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Abstract

Creating secure systems is challenging; Defenders have to be right all of the time, but
attackers only need to be right once. Thus, security evaluations need to employ a variety
of attack strategies to identify gaps in the system’s defensive posture. In Machine Learning
(ML), we often focus our security evaluations on the model, evaluating as many known
attacks as possible or using an assumed representative ensemble of attacks to ensure coverage
across many possible attack scenarios. However, it is not uncommon for evaluators, e.g.,
reviewers of a defense proposal, to be presented with a security evaluation resulting from an
attack ensemble and still request additional attack evaluations.

In this paper, we study the effectiveness of additional evaluations and re-examine the effi-
ciency of current adversarial robustness evaluation approaches for classification models. Al-
though security evaluations have become increasingly costly due to the increased model scale
and dataset size, defensive evaluations still involve running numerous attacks. Even when
reviewing an evaluation, additional evaluations may be requested. There is safety in num-
bers, and what if additional attacks reveal a lack of diversity in the attack scenarios explored
by the original evaluation? We examine the question of: "How much more information is
learned about the robustness of a defense after the first attack evaluation?'. Through three
possible lenses of attack diversity, we show that both gradient-based and gradient-free at-
tacks lack any notable variation within their respective classes. A single well-performing at-
tack from each attack class is enough to make a general determination of robustness. When
compared to a state-of-the-art and widely used four-attack ensemble, AutoAttack, the sim-
ple two-attack ensemble, consisting of one high-performing attack of each class, only differs
in evaluation precision by 0.79%.

1 Introduction

In today’s rapidly evolving technological landscape, Machine Learning (ML) stands at the forefront, driving
innovations from healthcare to cybersecurity. As the reliance on ML-based systems grows, evaluating their
robustness and security becomes increasingly critical, as vulnerabilities can have far-reaching consequences.
One of the most studied ML vulnerabilities, known as evasion attacks (Biggio et al., 2013 |Goodfellow
et al.l 2015} [Szegedy et al.l 2014)), seeks to manipulate an ML model’s output by introducing imperceptible
manipulations in its inputs.

Creating secure ML models is challenging, as the defender must protect against a wide range of potential
attacks, while the attacker only needs to find a single successful attack. This asymmetry creates a significant
burden on defenders, who must anticipate and mitigate numerous attack vectors, often with limited resources.
Conventionally, the adversarial ML. community has relied on attack ensembles to determine the robustness
of ML models. Early on, such ensembles contained as many attacks as possible, largely based on their
popularity, and defenses that were robust against these ensembles were deemed robust against all attacks
within the threat model. However, such ensembles were later shown to be unreliable as the corresponding
defenses were compromised by ignored existing attacks, sometimes with small modifications (Engstrom et al.)
2018; |Athalye et al.l 2018 [Tramer et al.l |2020). To remedy this issue, prior works (Croce & Heinl 2020bj
Sheatsley et al., 2023) have proposed ensembles of diverse attacks reflecting a wide range of attack strategies.
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For example, AutoAttack (Croce & Hein, |2020b) selects attacks that vary their loss function, attack objective
formulation, or optimization algorithm. PEA (Sheatsley et al.,|2023)), instead, exhaustively explore the entire
attack space by varying the key components of adversarial attacks observed in the literature, which is more
precise than AutoAttack, but also an order of magnitude more costly. Both of these strategies, however,
miss the evaluation goal: Is my system secure? We argue that, in most cases, the goal of an adversarial
evaluation is to answer this simple binary question. If one evaluation measures the attack success rate to
be 41% and another measures it to be 43%, the same conclusion is reached: my system is not secure and
can be improved. AutoAttack was novel because its selection of attacks would sometimes reveal large gaps
between the reported robustness and the measure robustness, due to gradient obfuscation.

In this paper, we analyze redundancy in adversarial evaluations by examining the diversity among evasion
attacks. Rather than characterizing diversity with respect to the attack components, we study it with respect
to the attack outcomes:

o Attack Performance. Given two or more attacks, what is the improvement in attack success rate as the
ensemble increases in size?

o Inter-class Misclassification. Given the ground-truth label of an input sample, do different adversarial
attacks result in different misclassifications?

o Adversarial Input Similarity. Given two attacks or more, how similar are the adversarial inputs they
generate?

If two or more attacks with different parameters are similar across all three outcomes, then is there any
reason to add them to an ensemble? We leverage the attack decomposition framework of |[Sheatsley et al.
(2023) to examine the two most popular classes of attacks in literature, i.e., gradient-based (Biggio et al.,
2013} |Goodfellow et al. [2015} [Szegedy et all 2014} [Papernot et al., [2016b; [Moosavi-Dezfooli et al. 2016}
Carlini & Wagner}, 2017; Madry et al., [2018; |Croce & Heinl |2020al) and gradient-free (Papernot et al., 2017}
Chen et al.,[2017} |Ilyas et al., |2018; |Andriushchenko et al. [2020]) attacks. Since this framework only supports
gradient-based attacks by default, we extend it to support gradient-free attacks by integrating random search
optimization. Within both attack classes, we observe a notable lack of diversity across all three attack
outcomes. Only when gradient-based attacks are compared to gradient-free ones do we observe a difference
in performance outcome. Therefore, in most cases, evaluating with a simple two-attack ensemble containing
one attack from each class is sufficient to gain a general understanding of robustness. When compared to
AutoAttack (Croce & Hein| 2020b)), the most commonly used attack ensemble consisting of four attacks,
the evaluation precision of our approach is only 0.79% lower across all unique defenses in the top-10 of
the RobustBench leaderboard. Across all the defenses we examine, which includes one gradient obfuscated
defense and one defense for the ImageNet dataset, this gap is only 0.75%.

Our contributions can be summarized as follows:

e We study the diversity of adversarial attacks and attack ensembles with respect to attack performance,
misclassification outcomes, and input perturbations. Across all three outcomes, gradient-based and
gradient-free attacks lack diversity within their respective attack classes.

e Through rigorous experimentation with 2 defenses with fundamentally different robustness properties, we
show that a single attack from each class is sufficient to obtain a reliable measurement of the defense’s
robustness. Additional attacks only update the robustness measurement insignificantly.

¢ We create a two-attack ensemble consisting of a single well-performing attack from each class and compare
its robustness measurement to AutoAttack across 10 distinct defenses. Although AutoAttack has twice as
many attacks, it reports only a 0.75% higher success rate on average, which does not significantly change
one’s understanding of a defense’s robustness.

¢ We make our code publicly available at https://anonymous.4open.science/r/diverse-adv-eval-A2AE
to facilitate efficient adversarial evaluations.


https://anonymous.4open.science/r/diverse-adv-eval-A2AE
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2 Background

Most Adversarial ML research focuses on the robustness of image classifiers. An image classifier f maps an
image x € R™ to a discrete set of labels ). The classifier learns this mapping using pairs of images and
corresponding ground truth labels sampled from a given data distribution D.

2.1 Evasion Attacks

Evasion attacks seek to discover imperceptible perturbations § that, when added to the input z of the
classifier f, will cause f to misclassify x. Formally, this objective can be defined as follows:

maximize Log(f(z+9), Ytrue)
such that ||d]], <€ (1)
x+0€0,1]™

Maximizing the classification loss is a reliable way to trigger misclassification. The Projected Gradient
Descent (PGD) attack (Madry et all) [2018) exemplifies such max loss attacks as it seeks to iteratively
solve Equation [l using the target model’s gradients and the Stochastic Gradient Descent optimizer. To
avoid getting stuck in local maxima, the perturbation vector is randomly initialized using a standard noise
distribution (e.g., uniform noise). Alternatively, some attacks define the adversarial objective based on the
norm of the perturbation vector as follows:

minimize ||d]|,
such that f(z +0) # f(x) (2)
z+46€][0,1)"

The Carlini Wagner Attack (CWA) (Carlini & Wagner} 2017) exemplifies such min norm attacks as it uses
the target model’s gradients to iteratively solve Equation 2] using the Adam optimizer. In both cases, the
previously mentioned imperceptibility condition is conventionally enforced by constraining the magnitude of
the perturbation vector measured using a £,-norm function.

In many instances, the target model’s gradient may not be usable for attacks. For example, if the attacker
does not have internal access to the target model or if the gradients are ill-defined (Athalye et al., [2018)). For
such cases, several attacks have been proposed that leverage gradient-free optimization algorithms. Notably,
the Boundary Attack (Brendel et all |2018]) and the Square attack (Andriushchenko et all |2020)) develop
random search optimization algorithms to identify adversarial perturbations. Such algorithms iteratively
sample perturbations from a carefully crafted distribution, retain it if the attack objective improves, and
discard it otherwise. Prominent attacks that follow this strategy primarily differ in how they design the
sampling distribution. Besides random search, other gradient-free strategies involve approximating target
model’s gradients to perform a gradient-based attack, using methods like finite differences (Chen et al.
2017, natural evolution strategies (Ilyas et all [2018), and transferring adversarial samples from surrogate
models (Papernot et al.l 2016a}; [Liu et al., 2016; Papernot et al.l [2017; Tramer et al., 2017).

2.2 Defenses Against Evasion Attacks

Despite widespread awareness of the threat of evasion attacks on Al systems, there appears to be a surpris-
ing lack of effective and practical methods to fortify systems against these attacks. One of the most popular
strategies to defend against evasion attacks is to simply “train with more data” (Madry et al., [2018; [Zhang
et al, 2019). Adversarial training (Madry et all 2018|) augments the training data with adversarially per-
turbed examples. By exposing the model to crafted adversarial inputs during training, adversarial training
aims to improve the model’s ability to correctly classify perturbed instances and thereby fortify its resilience
against potential evasion attacks. Alternate strategies involve modifying the loss function of the classifier to
enforce robustness (Wan et al.l 2018} [Pang et al.l 2019a)), altering the classification pipeline to destroy the
information carried by the adversarial noise as the perturbed input propagates through it (Xiao et al., [2020;
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Table 1: Attack implementations available in popular Adversarial ML toolkits. Gradient-based attacks dominate across all
toolkits.

Evasion . 5,60 QC'J@ ) $°
. N 5 &

Toolkit w/ w/o S & &

5 § &

Grads Grads R N Q}"r

ART (Trusted-Al, [2023) 28 12 11 6 3
CleverHans (CleverHans-Lab, [2021) 14 4 0 4 3
Foolbox (Bethge-Laby [2024) 16 2 0 0 0
advertorch (]Borealis—AI |2022I) 12 2 0 0 0
Counterfit (Azurel 2022 10 3 0 0 0

Verma & Swami, 2019; [Pang et al., [2019b; |Sen et al 2019), or employing generative modeling (Samangouei!
et al.l [2018} |Song et al., 2018; Li et al., 2019).

lo—di

2.3 Evaluating Defenses Against Evasion Attacks

Assessing the vulnerability of a defense in an absolute manner requires evaluating it against all known
attacks that exploit the specific vulnerability. Unfortunately, conducting such a comprehensive assessment for
evasion vulnerabilities is computationally prohibitive. This is because evasion is the most extensively studied
vulnerability, as evidenced by the data in Table [I] which reports the number of attack implementations
available in popular toolkits for various types of vulnerabilities. The second best option is to evaluate against
an ensemble of diverse attacks. In the early days of Adversarial ML research, there was a lack of agreement
on which attacks would comprise such an ensemble. As a result, several defense evaluators fell into the trap
of evaluating against an ensemble of very similar attacks (e.g.,, FGSM (Szegedy et al., [2014), BIM (Kurakin|
2018), and PGD (Madry et al) [2018))) and claiming robustness broadly against all attacks. This lack
of “diversity” among attacks led to these evaluations being deemed unreliable by follow up works (Engstrom
let al.l 2018; [Athalye et al., 2018; Tramer et al., 2020; |Croce & Hein| [2020b), and the corresponding defenses
being deemed non-robust. As the field progressed, new ensembles were developed and trusted for reliable
adversarial evaluations.

Ensemble of Diverse Attacks. The practice of using diverse attacks for reliable evaluations first gained
traction with the use of the combination of Projected Gradient Descent (Madry et al 2018)) attack and
the Carlini-Wagner attack (Carlini & Wagner, [2017)). Here, diversity is defined based on the formulation
of the adversary’s objective, i.e., maxz loss or min norm. Currently, the most popularly used ensemble
of attacks is the AutoAttack (Croce & Hein, 2020b). Retaining the previously mentioned definition of
diversity, AutoAttack incorporates state-of-the-art maz loss (APGD-CE (Croce & Heinl [2020b))) and min
norm (FAB (Croce & Hein| [2020a)) attacks. Furthermore, AutoAttack expands upon this definition by
adding distinct loss functions (APGD-DLR (Croce & Hein, 2020b)) and optimization algorithms (Square
Attack (Andriushchenko et al., [2020)) to the ensemble.

More recently, [Sheatsley et al.| (2023) propose an attack decomposition framework for gradient-based attacks.
Leveraging their framework, they obtain a set of 432 unique attacksEl Furthermore, they propose an attack
called the Pareto Ensemble Attack (PEA) that exhaustively explores this large set of attacks to obtain
a precise measure of robustness against said set. However, such an exhaustive search is computationally
expensive.

3 Diversity-driven Adversarial Evaluations

What is the goal of an adversarial evaluation? There are several possible answers to this question:

1While the original paper used 576 attacks, the released code includes a modified framework with 5 components, yielding a
total of 432 attacks.
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e Making a precise measurement of robustness in such a way that it represents the true worst-case perfor-
mance of the model as faithfully as possible;

e Making a general determination of robustness within an acceptable error margin;

e Measuring robustness only within contexrt-dependent high risk situations.

When it comes to machine learning security, how useful is it to obtain a precise measurement compared to
the other two goals? Consider a road sign classification model:

e A general robustness evaluation gives the same understanding as a precise robustness evaluation. Knowing
that a road sign classification model has an 80% error rate versus an 81.23% error rate when under attack
is the same: the model is unreliable.

e A context-dependent robustness evaluation provides a more nuanced answer. Knowing that a road sign
classification model has a 1% error rate on recognizing stop signs versus an 81.23% overall error rate when
under attack informs the user that in a specific high-risk scenario, the model is unreliable.

While many may share this understanding, precise robustness evaluations are often requested. The commu-
nity is rightfully skittish when reviewing evaluations of adversarial defenses after the failure of many early
gradient obfuscation works. To prevent bad evaluation, the most often request is for defenders to design
“adaptive evaluations”, which are evaluations customized to the specific defense. However, a well-designed
adaptive evaluation can be time-consuming, and defenders are not incentivized to break their own defense
as the community often does not accept a presentation on experimental failures and the lessons learned. For
most defenses developing an adaptive attack may require non-trivial effort, that is outside the scope of their
work. The alternative is to empirically evaluate a defense by exploring various attack scenarios, i.e., varied
attack components, within the threat model. If the attack ensemble is diverse enough, then the evaluation
can be trusted. Unfortunately, the meaning of attack diversity is unclear. Even for proposed defenses that
followed community evaluation guidelines, they were rejected for not exploring more of the attack space and
convincing reviewers of sufficient attack diversity (Dhaliwal & Hambrook) 2019; (Chen et all 2019)). This
leads to the question of: what does it mean for an attack to be diverse?

Defining attack diversity based on attack components (loss function, optimization algorithm, random start
strategy, hyper-parameters, etc.) is imprecise, as two attacks with different parameters could result in the
same robustness measurement, even when combined. As the goal of an evaluation is to learn about the
defense, we propose defining diversity with respect to attack outcomes rather than attack components. There
are three factors in which attack outcomes can differ:

o Attack Success Rate. Different attack techniques may specialize in attacking different parts of the input
space or bypassing certain defensive techniques. For example, gradient-free attack methods are useful for
bypassing gradient-shattering defenses.

o Inter-class Misclassification. Different attacks may result in the same adversarial accuracy, but cause
different misclassifications for the same input.

o Adversarial Input Similarity. Different attacks may result in the same adversarial accuracy but generate
dissimilar adversarial inputs in the input space. For example, image classifiers can be compromised with
imperceptible perturbations applied to the entire image as well as perceptible perturbations applied to a
localized patch, both of which need to be prevented.

With these definitions in mind, we will study existing gradient-based and gradient-free attacks and analyze
the diversity of ensembles created from these attacks. When chosen properly, does increasing the number of
attacks in an ensemble improve one’s understanding of robustness based on the possible attack outcomes?
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3.1 Experimental Setup

To facilitate our analysis, we use the attack decomposition framework of [Sheatsley et al.| (2023) to obtain
a large set of gradient-based attacks. To obtain a set of gradient-free attacks, we expand their framework
to enable support for a gradient-free optimization algorithm. Specifically, we integrate the random search
algorithm of Square Attack (Andriushchenko et al.,2020), which allows us to cover all of the attacks in the
AutoAttack (Croce & Hein, [2020b) ensemble using their framework.

Attack Details. With minor improvements to the framework from |Sheatsley et al.| (2023), we obtain a set
of 144 unique ¢, gradient-based attacks and 20 unique ¢, gradient-free attacks. Each gradient-based attack
is run for 100 steps with 5 random restarts, and each gradient-free attack is run for 2000 steps (or queries)
with no random restarts. These hyperparameters are borrowed from AutoAttack (Croce & Heinl [2020b)),
who deemed them sufficient for the proper convergence of the attack’s objective.

FEvaluated Defenses. In Sections to we analyze the diversity in our sets of gradient-based and
gradient-free attacks based on the three different definitions previously described. A single comprehensive
evaluation requires running all 164 unique attacks to completion. Limited evaluation resources necessitate
that we carefully select which defenses to comprehensively evaluate to ensure diversity among defensive
scenarios and better inform our later experiments. In general, there are two defensive scenarios: the gradient
is present and well defined or it is not. We choose to evaluate a ResNet-18 classifier trained with the FastAT
defense (Wong et all 2019), which has well-defined gradients, and a ResNet-18 classifier protected by the
k-winners-take-all defense (Xiao et al. [2020]), which obfuscates the gradient. Most other defenses may
vary in their technique but can be classified into one of these scenarios. Both defenses were trained to be
robust against an ¢, adversary with the budget of e = 8/255. Note that we rely on the pre-trained model
checkpoints rather than training the defenses ourselves.

FEvaluation Metrics. Throughout our experiments, we measure the performance of an attack in terms of
success rate, i.e., the percentage of test samples on which the attack succeeds. Following [Sheatsley et al.
(2023)), we treat the success rate obtained using PEA as the highest success rate attainable using a given set
of attacks.

3.2 Attack Success Rate Diversity

A diverse attack ensemble can be created by combining complementary attacks that work together to bypass
various defensive techniques. We begin by exploring the construction of such ensembles, using cumulative
success rate as the guiding metric. At first glance, it may not be obvious which attack, from the broad
range available in the literature, will be most effective against a given defense. This uncertainty, coupled
with the pressure to meet reviewers’ often vague expectations for adaptive attack evaluations (Dhaliwal &
Hambrookl, [2019; |Chen et al., [2019), leads many defense authors to evaluate their methods using as many
attacks as possible. Since the majority of available attacks are gradient-based (as shown in Table , most
evaluations heavily rely on these types of attacks. However, the value of employing multiple attacks from the
same “class” in determining a defense’s true robustness remains unclear. Thus, we first investigate whether
empirical evidence supports the inclusion of multiple attacks from the same class in diverse ensembles.

First, we obtain the individual success rate of every possible gradient-based and gradient-free attack. Then,
starting with a single attack, we greedily add one attack at a time to our ensemble using the ensemble’s
cumulative success rate as the criteria. In Figure[I] we plot the success rate of the ensemble of gradient-based
attacks vs. the number of attacks in it. The overall success rate of PEA, i.e., the highest attainable success
rate using a given set of attacks, is plotted as the green dashed line. We observe that ~ 99% of PEA’s success
rate can be attributed to a single attack. Furthermore, an ensemble of 6 attacks out of 144 possible attacks
is sufficient to achieve PEA’s success rate. We observe similar results for gradient-free attacks as shown in
Figure A majority of PEA’s success rate, i.e., ~ 93%, can be attributed to a single attack. Collectively,
our results suggest that there is little meaningful diversity among gradient-based and gradient-free attacks
with respect to attack performance. Unless a precise robustness measurement is required, a single strong
attack in each class is sufficient to understand the strength of a proposed defense.
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Figure 1: Plotting the cumulative success rate of an ensemble versus the number of attacks for (a) gradient-based attacks and
(b) gradient-free attacks reveals an important trend. Increasing the diversity of an ensemble by adding new attacks from the
same class results in diminishing gains in cumulative success rate.

Evaluating with Individual Attacks. Although a single attack contributes greater than 90% of the
ensemble’s success rate, are all attacks created equal? Yes and No. We plot the percentage of attacks that
achieve greater than a specified percentage of the maximum attainable success rate in Figure 2] There is a
notable variation in success rates across all attacks. A possible explanation for this variation is incompatibility
between components that form certain attacks. However, there are groups of attacks that perform similarly
well. Approximately 47% of gradient-based attacks achieve over 90% of the success rate of PEA. For gradient-
free attacks, 65% of attacks reach this success rate. Overall, we find that within each class of attacks,
there exist several individual attacks that can be relied upon to make a general determination of a defense’s
robustness.

Comparison with AutoAttack. We further investigate the reliability of individual attacks when the
goal is to make a general determination of a defense’s robustness. Depending upon the quality of the
target classifier’s gradients, we compare the success rate of either a single gradient-based (GB—ATK)E' or a

2This attack uses the following components: (i) BackwardsSGD optimizer; (ii) MaxStart initialization; (iii) Cross-entropy
loss; and (iv) DeepFool saliency map. For further details regarding each component, please refer to the work by |Sheatsley et al.

(2023)
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Figure 2: Plotting the percentage of gradient-based and gradient-free attacks achieving a success rate greater than a given
value. We find that a large proportion of attacks can be relied upon as representatives of their respective classes.

Table 2: Investigating the reliability of individual gradient-based and gradient-free attacks (GB-ATK and GF-ATK) in accu-
rately determining the robustness of defenses. We compare the success rate of these attacks against AutoAttack across multi-

ple distinct defenses. Individual attacks remain competitive with AutoAttack ensemble irrespective of defense methods, model
architectures, and datasets used.

Defense Attack Success Rate (%)
AutoAttack 56.50
Wong2020Fast QWong et a1.|, |2019D HtoAttac
GB-ATK 55.22
AutoAttack 28.82
Peng2023Robust (IPeng et al.L |2023D HoAtiac
GB-ATK 28.54
AutoAttack 69.18
Salman2020Do_ R18 (]Salman et a1.|7 |2020D HroAttac
GB-ATK 69.38
AutoAttack 88.51
Xia02020Enhancing QXiao et al.l7 |2020D HtoAttac
GF-ATK 87.76

single gradient-free attack (GF—ATKﬂ against that of AutoAttack. In addition to the two defenses used so
far (Wong et all 2019; Xiao et al. [2020), we report results for the following two defenses: (i) one defense
from the top-10 of the CIFAR-10 leaderboard of RobustBench (Peng et al.| [2023) and (ii) a defense (Salman,
for the ImageNet dataset. For both defenses, we use pre-trained weights available in the
RobustBench (Croce et al 2021) model zoo. For the CIFAR-10 defenses, we use ¢ = 8/255, and for the
ImageNet defense, we use € = 4/255. When evaluating with ImageNet, we only use 5000 samples from the
validation set for evaluation following Croce et al.|(2021). The corresponding results are reported in Table
Against all defenses, a single attack is able to achieve more than 99% of the success rate of AutoAttack.
Although the community relies on AutoAttack to make a general determination of a defense’s robustness,

only a single attack is sufficient as the extra few percent higher success rate of AutoAttack doesn’t change
our determination.

3This attack uses the following components: (i) RandomSearch optimizer; (ii) RandomPatch initialization; and (iii) Margin
loss.
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Takeaway I: A single attack from each of the gradient-based and gradient-free classes is sufficient
to obtain a general determination of a defense’s robustness against that class.

3.3 Inter-class Misclassification Diversity

If top-performing attacks do not widely different in attack success rate, maybe they will vary in the adversarial
predictions they generate. Creating an ensemble based on this definition of diversity can help a defender
identify potential weaknesses and implement appropriate countermeasures in advance. Therefore, we analyze
diversity within the two classes of attacks from the previous section on the basis of the misclassifications they
cause, i.e., diversity in the output space of the target model. Given a test sample, we measure how often
successful attacks produce the same adversarial prediction. There are 55.6% and 37.9% of samples that had
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Figure 3: Plotting the distribution of adversarial predictions per ground-truth label over the two broad semantic categories
in the CIFAR-10 dataset, i.e., animals and vehicles. Attacks tend to generate predictions within classes that are semantically
similar to the ground-truth class. This observation remains consistent for both (a) gradient-based attacks and (b) gradient-free
attacks.
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Table 3: The top-2 adversarial predictions per ground-truth label, along with the percentage of attacks that result in these
predictions. Top-2 predictions remain in the same semantic category as the ground-truth label for both gradient-based and
gradient-free attacks.

Top-2 Predicti
Ground-truth opP redietions

Gradient-based Gradient-free
w airplane ship: 40.7 bird: 14.8  ship: 34.94 bird: 29.55
ﬁ automobile truck: 61.0 ship: 15.1  truck: 53.18 ship: 20.08
§ ship airplane: 40.3 truck: 19.5 airplane: 50.97 truck: 15.36
truck automobile: 45.7 ship: 17.2  automobile: 43.48 ship: 16.83
bird deer: 26.7 frog: 21.9 deer: 23.55 cat: 17.09
w» cat dog: 34.7 frog: 21.2 dog: 35.72 deer: 13.34
g deer frog: 28.8 bird: 21.0 bird: 29.95 horse: 21.87
i dog cat: 50.7 frog: 13.6 cat: 51.09 horse: 16.15
frog deer: 34.9 cat: 24.8 deer: 29.65 cat: 23.36
horse deer: 30.7 dog: 17.6 deer: 29.92 dog: 19.41

the same adversarial prediction from all successful attacks within gradient-based and gradient-free attacks,
respectively.

Since we are using the CIFAR-10 dataset, we can divide all classes into two semantic categories: vehicles
and animals. We hypothesize that not only are the adversarial predictions similar per sample, but they are
also similar per semantic category. We plot the percentage of attacks that return adversarial predictions
within the same semantic category as the ground-truth label (in Figure [3). We find that untargeted attacks
tend to remain within the same semantic category as the ground-truth label. In the case of gradient-based
attacks, across all images of animals, 85.6% of attacks return adversarial prediction that remains within the
animal category. For images of vehicles, 71.7% of attacks return adversarial predictions that remain within
the vehicle category. In the case of gradient-free attacks, these numbers are 84.3% and 70.4%, respectively.

Interestingly, airplanes get misclassified as animals slightly more often than vehicles in case of gradient-free
attacks. To understand why, we look at the top-2 most frequent adversarial predictions per ground-truth
label in Table [3] Airplanes tend to get misclassified as birds, potentially because a sky background occurs
commonly across both these categories. Collectively, these observations suggest that there isn’t meaningful
diversity within both classes of untargeted attacks in terms of the adversarial predictions they generate.

Takeaway II: Untargeted gradient-based and gradient-free attacks tend to cause the same, easy-
to-achieve misclassifications.

3.4 Adversarial Input Diversity

We examine our final diversity category, diversity with respect to the adversarial inputs each attack generates.
Although adversarial inputs might appear visually similar to a human, there could be subtle nuances in the
data itself that only the classifier picks up on. For each benign test sample, we compute the pairwise distances
between the adversarial samples generated by all unique pairs of successful attacks. We do this for all test
samples and plot the histogram of pairwise cosine distances in Figure Given that Euclidean distance is
inappropriate for measuring similarity between high-dimensional points due to the curse of dimensionality,
we measure similarity using cosine distance instead. Cosine distance ranges from 0 to 2, where 0 indicates
identical vectors, 1 indicates perpendicular vectors, and 2 indicates completely opposite vectors.
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Figure 4: Plotting the histogram of pairwise cosine distances between all unique pairs of adversarial samples generated for a
given benign sample. Both (a) gradient-based and (b) gradient-free attacks perturb any given benign input very similarly in
terms of cosine distance.

For both gradient-based and gradient-free attacks, we find that the histogram of pairwise distances is con-
centrated at near-zero values. In the case of gradient-based attacks, the peak occurs at 2.2 x 10~ !, whereas
in the case of gradient-free attacks, the peak occurs at 1.5 x 107?. We observe a similar distribution for
pairwise cosine distances between adversarial perturbations. Since the majority of pairwise distances are ex-
tremely close to 0, this indicates that the majority of adversarial samples generated for a given benign sam-
ple are very similar.

Takeaway III: For a given input, gradient-based and gradient-free attacks tend to generate very
similar adversarial perturbations within their respective classes.

4 Redundancies in Attack Ensembles

In Section [3] we used three distinct definitions of diversity to demonstrate that gradient-based and gradient-
free attacks exhibit limited diversity within their respective classes. Specifically, attacks from the same
class tend to (i) succeed on the same subset of inputs, (i) induce the same misclassification labels for a
given input, and (iii) produce highly similar adversarial perturbations in the 5 norm space. As a result,
running multiple attacks from the same class is often redundant, offering little additional insight into a
defense’s vulnerabilities. In this section, we investigate redundancy in prominent attack ensembles, namely
AutoAttack (Croce & Heinl 2020b) and the Pareto Ensemble Attack (PEA) (Sheatsley et al., [2023). Our
analysis reveals inefficiencies in these ensembles, showing that a large portion of their overall success rate
can be retained using only a subset of their constituent attacks.

4.1 AutoAttack (Croce & Hein, 2020b)

For both gradient-based and gradient-free attacks, we found that a single attack is sufficient for making a
general determination of a defense’s robustness against that class. But which attack class should we evaluate
against? The conventional wisdom that gradient-based attacks are strictly stronger than gradient-free attacks
has long been invalidated. Therefore, it may not always be evident a priori which attack class a given
defense is most vulnerable to, and using the wrong class can lead to unreliable evaluations. For example,
in the case of defenses with obfuscated gradients, using more gradient-based attacks was not the solution;
switching to a single gradient-free attack was. In Figure |5 we evaluate the k-winner-takes-all defense
using gradient-based attacks only. No matter the size of the ensemble, we observe only minor
improvements in adding more attacks. Once a single gradient-free attack is added, the success rate of the
ensemble is greatly increased.
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Figure 5: Plotting the cumulative success rate of an ensemble vs. the number of attacks in it. Increasing the diversity of an
ensemble by adding new gradient-based attacks doesn’t provide an accurate determination of the robustness of a defense whose
gradients are ill-defined. On the other hand, increasing attack diversity by adding a single gradient-free attack is sufficient.

Croce & Hein| (2020b)) were the first to identify the value of such diversity, using it to motivate the inclusion of
Square Attack within the AutoAttack ensemble. However, AutoAttack also has three gradient-based attacks.
Our diversity analysis from before suggests that while adding Square Attack makes sense, the three gradient-
based attacks are likely redundant if the goal is to make a general determination of a defense’s robustness.
When referring to Table 2 in the AutoAttack paper, we observe that the difference between the AutoAttack
success rate and the gradient-based attack success rate is less than 1% across most defenses, with APGD-
DLR often reporting the most accurate result. Therefore, AutoAttack could be more efficient if reduced to
two attacks and still provide evaluators with the same general understanding of a defense. We test this by
comparing the success rate of AutoAttack with an ensemble with a single well-performing gradient-based
and gradient-free attack chosen from our experiments earlier. In addition to the defenses evaluated earlier,
we also evaluated all unique defenses from the top-10 of the RobustBench leaderboard for CIFAR-l(ﬂ and
reported them in Table Across all defenses, our two ensemble evaluation has only 0.75% lower success
rate than AutoAttack on average. This highlights the redundancy in AutoAttack.

4.2 PEA (Sheatsley et al., 2023)

In the previous section, we observed that both gradient-based and gradient-free attacks lack meaningful
distinction within them according to three goal-oriented definitions of diversity. As a result, a single attack
from each class is sufficient to make a general determination of robustness against that class. Collectively, an
ensemble of a gradient-based and a gradient-free attack is sufficient to make such a determination, irrespective
of defense strategy, classifier architecture, or dataset used.

But what if the goal of the adversarial evaluation is to make a robustness measurement that is as precise as
possible? Currently, the community relies on AutoAttack to achieve this goal. However, AutoAttack may not
provide the most precise measurement as it does not exhaustively sweep the attack space. PEA (Sheatsley
et al., |2023)), on the other hand, returns the highest success rate possible from a set of attacks as it exhaus-
tively searches the entire attack set till it finds an attack that succeedsﬂ Therefore, it represents the most
precise ensemble available in the literature. While iterating over all attacks makes PEA precise, this also

4Leaderboard version: https://github.com/RobustBench/robustbench/tree/78fcc9e48a07a861268£295a777b975£25155964
5In the original paper, PEA is defined over the set of all gradient-based attacks, similar to the one we examined in previous
sections.
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Table 4: Comparing the success rate of an ensemble of two attacks — a gradient-based (GB-ATK) and a gradient-free (GF-ATK),
against AutoAttack — an ensemble of three gradient-based and a gradient-free attack. Evaluation is performed on all unique
defenses from the top-10 of the Robustbench leaderboard. We also report results for one ImageNet defense and the defenses
from the previous sections. The two-attack ensemble is comparable in performance to AutoAttack across all defenses. Therefore,
the two additional gradient-based attacks are redundant and only incrementally contribute to the robustness measurement.

Success Rate (%)

Rank Defense
AutoAttack GB-ATK + GF-ATK A
1 Bartoldson2024Adversarial (Bartoldson et al.| 2024) 26.29 26.00 0.29
2 Amini2024MeanSparse (Amini et al.|[2024) 26.90 24.65 2.25
4 Peng2023Robust (Peng et al.| [2023) 28.93 28.54 0.39
5 Wang2023Better (Wang et al.| |2023) 29.31 28.89 0.42
6 Bai2024MixedNUTS (Bai et al.| [2024Db) 30.29 28.52 1.77
8 Bai2023Improving (Bai et al.|[2024a) 31.94 31.42 0.52
9 Cui2023Decoupled (Cui et al.|[2024) 32.27 31.99 0.28
74 Wong2020Fast (Wong et al.|[2019) 56.50 55.23 1.27
Xia02020Enhancing (Xiao et al.| [2020) 88.51 88.08 0.43
29 Salman2020Do (Salman et al.|[2020) (ImageNet) 69.18 69.40 0.22

makes it computationally intensive. Given that many researchers, developers, and a significant portion of the
academic community operate under compute-restricted settings, running PEA may not always be feasible.

PEA scales poorly with the size of the set of attacks it exhaustively searches. This issue is exacerbated by
the increase in model and dataset size. Previously, we showed in Figure[2] that some attacks have suboptimal
success rates. Therefore, it is likely that such attacks do not make little to no contributions to PEA’s final
success rate as their results overlap with other, more optimal attacks. In this section, we investigate how
redundant the PEA ensemble really is.

4.2.1 Analysis

To perform this investigation, we study how effective PEA will be if we drop attacks based on their effec-
tiveness during evaluation. Our hypothesis is that only the top few performing attacks contribute to PEA’s
eventual success rate, and hence, dropping low-performing attacks will save compute while having a negligi-
ble effect on attack success rate. Specifically, we attack one sample at a time using all available attacks and
record their success rate. If an attack fails more than N times, we drop it from our set of attacks. We con-
tinue this process till all samples from the test set have been processed. The final success rate is the num-
ber of samples on which at least one attack succeeded. This analysis methodology is summarized in Algo-
rithm [} We perform our analysis by using PEA with two different sets of attacks — our gradient-based and
gradient-free attacks from the previous sections. We apply the gradient-based PEA on FastAT (Wong et al.
2019) and the gradient-free PEA on k-winners-take-all (Xiao et al., |2020]).

We refer to N as the number of lives of an attack, and it acts as a knob to control the effort required to
evaluate using the ensemble. We treat the cumulative number of attacks executed during an evaluation as
a quantitative proxy for the “effort”. Changing the value of N from low to high results in an increase in
the cumulative number of attacks executed and, therefore, the overall effort of the evaluation (see Figure |§[)
Next, we ask, how much of this effort is actually useful towards the final success rate of the ensemble? And
how much of it is redundant?

In Table |5, we report the success rate obtained using each value of N, along with the percentage of attacks
executed relative to PEA. As the value of N increases, we gradually get closer to PEA’s success rate. In the
case of FastAT, we are able to achieve all of PEA’s success rate while running only 84.79% of attacks relative
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Algorithm 1 Executing PEA (Sheatsley et al.l |2023) while dropping attacks

Require: Robust ML model
Require: List of benign samples correctly classified by it
Require: Set of attacks with initial lives IV
1: winner < false
2: losers < empty set
3: success _rounds < 0
4: Randomly shuffle the set of samples
5: for each sample s in the shuffled set of samples do
6:  Randomly shuffle the set of attacks
7. for each attack a in the shuffled set of attacks do
8
9

if attack a succeeds on sample s then
winner < true

10: increase success _rounds by 1

11: break

12: else

13: add a to losers

14: end if

15:  end for

16:  if more than one attack remain AND winner == true then
17: for each attack a in losers do

18: Decrease the lives of attack a by 1

19: if lives of attack a == 0 then

20: Remove attack a from the set of attacks
21: end if

22: end for

23:  end if

24: end for

25: return success_rounds / total number of samples

to it. In the case of k-winners-take-all, it takes 91.67% of attacks relative to PEA to achieve its success rate.
More attacks are required in this case because, unlike in the case of FastAT, all attacks against k-winner-
takes-all make a non-zero contribution to the final success rate (recall Figure . In such extreme cases, a
precise measurement will require running all attacks. These results clearly highlight the redundant effort
required by PEA and validate our hypothesis that the top few performing attacks contribute the majority
of the ensemble’s success rate.

5 Limitations

In this section, we address the limitations of our study in an effort to better specify the scope of our current
work, as well as propose interesting future works.

Targeted Attack. We did not study how targeted attacks affect the results of an adversarial evaluation,
specifically, when looking to address context-dependent robustness. In certain scenarios, we may be more
concerned with a specific type of adversarial misclassification due to the implied risk such as a road sign
classifier mistaking a stop sign sign as a speed limit sign, rather than general misclassification. With respect
to this goal, we do not have reason to believe that targeted attacks would differ in their lack of diversity
compared to one another. Except for the specification of a misclassification label, the attack mechanisms
remain the same as with untargeted attacks. We hypothesize that a general determination of context-
dependent robustness can be obtained via a single gradient-free and a single gradient-based targeted attack,
but further experimentation is needed.

With respect to including a targeted attack, gradient-free or gradient-based, when making a general deter-
mination of robustness, our comparisons with AutoAttack suggest that evaluation precision is only slightly
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Figure 6: Plotting the cumulative number of attacks executed for different values of N (number of attack lives) when evaluating
(a) FastAT and (b) k-winners-take-all. Higher values of N leads to higher cumulative attacks executed and, therefore, higher
computational cost.

increased. AutoAttack uses a targeted attack to enumerate across the possible attack directions, which oc-
casionally succeeds on some inputs that failed untargeted attacks were not able to perturb.

Targeted attacks can also improve the precision of adversarial evaluations with respect to the first two eval-
uation goals. For a given sample, the targeted attack enumerates across all of the possible class labels, ex-
cluding the original prediction, and selects the first successful attack. This approach is used by AutoAt-
tack (Croce & Heinl 2020b)) to improve the precision of the evaluation results. However, as we demonstrated
in Tables [2] and [4] this improvement is marginal compared to a two-attack ensemble of a single gradient-
based attack and a single gradient-free untargeted attack.

Adaptive Attacks. Adaptive attacks, expertly customized attacks tailored to bypass certain aspects of
a defense, are a common request when studying a potential defense. [Tramer et al.| (2020) detail several
such defense-specific adaptations, for example, identifying and targeting the weakest parts of a defense, or
adapting the attack objective to improve its convergence. As these attacks are tailored to target a specific
defensive component, it is difficult to automate this process and would likely only be useful if the targeted
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Table 5: Success rate and percentage of attacks required to achieve it when running PEA using different values of N (number
of attack lives). We report mean and standard deviation across five independent trials.

FastAT (Wong et al., 2019) k-winners-take-all (Xiao et al., |2020)

N Success Rate (%) Attacks (%) N  Success Rate (%) Attacks (%)

1 55.94 £ 0.24 513+ 086 1 87.63 £ 0.10 33.75 £ 0.07
) 56.19 £ 0.11 23.76 £3.56 5 87.92 £ 0.13 35.39 £ 0.08
10 56.43 £ 0.14 50.50 £ 4.17 10 88.25 £ 0.13 36.54 £ 0.10
20 56.59 £ 0.00 84.79 £0.93 20 88.62 £ 0.18 39.86 £ 0.30
50 89.60 £ 0.79 51.89 £ 0.48
100 92.26 £ 0.09 71.32 £ 0.36
150 94.53 £ 0.10 91.67 £ 0.73
PEA 56.59 100 PEA 94.90 100

component is shared across defenses. Our analysis focuses on the diversity of the space of known attacks
designed by the community to be used for a majority of adversarial evaluations.

Model vs. System. In commercial applications, ML models often empower an end-to-end system. Such
systems can include multiple pre-processing and post-processing steps, which makes analyzing the security of
the system a complex task. As most prior work on developing adversarial attacks and defenses focuses on the
robustness of the model rather than the robustness of the system, our paper makes the same assumptions.
We analyze the diversity and efficiency of model-focused evaluations.

Input Modality. All our evaluations use image classifiers because images are the most common input
type used when studying adversarial attacks. However, adversarial attacks against other input modalities
have been developed, e.g., text, structured data, audio, etc.. Despite a lack of evaluations on these input
modalities, we believe our findings will extend to these other modalities, given the similarities in attack
methodology.

6 Message to the Community

Our paper introduces a new perspective on adversarial evaluation—one that goes beyond simply comparing
attack success rates. We believe this more nuanced approach can help the community better interpret and
leverage the vast body of both published and unpublished work on the adversarial robustness of neural
networks.

Message to Attackers. In the current landscape, most new attacks are solely evaluated by their success
rate or speed relative to the state-of-the-art. We encourage researchers to also consider how diverse their
attacks are compared to existing ones. The three notions of diversity introduced in this paper provide a
useful initial benchmark for assessing such differences. An attack that introduces meaningful diversity along
one or more of these dimensions offers greater value to the community, as it enables a deeper understanding
of the vulnerabilities in defenses. Right now, we are focused on answering the question of "Is the model
vulnerable?" rather than "Why is it vulnerable?". Therefore, the goal should be to develop genuinely diverse
attacks rather than merely incrementally more effective ones.

Message to Defenders. Convincing the community that a defense is truly robust has always been a
significant challenge. Crafting adaptive attacks often demands substantial effort which, if successful, goes
unrecognized. On the other hand, exhaustively evaluating a defense against all existing attacks may seem
appealing, and safe, but is often infeasible due to computational constraints and, as we show, redundant.
Evaluations should be selective about which attacks to include, prioritizing those that offer genuinely new
insights. The notion of diversity introduced in our paper can serve as a valuable guide for diversifying
evaluations and communicating results. Defenses can also expand evaluations to include other metrics, such
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as the increase in attacker effort or increased attacker visibility. Adversarial robustness is only one aspect of
model security.

7 Conclusion

Despite more than a decade of research, it is unclear if model security has measurably improved with
respect to adversarial evasion. The burden on defenders to ensure the robustness of their defense in all
possible situations makes adversarial evaluations highly challenging. Defenders have resorted to running
attack ensembles when reporting the empirical robustness of an ML model and defense. However, a lack of
formal threat models and an inability to report attack coverage makes it difficult for evaluators to judge the
effectiveness of a defense. To avoid publicizing flawed defenses, evaluators are cautious and often request
additional empirical robustness evaluation, despite often lacking any technical reason as to why or what
specific defensive aspect should be further tested. In this paper, we show that such requests are redundant.
Short of adaptive attacks, gradient-based and gradient-free attacks report only slight differences in evaluation
precision. When simplifying AutoAttack to a two-attack ensemble, evaluation precision differs by 0.75%
on average across 10 distinct defenses. Often, the goal of an evaluation is to answer the question: "Is my
model secure?". A 0.75% difference isn’t going to affect the overall conclusion. We recognize the importance
of comprehensive, precise evaluations of proposed adversarial defenses, but additional requests for attack
evaluations should be tactical, not exhaustive.
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