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Abstract

Structured data offers a sophisticated mecha-001
nism for the organization of information. Exist-002
ing methodologies for the text-serialization of003
structured data in the context of large language004
models fail to adequately address the hetero-005
geneity inherent in key-value structured data.006
These methods are not ideal and frequently re-007
sult in larger input sizes and poor adaptability008
to input changes. In this paper, we introduce009
DictLLM, an innovative framework designed to010
improve the modeling of key-value structured011
data, like medical laboratory reports, for gener-012
ating medical diagnoses. DictLLM integrates013
three key components: (1) group positional014
encoding to maintain permutation invariance,015
(2) hierarchical attention bias to capture the016
inherent bias in structured data, and (3) an op-017
timal transport alignment layer that aligns the018
embedding generated by the dictionary encoder019
with the LLM, thereby producing a sequence of020
fixed-length virtual tokens. We carry out experi-021
ments using various LLM models on a compre-022
hensive real-world medical laboratory report023
dataset for automatic diagnosis generation, our024
findings illustrate that DictLLM significantly025
outperforms established baseline methods and026
few-shot GPT-4 implementations in terms of027
both Rouge-L and Knowledge F1 scores. Fur-028
thermore, our evaluation of the framework’s029
scalability and robustness, through a series of030
experiments, underscores its exceptional capa-031
bility in accurately modeling the complex key-032
value data structure of medical dictionary data.033

1 Introduction034

The integration of large language models (LLMs)035

into natural language processing (NLP) has marked036

a paradigm shift, enabling unprecedented advance-037

ments across diverse applications. Recent explo-038

rations into applying LLMs to structured data pro-039

cessing, such as graphs, dictionaries, and tables,040

highlight their potential beyond traditional text041

Patient Self-Report

Gender: male, age: 65 years. Admitted 

due to “maintenance hemodialysis for 

over 3 years, fatigue for 5 days”. 

Examination: Patient is alert, breathing 

evenly, in good spirits. Blood pressure 

140/80 mmHg. No petechiae, purpura, 

or jaundice observed on skin and 

mucous membranes.

……

Structured Information: Medical Lab Report Unstructured Information : Patient Self-Report

Medical Lab Report

TEST 

NAME

PATIENT 

RESULT

REFERENCE 

RANGE

UNITS

White Blood Cells 7236 4500-11000 cells/µL

Glycated Hemoglobin 8.9 0-5.7 %

Total Vitamin D 35 20-50 ng/mL 

Triglycerides 187 0-150 mg/dL

Total Cholesterol 259 0-200 mg/dL

Urine Creatinine 125 20-320 mg/dL

… … ... …

Medical Lab Report

TEST 

NAME

PATIENT 

RESULT

REFERENCE 

RANGE

UNITS

White Blood Cells 7236 4500-11000 cells/µL

Glycated Hemoglobin 8.9 0-5.7 %

Total Vitamin D 35 20-50 ng/mL 

Triglycerides 187 0-150 mg/dL

Total Cholesterol 259 0-200 mg/dL

Urine Creatinine 125 20-320 mg/dL

… … ... …

Medical Lab Report

TEST 

NAME

PATIENT 

RESULT

REFERENCE 

RANGE

UNITS

White Blood Cells 7236 4500-11000 cells/µL

Glycated Hemoglobin 8.9 0-5.7 %

Total Vitamin D 35 20-50 ng/mL 

Triglycerides 187 0-150 mg/dL

Total Cholesterol 259 0-200 mg/dL

Urine Creatinine 125 20-320 mg/dL

… … ... …

Plain Text Input:(4678 Tokens)

Medical Lab Report: White Blood Cells: Normal, Glycated Hemoglobin: 

Abnormal, Total Vitamin D:Normal, Triglycerides: Abnormal, Total 

Cholesterol: Abnormal…… Patient Self-Report: gender: male, age: 65 years. 

hemodialysis for over 3 years…….

Few-shot GPT4 Output: 

chronic kidney disease, Liver Disease, Heart valve disease.

DictLLM Input:(457 Tokens):

Medical Lab Report: [Dict]……[Dict] Patient Self-Report: gender: 

male, age: 65 years. hemodialysis for over 3 years…….

DictLLM output:

Low serum calcium concentration, hypertension class II, pulmonary 

inflammatory disease, renal-related anemia, diabetic hemodialysis……

Option 1

Text 

Serialization

DictLLM 

Framework

Option 2(Ours)

Projection

Virtual LLM Tokens

v1 v2 v3

Dict Embedding

Dict
Encoder

N virtual tokens

Figure 1: Our DictLLM Framework for medical lab
report-assisted diagnosis generation. The framework
uses a hierarchical dict encoder to encode the medical
lab report, and an optimal transport alignment layer to
align the embedding generated by the dict encoder and
the text encoder.

analysis. Notably, efforts like tabular data clas- 042

sification in Hegselmann et al. (2023), graph-based 043

node classification in Tang et al. (2023) , and in- 044

telligent Excel table querying in KuB , have paved 045

the way for innovative applications. Yet, the appli- 046

cation of LLMs in processing medical lab reports, 047

a cornerstone in clinical diagnostics, exposes sig- 048

nificant challenges. These reports, structured as 049

key-value pairs, are critical for diagnosis but di- 050

verge substantially from the data types traditionally 051

handled by LLMs due to their unique structure and 052

information content. 053

Medical lab reports are pivotal in clinical 054

decision-making, capturing patient test results in a 055

structured format that facilitates diagnosis. Unlike 056

the linear, narrative flow of natural language, these 057
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reports are characterized by two distinct features:058

• Structural Heterogeneity: They are organized059

as key-value pairs, allowing for permutation060

invariance where the sequence of entries does061

not affect the informational content.062

• Information Density Heterogeneity: These063

reports encapsulate densely packed, discrete064

data, contrasting with the more continuous065

and narrative nature of text.066

Existing methods, primarily based on convert-067

ing structured data into a linear token sequence,068

inadequately capture these nuances. Such serializa-069

tion not only risks losing structural fidelity but also070

scales poorly due to token limits in LLMs, high-071

lighting a critical gap in current methodologies.072

DictLLM emerges as a novel framework tailored073

to address these challenges, marrying the structured074

precision of medical lab reports with the analytical075

depth of LLMs. By innovatively leveraging a hi-076

erarchical dict encoder inspired by advancements077

in set transformation, DictLLM transcends tradi-078

tional serialization approaches. It introduces a dict079

tokenizer to convert complex numerical data into080

interpretable medical labels, a group positional en-081

coding to maintain the inherent permutation invari-082

ance of lab report data, and hierarchical attention083

mechanisms to adeptly handle the reports’ informa-084

tion density.085

Our contributions offer a significant leap forward086

in medical diagnostics:087

• We introduce a hierarchical dict encoder that088

adeptly models the structured nature of medi-089

cal lab reports, preserving their key-value in-090

tegrity and enhancing robustness to variations091

in report formatting.092

• The introduction of an optimal transport align-093

ment layer aligns dict encoder embeddings094

with LLM outputs, optimizing the efficiency095

of input representation and addressing the096

challenge of token count scalability.097

• Comparative analysis with leading LLMs on098

a comprehensive dataset of real-world med-099

ical lab reports demonstrates DictLLM’s su-100

perior performance, showcasing notable im-101

provements in Rouge-L and Knowledge F1102

scores, indicative of its enhanced diagnostic103

accuracy and relevance extraction capabilities.104

In aligning closely with the medical diagnostic 105

process’s intricacies, DictLLM not only highlights 106

the untapped potential of LLMs in processing struc- 107

tured medical data but also sets a new benchmark 108

for precision and efficiency in automated medical 109

diagnosis. This approach not only underscores the 110

framework’s novelty but also its practical signif- 111

icance, promising to bridge the gap between cur- 112

rent LLM capabilities and the complex demands of 113

healthcare diagnostics. 114

2 Related work 115

2.1 Tabular data representation learning 116

Tabular data representation learning aims to learn 117

a dense representation for tabular data. Deng et al. 118

(2020) introduces the Masked Entity Recovery 119

(MER) objective for pre-training the Table Encoder, 120

aiming to capture the semantics and knowledge in 121

large-scale unlabeled data. Yang et al. (2022) high- 122

lights that linearizing table structures would encode 123

the order of the table’s rows and columns with an 124

unwanted bias. Chen et al. (2023) introduces a 125

hypergraph-enhanced table representation learning 126

framework to model the inherent inductive bias of 127

tabular structures. Ye et al. (2023) introduce cross- 128

table pretraining into the tabular data representation 129

learning, to capture the cross-table knowledge. Du 130

et al. (2022) propose learning enhanced representa- 131

tions for tabular data via neighborhood propagation. 132

These study highlights the importance of modeling 133

the structural properties of tabular data. However, 134

these approaches do not harness the capabilities 135

of large language models and are not designed to 136

explicitly capture the heterogeneity of medical lab 137

reports. 138

2.2 Large language model for structural data 139

With the emergence of large language models Tou- 140

vron et al. (2023) Zeng et al. (2022) Mialon et al. 141

(2021), there have been numerous efforts to lever- 142

age them for processing structured data tasks. Han 143

et al. (2023) propose ChartLlama, a multimodal 144

llava-based model for chart understanding and gen- 145

eration task. Hegselmann et al. (2023) introduce 146

TabLLM, an text serialization-based framework 147

that leverages LLMs for data-efficient tabular clas- 148

sification. However, this approach can only han- 149

dle small-scale classification tasks, which is not 150

suitable for generation tasks. Ope (2023)propose 151

OpenTab, an open-domain end-to-end table reason- 152

ing framework, which leverages a retriever to fetch 153
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relevant tables, employs a coder to generate pro-154

grams as intermediary reasoning steps, and assigns155

the task of deriving the final solution to a reader.156

However, the retrieval-augmented paradigm can be157

limited by the performance of the retrieval mod-158

ule, especially for tasks requiring specific domain159

knowledge. Zhu et al. (2024) propose TAT-LLM, A160

specialized language model for discrete reasoning161

over tabular and textual data, serve as a pioneering162

example of specializing smaller language models163

for specific tasks. The GraphGPT proposed by164

Tang et al. (2023) comes closest to our work. This165

method employs a graph encoder and a text encoder166

to encode the structural information and the textual167

information of the graph and propose a dual-stage168

graph instruction tuning paradigm. Our work dis-169

tinguishes itself from these studies by focusing on170

the design of a carefully designed hierarchical dict171

encoder to model the heterogeneous structure of172

medical lab reports.173

3 Approach174

3.1 Problem Formalization175

Input

Medical Lab Report(Dictionaries):

Patient’s Self-Report(Text):

Gender: Female Age: 82 Main symptoms and signs at admission: 

Asthma after activity for more than 1 year, aggravated for 2 

months……

Medical Lab Report
TEST 

NAME

PATIENT 

RESULT

REFERENCE 

RANGE

UNITS

White Blood Cells 7236 4500-11000 cells/µL

Glycated Hemoglobin 8.9 0-5.7 %

Total Vitamin D 35 20-50 ng/mL 

Triglycerides 187 0-150 mg/dL

Total Cholesterol 259 0-200 mg/dL

Urine Creatinine 125 20-320 mg/dL

… … ... …

Medical Lab Report
TEST 

NAME

PATIENT 

RESULT

REFERENCE 

RANGE

UNITS

White Blood Cells 7236 4500-11000 cells/µL

Glycated Hemoglobin 8.9 0-5.7 %

Total Vitamin D 35 20-50 ng/mL 

Triglycerides 187 0-150 mg/dL

Total Cholesterol 259 0-200 mg/dL

Urine Creatinine 125 20-320 mg/dL

… … ... …

Medical Lab Report
TEST 

NAME

PATIENT 

RESULT

REFERENCE 

RANGE

UNITS

White Blood Cells 7236 4500-11000 cells/µL

Glycated Hemoglobin 8.9 0-5.7 %

Total Vitamin D 35 20-50 ng/mL 

Triglycerides 187 0-150 mg/dL

Total Cholesterol 259 0-200 mg/dL

Urine Creatinine 125 20-320 mg/dL

… … ... …

Output

Final Diagnosis(Text):

Renal insufficiency, moderate anemia, pulmonary inflammatory 

disease……

Task: Report-Assisted Diagnosis Generation

Figure 2: An example of the input and output of the
medical lab report-assisted diagnosis generation task.

As shown in Figure 2, the task of report-assisted176

diagnosis generation involves creating a diagnosis177

based on a patient’s self-reported symptoms and178

medical laboratory reports. Suppose we have a179

patient’s medical laboratory report. We can for-180

malize this report as a set of dictionaries, denoted181

as D = {D1, D2, . . . , Dn}, where each Di can182

be formalized as Di = {(kij , vij)}mj=1, where kij183

and vij represent the key and value of the j-th184

key-value pair in the i-th dictionary, respectively.185

The text information of the patient’s self report 186

can be formalized as a sequence of tokens, de- 187

noted as T = {t1, t2, . . . , tm}, where ti represents 188

the i-th token in the sequence. The goal of the 189

report-assisted diagnosis generation task is to gen- 190

erate the final diagnosis of the patient, denoted as 191

Y = {y1, y2, . . . , yk}, where yi represents the i-th 192

token in the sequence. 193

3.2 Framework 194

In the pipeline of a text-serialization based method, 195

the dictionaries are converted into a single natural- 196

language string using a fixed template. However, 197

this approach is sub-optimal for structured data 198

like dictionary due to the structural heterogeneity 199

between structured data and natural language. 200

To address this, We propose the DictLLM Frame- 201

work. As shown in Figure 3, the DictLLM Frame- 202

work consists of three main components: a hierar- 203

chical dict encoder, an optimal transport alignment 204

layer, and a large language model. The hierarchical 205

dict encoder and optimal transport alignment layer 206

encode medical laboratory reports into several vir- 207

tual tokens Tv, the virtual tokens are then concat 208

with the text tokens T , and the combined tokens 209

are fed into a large language model for generation. 210

3.3 Hierarchical Dict Encoder 211

Drawing inspiration from recent advancements 212

such as SetTransformer Lee et al. (2019), TURL 213

Deng et al. (2020), and Tapas Herzig et al. (2020), 214

we harness the BERT’s self-attention architecture 215

Devlin et al. (2018) to model the intricate interac- 216

tions within dictionaries. To effectively adapt to the 217

unique data attributes of medical laboratory reports, 218

the dict encoder incorporates dict tokenizer, rela- 219

tive position encoding and hierarchical attention 220

biases. In the following sections, we will describe 221

the them in detail. 222

3.3.1 Dict Tokenizer: tokenize numerical 223

values in lab report 224

Dict tokenizer turns dictionaries into a series of
token ids. To align with the behavior of medical
practitioners in actual medical practice, we propose
converting detailed numerical values in the labo-
ratory reports into special medical labels. For a
numerical attribute vij , the dict tokenizer maps it to
a single token v′ij (e.g., [NORMAL], [POSITIVE],
[NEGATIVE]). We have defined a total of 13 such
special medical labels, with a detailed list provided
in the appendix. To be more specific, given a set of
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Dictionaries Text

LLM Embedding

Hierarchical
Encoder Layer

Optimal Transport
Alignment Layer

Dict Tokenizer LLM Tokenizerwk0 wv0 wk1 wv1 w[sep] … w[sep]  w[cls] 

p1 p2 p1    p2 p0      …  p0          p0

token
embedding

group
position
encoding

…wk0  wv0 wk1     wv1    w[sep] w[sep]       w[cls] 

…wk0  wv0 wk1     wv1    w[sep] w[sep]       w[cls] 

hierarchical
attention

bias

…

Linear

…

wvt wvt … wvt

size: [seq1,dim1]

size:[seq1,dim2]

size:[seq2,dim2]

Optimal 
Transport

Kernal

Auto Regressive Loss

wk0  wv0 wk1      wv1 w[sep] w[sep]       w[cls] 

wk0  wv0 wk1     wv1    w[sep] w[sep]       w[cls] 

CONCAT(              ,                                    )
Virtual Dict Tokens Text Tokens

Figure 3: DictLLM Framework for report-assisted diagnosis generation. The medical lab report is first tokenized
and encoded by the dict encoder. The embedding generated by the dict encoder are then aligned with the text
embedding generated by the large language using the optimal transport alignment layer. The aligned embedding are
then fed into the large language model to generate the final diagnosis.

dictionaries D = {D1, D2, . . . , Dk} that contains
k dictionary, where each Di = {(kij , vij)}mj=1 is a
set that contains m key-value pairs. The dict tok-
enizer function ft maps the whole D into a series
of token ids t, denoted as:

ft(D)→ t = {t1, t2, . . . , tn}

3.3.2 Group Positional Encoding: maintain225

permutation invariance226

After tokenization, the discrete token ids will be227

embedded into continuous vectors, which will be228

fed into the hierarchical encoder layer. We follow229

the standard practice of using a token embedding230

W and add a positional encoding P to the token231

embedding.232

To model the permutation invariance of key-233

value pairs in laboratory reports, we have es-234

tablished a group positional encoding Pgroup =235

{ppos1 , ppos2 , . . . , pposn}. This encoding ensures236

that perturbation in the relative positions of ele-237

ments within a dictionary do not impact the em-238

bedding generated by the dict encoder. Given the239

distinct characteristics of medical laboratory re-240

ports as dictionary-structured data, We propose the241

following assumption:242

Assumption: For a laboratory report D contain-243

ing m key-value (k, v) pairs, changing the relative244

positions of these (k, v) pairs within D does not245

affect the final diagnosis.246

We implement Pgroup by resetting the index of
positional ids at the beginning of each key-value

pair, where posi represents the positional id for the
ith token. Let Wemb be the embedding matrix of
the dict encoder, The initial dict embedding h0 is
denoted as:

h0 = Wemb(t) + Pgroup

3.3.3 Hierarchical Attention Bias: model 247

structural inductive bias 248

Medical laboratory reports distinguish themselves 249

from natural language in that, the correlation 250

among items within a single report is significantly 251

stronger than the correlation among items across 252

different reports. (e.g. Test items on the same 253

urine report are more likely to collectively indicate 254

kidney-related diseases) We propose incorporating 255

hierarchical attention bias to model the structural 256

inductive bias of medical laboratory reports. 257

Specifically, tokens within the same dictionary 258

are visible to each other, while tokens from differ- 259

ent dictionaries are not. The special token [sep] 260

is used to separate different dictionaries, and the 261

special token [cls] is used to represent the whole 262

dictionary. These special tokens are visible to each 263

other, and they are visible to all tokens in their own 264

dictionary. As illustrated in the Figure 3, tokens 265

connected by dashed lines are visible to each other, 266

while others are not. 267

The initial embedding will then pass through 268

multiple hierarchical encoder layers(HierEnc) to 269

obtain the final embedding. The hierarchical atten- 270

tion bias is implemented as a attention mask M , 271
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which is a n× n matrix, where n is the sequence272

length. A hierarchical encoder layer consists of a273

Hierarchical Self-Attention (HierAttn) layer and a274

MLP layer, denoted as:275

HierEnc(hl) = hl + HierAttn(hl) + MLP(hl)276

HierAttn(hl) = softmax(
QKT +M√

dK
)V277

Mij =


1 ti, tj ∈ D

1 ti, tj ∈ {[sep], [cls]}
0 otherwise

278

After passing through the hierarchical encoder279

layers, the final dict embedding hL is obtained.280

3.4 Optimal Transport Alignment Layer281

Algorithm 1 Optimal Transport Alignment Layer

Input source embedding hs ∈ Rm×a

Output target embedding ht ∈ Rn×b

1: initialize (trainable) reference points z ∈ Rn×b

2: initialize positive definite kernel Φ.
3: hr ∈ Rm×b ←− Φ(hs)
4: TP ∈ Rn×m ←− sinkhorn(hr, z)
5: ht ∈ Rn×b ←− TP× hr

To deal with the heterogeneous information den-282

sity between medical laboratory reports and natural283

language, we propose an optimal transport align-284

ment layer to align the embedding generated by285

the dict encoder with those generated by the LLM,286

producing a list of fixed-length virtual tokens.287

Natural language organized information in a se-288

quential, dense and coherent manner, while infor-289

mation in medical laboratory reports are sparse and290

discrete. A naive approach such as using a linear291

layer may not be the optimal solution. Optimal292

transport is a mathematical framework that pro-293

vides a principled way to align two sets of points294

in a high-dimensional space, which is widely used295

to alignment problems. Grave et al. (2018)296

We utilize a recently proposed technique called297

optimal transport kernel Mialon et al. (2021)298

(OTK). OTK first first utilize a positive definite299

kernel (i.e. in our implementation, a linear func-300

tion) to embed the source set into a reproducing301

kernel Hilbert space (RKHS), then sinkhorn algo-302

rithm, which is a differentiable approximation of303

the optimal transport plan, is used to compute the304

optimal transport plan between the source set and a305

trainable reference set, which introduce non-linear306

transformation on source features. The detailed 307

process of is described in algorithm 1. 308

Let the embedding output by the dict encoder 309

be denoted as hL ∈ Rm×a, where a is the num- 310

ber of tokens in the dict embedding, and b is the 311

dimension of the token embedding. Our goal is 312

to map it to a fixed-length virtual token Tv = 313

{tv1, tv2, . . . , tvn} ∈ Rn×b, where n is the num- 314

ber of virtual tokens, and b is the dimension of the 315

large language model’s token embedding. 316

4 Experiments Setup 317

4.1 Data Description 318

Figure 4: Distribution of different types of disease in
the dataset.

The dataset we use in our experiment is a large- 319

scale chinese real-world medical lab report dataset. 320

We collect the dataset from a real-world hospital, 321

which contains a large number of medical lab re- 322

ports and the corresponding final diagnosis. The 323

dataset contains a total of 11, 290 medical lab re- 324

ports, and each report is associated with several 325

final diagnosis. The original dataset is highly im- 326

balanced in terms of the number of the disease 327

types. We only keep the disease types that appears 328

more than 0.1% of the time in the dataset. The 329

dataset contains a wide range of disease types, as 330

shown in Figure 4. The statistics of the dataset are 331
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shown in Table 1.332

num of mean num of mean num of
cases text token/case lab report item/case

11,290 450.82 16.23

Table 1: Statistical information of datasets.

4.2 Baseline Methods333

Text-Serialization For text-serialization method,334

we use a fixed template to serialize the medical lab335

report into a sequence of tokens. In our experiment,336

we separate each item in dict with comma, and337

use a special token to separate each dict. Then the338

model will be trained with the standard supervised339

fine-tuning paradigm.340

GPT-4 We also evaluate the performance of GPT-4341

on this task in zero-shot and few-shot settings. The342

template we use is the same as the one we use in343

baseline.344

4.3 Implementation Details345

For our model implementation, we primarily rely346

on the PyTorch and Transformers libraries. In347

terms of the Text-Serialization method, we convert348

medical lab reports into plain text at the dataset349

level and then train the model using the standard350

supervised fine-tuning paradigm. For our proposed351

DictLLM framework, we train the dict encoder and352

base large language models jointly. We choose353

internlm-7b-base and baichuan2-7b-base as our354

base models due to their superior performance in355

Chinese. We utilize the AdamW optimizer with a356

learning rate of 2e− 5 and a total batch size of 128.357

We apply a warmup ratio of 0.01, and the training358

process spans 6 epochs. Notably, we did not con-359

duct any hyperparameter search in our experiment.360

Regarding the dataset, we split it into training and361

testing sets, using 90% of the data for training and362

the remaining 10% for testing.363

4.4 Evaluation Metrics364

We use the following metrics to evaluate the perfor-365

mance of the methods we proposed in this paper:366

Rouge-L Rouge-L is a metric that measures the367

similarity between two sequences. It is widely used368

in the text generation task.369

Knowledge F1 We also use the knowledge F1370

score to evaluate the performance of the methods371

we proposed in this paper. Knowledge F1 score is372

a metric that measures the quality of the generated373

sequence in terms of the knowledge it contains. In374

our experiment, we implement the knowledge F1 375

score as the harmonic mean of precision and recall 376

of the correct diagnosis in the generated sequence. 377

5 Results 378

5.1 Main Results 379

Table 2 shows the main results of our experiment. 380

As we can see, the proposed DictLLM framework 381

outperforms the baseline methods in terms of both 382

Rouge-L and Knowledge F1 score in all settings. 383

The performance of our method is consistent across 384

different backbone models. The results demon- 385

strate that our proposed DictLLM framework is 386

effective in modeling the heterogeneous structure 387

of medical lab reports and generating the final di- 388

agnosis. 389

Notably, GPT-4 achieve poor performance in 390

both zero-shot and few-shot settings, and there is a 391

large gap between the performance of GPT-4 and 392

the finetuned large language models. The main rea- 393

son is report-assisted diagnosis generation task is 394

that the task requires the model to have a good un- 395

derstanding of the specialized medical terminology, 396

which is rare in the training data of GPT-4. 397

The gap between the performance of the text- 398

serialization method and our proposed DictLLM 399

framework in baichuan-7b is smaller than that in 400

internlm-7b, which is mainly due to the better back- 401

bone model performance of baichuan-7b. 402

5.2 Scalability to Input Length 403

Figure 5: The knowledge F1 score of different methods
with respect to the number of input tokens. Other results
are detailed in the appendix A.

We also evaluate the scalability of several 404

method to the input length on the backbone of 405

internlm-7b. In real-world medical lab reports, the 406

number of items in the report can be very large, and 407

the length of the report may exceed the limitation 408

of the max token length of large language models. 409
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Method Rouge-L Knowledge
P R F1 P R F1

GPT-4 zero-shot 5.65 32.87 8.64 8.82 28.85 12.70
few-shot 5.80 33.45 8.99 9.54 32.11 13.84

INTERNLM-7B

zero-shot 3.59 4.25 3.83 4.38 3.95 4.05
few-shot 5.89 5.35 5.29 5.99 5.32 5.53
finetune 51.89 45.19 46.69 50.90 46.03 47.43
DictLLM 68.67 63.15 64.24 68.68 64.09 65.24

BAICHUAN-7B

zero-shot 6.14 8.24 6.93 7.71 7.39 7.40
few-shot 8.35 12.67 9.83 10.19 9.27 9.58
finetune 67.15 63.18 63.13 67.32 64.42 64.51
DictLLM 67.26 63.39 63.28 67.50 64.65 64.61

Table 2: Main Results We compare the performance of our DictLLM framework with several baseline methods on
the medical lab report-assisted diagnosis generation task. We report the Rouge-L and Knowledge F1 scores. The
best results are in bold. The detail of the evaluation metrics can be found in section4.4.

Large input length would also lead to large train-410

ing time and memory requirement, which could411

be a bottleneck for the model to be deployed in412

real-world applications.413

As shown in Figure 6, the performance of the414

text-serialization method decreases significantly as415

the input length increases due to the large input to-416

ken size. In contrast, our proposed DictLLM frame-417

work effective compress the input token number418

and achieve consistent performance across differ-419

ent input lengths, demonstrating a better scalability420

of our method to the input length.421

5.3 Robustness to Input Perturbation422

Besides scalability, Robustness to input perturba-423

tion is also an important property for the model424

to be deployed in real-world applications. Input425

perturbation refers to the random permutation of426

the items in the medical lab report. In the ideal427

situation, the model should generate the same diag-428

nosis for the same medical lab report, regardless of429

the order of the items in the report. To evaluate the430

robustness of the model to input perturbation, we431

conduct an experiment to compare the performance432

of different methods before and after perturbation.433

We report the performance and the relative change434

of the generated text before and after perturbation435

in Table 3. The metric RC (i.e. Relative Change) is436

calculated as the 1−RougeLf1 score between the437

text generated before and after the perturbation.438

As is shown in Table 3, the performance of439

the text-serialization method decreases after per-440

turbation, while the performance of our proposed441

DictLLM framework is the most stable across dif- 442

ferent backbone models. We also observe that the 443

relative change of the generated text before and 444

after perturbation is the smallest for our proposed 445

DictLLM framework, demonstrating the robustness 446

of our method to input perturbation. 447

5.4 Ablation study 448

5.4.1 Ablation over the main components 449

We conduct ablation study to demonstrate the effec- 450

tiveness of the model components in our proposed 451

DictLLM framework. For the ablation of group po- 452

sitional encoding, we replace it with the standard 453

sequential positional encoding. For the ablation 454

of optimal transport alignment layer, we replace it 455

with the a simple linear layer. For the ablation of 456

hierarchical attention bias, we just simply remove 457

it from the model. Table 4 shows the ablation study 458

results. 459

Overall, the results show that each component 460

in our proposed DictLLM framework contributes 461

to the performance of the model. Among all the 462

components, deleting the hierarchical attention bias 463

leads to the largest performance drop, demonstrat- 464

ing the importance of the hierarchical attention bias 465

in capturing the structural inductive bias of medical 466

lab reports. 467

5.4.2 Ablation over the virtual token number 468

The number of the virtual token is a hyperparameter 469

in our proposed DictLLM framework. We conduct 470

an ablation study to evaluate the performance of 471

the model with different virtual token number. As 472
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Method
Before Perturbation After Perturbation

Rouge-L Knowledge Rouge-L Knowledge RC↓
P R F1 P R F1 P R F1 P R F1

GPT-4 5.65 32.87 8.64 8.82 28.85 12.70 5.77 32.21 8.64 8.79 27.69 12.43 36.30

TEXT-SERIALIZATION 53.43 46.31 47.76 51.89 47.43 48.60 52.69 45.77 47.24 52.22 47.63 48.82 11.31
DICTLLM 68.53 63.52 64.22 68.42 64.40 65.11 68.61 63.64 64.33 68.51 64.49 65.20 1.71

Table 3: Perturbation Results We compare the performance of our DictLLM framework with baseline methods
on the medical lab report-assisted diagnosis generation task before and after perturbation. RC denotes the relative
change of the generated text before and after perturbation.

Method
Rouge-L Knowledge

P R F1 P R F1

DICTLLM 68.67 63.15 64.24 68.68 64.09 65.24

- position encoding 67.25 60.96 62.23 67.29 62.23 63.46
- attention bias 66.15 60.61 61.40 66.19 61.69 62.53
- alignment layer 69.09 61.36 63.38 69.13 62.45 64.55

Table 4: Ablation study of DictLLM framework.

Figure 6: Ablation study of virtual token ber.

shown in Figure 6, the performance of the model473

increases as the virtual token number increases.474

However, the increase of the virtual token num-475

ber also leads to the slightly increase of the model476

size and the memory requirement. We choose 64 as477

the virtual token number in our experiment, which478

achieves a good trade-off between the performance479

and the memory requirement.480

6 Conclusion481

In this paper, We propose a novel framework called482

DictLLM, which is an efficient and effective frame-483

work for modeling the heterogeneous structure of484

structured data, to deal with the report-assisted di-485

agnosis generation task. Our comprehensive em-486

pirical studies on real-world datasets reveal that a487

carefully designed encoder, which individually en-488

codes structured data, significantly enhances model489

performance on downstream tasks, demonstrating490

advantages in scalability and robustness.491

Limitation The DictLLM framework is specifi-492

cally designed for processing dictionary-structured493

data and requires some effort to further extend it to 494

more complex tabular data. Additionally, although 495

DictLLM has reduced training and inference over- 496

head compared to text-serialization methods, it still 497

demands significant computational resources. 498
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A Appendix580

A.1 Special Medical Labels581

As is shown in the table 5 , We define a total of 13582

special medical labels to convert detailed numerical583

values in the laboratory reports into special medical584

labels.585

Labels

[NORMAL]
[ABNORMAL]
[HI NORMAL]
[LT NORMAL]
[POSITIVE]
[NEGATIVE]
[POSITIVE]
[POSITIVE+]
[POSITIVE++]
[POSITIVE-]
[POSITIVE-]
[SENSTIVE]
[RESISTANT]
[INTERMEDIATE]

Table 5: Special Medical Labels.

A.2 Prompt for Zero-shot and Few-shot 586

Generation 587

Zero-shot prompt: 588

Please output the patient’s discharge
diagnosis based on the given laboratory order
and patient information. Each disease should
be separated by a Chinese comma and then
output a period. Do not output anything else.
Example output: Low-risk mild hypertension,
elevated serum uric acid concentration, stage
5 chronic kidney disease. Laboratory test
report: {} Patient information: {}

589

Fero-shot prompt: 590

Please output the patient’s discharge
diagnosis based on the given laboratory order
and patient information. Each disease should
be separated by a Chinese comma and then
output a period. Finish. Do not output
anything else. Examples: Laboratory test
report: {} Patient information: {}

591

A.3 Scalability to Input Length: Detailed 592

Results 593

Figure 7: The Rouge-L precision score of different
methods with respect to the number of input tokens.
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Figure 8: The Rouge-L recall score of different methods
with respect to the number of input tokens.

Figure 9: The Rouge-L F1 score of different methods
with respect to the number of input tokens.

Figure 10: The knowledge precision score of different
methods with respect to the number of input tokens.

Figure 11: The knowledge recall score of different meth-
ods with respect to the number of input tokens.
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