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Abstract

Evaluating the step-by-step reliability of large language model (LLM) reasoning,
such as Chain-of-Thought, remains challenging due to the difficulty and cost of
obtaining high-quality step-level supervision. In this paper, we introduce Self-
Play Critic (SPC), a novel approach where a critic model evolves its ability to
assess reasoning steps through adversarial self-play games, eliminating the need
for manual step-level annotation. SPC involves fine-tuning two copies of a base
model to play two roles, namely a “sneaky generator” that deliberately produces
erroneous steps designed to be difficult to detect, and a “critic” that analyzes the
correctness of reasoning steps. These two models engage in an adversarial game in
which the generator aims to fool the critic, while the critic model seeks to identify
the generator’s errors. Using reinforcement learning based on the game outcomes,
the models iteratively improve; the winner of each confrontation receives a positive
reward and the loser receives a negative reward, driving continuous self-evolution.
Experiments on three reasoning process benchmarks (ProcessBench, PRMS00K,
DeltaBench) demonstrate that our SPC progressively enhances its error detection
capabilities (e.g., accuracy increases from 70.8% to 77.7% on ProcessBench)
and surpasses strong baselines, including distilled R1 model. Furthermore, SPC
can guide the test-time search of diverse LLMs and significantly improve their
mathematical reasoning performance on MATH500 and AIME2024, surpassing
those guided by state-of-the-art process reward models.

1 Introduction

The Chain-of-Thought (CoT) [1H3] reasoning process, which emerges in the autoregressive generation
of large language models (LLMs), has been applied to address a variety of complex tasks [4-13]].
Training methods such as Supervised Fine-Tuning (SFT) [14} [15]], Reinforcement Learning from
Human Feedback (RLHF) [16,[17], and self-play reinforcement learning [[L8|19], have demonstrated
success in obtaining high-quality CoT. Recently, the popular ol [20]], R1 [21], and QwQ [22] utilize
large-scale reinforcement learning for training and employ test-time scaling to generate long CoT,
further enhancing their reasoning capabilities. As the CoT generated by LLMs becomes increasingly
complex and diverse, it is particularly important to verify the reliability of the reasoning process,
analyze the potential errors in reasoning steps, and guide the test-time search to improve the reasoning
process [23H31]].

A number of verification models have been developed to analyze and evaluate the reasoning process
of LLMs. For example, outcome verifiers [25] provide outcome-level validation to rank or reward
multiple responses from LLMs. Process verifiers [23| 25]], which validate each step in the reasoning
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Figure 1: We continuously generate reinforcement training samples for the critic through adversarial
games. The sneaky generator aims to create subtle erroneous steps to challenge the critic, while the
critic must accurately distinguish between correct and incorrect steps from a mixed input of them.
Benefiting from the opposing optimization objectives, both models can evolutionally learn from each
other, akin to how humans improve their skills in board games through competition.
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process, have proven crucial in recent advances in LLM reasoning [26| 32134]. However, there
are several challenges that limit the development of such step-level approaches. Firstly, while it is
relatively simple to extract the final predicted answer and determine the correctness of a solution,
determining the correctness of a reasoning step and automatically obtaining well-annotated step data
for training a process verifier is much more difficult. Secondly, LLMs are updated rapidly, and heavy
human expert annotations on the outputs of specific LLMs may not be applicable to the latest LLMs
due to distributional differences. Thirdly, the dataset limited to step correctness annotations restricts
the training of a critic model — preventing it from providing substantive feedback and reducing it to
merely a scoring mechanism for verification.

In this paper, we introduce a novel Self-Play Critic (SPC) to diagnose potential errors and provide
valuable critiques for each step in the mathematical reasoning process. Inspired by the self-play
framework [19]], we propose an adversarial game between a sneaky generator and a critic to contin-
uously generate samples for reinforcement learning, thereby evolving the capabilities of the critic
model. Specifically, we first employ supervised fine-tuning to initialize a base model as a sneaky
generator, converting correct steps into incorrect steps that can significantly impact the success rate
of problem-solving. Concurrently, we initialize an identical base model to play the role of a critic,
whose goal is to identify the correctness of these reasoning steps and provide some critiques for
them. As shown in Fig. [T} we put these two models in an adversarial game by feeding the incorrect
steps successfully generated by the sneaky generator to the critic. Through this adversarial game, we
anticipate that the sneaky generator can simulate errors that can practically influence the reasoning of
LLMs while remaining difficult for the critic to detect. On the other hand, the critic is expected to
gradually address its shortcomings and improve its ability to catch all errors in the reasoning steps.
Benefiting from this design, we continuously generate positive/negative samples from different LLMs
for reinforcement learning without the need for additional human annotations, facilitating the iterative
evolution of a critic model which can provide valuable step critiques.

Extensive experiments have been conducted to validate the effectiveness of our proposed self-
play critic. After one round of supervised fine-tuning on Qwen2.5-7B-Instruct and two rounds of
iterative reinforcement fine-tuning, our SPC has shown continuously evolving performance on three
human-annotated reasoning process assessment benchmarks (ProcessBench [27]], PRM800K [23]] and
DeltaBench [33])). For instance, the average accuracy of SPC on PRM800K has gradually improved
from 71.0% to 75.8%, surpassing the 71.4% performance of the same-sized distilled model of R1 [21]].
We further introduce a new approach to utilize our tailored critic model, wherein the critic predicts the
correctness of each step during LLMs’ test-time search. This allows the LLM to promptly abandon
incorrect steps and regenerate new steps, rather than waiting until the entire solutions are generated
and then scoring them using verifiers. Experiments on MATHS00 [36] and AIME2024 [37] indicate
that SPC can enhance mathematical reasoning for three different types of LLMs, including popular
Llama [38], Qwen [12], and distilled R1 [21] with long CoT reasoning process.



2 Related Work

LLM Reasoning Powerful large language models (LLMs) [4} 5, [7H13]] are becoming increasingly
adept at constructing Chain-of-Thought (CoT) to tackle complex reasoning tasks, such as solving
math problems and code generation. The recently popular ol [20], R1 [21], and QwQ [22]] models
are further equipped with exceptional deep thinking capabilities, allowing them to construct long
CoT during inference to decompose complex tasks and even perform extensive self-critique and
self-correction [39-41]]. However, fine-grained analyses in a recent research [35] indicate that the
effective proportion of self-critique in these long CoT is still very low, and biases exist in the self-
critique of their own reasoning processes. It is therefore necessary to have a simple external critic for
assessing the reasoning steps of various LLMs, providing step-level critiques.

Verification and Critique for LLM Verifiers [23-27] can enhance reasoning performance by
ranking or integrating multiple responses generated by LLMs during inference. Additionally, they can
also provide more accurate rewards during training to guide the optimization of LLMs. Verifiers can
be categorized into two types, namely outcome reward models (ORMs) and process reward models
(PRMs). ORMs provide solution-level scores for the entire problem-solving process, whereas PRMs
assign step-level scores to each reasoning step, which can be aggregated to produce a more accurate
solution-level score. Recent works [28H30) 42]] propose critic models for verification, arguing that
scalar scores have limited ability in evaluating the outputs of LLMs. In contrast, feedback in natural
language form can activate the thinking capabilities of LLMs, resulting in more reliable critiques to
represent the correctness of reasoning. In this work, we explore how to analyze the correctness of the
current step and provide step-level critiques based on partial reasoning steps.

Self-Play Self-play [43]44] is a method in reinforcement learning where an agent interacts with
several copies of itself in an environment to learn specific actions. A significant advancement in self-
play is demonstrated by AlphaGo [45] and AlphaZero [46l, which greatly surpass human champions
in the game of Go, without the need for human knowledge in training. Recent studies apply self-play
to LLM alignment and enhancement [[18} 19} 147H50]. For example, Kirchner et al. [19] proposed a
solution-level game between a powerful prover and a weak scoring verifier to enhance the legibility
of the LLM, though resulting in performance degradation. Cheng et al. [47/] introduced a Taboo
language game between an attacker and a defender to improve LLMs’ reasoning abilities. In this
paper, we design an adversarial game to generate data for training a step-level critic, which provides
correctness analysis for the reasoning steps of LLMs.

3 Methodology

3.1 Overview

Training a step-level critic requires a large amount of data annotated with step correctness. However,
collecting step-level data presents considerable challenges. First, identifying and annotating the
reasoning errors of powerful LLMs requires professionals with relevant expertise. Second, LLMs are
rapidly updated, and the labor-intensive annotations may become outdated and inapplicable to the
latest LLMs due to distributional shifts. Third, there is no definite answer for each step, complicating
the definition of “incorrect” and the automation of the annotation process.

In this work, we design a self-play framework to enable the self-evolution of step-level critic by
automatically producing step-level annotation through an adversarial game. As shown in Fig.[2] our
framework involves two opposing models, i.e., a sneaky generator S and a step-level critic C'.

Sneaky generator converts correct reasoning steps from LLMs into incorrect ones, automating
the creation of numerous steps with potential errors. Its goal is to generate sneaky steps that not
only decrease the reasoning success rate of LLMs but also deceive the critic (i.e., the critic fails to
detect the erroneous steps). Specifically, given a problem p and a correct partial reasoning trajectory
7.5 = (t1,t2,...tx) produced by an LLM solver, the sneaky generator .S’ converts the last correct
step t¢ into a candidate sneaky step ti = S(p, T.x—1,t%). This candidate becomes a valid sneaky

step t: if it significantly impacts the solver’s success rate in the subsequent completion from this
step. If the sneaky step is invalid or the critic detects the errors in a valid sneaky step, the sneaky
generator receives a negative reward. Conversely, if the critic fails to detect the errors in a valid



Problem: .
Convert $1011001_2$ to base 4. Step Critic
Partial Solution: f

To convert the binary number
Incorrect Step: 3. **Combine the base 4

\\(1011001_2\\) to base 4, we can Critique:

follow these steps: digits™:\n Combining these base 4 digits, The last step involves combining the base 4

1. **Group the binary digits into pairs we obtain:\n Win 1011001_2 = 11121_4n W\ gigits obtained from the conversion of each

starting from the right**: 1 binary pair ... The correct combination

Since each base 4 digit can be Sneaky CoT: ... | will use **Error Type 2: should be \\(1121_4\\), but the solution

represented by 2 binary digits ... calculation error**. Specifically, | will incorrectly writes it as \\(11121_4\\).
introduce an incorrect simplification in the Conclusion:

Correct Step: 3. *Combine the concatenation of the base 4 digits ... The correctness of the last step is Q

t <Answer>Incorrect</Answer>.

base 4 digits**:\n Combining the

base 4 digits from the pairs, we -

i - Sneaky Generator <«------"""
get\n \\n 1011001_2 = 1121_4\n\\] ———> Yy Reward -1

Figure 2: The framework of our proposed SPC. We randomly select a correct step along with the
partial solution before that step and feed them into the sneaky generator, which first selects one of
the predefined error types and then converts the correct step into an incorrect step. The successfully
generated incorrect step is then fed to the critic for error detection. If the critic successfully identifies
the error, it receives a reward of +1, while the sneaky generator incurs a reward of -1. If the critic is
deceived, the critic and sneaky generator are rewarded -1 and +1, respectively.

sneaky step, the sneaky generator receives a positive reward. By automatically evaluating the success
of the generated sneaky steps, we then employ reinforcement learning to enable the self-evolution of
the sneaky generator.

Step Critic aims to identify all potential errors in the reasoning steps of LLMs. In each iteration of
the adversarial game, the critic’s role is to detect all error steps generated by the sneaky generator.

Specifically, given a partial reasoning trajectory 7.x—1 = (t1, to, ...tx—1) and a valid sneaky step ti
produced by the sneaky generator S, the critic C' is expected to identify ¢ by generating a step-level

critique. The success or failure of detecting the sneaky step determines the critic’s rewards, allowing
continuous optimization through reinforcement learning.

Overall, these two models have opposing objectives, allowing them to evolve through adversarial
self-play. In the following sections, we explain how to initialize these models and continuously
generate positive and negative samples for reinforcement learning through adversarial games.

3.2 Initializing Sneaky Generator

To initialize the sneaky generator Sy, we train the base model Qwen2.5-7B-Instruct [[12] using
Supervised Fine-Tuning (SFT) to equip it with the fundamental capability to generate incorrect
steps. To ensure the accuracy of the initialization data, we use correct-incorrect step pairs from
PRMB8O0O0K [23]] to construct an error step transformation process. Specifically, we extract correct-
incorrect step pairs < 17, tfc > with the same problem p and partial solution 7.5 1 = (¢1, t2,...tx—1)
(the steps preceding the extracted pairs) from PRM800K. We next prompt GPT-4 to create a chain-
of-thought transformation Tcer(£5) — ¢ by first selecting an error type from five predefined
common error types (see Sec. [B) and then performing a detailed transformation. This process
results in a transformation behavior cloning dataset (x,y) ~ Dj., where x = (p, T.x_1, 1) as input,
y = Toor(t]) — ti as output. We then finetune Qwen2.5-7B-Instruct on dataset ch to obtain a
policy my for the initial sneaky generator Sy using the SFT loss:

Lser = —E(x y)pg [log mo(y[x)]. @

Automated Validation for Sneaky Generator To form an adversarial game, we need to annotate
the generated steps and feed actual incorrect steps to the critic model. However, existing LLM-
as-a-Judge methods [35, 151] inevitably introduce bias, while the manual annotation is excessively
labor-intensive. We therefore propose evaluating the impact of different steps on the problem-solving
success rate to ascertain whether a sneaky step can be considered incorrect. Concretely, based on a



correct solution generated by an open-source LLM, we first sample an original step and transform
it into a sneaky step using the sneaky generator. We subsequently use the same LLM to complete
the entire reasoning process after the original/sneaky steps, and this is repeated N times. If the
original step achieves a relatively high success rate while the sneaky step results in a significantly
lower success rate, we consider this pair of steps to represent correct and incorrect steps, respectively.
In our experiment, we adopt a strict criterion to ensure data quality. If the original step achieves a
success rate greater than or equal to 75%, while the sneaky step results in a success rate of 0%, we
then collect this pair of steps for subsequent adversarial games.

3.3 Initializing Step Critic

Based on the results from ProcessBench [27], reasoning models such as QwQ [22] and distilled
R1 models [21] outperform non-reasoning models such as GPT when serving as critic models.
However, the lengthy reasoning process in R1 leads to slow and redundant model generation, and its
instruction-following capability is relatively poor, often failing to produce a concise critique with a
definite conclusion about the correctness of a step. We therefore combine the strengths of both types
of models when initializing the critic.

Specifically, we prompt DeepSeek-R 1-Distill-Qwen-7B as a critic, taking problem p, partial solutions
T.x—1, and mixed correct and incorrect steps t;, from PRM800K dataset as inputs, to collect long
critiques. We then employ GPT-4 to rewrite them into brief standardized critiques Q; (see Sec. [B).
Concretely, (Q; contains an analysis of the partial solution and the current last step, as well as a
definite conclusion regarding the correctness of the step. This also simplifies the task and facilitates
the use of SFT for policy initialization. Additionally, when preparing the training data for the critic,
we mix the steps labeled as correct and incorrect in PRM80OK at a 1:1 ratio to ensure the critic’s
capabilities are balanced. We utilize human annotations from PRM800K to filter around 21.8K
correctly generated critiques Q;. Similarly, we prepare behavior cloning dataset (x,y) ~ Dbcc for

the critic, where x = (p, T.x—1, t) as input, and y = Q; as output. We then finetune the base model
using SFT loss (1)) to obtain an initial policy Cy for the critic.

3.4 Adversarial Game

We further reinforce the models’ correct behavior and continuously improve their performance,
avoiding the limitations related to the scale and distribution of human-annotated PRM8O00OK. Inspired
by recent self-play practices [19,47], we propose a step-level adversarial game between the sneaky
generator and step critic, enabling continuous reward generation and self-evolution of the two roles.

In each iteration of the adversarial game, we begin by using LLM solvers to generate a set of original
step-by-step solutions for each problem. To ensure data diversity, we employ various LL.M solvers
from different model families, with sizes ranging from 7B to 32B, thereby enriching the diversity
of sample styles. We then design an adversarial game for the two roles based on these solutions.
Single steps are randomly selected from solutions for sneaky transformation, and the incorrect steps
successfully produced by the sneaky generator are then fed into the critic to generate critiques. In
addition to ensuring that the generated step contains an error, we expect the sneaky generator to
generate incorrect steps with subtle flaws that can fool and challenge the critic. Meanwhile, the critic
should be powerful enough to avoid being misled by any errors and provide an accurate critique.

In this game, we can set the rewards for the sneaky generator and the critic respectively in an
adversarial instance as follows:

R 1, Sneaky Generator Wins @)
smeaky = —1, Sneaky Generator Loses
1 Critic Wins
Reritic =19 3
critie {1, Critic Loses )

This opposing optimization goal enables both the sneaky generator and the critic to continuously
improve their performance, achieving iterative self-evolution.



3.5 Evolving via Reinforcement Learning

In each iteration, after obtaining positive and negative samples through the adversarial games, we
apply offline reinforcement learning to the critic and sneaky generator, respectively, enabling self-
improvement of both roles based on the game result. Specifically, we adopt the following optimization
objective to achieve stable RL training:

o (y|x)

VoL(0) = ExD.y~mou(ylx - AT (x,y) - Vg log mo(y[x) |, )
() D,y ~moua (¥]x) Tota(Y]%) ( ) (ylx)
where 7,4 denotes the policy used to collect the offline dataset, :Td(();'ll):c )) is the importance ratio,

and Ao represents the advantage estimation. Inspired by recent RLOO [52]] and GRPO [53]], we
formulate A™4¢ = R(x,y) —b— SKL[mg || mef], where a baseline b (the average reward of all samples)
is subtracted for advantage estimation, and a Kullback-Leibler (KL) penalty is added to regularize the
policy 7g and prevent it from deviating too far from the initial policy mys.

For the sneaky generator, considering that we also need it to generate actual incorrect steps, we treat
sneaky steps that fail to affect the problem-solving success rate as negative samples. Additionally,
sneaky steps that successfully impact the LLM success rate but do not deceive the critic will also be
considered negative samples. Meanwhile, the ones that can both influence the LLM success rate and
deceive the critic are considered positive samples. Consequently, our data for training the sneaky
generator includes a 1:1:1 ratio of positive samples and two types of negative samples.

As for the critic, we mix some correct steps from correct solutions with some incorrect steps
generated by the sneaky generator for the critic to predict. The samples that the critic successfully
predicts receive a positive reward, while those that are incorrectly predicted receive a negative reward.
Ultimately, positive/negative samples each constitute half of the total samples.

Based on the adversarial game, we apply iterative training to enable continuous evolution of the two
roles. Specifically, in each iteration, the newly updated policies re-engage in the adversarial game
to generate new data for training, thereby evolving themselves further. Additionally, we observe
an interesting phenomenon that more balanced adversarial games contribute to the self-evolution
of models. In fact, the initial sneaky generator Sy is weaker than the initial critic Cp, resulting in
an unbalanced win rate. Moreover, S; obtained through synchronous iteration is even weaker than
C}. Therefore, we adopt an asymmetric evolution strategy, where S; competes against Cp in a more
balanced game to generate the second round of data. This enables C5 trained in the second round to
further improve its performance. Such a strategy is analogous to humans preferring to improve their
skills in chess by playing against equally matched opponents. We provide more detailed analyses of
the evolving strategies in Sec. 4.3

3.6 Enhancing LLM Reasoning

Previous process reward models (PRMs) [26, 27] require scoring each step of the fully generated
solutions and then integrate all the scores. However, after the first reasoning step error occurs, the
LLM should promptly correct the mistake. Continuing to generate more potentially flawed reasoning
steps after an erroneous step is unnecessary, and the scores produced are unreliable. In contrast, we
propose a new approach that directly employs a critic to assist the LLM in searching for reasoning
steps. During testing, we use ‘\n\n’ to control the LLM to output one step at a time, allowing the
critic to verify the correctness of each step. If the step is correct, the search continues; if incorrect,
the LLM is required to regenerate the step (up to five attempts before skipping). Our SPC effectively
enhances the reasoning performance of the LLM using this approach.

4 Experiments

4.1 Experimental Settings

Evaluation We adopt PRM80OK [23]], ProcessBench [27]], and DeltaBench [35]] that include human
annotations of mathematical reasoning steps for evaluation. The original setting of ProcessBench
and DeltaBench is to identify the position of the first or all errors in a complete solution. We argue
that, in practical scenarios, a critic can enhance reasoning performance by identifying the incorrect



Table 1: Comparison of recall on ProcessBench. We evaluate different models on their ability to
assess the correctness of the current step, instead of only predicting the index of the first error in the
complete solution. ‘Round 0’ refers to the initialized critic model.

Olympiad- Omni-

Models GSMSK MATH Bench MATH Average

Process Reward Models (PRMs)

Math-Shepherd-PRM-7B [26] 58.0 58.4 68.0 64.1 62.1
Qwen2.5-Math-7B-PRM800K [27] 77.0 72.9 66.9 62.1 69.7
Prompting LLMs as Critic Models

Llama-3.1-8B-Instruct [10] 59.5 57.7 53.6 53.9 56.2
Llama-3.1-70B-Instruct [10] 67.2 62.8 61.7 61.9 63.4
Qwen?2.5-7B-Instruct [12] 64.2 64.0 62.1 60.8 62.8
Qwen2.5-32B-Instruct [[12] 76.2 68.1 68.9 63.9 69.3
GPT-4o [6] 75.5 70.5 70.0 64.5 70.1
DeepSeek-R1-Distill-Qwen-7B [21] 79.0 81.3 734 67.3 75.2
Our Critic Models

SPC (Round 0) 78.0 74.1 67.8 63.2 70.8
SPC (Round 1) 82.0 80.3 74.8 70.3 76.8
SPC (Round 2) 84.2 80.8 76.5 69.2 71.7

step and requiring the LLM to regenerate, with no need to wait for completing all the steps. We
therefore extract a 1:1 ratio of correct and erroneous steps from each benchmark, only retain the
reasoning process before these steps as a partial solution, and discard the reasoning steps after these
steps. Besides, we evaluate the effectiveness of the critic models in assisting LLMs to solve math
problems on MATHS500 [54] and AIME2024 [37]. More evaluation details are provided in Sec. @

Baselines Following ProcessBench [27], we primarily evaluate two types of baselines, namely
Process Reward Models (PRMs) and prompting LLMs as critic models. For PRMs, we select two
representative methods, namely Math-Shepherd [26] and Qwen2.5-Math-7B-PRM800K [27]. Math-
Shepherd trains a process reward model through an automated data annotation process and can be
utilized to rank multiple outputs or ensemble them to enhance reasoning performance. Qwen2.5-
Math-7B-PRMS800K is based on the advanced math-specialized model Qwen2.5-Math-7B [S3], and
is further fine-tuned with the PRM8O0OK dataset, obtaining state-of-the-art performance among PRMs.
We also prompt multiple types of LLMs to serve as critic models, using the same prompts as our
SPC. Several representative models, including Llama [[10], Qwen [12], R1 [21]], and GPT-40 [6]], are
selected as baselines.

4.2 Main Results

Critic Performance on Reasoning Process Benchmarks As shown in Tabs. [I|and [2, we compare
our critic models with other baselines on 3 math-related reasoning process benchmarks to evaluate
the abilities of predicting step correctness. We can observe that: (1) Our proposed SPC is gradually
evolving and achieves state-of-the-art performance among all models. For example, the average
performance on ProcessBench has improved from 70.8% to 77.7%, and on DeltaBench from 54.9%
to 60.5%. (2) On all benchmarks, our method outperforms the latest PRMs specifically designed
for scoring steps. (3) The performance of prompting LL.Ms as critics is not as good as SPC. Our
method outperforms the distilled R1 model with the same size of 7B parameters. (4) Some baselines
(PRMs and prompting Llama) have imbalanced recall between correct and error steps, leading to
poor harmonic mean, whereas our critic is more balanced. (5) Our critic is trained on short CoT
data (from Qwen and Llama), but it is able to generalize to long CoT reasoning steps (e.g., R1 [21]]
and QwQ [22]) in DeltaBench. In contrast, the two PRMs trained on short CoT show a significant
performance decline in DeltaBench, with HarMean scores of only 14.3% and 41.3%, respectively.

The Effectiveness of Guiding Test-Time Search Existing PRMs can enhance performance by
ranking the completely generated reasoning steps or by aggregating scores using self-consistency [12}
26]. We apply the proposed SPC to LLM reasoning search, utilizing SPC to check the correctness of
each step and regenerating the step if it is incorrect (up to 5 retries). Moreover, SPC can be combined
with self-consistency by conducting a majority vote over several independent searches. For a fair



Table 2: Comparison of our SPC with baselines on the test set of PRM80O0K [23]] and DeltaBench [33]],
where human-annotated correct and erroneous steps are extracted to evaluate the recall of critiques.
“Correct” and “Error” represent the recall on correct and erroneous steps, respectively. “Average”
denotes their arithmetic average and “HarMean” refers to their harmonic mean.

PRMS800K DeltaBench
Models Average HarMean Correct Error Average HarMean Correct Error
Process Reward Models (PRMs)
Math-Shepherd-PRM-7B [26] 50.0 49.5 552 448 533 14.3 7.69 98.8

Qwen2.5-Math-7B-PRMS800K [27]  73.6 73.6 744 728 585 41.3 90.1 26.8
Prompting LLMs as Critic Models

Llama-3.1-8B-Instruct [10] 51.9 30.5 18.6 852 49.1 6.38 330 95.0
Llama-3.1-70B-Instruct [10] 54.6 38.9 253 839 446 20.3 11.7 775
Qwen2.5-7B-instruct [12] 52.8 37.2 241 816 4382 33.8 21.8 747
Qwen2.5-32B-instruct [12] 59.0 50.5 36.6 814 447 33.0 21.8 67.6
GPT-4o [6] 68.5 68.4 703 66.6 499 48.7 42.0 579

DeepSeek-R1-Distill-Qwen-7B [21] 71.4 71.2 67.3 755 509 50.6 549 469
Our Critic Models

SPC (Round 0) 71.0 70.8 67.8 742 549 53.5 459 640
SPC (Round 1) 72.8 70.3 594 86.1 588 57.3 68.4 493
SPC (Round 2) 75.8 75.8 748 769  60.5 59.5 682 528
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Figure 3: Ablation study of our critic and sneaky generator. Left: The impact of different strategies
on evolving critic models. Right: The success rate of sneaky generator in attacking LLM solver and
its win rate against round O and round 1 critics.

comparison, all methods incorporating self-consistency sample 5 outputs in our experiments. In
addition, for experiments without using self-consistency, we run them at least three times and average
the results to reduce randomness. As shown in Tab. [3] on two popular benchmarks MATH500 [54]
and AIME2024 [37], SPC significantly improves the performance of three types of LLM solvers,
and outperforms five baseline verifiers. For instance, using the Qwen Solver at AIME2024, our SPC
combined with Self-Consistency achieves a problem-solving accuracy of 23.3%, which is superior
to the 16.7% accuracy of Self-Consistency + Qwen2.5-Math-7B-PRMS800K. Notably, our SPC is
trained using only short CoT data, yet it can still generalize to the DeepSeek-R 1-Distill-Qwen-7B
model, which outputs in a long CoT style. It achieves 94.0% accuracy on MATH500, whereas
Math-Shepherd and Qwen2.5-Math-7B-PRMS800K achieve only 89.2% and 91.8%, respectively.

4.3 Ablation Study

The Impact of Different Strategies on Evolving Critic In Fig. [3] (left), we test critic models
on ProcessBench, demonstrating the impact of different adversarial training methods. We refer to
the sneaky generator and critic initialized after SFT as Sneaky-0 and Critic-0, respectively, while
Sneaky-n and Critic-n represent models trained with n rounds of self-play adversarial data. In
round 1, Sneaky-1 and Critic-1 are trained using data generated from the adversarial game between



Table 3: Performance of various methods for assisting different LLMs in math reasoning. By
integrating Self-Consistency with our SPC, we achieve the best results across three types of LLMs on
MATHS500 and AIME2024 datasets.

Solvers Verifiers MATHS500 AIME2024
w/o 47.0 4.27
Self-Consistency [2] 55.6 3.33
Math-Shepherd [26] 52.4 3.33
. Qwen?2.5-Math-7B-PRM800K [27] 54.6 3.33
Llama-3.1-8B-Instruct (10} Self-Consistency + Math-Shepherd 536 6.67
Self-Consistency + Qwen2.5-Math-7B-PRM800K 60.4 333
SPC (Ours) 54.5 5.63
Self-Consistency + SPC (Ours) 62.8 6.67
w/o 78.0 14.4
Self-Consistency 82.0 16.7
Math-Shepherd 78.8 13.3
- Qwen2.5-Math-7B-PRM800K 82.8 16.7
Qwen2.5-32B-Instruct [12] Self-Consistency + Math-Shepherd 80.8 133
Self-Consistency + Qwen2.5-Math-7B-PRM800K 84.6 16.7
SPC (Ours) 83.0 17.7
Self-Consistency + SPC (Ours) 85.2 233
w/o 87.7 53.8
Self-Consistency 922 70.0
Math-Shepherd 87.0 533
L + Qwen2.5-Math-7B-PRM800K 84.2 63.3
DeepSeek-R1-Distill-Qwen-7B [211 g1 oo nsistency + Math-Shepherd 89.2 60.0
Self-Consistency + Qwen2.5-Math-7B-PRM800K 91.8 73.3
SPC (Ours) 923 52.6
Self-Consistency + SPC (Ours) 94.0 73.3

Sneaky-0 and Critic-0. For each successfully transformed erroneous step, we have the critic predict
four critiques, which may include both correct and incorrect predictions, forming a pair of positive
and negative samples with the same input but different outputs. This method of constructing paired
samples is more effective in RL training, improving the critic from 70.8% in round O to 76.8%,
whereas not constructing paired samples only achieves a performance of 75.0%.

For round 2, we explore two evolving strategies. (1) Generating round 2 data using the confrontation
between Sneaky-1 and Critic-1 and mixing it with the data from round 1. We observe a significant
performance decline in the critic trained with this setting, dropping from 76.8% to 72.0%, possibly
due to overfitting. We notice that the win rate of Sneaky-1 against Critic-1 is only 13.2%. Therefore,
such an overly unbalanced game might prevent the critic from learning new knowledge from the
adversarial process, similar to how humans need opponents of comparable skill levels when playing
chess. Therefore, we adopt another setting: (2) Generating data through the game between Sneaky-1
and Critic-0, given that Sneaky-1 had a win rate of 32.5% against Critic-0. We then mix the data
from both rounds for training Critic-0 and update it as Critic-2. Balancing the game prevents
performance degradation and enables self-evolution, improving SPC’s performance to 77.7%.

The Performance of Sneaky Generator As shown in Fig. [3| (right), we analyze sneaky generators’
success rates in attacking Qwen-2.5-7B-Instruct solver, as well as their win rates against Critic-0 and
Critic-1. It is observed that the proportion of successful attacks on the solver gradually increases from
21.5% to 33.6%, as the sneaky generator iterates. We then feed successfully generated erroneous steps
to the critic models. Sneaky generators’ win rates against Critic-0 increase from 20.6% (Sneaky-0) to
30.3% (Sneaky-2). Overall, the performance of the sneaky generators is iteratively improved.

We also analyze a training setting without adding failed attacks on the solver as negative samples,
using only successfully generated erroneous steps to construct positive/negative samples for training
Sneaky-1, referred to as “w/o Reward from Solver” with lighter colors. We find that this approach
severely impacts the performance of the sneaky generator, significantly reducing the proportion of
successful attacks to 12.1%. Among the successfully attacked samples, the proportion that could
deceive the critic is also very low, achieving a 19.6% win rate against Critic-0. Therefore, it is crucial
to ensure that the sneaky generator receives rewards from both the solver and the critic.



5 Conclusion

In this paper, we propose a self-play critic with the ability of detecting step-level LLMs reasoning
errors. Specifically, we design a sneaky generator to produce incorrect steps and a critic to assess
the correctness of each step. Through the adversarial game between these two models, we can
continuously generate positive and negative samples for reinforcement learning. The results on three
reasoning process evaluation benchmarks fully demonstrate the effectiveness of our SPC. Furthermore,
we apply SPC to assist LLMs’ test-time search, further enhancing their reasoning performance.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Sec. C
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: we averaged the results with high randomness.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Sec. C
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: we have reviewed this.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Sec. A
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Sec. C
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

18


paperswithcode.com/datasets

14.

15.

16.

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: Sec. 3
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Limitations and Societal Impact

Our SPC continuously generates data for reinforcement learning through adversarial games and has
achieved impressive results. However, our current experiments are limited to several representative
mathematical reasoning tasks. In future work, we plan to extend our approach to more general
domains to further demonstrate the potential of the proposed framework.

Potential negative societal impacts of this work may include the misuse of a sneaky generator. For
example, training a general sneaky generator to produce false and misleading information. On the
other hand, enhancing the robustness of LLMs against attacks and training a general critic to automate
the review of false information on the internet are also worthwhile research directions.

B Prompts

We demonstrate the prompts for generating data to initialize the sneaky generator and critic model.

Fig. @] shows the prompts for querying GPT-4 (gpt-4-turbo-2024-04-09) to obtain sneaky transforma-
tions. These prompts include the five predefined error types, as well as correct/incorrect step pairs
extracted from PRM8O0OK. GPT-4 needs to first select a corresponding error type and then output the
transformation process.

Figs.[5]and [6] illustrate the prompts we used to collect step-level critiques for initializing the critic
model. We first use the prompts in Fig. [5]to feed data from PRM80O0K into DeepSeek-R1-Distill-
Qwen-7B, collecting a batch of raw critiques. However, these critiques often do not follow our
instructions in a standard format, making it difficult for us to assess the correctness of the critiques.
Additionally, the responses are often too lengthy and include a lot of reflection and exploration,
which is not conducive to performing SFT on the base model. Therefore, we feed these raw critiques
(referred to as draft critiques in the prompt) into GPT-40 (gpt-40-2024-08-06) for refinement, as
shown in Fig.[6] By leveraging GPT-40’s strong instruction-following capabilities, we summarize the
unstructured critiques into a concise and standardized version for subsequent SFT training.

When actually training the sneaky generator and critic model, we make slight modifications to the
prompts mentioned above to avoid including incorrect steps that should be in the LLM output and
unnecessary information, such as draft critiques. As shown in Figs.[7]and [§] we demonstrate the
prompt templates for training the sneaky generator and critic model, respectively. These templates
also remain unchanged during testing, data generation for self-play, and reinforcement learning
processes.

C More Details

C.1 Evaluation Details

PRMB8OOK [23] is a dataset collected by OpenAl for training and evaluating process supervision
models. It is large in scale, containing 800K GPT-generated reasoning steps with human-annotated
correctness. Additionally, PRM800OK includes many pairs of correct and incorrect steps that share a
common partial solution. Therefore, we construct 1,341 pairs of steps from the test split to evaluate
model performance.

ProcessBench [27] is a benchmark with human-annotated step correctness, but it only includes a test
set for evaluating models. Compared to PRM800k, the reasoning steps in ProcessBench are more
diverse, comprising 3,400 cases from 12 different LLMs. All of these are math problems sourced
from four datasets, including GSM8K [56]], MATH [54], OlympiadBench [57] and Omni-MATH [58]].
For incorrect solutions, we only retain the first incorrect step, while we randomly sample one correct
step from a correct solution. We then feed the mixed 1,700 correct steps and 1,700 incorrect steps
along with their corresponding partial solutions into the critic models.

DeltaBench [335]] is the newest process benchmark focusing on evaluating long CoT collected from
different open-source reasoning models, such as R1 [21] and QwQ [22]. We only utilize the
math-related problems in this benchmark to evaluate model performance. Similarly, we retain the
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labeled erroneous steps and sample the same number of correct steps, totaling 1,542. Given that
existing PRMs baselines and our adversarial data generation process only collect short CoT data, this
benchmark is more challenging and can be utilized to evaluate the effectiveness of our critic models
in generalizing to popular reasoning models with long CoTs.

MATHS00 [23) [54]] and AIME2024 [37] are two highly popular benchmarks used to assess the
mathematical reasoning abilities of LLMs. The former consists of 500 competition-level math
problems, while the latter is derived from the American Invitational Mathematics Examination 2024.
We evaluate the performance of LLMs on these two benchmarks when assisted by different verifiers
in reasoning.

C.2 Preparing Data

For the SFT phase of the critic, we utilize the reasoning process data from PRM800K, along with
prompting GPT-4 and DeepSeek-R 1-Distill-Qwen-7B [21], to generate the required step-level critique
data. We employ human annotations from PRM800 to filter out correctly generated data, ultimately
obtaining 21.8K data, including 9.4K correct steps and 12.4K incorrect steps. As for the sneaky
generator, we also prompt GPT-4 to teach the LLM to transform the correct steps from PRM800K
into incorrect steps, finally collecting 13K data for SFT.

During the self-play phase, we use problems from the training set of PRM800K [23] to generate
adversarial data for reinforcement learning. We use a total of three types of LLM solvers (Llama-
3.1-8B-Instruct [10], Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct [[12])) to provide the initial
reasoning steps, in order to sample the correct steps and perform a sneaky transformation, which
are then fed to the critic for adversarial self-play. Since we need the LLM to complete from both
the original correct step and the sneaky step generated by the sneaky generator and compare the
problem-solving success rate to determine whether the sneaky step contains an error that can truly
affect the reasoning process, we first pre-generate 4 solutions for each problem and filter out those
that have a success rate of 0, which are inherently unsolvable. For the remaining problems, we
consider those with a success rate of 1/4 and 2/4 as medium difficulty level for this LLM, while those
with a success rate of 3/4 and 4/4 are considered relatively easy. We primarily use medium-level
problems to construct the training data, which ultimately accounts for 90% of the dataset, while easy
problems are retained at about 10% because the model can already solve these problems smoothly
without much additional learning and we only need a small amount of such data. These filtered
medium-level problems will have 16 solutions generated by each LLM solver and easy problems will
directly use the pregenerated 4 solutions. For each correctly predicted solution, one correct step is
sampled and performed sneaky transformation. The successfully transformed incorrect steps are then
further filtered for adversarial self-play.

The first round of self-play occurs between two SFT models (sneaky-0 and critic-0). We collect 6.4K
data for the critic model for reinforcement learning, with a 1:1 ratio of positive to negative samples.
Meanwhile, the sneaky generator receives 6K data, divided equally (2K each) into three scenarios:
failing to attack the LLM solver, successfully attacking the LLM solver but losing to the critic, and
successfully attacking the LLM solver while defeating the critic. The collected data in round 1 help
us iteratively update the models to sneaky-1 and critic-1. As mentioned in Sec. [3.5] we balance the
adversarial game to collect training data. Therefore, the second round of self-play occurs between
sneaky-1 and critic-0. We further collect 6.8K data for the critic model, maintaining a 1:1 ratio
between positive and negative samples, while continuing to gather 6K data for the sneaky generator,
with the three scenarios still evenly distributed at 1/3 each. Finally, the data from two self-play
rounds is merged to conduct offline reinforcement learning on sneaky-0 and critic-0, updating them
to sneaky-2 and critic-2, respectively.

C.3 Training Hyperparameters

In the SFT initialization phase for both sneaky generator and critic models, we employ a batch size
of 64 and a learning rate of 5Se-6. We train the models for 3 epochs, with the maximum sequence
length set to 4,096. To ensure both stability and convergence during training, we also incorporate a
KL penalty into the training loss, setting the KL coefficient at 0.1. During the reinforcement learning
of the self-play phase, we keep the batch size as 64 but use a learning rate of 2e-6. Except for setting
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the KL coefficient at 0.1, we also add an SFT loss with a coefficient of 0.15 to ensure the stability of
RL training.

D Case Analysis

As shown in Fig.[0] we present a comparison of critiques provided by two SPCs trained in round
0 and round 2. The input to the SPCs includes not only the system prompt (Sec. |B|but also the
problem, partial solution, and the last step of the current reasoning process within the blue box in the
figure. The last step contains a logical error, mistakenly identifying two expressions as unmatched.
The critique from the round 0 SPC considers the last step to be correct, agreeing with the view that
the expressions are inconsistent. However, the round 2 SPC, evolved through self-play training,
accurately identifies the type of error, namely a logical error (underlined in the figure), recognizing
that the two sides of the equation can be equivalently substituted. The entire analysis process is clear
and coherent, ultimately leading to the correct prediction that this step is incorrect.
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User Prompt

You are a math teacher. Given a math problem and a partial solution, you need to convert the last step of this partial solution to an incorrect step,
while ensuring the incorrect step is subtle enough to be easily overlooked.

You should follow these steps to converse the last step:

1. Analyze the given partial solution and the last step. Clearly explain the solving process in the last step.

2. Choose an appropriate error type from the "Predefined Error Types" to complete the error generation. Specify your error ge neration method
based on the current case, making the error less noticeable.

3. Step-by-step, write out the detailed error generation process for converting the Correct Last Step into the Incorrect Step.

4. Wrap the final incorrect step with <Answer> </Answer>.

Note: For each question, you will be given a reference incorrect last step. You need to convert to this reference incorrect | ast step, but **you must
not reveal that you know this reference step in advance during the conversion process!**

# Predefined Error Types

Error Type 1: Logical Error

Reference cases:

- incorrect orientation of geometric figures

- systematic counting error

- incomplete and inaccurate listing of factors

- Incorrect interpretation and connection of definitions
Error Type 2: calculation error

Reference cases:

- make incorrect simplification

- make incorrect factorization

- invalid algebraic operation

- substitution error

Error Type 3: Misunderstanding the Conditions.
Reference cases:

- Use imcomplete Condition

- Use contradictory condition

- misinterpretation of problem requirements

Error Type 4: Use Incorrect Rules/Formulas/Properties
Reference cases:

- incorrect identification of prime numbers

- misapplication of properties of complex numbers
- introduction of irrelevant inequality

Error Type 5: Incorrect Approach

Reference cases:

- incomplete solution

# Your Task

## Problem
{problem}

## Partial Solution
{partial_solution}

## Correct Next Step
{correct_step}

## (Reference) Incorrect Next Step
{incorrect_step}

## Your response

Figure 4: Prompt for querying GPT-4 to collect raw data of sneaky transformation CoT.
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User Prompt

You are a helpful critic. Given a math Problem, a Partial Solution, the current Last Step of the solution, You need to provide a critique for the
correctness of the Last Step.

You need to response a step-by-step analysis:

1. Analyzing the general thought of the Partial Solution.

2. Critique. You should write a brief critique here. This part should also maintain logical coherence with the summary of the general thought of the
Partial Solution.

3. Conclusion. At the end of the response, output \\boxed{{Correct}} or \\boxed{{Incorrect}} to represent the correctness of the Last Step.

## Problem
{problem}

## Partial Solution
{partial_solution}

## Last Step
{last_step}

Figure 5: Prompt for querying DeepSeek-R1-Distill-Qwen-7B to collect raw critiques with long CoT.

System Prompt

You are a helpful critic. Given a math Problem, a Partial Solution, the current Last Step of the solution, You need to provide a critique for the
correctness of the Last Step. You already have a Draft Critique, so you only need to rewrite it in a clearer and more concise format.

You need to response a step-by-step analysis:

1. Analyzing the general thought of the Partial Solution. If the Draft Critique includes this analysis, you can directly summarize from it.

2. Critique. You should write a new version of brief critique here. The current Draft Critique is accurate but may contain redundant information, such
as extensive consideration and attempts at derivation and analysis of the problem. You only need to select the useful analysis for the Last Step from
it. This part should also maintain logical coherence with the summary of the general thought of the Partial Solution.

3. Conclusion. Please draw a conclusion about the correctness of the Last Step. Based on the analysis of the provided Draft Critique, determine
whether the Last Step is correct or incorrect. If it is incorrect, you should also summarize a specific type of error, such as calculation error, logical
error, etc. At the end of the response, output <Answer>Correct</Answer> or <Answer>Incorrect</Answer> to represent the correctness of the Last
Step.

NOTE:

1. You need to refer to the draft critique, but pretend you didn't know this information beforehand, avoiding phrases like "the critique". Just write a
new version of the critique for the Problem, Partial Solution, and Last Step.

2. In your revised version of Critique, you only need to focus on the Last Step, and it is not necessary to solve the problem to obtain the final answer.
3. DO NOT write the conclusion first and then the explanations for it. Instead, in the Critique, you start with an analysis of the Last Step. Then, in the
Conclusion, drawing a conclusion about whether the Last Step is correct or incorrect.

4. The current partial solution may be incomplete, which is not an error type. You only need to focus on the correctness of the Last Step.

User Prompt
## Problem

{problem}

## Partial Solution
{partial_solution}

## Last Step
{last_step}

## Draft Critique
{draft_critique}

Figure 6: Prompt for querying GPT-40 to rewrite a long critique into a brief and standardized critique.
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System Prompt

You are a math teacher. Given a math problem and a partial solution, you need to convert the last step of this partial solution to an incorrect step,
while ensuring the incorrect step is subtle enough to be easily overlooked.

You should follow these steps to converse the last step:

1. Analyze the given partial solution and the last step. Clearly explain the solving process in the last step.

2. Choose an appropriate error type from the "Predefined Error Types" to complete the error generation. Specify your error ge neration method
based on the current case, making the error less noticeable.

3. Step-by-step, write out the detailed error generation process for converting the Correct Last Step into the Incorrect Step.

4. Wrap the final incorrect step with <Answer> </Answer>.

# Predefined Error Types

Error Type 1: Logical Error

Reference cases:

- incorrect orientation of geometric figures

- systematic counting error

- incomplete and inaccurate listing of factors

- Incorrect interpretation and connection of definitions
Error Type 2: calculation error

Reference cases:

- make incorrect simplification

- make incorrect factorization

- invalid algebraic operation

- substitution error

Error Type 3: Misunderstanding the Conditions.
Reference cases:

- Use Imcomplete Condition

- Use contradictory condition

- misinterpretation of problem requirements

Error Type 4: Use Incorrect Rules/Formulas/Properties
Reference cases:

- incorrect identification of prime numbers

- misapplication of properties of complex numbers
- introduction of irrelevant inequality

Error Type 5: Incorrect Approach

Reference cases:

- incomplete solution

User Prompt
# Your Task

## Problem
{problem}

## Partial Solution
{partial_solution}

## Correct Last Step
{correct_last_step}

## Your response

Figure 7: Prompt for training the sneaky generator.
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System Prompt

You are a helpful critic. Given a math Problem, a Partial Solution, the current Last Step of the solution, You need to provide a critique for the
correctness of the Last Step.

You need to response a step-by-step analysis:

1. Analyzing the general thought of the Partial Solution.

2. Critique. You should write a brief critique here. This part should also maintain logical coherence with the summary of the general thought of the
Partial Solution.

3. Conclusion. At the end of the response, output <Answer>Correct</Answer> or <Answer>Incorrect</Answer> to represent the correctness of the
Last Step.

User Prompt

## Problem
{problem}

## Partial Solution
{partial_solution}

## Last Step
{last_step}
Figure 8: Prompt for training the critic model.
e [ SPC Input J ~N
## Problem
Find all positive integers $n, k_1, \dots, k_n$ such that $k_1 + \cdots + k_n = 5n-4$ and \[ \frac{1}{k_1} + \cdots + \frac{1k_n} = 1. ]
## Partial Solution
To solve the problem, we need to find all positive integers \( n, k_1, \dots, k_n\) such that: First, \( k_1 + k_2 + \cdots + k_n = 5n - 4\) and
Second, \(\frac{1}{k_1} + \frac{1}{k_2} + \cdots + \frac{1}Kk_n} = 1\). We start by analyzing the second condition. The equation \( \frac{1}k_1} +
\frac{1}{k_2} + \cdots + \frac{1Xk_n} = 1\) suggests that \( k_1, k_2, \Idots, k_n\) are the denominators of a unit fraction sum that equals 1. A
well-known example is the Egyptian fraction representation.
## Last Step
For small values of \( n\), we can try to find solutions manually. First, consider the case\(n=1\). If\(n=1\), then\( k_1=5(1)-4=1\).
However, \( \frac{1}{k_1} = 1\) does not satisfy \( k_1=1\).
- J
4[ SPC Critique (Round 0) } [ SPC Critique (Round 2) ]7
### Analysis of the General Thought of the Partial Solution ### Analysis of the General Thought of the Partial Solution
The partial solution begins by analyzing the given conditions: \( k_1+k_2 The partial solution begins by analyzing the given conditions: \( k_1 +
+\cdots + k_n =5n-4\) and \( \frac{1}{k_1} + \frac{1}{k_2} + \cdots + k_2 +\cdots + k_n =5n - 4\) and \( \frac{1}{k_1} + \frac{1}{k_2} +
\frac{1Xk_n} = 1\). It correctly identifies that the second condition \cdots + \frac{1}{k_n} = 1\). It correctly identifies that the second
suggests the use of Egyptian fractions, which are sums of distinct unit condition suggests the use of Egyptian fractions, which are sums of
fractions that add up to 1. The solution then proceeds to test small values distinct unit fractions. The solution then proceeds to test small values
of \( n\) to find potential solutions. of \( n\) to find potential solutions.
#iHt Critique #### Critique
The last step of the partial solution considers the case \( n=1\). It In the last step, the solution considers the case \( n = 1\). It correctly
calculates \( k_1=5(1) - 4 = 1\) and then checks if \( \frac{1}{k_1} = 1\) calculates \( k_1=5(1) - 4 = 1\). However, it then incorrectly
satisfies the condition \( k_1 = 1\). The solution correctly identifies that concludes that \( \frac{1k_1} = 1\) does not satisfy \( k_1=1\). This
this does not satisfy the equation since \( k_1\) must be 1, but the sum of is a logical error. The equation \( \frac{1Kk_1} = 1\) does indeed
the reciprocals would be 1, which is consistent but does not meet the satisfy \( k_1= 1), as substituting \( k_1 = 1) into the equation
requirement of distinct denominators for \( n = 1\). gives \( \frac{1}{1} = 1), which is true.
### Conclusion ### Conclusion
The correctness of the last step is <Answer>Correct</Answer>. The correctness of the last step is <Answer>Incorrect</Answer>.

Figure 9: SPC critiques on ProcessBench before and after self-play training.
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