C
AUROC | 83.1 86.3 87.2 90.2 87.5

G.6.3 EXPERIMENTS RESULTS USING CONTRADICTIVE ASSUMPTION

If we make a contradictive assumption that variances of data sources should be smaller, then the
weight for each sources should be defined as:

d
wi=exp (G S 1VFwDill) /S e (1 3 [9aFw ()1 1)
j=1

xeD xeD

where sources with smaller variances obtain larger weights. This method is denoted as NRDE-CON.
The performance of NRDE-CON and NRDE on several datasets is shown in Table[I5] where the
results support the assumption in our paper.

Table 15: AUROC (%) performance of NRDE-CON and NRDE.

Method WPBC | Thyroid | Musk | Annthyroid | Wilt
NRDE-CON | 60.1 59.6 76.5 533 63.1
NRDE 65.3 99.2 99.8 98.4 77.9
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