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ABSTRACT

Learning in games involves two main challenges, even in settings in which agents
seek to coordinate: convergence to equilibria and selection of good equilibria. Un-
fortunately, solving the issue of convergence, which is the focus of state-of-the-art
models, conveys little information about the quality of the equilibria that are even-
tually reached, often none at all. In this paper, we study a class of arbitrary-sized
games in which q-replicator (QRD), a widely-studied class of no-regret learning
dynamics that include gradient descent (GD), standard replicator dynamics (RD),
and log-barrier dynamics as special cases, can be shown to converge pointwise to
Nash equilibria. Turning to our main task, we provide both theoretical and experi-
mental results on the average case performance of different learning dynamics in
games. For example, in the case of GD, we show a tight average Price of Anarchy
bound of 2, for a class of symmetric 2×2 potential games with unbounded Price of
Anarchy (PoA). Furthermore, in the same class, we provide necessary and sufficient
conditions so that GD outperforms RD in an average case analysis giving novel
insights about two of the most widely applied dynamics in game theory. Finally,
our experiments suggest that unbounded gaps between average case performance
and PoA analysis are common, indicating a fertile area for future work.

1 INTRODUCTION

Multi-agent coordination often involves the solution of complex optimization problems. What makes
these problems so hard, even when agents have common (Bard et al., 2020) or aligned interests
(Dafoe et al., 2020; Dafoe et al., 2021), is that learning occurs on highly non-convex landscapes; thus,
even if the learning dynamics equilibrate, their fixed points may include unnatural saddle points or
even local minima of very poor performance (Dauphin et al., 2014). To address this issue, a large
stream of recent work has focused on the convergence of optimization-driven (e.g., no-regret) learning
dynamics to good limit points. Notable results include avoidance of saddle points and convergence
of first order methods, e.g., gradient descent, to local optima (Ge et al., 2015; Lee et al., 2019;
Mertikopoulos et al., 2019), point-wise or last-iterate convergence of various learning dynamics to
(proper notions of) equilibria in zero-sum (competitive) games (Daskalakis & Panageas, 2019; Bailey
& Piliouras, 2019; Cai et al., 2022) and convergence of no-regret learning to stable points in potential
(cooperative) games ()HeliouCM17,PPP17,DBLP:journals/corr/abs-2203-12056,Leo22.

Even though these results seem to provide a sufficient starting point to reason about the quality of
the collective learning outcome, unfortunately, this is far from being true. Non-trivial game settings
routinely possess attracting points of vastly different performance, and this remains true, even if one
is able to restrict attention to refined and highly robust notions of equilibria (Flokas et al., 2020).

Nevertheless, and despite the intense interest of the machine learning community to address the
problem of equilibrium selection, there is a remarkable scarcity of work in this direction. To make
matters worse, static, game-theoretic approaches to the problem (Harsanyi, 1973; Harsanyi & Selten,
1988; van Damme, 1987), offer little insight, often none at all, from a dynamic/learning perspective.
In this case, the challenge is to show approximately optimal performance not for (almost) all initial
conditions (which is not possible), but in expectation, i.e., for uniformly random chosen initial
conditions (worst-case versus average-case analysis). This is a fundamentally hard problem since
one has to couple the performance of equilibria to the relative size of their regions of attraction.
However, regions of attraction are complex geometric manifolds that quickly become mathematically

1



Under review as a conference paper at ICLR 2023

intractable even in low-dimensional settings. Importantly, their analysis requires the combination of
tools from machine learning, game theory, non-convex optimization and dynamical systems.

In terms of average case analysis of game theoretic dynamics in coordination/common interest games,
the only other references that we know of are Zhang & Hofbauer (2015); Panageas & Piliouras (2016).
In fact, Panageas & Piliouras (2016) is the key precursor to our work. Critically, whereas Panageas &
Piliouras (2016) focuses exclusively on a single dynamics, i.e., replicator dynamics and bounding its
average price of anarchy (APoA) in restricted instances of games such as Stag Hunt, we show how
these techniques can be applied much more broadly by addressing novel challenges:

• Axiomatic challenge: Can we formally define the notion of Average Price of Anarchy for large
classes of dynamics and games?

• Analytical challenge: Even if the definitions can be made robust how do we analyze these nonlinear
dynamical systems given random initial conditions in the presence of multiple attractors?

• Experimental/visualization challenge: Can we develop novel custom visualization techniques
as well as showcase that our experimental results have predictive power even in complex high
dimensional settings?

Figure 1: Vector fields of gradient
descent (top) and replicator dynam-
ics (bottom) for a game with payoff-
and risk-dominant equilibrium at the
bottom-left corner. The trajectories
in the region of attraction of the
good (bad) equilibrium are shown
in gray (red). The black solid and
dashed lines show the stable and un-
stable manifolds, respectively. In
this case, gradient descent outper-
forms replicator dynamic.

Model and Contributions. To make progress in addressing
these challenges, we study the q-replicator dynamics (QRD),
one of the most fundamental and widely-studied classes of
multi-agent learning dynamics that include gradient descent,
replicator and log-barrier dynamics as special cases (A. Gian-
nou, 2021). We start with our first motivating question which
we answer affirmatively by proving pointwise convergence of
all QRD dynamics to Nash equilibria (NEs) in almost all finite
potential games. Potential games include multi-agent interac-
tions in which coordination is desirable, congestion games and
games of identical interests as important and widely-studied
subclasses (Wang & Sandholm, 2002; Panait & Luke, 2005;
Carroll et al., 2019; Dafoe et al., 2020).

The proof of point-wise convergence to NEs combines recent
advances (Swenson et al., 2020)1 with standard convergence
techniques in the study of potential games, e.g., Palaiopanos
et al. (2017b). Such techniques have been used to either es-
tablish convergence of QRD to NEs under the assumption of
point-wise convergence (Mertikopoulos & Sandholm, 2016)
or prove convergence to limit cycles of (restricted) equilib-
rium points (Mertikopoulos & Sandholm, 2018). However,
whereas in previous works such results are the main focus, in
our case they are only the starting point as they clearly not
suffice to explain the disparity between the regularity of QRD
in theory (bounded regret, convergence to Nash equilibria) and
their conflicting performance in practice (agents’ utilities after
learning).

We then turn to our second question and the fundamental prob-
lem of equilibrium quality. While different QRD dynamics
may reach the same asymptotically stable equilibria, this is
only a minimal and definitely not sufficient condition to com-
pare their performance. In particular, the regions of attraction
of these common attracting equilibria, i.e., the sets of conver-
gent initial conditions, can be very different for different QRD
dynamics.

1Specifically, Swenson et al. (2020) shows that all NEs in almost all potential games are regular in the sense
of Harsanyi, i.e., they are isolated and highly robust Harsanyi (1973); van Damme (1987). Almost all refers to a
set whose complement is a closed set with Lebesgue measure zero.
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In our main technical contribution, we tackle this task by providing geometric insights into the shapes
and sizes of the regions of attractions of different QRD dynamics. We show that in a class of two-
agent potential games, gradient descent reaches the payoff-dominant (socially optimal) equilibrium
more often than standard replicator whenever this equilibrium is also risk-dominant (less risky), see
Figure 1. As an implication, we study a class of games in which the Price of Anarchy is unbounded,
i.e., in which the worst-case equilibrium can be arbitrarily worse than the socially optimal outcome
(Panageas & Piliouras, 2016), and derive a (tight) upper bound of 2 for the Average Price of Anarchy
for the gradient descent dynamics and all instances of the class in which the risk- and payoff-dominant
equilibria coincide. This is the first such tight result of its kind.

Conceptually, our methods provide a systematic approach to explore the design and hyperparameter
space of learning dynamics and extend recent advances towards a taxonomy of learning dynamics
in low-dimensional or general potential games (Panageas & Piliouras, 2016; Pangallo et al., 2022).
More importantly, they signify the expressiveness in this task of performance measures that couple
the likelihood of convergence to a certain outcome (region of attraction) with the performance of
an algorithm at this outcome. From a practical perspective our findings admit a dual interperation.
On the one hand, they provide concrete recommendations about the optimality of different QRD
dynamics based on the features of the underlying game. On the other hand, they suggest, that even in
the simplest possible classes of games, there is not a single optimal QRD dynamic to beat them all.

Intriguingly, the above results hinge on two interconnected, yet fundamentally different, theories. The
first part (convergence), relies on the theory of Lyapunov analysis and the properties of dissipative
systems, i.e., systems that lose momentum over time till they converge to a steady state.By contrast, the
second part, i.e., the qualitative analysis of the different parametrizations of the QRD dynamics, relies
on the existence of invariant functions that characterize stable and unstable areas in the state space of
such systems (Palaiopanos et al., 2017a; Nagarajan et al., 2020). The existence of invariant functions,
however, is a feature most often studied in conservative systems, a fundamentally orthogonal principle
to the one of dissipation.

2 PRELIMINARIES: GAME-THEORETIC AND BEHAVIORAL MODELS

Game-theoretic model. A multi-agent finite potential game Γ := {N , (Ak, uk)k∈N ,Φ} denotes
the interaction between a set N := {1, . . . , n} of agents. Each agent k ∈ N has a finite set
of actions, Ak, with size |Ak|, and a reward function uk : A → R where A :=

∏
k∈N Ak is

the set of all pure action profiles of Γ. Agents may use mixed actions or choice distributions,
xk = (xkak

)ak∈Ak
∈ Xk, where xkak

is the probability with which agent k uses their action
ak ∈ Ak and Xk := {xk ∈ R|Ak| |

∑
ak∈Ak

xkak
= 1, xkak

≥ 0} is the (|Ak| − 1)-dimensional
simplex. Given any mixed-action xk ∈ Xk, we will write supp(xk) := {ak ∈ Ak | xkak

> 0}
to denote the support of the action xk, i.e., the set of all pure actions ak ∈ Ak that are selected
with a positive probability at xk. Using conventional notation, we write s = (sk, s−k) ∈ A and
x = (xk, x−k) ∈ X :=

∏
k∈N Xk to denote the joint pure and mixed action profiles of Γ, where

s−k and x−k are the vectors of pure and mixed actions, respectively, of all agents other than k.
When time is relevant, we will use the index t for all the above, e.g., we will write xk(t) for agent
k’s choice distribution at time t ≥ 0. The function Φ : A → R is called a potential function of
Γ and satisfies uk(s) − uk(s

′
k, s−k) = Φ(s) − Φ(s′i, s−i), for all k ∈ N and all s, s′ ∈ A. The

agents’ reward functions and the potential function extend naturally to mixed action profiles with
uk(x) = Es∼x[uk(s)] and Φ(x) = Es∼x[Φ(s)].

Regular Nash and restricted equilibria. A Nash equilibrium (NE) of Γ is an action profile x∗ ∈ X
such that uk(x∗) ≥ uk(xk, x

∗
−k), for all k ∈ N and for all x ∈ X . By linearity of expectation, the

above definition is equivalent to:
uk(x

∗) ≥ uk(ak, x
∗
−k), for all ak ∈ Ak, and all k ∈ N , (1)

where uk(ak, x∗−k) denotes the reward of agent k when they play the pure action ak, versus the mixed
strategies x∗−k for the rest of the agents. Let NE(Γ) denote the set of all NE of Γ. A NE is called
symmetric if x∗1 = . . . = x∗n, and is called fully mixed if supp(x∗) =

∏
k∈N supp(x∗k) = A. A NE

is called regular if it satisfies the following definition.
Definition 2.1 (Regular Nash equilibria (Harsanyi, 1973; Swenson et al., 2020)). A Nash equilbrium,
x∗ ∈ NE(Γ), is called regular if it is (i) quasi-strict, i.e., if for each player k ∈ N , x∗k assigns positive
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probability to all best responses of player k against x∗−kall best responses of each player k ∈ N to
x∗−k are contained in x∗k, and (ii) second-order non-degenerate, i.e., if the Hessian, H(x∗), taken
with respect to supp(x∗) is non-singular.

Finally, a restriction of Γ is a game Γ′ := {N , (A′
k, u

′
k)k∈N }, where A′

k ⊆ Ak and u′k : A′ → R is
the restriction of uk to A′ :=

∏
k∈N A′

k for all k ∈ N . An action-profile x ∈ X is called a restricted
equilibrium of Γ if it is a Nash equilibrium of a restriction of Γ, cf. Mertikopoulos & Sandholm
(2018). It is easy to see that all restrictions of a potential game Γ := {N , (Ak, uk)k∈N ,Φ} are
potential games, whose potential functions are restrictions of Φ to the respective subspaces of A.

Behavioral-learning model. The evolution of the agents’ choice distributions (or mixed actions) in
the joint action space X is governed by the q-replicator dynamics (QRD) which are the parametric
dynamics described by the system of differential equations (equations of motions) ẋ := Vq(x), where
Vq : X → R|A| is given by:

ẋkak
= xqkak

(
uk(ak, x−k)−

∑
aj∈Ak

xqkaj
uk(aj , x−k)∑

aj∈Ak
xqkaj

)
, for all k ∈ N , ak ∈ Ak, (QRD)

for any q ≥ 0. Special cases of the above dynamics are the projection or gradient descent (GD)
dynamics, for q = 0, the the standard replicator (RD) dynamics, for q = 1, and the log-barrier or
inverse update dynamics, for q = 2 (Mertikopoulos & Sandholm, 2018; A. Giannou, 2021).

3 POINTWISE CONVERGENCE OF QRD TO NASH EQUILIBRIA

Our results consist of two parts. In the first part, which is the subject of this section, we show
convergence of QRD to Nash equilibria in a class of potential games, which we term perfectly-regular
potential games, whose definition follows.

Definition 3.1 (Perfectly-regular potential games). A potential game Γ is called regular if it has only
regular Nash equilibria. A regular potential game is called perfectly-regular potential game (PRPG)
if all its restrictions are regular potential games, i.e., if they only possess regular Nash equilibria.

Almost all potential games are PRPGs; this is a generalization of Swenson et al. (2020) who prove
that almost all potential games are regular. Furthermore the PRPG class contains other important
subclasses of games, e.g., congestion games, as well as games with identical reward functions, which
are currently widely studied in the context of cooperative artificial intelligence (Wang & Sandholm,
2002; Panait & Luke, 2005; Carroll et al., 2019; Dafoe et al., 2020). The convergence result is stated
formally in Theorem 3.2; its complete proof may be found in ??.

Theorem 3.2 (pointwise convergence of QRD to NE in PRPGs). Given any perfectly-regular
potential game (PRPG), Γ, and any interior initial condition x(0) ∈ intX , the q-replicator dynamics,
defined as in equation QRD, converge pointwise to a Nash equilibrium x∗ of Γ for any parameter
q ≥ 0. Furthermore, the set Q(intX ) :=

⋃
x0∈intX {x∗ ∈ X | limt→∞ x(t) = x∗, x(0) = x0}, i.e.,

the set of all limit points of interior initial conditions, is finite.

Sketch of the proof. The proof of Theorem 3.2 proceeds in two steps, which utilize the properties
that (i) PRPGs have a finite number of regular equilibria, and (ii) the probability of optimal actions
near an equilibrium point is increasing in time with respect to the QRD. In the first step, we prove
that for any initial condition, the sequence of joint action profiles x(t)t≥0 that is generated by QRD
for any q ≥ 0 converges to a restricted equilibrium of a PRPG, Γ. This relies on the fact that the set
of cluster (limit) points of the trajectory—also called the ω-limit set—is a finite, and in fact, as we
show, a singleton (a single element set) for any PRPG. In turn, this follows from the fact that a PRPG
provably contains only a finite number of restricted equilibria.

Having established convergence to restricted equilibria, in the second step, it remains to show that,
in fact, any such limit point has to be a NE of Γ, i.e., we need to exclude convergence to restricted
equilibria that are not NE of Γ. To establish this, we couple the structure of PRPGs, which ensures that
there is a finite number of (regular) restricted equilibria, with the nature of QRD which guarantees
that in the vicinity of a limit point, optimal actions, i.e., best responses, need to be played with
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increasingly higher probability. Thus, all actions in the support of the limit choice distribution of
each agent must be best responses against the actions of all other agents, which implies that all points
that can be reached by QRD are NE of Γ.

In other words, Theorem 3.2 says that for almost all potentials games and almost all initial conditions,
QRD converge to a NE of the game.An important implication of Theorem 3.2 is that, when one is
reasoning about the quality of the collective learning outcome in cooperative multi-agent settings
(as captured by PRPGs), they can restrict their attention to NE. However, reverting to off-the-shelf,
static performance measures that compare the quality of different NE, we only obtain results that
are meaningless, if not misleading, from a dynamic/learning perspective. The reason is that certain
bad (or sometimes even good) NE may be reachable only from a very small set of initial conditions.
Thus, we need to develop and argue about average performance measures that couple the outcome of
the learning process (NE of an PRPG), with the likelihood that such an outcome is reached by the
given learning dynamic (region of attraction of this NE). This is the subject of the next section.

4 QUALITY OF THE COLLECTIVE LEARNING OUTCOME

When static performance metrics fail. Having established that in the landscape of potential games,
QRD converge almost surely to Nash equilibria, we next turn our attention to the main challenge of
quantifying the quality of the collective learning outcome. In order to do that, one would first have to
establish appropriate performance metrics. In a static regime, we can rely in a variety of meaningful
metrics, e.g., the Price of Anarchy (PoA) (Koutsoupias & Papadimitriou, 1999; Christodoulou &
Koutsoupias, 2005; Roughgarden, 2015), which is defined as the ratio between the socially worst
NE of the game and the socially optimal outcome, where the social-optimality of an outcome x ∈ X
is measured with respect to the social welfare SW(x) :=

∑
k∈N uk(x), i.e., the total reward of

the agents. The PoA is a natural static metric that one may consider in a PRPG setup. After all,
coordination is the essence of potential games, which typically model multi-agent settings where this
is a desirable property. However, it is not difficult to find PRPGs where the PoA fails to provide any
meaningful information about the game. Let us consider the following example:
Example 4.1 (A simple example of unbounded performance loss). Consider the parametric 2× 2-
PRPG, Γw, i.e., a 2-player 2-actions PRPG, with payoff functions uw,1(s1, s2) = uw,2(s2, s1) =
Aw(s1, s2), where the matrix Aw ∈ R2×2 is given by:

Aw =

(
1 0
0 w

)
, 1 ≤ w. (2)

The games, Γw, are already expressive enough to capture the aforementioned problem. In order to
see this, observe that the NE that corresponds to x1 = (1, 0) and x2 = (1, 0) has social welfare
equal to SW(x) = 1 + 1 = 2 but the NE that corresponds to x′1 = (0, 1) and x′2 = (0, 1) has
SW(x′) = w+w = 2w. Since w can take any value larger than 1, the difference in performance can
be arbitrary large with respect to the PoA. Specifically, PoA(Γw) =

SW(x′)
SW(x) = w → ∞ as w → ∞.2

4.1 REGIONS OF ATTRACTION AND AVERAGE PERFORMANCE MEASURES

While useful in static environments, the PoA metric fails to capture the dynamic nature of multi-agent
learning. In particular, it does not provide an answer to the question:

How likely is it for the agents to reach a good or bad outcome given that the
multi-agent system converges?

To answer this question and argue about the collective performance of the game dynamics, we need
to quantify the likelihood of each outcome when we the initial conditions of the system are randomly
sampled. A region of attraction of a given outcome formalizes this notion.

2Note about notation: In a 2 × 2-game, one usually abuses notation and writes x, y ∈ [0, 1] (instead of
(x, 1− x) and (y, 1− y)) to denote the mixed choice distributions of players 1 and 2, respectively. Then, all
notions that we presented in Section 2 may be viewed as functions of x, y. For example, we could have written
SW(1, 1) to denote the social welfare of the NE that corresponds to x = y = 1. In this section we are going to
interchange between the two notations, but our choice is always going to be clear by the context.
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Definition 4.2 (Regions of attraction). Let Γ be any game and assume that its joint action profile,
x ∈ X , is evolving according to the equations of motion ẋ = f(x). Then for any x∗ ∈ X , the set
RoAf,Γ(x

∗) := {x0 ∈ X | limt→∞ x(t) = x∗, x(0) = x0} is called the region of attraction (RoA)
of x∗ with respect to the dynamics f .

In other words, the RoA of a point x∗ ∈ X is the set of all initial conditions in X for which the
dynamics asymptotically converge to x∗. Note that RoAs do not intersect. If we can determine the
regions of attraction of some game dynamics, then given a certain static performance metric, e.g.,
the social welfare, we can define a corresponding average-performance metric that weighs-in all
possible outcomes, in the sense of limit points, according to their likelihood of occurring with respect
to the given dynamics. In order for this average to be meaningful, a minimum requirement, is that the
dynamics converge for almost all, i.e., all but a measure zero, initial conditions. Formally, an average
performance metric is defined as follows3:
Definition 4.3 (Average-performance metric). Let Γ be a multi-agent game and assume that its joint
action profile, x ∈ X , is evolving according to the equations of motion ẋ = f(x). Let X0 ⊆ X
be a set of initial conditions such that the set of convergence points Q(X0) is finite. Then, given a
performance metric g : X → R of Γ, the average-performance of the dynamics governed by f in Γ
with respect to the performance metric g and the set of initial condition X0, is given by

APMg,X0(f,Γ) :=
∑

x∗∈Q(X0)

µ(RoAf,Γ(x
∗)) · g(x∗), (APM)

where µ is a probability measure on X0.

In other words, an APM is the expected optimality of a random initialization of the dynamics in
X0 ⊆ X with respect to some metric g. For instance, if the performance metric g is the social welfare,
then the average-performance metric with respect to g measures the expected social welfare of the
system for any random initialization in X0. The average-performance metric that we are going to
use in the remainder of this section is the Average Price of Anarchy (APoA). The APoA is an APM
with respect to the social welfare, re-normalised such that the APoA is greater than equal to 1, with
equality only if (almost) all the initial conditions converge to the socially optimal outcome of the
system. Formally, given a multi-agent game Γ, equations of motion ẋ = f(x) that describe the
evolution of the agents actions in Γ, and a set of initial conditions X0 ⊆ X that consists of almost all
X , the APoA is given by the formula:

APoA(f,Γ) =
maxx∈X SW(x)

APMSW,X0
(f,Γ)

. (APoA)

Here, it is important to note that Definition 4.3 does not ensure that an APM is always a meaningful
metric for the system. However, as long as one can prove that (i) the dynamics converge pointwise to
some x∗ ∈ Q(X ) ⊆ NE(Γ) for almost all initial condition x0 ∈ X , and (ii) the set of limit points,
Q(X ), is finite —two conditions that are satisfied by any PRPG that evolves with respect to some
QRD (cf. Theorem 3.2)—the APoA has an intuitive interprentation. Specifically, in this setup, the
APoA is always bounded between the PoA and the Price of Stability (PoS) of the game, i.e., the ratio
between the socially optimal outcome and the socially optimal NE.

4.2 THE TAXONOMY OF QRD IN 2× 2 PRPGS

To systematically evaluate and compare the performance of different QRD in perfectly-regular finite
potential games, we address the case of symmetric 2× 2 coordination games, i.e., games in which
one can change the identities of the players without changing the payoff to the actions. Such games
constitute one of the current frontiers in terms of classification of game-dynamics (Zhang & Hofbauer,
2015; Pangallo et al., 2022). Such games are trivially potential games and include games of identical
payoffs as special cases. Omitted definitions and proofs of this section may be found in ??.

Representation of symmetric 2× 2 PRPGs. Recall that a NE, x∗, of a symmetric potential Γ is
called payoff-dominant if uk(x∗) ≥ uk(x

′) for all x′ ∈ NE(Γ), and it is called risk-dominant if x∗ is

3For this definition, recall that a probability measure µ on a compact space X is a σ-additive function from
the powerset of X to R+ such that µ(X ) = 1 and µ(X ′) ≥ 0 for all X ′ ⊆ X .
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unilaterally optimal against the uniform distribution of the rest of the agents. All symmetric 2× 2
PRPGs can be conveniently represented by the parametric class of games Γw,β , with payoff functions
uw,β,1(s1, s2) = uw,β,2(s2, s1) = Aw,β,s1,s2 , where the matrix Aw,β ∈ R2×2 is given by:

Aw,β =

(
1 0
β w

)
, β ≤ 1 ≤ w. (3)

The game Γw,β has the same NE as the original game, retains the payoff- and risk-dominance
properties of its equilibrium points, and preserves the limiting behavior of any QRD (see ??). Each
game Γw,β has three NE, two pure at x = y = 0 and x = y = 1, with social welfare SW(0, 0) = 2w
and SW(1, 1) = 2, respectively, as well as one fully-mixed NE at:

x∗ = y∗ = α :=
w

w + 1− β
. (4)

For convenience, we are going to refer to the first pure-NE as xw. Note that xw is payoff-dominant
for any parametrization Γw,β , and it is also risk-dominant whenever w > 1 − β, or equivalently,
whenever α > 0.5. The first result of this section states that whenever the risk- and payoff-dominant
equilibria of Γw,β coincide, i.e., α ≥ 0.5, then the gradient descent dynamics, i.e., the 0-replicator
dynamics, perform better (or equally in the generic case α = 0.5) on average than the standard
replicator dynamics with respect to the social welfare of their outcomes, i.e., they yield a smaller
APoA. In any other instance of these games, i.e., for α < 0.5, the RD perform better than GD with
respect to the same metric.
Theorem 4.4 (Performance of QRD in symmetric 2× 2 PRPG). Given any 2× 2 symmetric PRPG,
which, without any loss of generality, can be represented as an instance Γw,β , it holds that

APMSW,intX (V0,Γw,β) ≥ APMSW,intX (V1,Γw,β) (5)

if and only if whenever the payoff-dominant equilibrium is also risk-dominant, with equality only
when if and only if α = 0.5, i.e., w = 1 − β, where V0, V1 are the equations of motion of the
0-replicator and 1-replicator dynamics, respectively equation QRD.

Interpretation of Theorem 4.4. The proof of Theorem 4.4 proceeds with a first order analysis
of the manifolds that separate the regions of attractions of the two pure equilibria for the different
dynamics (cf. Figures 2 and 3). When comparing the gradient descent (GD) dynamics and the
replicator dynamics (RD), the main implication of this theorem is that the expected social welfare is
optimized by GD whenever risk and payoff-dominant equilibria coincide and is optimized by RD
when risk and payoff-dominant equilibria differ. More generally, this result may be interpreted in
two ways. On the one hand, it provides a concrete recommendation on the optimal behavior of the
agents (GD versus RD) based solely on the properties of the underlying game. On the other hand, it
suggests that even in the low-dimensional setting of 2 × 2 potential games, there is not a uniform
recommendation, and the optimal behavior largely depends on the features of the underlying game.
As it turns out, in this case, the decisive feature is the riskiness of the payoff-dominant equilibrium.

Generalization to all QRD. Technically, the proof of Theorem 4.4 uses tools that are orthogonal
to the Lyapunov analysis, and the theory of dissipation of dynamical systems, that we used to prove
convergence to NE in section 3. It leverages the constants of motion or invariant functions (Nagarajan
et al., 2020), i.e., quantities that remain constant along the trajectories of the learning dynamics. The
rationale is that if one could identify such a function, then, by finding its value at the unique mixed
equilibrium α of the game, they can determine all initial conditions that asymptotically converge
to it: these will be all points at the same level set of the invariant function. The manifold, i.e., the
geometric locus, of all the points that converge to the equilibrium, i.e., the stable manifold of α, is
the one that separates the regions of attractions of the two pure NE of the game. Because of this
property, we may also refer to the stable manifold of the mixed NE as the separatrix (Panageas &
Piliouras, 2016). Note that, since the dynamics are also backward-invariant (Panageas & Piliouras,
2016; Mertikopoulos & Sandholm, 2018), their level-set will also contain a set of initial conditions
that converge to it when moving backward in time. This points constitute the unstable manifold of α.
In the following lemma we identify such an invariant for all QRD.
Lemma 4.5 (Invariant functions of QRD in 2 × 2 symmetric PRPGs). Given a 2 × 2 symmetric
PRPG, Γw,β , whose agents evolve with respect to the q-replicator dynamics, the separable function
Ψq : (0, 1)2 → R with Ψq(x, y) := ψq(x)− ψq(y), where ψq : (0, 1) → R is given by:
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Figure 2: The invariant function, Ψq(x, y), for all x, y ∈ [0, 1]2 in the game Γw,β for w = 2, β = 0,
and various values of q: q = 0 (gradient descent), q = 1 (standard replicator), q = 2 (log-barrier),
and q = 20. The invariant function becomes very steep at the boundary as q increases, taking both
arbitrarily large negative (dark) and positive (light) values in the vicinity of the NE.

ψq(x) =


x2−q + (1− x)2−q − 1

2− q
+

1− αx1−q − (1− α)(1− x)1−q

1− q
, q ̸= 1, 2,

α ln(x) + (1− α) ln(1− x), q = 1,

ln(x) + ln(1− x) +
α

x
+

1− α

1− x
, q = 2,

(6)

remains constant along any trajectory {x(t), y(t)}t≥0 of the system. The function Ψq(x) is continuous
with respect to the parameter q at, both, q = 1 and q = 2, since limq→1 Ψq(x) = Ψ1(x) and
limq→2 Ψq(x) = Ψ2(x) for all x ∈ (0, 1).

Figure 4: Stable manifold (separatrix) for all
different values of q ∈ [0, 10] (from blue to
brown) in the Γw,β game for w = 2 and β = 0.
The manifolds for q = 0, q = 1, and q =
2 are shown in shades of black for reference
(cf. Figure 3). The region of attraction of
the payoff-dominant equilibrium (bottom-left
corner) shrinks as q increases.

In Figure 2, we visualize the invariant function,
Ψq(x, y), for x, y ∈ (0, 1)2 for various values of
q ∈ [0, 20]. From the panels of Figure 2, it is
also evident that Ψq(x, y) acts as a handy tool to
visualize the regions of attraction of the two pure
NE of the game. Namely, at the unique mixed
NE, i.e., at x = y = α, the invariant function,
Ψq, is equal to 0. The same holds for any point
(x, y) ∈ (0, 1)2 with x = y. Thus, we can factor-
ize Ψq(x, y) as Ψq(x, y) = Ψq,Stable(x, y) · (x− y)
where Ψq,Stable(x, y) = 0 is precisely the geomet-
ric locus of all points (x, y) ∈ (0, 1)2 such that
limt→∞ x(t) = α, and y = x is the geometric locus
of all points such limt→−∞ x(t) = α. These two
manifolds constitute the stable and unstable mani-
folds, respectively, of the q-replicator dynamics.

Since the invariant function Ψq(x, y) takes the value
0 only at the stable and unstable manifolds, we can
visualize the separatrix for different values of q by
plotting the 0-level set of the invariant functions in
Figure 2. These are depicted in Figure 3. As a sanity

check, we also see from Figure 3 that the region of attraction of the payoff-dominant equilibrium for
q = 0 (GD dynamics) is larger than the region of attraction for q = 1 (RD).

Empirical evidence for the monotonicity of the APM with respect to q. If we stack the stable
manifolds (solid blue lines) in the panels of Figure 3, it becomes evident that the region of attraction
of the payoff-dominant and risk-dominant equilibrium grows as q decreases to 0. This is depicted in
Figure 4 for all values of q ∈ [0, 10] (the progression of the surface remains essentially unchanged for
larger q). Analogous plots (but with the results reversed as predicted by Theorem 4.4) can be generated
for instances of Γw,β , in which the risk-dominant equilibrium is different from the payoff-dominant
one, as well as, for 2× 2 generic PRPGs (cf. section 4). In general, putting together Theorem 4.4
and the aforementioned visualizations, we have both theoretical and empirical evidence that the
region of attraction of the payoff-dominant equilibrium in Γw,β is decreasing (increasing) in q for
q ≥ 0 whenever this equilibrium is (is not) risk-dominant. Formal verification of the monotonicity of
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Figure 3: The stable manifolds, Ψq,Stable(x, y) = 0, (solid blue lines) for the same values of q and
the same instance of Γw,β as in Figure 2, in which the payoff- and risk- dominant NE is at the bottom
left corner. For all q, the separatrix goes through the mixed NE at the intersection of the x∗ (dashed
red) and y∗ (dashed black) coordinates. All panels also include the unstable manifold defined by
x − y = 0 (dashed blue line). The region of attraction of the payoff-dominant NE is larger for all
values of q; however, this is because this NE is also risk-dominant, cf. Theorem 4.4.

the stable manifolds the regions of attractions with respect to q in the QRD parametrization remains
open.

Figure 5: APoA of a 2 × 2 symmetric
PRPG for the gradient descent dynamics
and various values of β and w. The APoA
is upper bounded by 2 (dark to light val-
ues) as shown in Theorem 4.6.

Application: APoA in 2 × 2 PRPGs. We conclude
this section by providing a concrete result regarding the
evaluation of the APoA average-performance measure
in the class of 2 × 2 symmetric PRPGs, which show-
cases the practical importance of Theorem 4.4 and the
invariant function approach.

Theorem 4.6. The APoA of GD dynamics in all 2 ×
2 symmetric PRPGs, Γw,β , is bounded by 2, i.e.,
APoA(V0,Γw,β) ≤ 2. Furthermore, this bound is tight.

The bound also holds for β = 1 − w, but in this case,
there exists no risk-dominant equilibrium. The proof of
Theorem 4.6 essentially proceeds by first order analysis
of the function depicted in Figure 5 which, in turn, de-
pends on the invariant function of the gradient descent
dynamic. One way to see that this bound is tight, is to
set β = 1− w + ϵ, for a small ϵ > 0 and let w increase (cf. Figure 5). In combination Theorem 4.4
and Theorem 4.6 imply that the APoA of the RD (QRD with q = 1), is not upper bounded by 2
whenever α < 0.5, i.e., whenever the risk- and payoff-dominant equilibria are different. However,
for the case α > 0.5, the separatrices for all q ≥ 0 as visualized in Figure 4, (empirically) imply that
similar bounds hold for all values of q.4 In ??, we run simulations of q-replicator dynamics which
provide evidence that the statement of Theorem 4.4 and the bound of Theorem 4.6 continue to hold
in PRPGs of higher dimensions, i.e., beyond the 2× 2 setting.

5 CONCLUSIONS

In this paper, we studied the class of q-replicator dynamics (QRD), and showed that all QRD converge
pointwise to Nash equilibria in perfectly-regular potential games, a class of games that encompasses
almost all potential games, i.e., the standard models of multi-agent coordination. The convergence
of QRD in these settings is remarkably robust, occurring regardless of the number of agents or
actions and for all possible parametrizations of QRD. From the perspective of equilibrium selection
and quality, however, convergence provides little information, often none at all. Turning to this
challenging problem, we provided geometric insights into the reasons why different dynamics exhibit
fundamentally different performance despite their convergence to the very same set of attracting
points. Our techniques leverage two intertwined, yet orthogonal to each other elements of dynamical
systems theory: dissipation (Lyapunov theory) and conservation (invariant functions).

4To avoid confusion, in Figure 4, we visualize the stable manifolds for the case in which GD are the dynamics
with the largest region of attraction, i.e., has the lowest APoA. The case α < 0.5, in which the manifolds are
simply mirrored on the y = 1− x diagonal, is in ??.
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