
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFF-IN: DATA INFLUENCE ESTIMATION WITH DIFFER-
ENTIAL APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce a new formulation to approximate a sample’s influence
by accumulating the differences in influence between consecutive learning steps,
which we term Diff-In. Specifically, we formulate the sample-wise influence as
the cumulative sum of its changes/differences across successive training iterations.
By employing second-order approximations, we approximate these difference
terms with high accuracy while eliminating the need for model convexity required
by existing methods. Despite being a second-order method, Diff-In maintains
computational complexity comparable to that of first-order methods and remains
scalable. This efficiency is achieved by computing the product of the Hessian
and gradient, which can be efficiently approximated using finite differences of
first-order gradients. We assess the approximation accuracy of Diff-In both theoret-
ically and empirically. Our theoretical analysis demonstrates that Diff-In achieves
significantly lower approximation error compared to existing influence estimators.
Extensive experiments further confirm its superior performance across multiple
benchmark datasets in three data-centric tasks: data cleaning, data deletion, and
coreset selection. Notably, our experiments on data pruning for large-scale vision-
language pre-training show that Diff-In can scale to millions of data points and
outperforms strong baselines.

1 INTRODUCTION

Data is a driving force behind recent advancements in various fields (Tom Brown et al., 2020;
Alexander Kirillov et al., 2023; Robin Rombach et al., 2021), as it directly influences the behavior of
learned models, including their performance and inherent biases (Kwon et al., 2023). This highlights
the need for a quantitative understanding of how individual data samples affect model learning,
which is essential for enhancing both model performance (Yang et al., 2023; Xia et al., 2024) and
interpretability (Grosse et al., 2023; Dai & Gifford, 2023).

To address this, influence functions have been introduced (Cook & Weisberg, 1982; Cook, 1986) to
study how a specific sample z affects model parameters and loss values:

Iθpzq “ θ˚
´z ´ θ˚, (Influence on parameters)

Ipz,Vq “ LpV, θ˚
´zq ´ LpV, θ˚q. (Influence on loss)

(1)

Here, θ˚ represents the learned parameters obtained by optimizing the empirical loss L on the full
training set, while θ˚

´z refers to the parameters learned after excluding the sample z. The influence on
parameters, Iθpzq, also known as Cook’s distance (Cook & Weisberg, 1982; Cook, 1986), measures
the extent to which the optimized model parameters would change if the sample z is removed from
the training dataset. Similarly, the influence on loss, Ipz,Vq, examines how the model’s loss or
performance on an evaluation set V is affected when the sample z is excluded from the training set.

To measure the influence of a sample z, a straightforward yet optimal approach would be to remove z
from the training dataset and retrain the model to obtain the optimized parameters θ˚

´z – a process
known as leave-one-out (LOO) training. However, the retraining is computationally expensive and
often impractical. To overcome this limitation, Koh and Liang (Koh & Liang, 2017), building on
the formulation of influence functions (Cook & Weisberg, 1982), introduced approximations that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 1: Approximation accuracy comparison by comparing the estimated influence values with
actual influence values obtained through brute-force retraining on the 30 most influential data points.
There are three model and dataset settings, (a) ResNet-18 on CIFAR-10, (b) ResNet-101 on CIFAR-
10, and (c) ResNet-18 on ImageNet-1K. The more accurate a method is, the closer its corresponding
scatters will be concentrated near the diagonal. Our approach demonstrates consistent advantages as
the model size grows (a vs. b) and as the dataset complexity increases (a vs. c).

estimate a sample’s influence without the need for retraining. The key idea is to derive a quadratic
approximation of the empirical risk around the stationary point θ˚ and obtain the sample’s influence
by upweighting it by an infinitesimal amount; see Sec. 2.1 for details. Subsequent studies (Basu
et al., 2020; Koh et al., 2019; Basu et al., 2021; Grosse et al., 2023; Kwon et al., 2023; Ko et al.,
2024) have expanded on this approach, improving both its efficiency and precision. However, despite
these advancements, the accuracy of these methods relies on convexity (Koh & Liang, 2017) of the
model – conditions that are rarely satisfied in practice, especially in large models. As a result, these
approximations can be inaccurate, as demonstrated in Figure 1 and Figure 3, where the sample’s
influence (olive stars) deviates significantly from the LOO results, showing a low correlation. This
limitation also impacts their performance in practice (see Sec. 5).

Another notable approach, TracIn (Pruthi et al., 2020), offers a heuristic method for approximating a
sample z’s influence on loss values requiring only first-order gradient computations. This method
accumulates the sample’s impact on the validation set loss across various training iterations through
first-order approximations of the loss. Although TracIn is more computationally efficient, its approxi-
mation diverges significantly from the objective defined in Eq. 1, limiting its accuracy (see Figure 1
(purple stars)). Additionally, it cannot be used to estimate a sample’s influence on model parameters.

In this paper, we introduce a new perspective on influence estimation by examining its temporal
differences, termed Diff-In. The core idea of Diff-In is to represent influence as the cumulative sum
of its differences between successive training steps (see Eq. 4). Although simple, this formulation
allows us to apply a second-order approximation to each difference term without relying on con-
vexity assumptions (Koh & Liang, 2017) or altering the approximation target (Pruthi et al., 2020),
thereby enhancing accuracy (see Figure 1 green triangle). This improvement is demonstrated both
theoretically (Sec. 4) and empirically (Sec. 5.4). Moreover, although Diff-In employs a second-order
approximation, it does not significantly increase computational complexity compared to existing
methods (Koh & Liang, 2017; Pruthi et al., 2020) (see Sec. 5.4). Instead of directly computing
second-order derivatives, Diff-In calculates the product of the Hessian and the gradient (Pearlmutter,
1994). This is done using finite differences on the gradient, as shown in Eq. 6, requiring only gradient
computations and maintaining a computational complexity comparable to that of first-order methods
(Pruthi et al., 2020).

We conduct extensive experiments on various data-centric tasks, including coreset selection (Sorscher
et al., 2022), data cleaning (Pruthi et al., 2020), and data deletion (Fu et al., 2022), to evaluate
the effectiveness of Diff-In. The results demonstrate that Diff-In consistently outperforms previous
methods (Koh & Liang, 2017; Pruthi et al., 2020; Kwon et al., 2023) across all benchmarked tasks and
datasets, delivering leading performance in most evaluated scenarios. Notably, Diff-In outperforms all
baselines by more than 9.0% in the data cleaning task and achieves a stable performance improvement
of over 2.0% in the data deletion task. It also surpasses the widely-used CLIP-score (Alec Radford

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2021) by 1-2% while maintaining a similar time cost in coreset selection for vision-language
tasks. Additionally, our approach is versatile, effectively solving all three tasks, while some of the
compared methods (Xia et al., 2023; Pruthi et al., 2020; Kim et al., 2024) are tailored to specific tasks
and cannot be applied across different data-centric tasks.

2 PRELIMINARIES

We have compiled all the notations in Table 5. Let D “ tz0, ..., zN´1u denote the training set, where
the number of all samples |D| “ N . D{z is the dataset excluding a sample z. For a deep network
parameterized by θ P Θ, we use ℓpz, θq as the loss on a sample z and Lp:, θq as the averaged loss over
a set of data, where LpD, θq “ 1

N

ř

i ℓpzi, θq. Please check Eq.1 for the definition of the sample’s
influence.

2.1 REVISITING INFLUENCE ESTIMATION

Koh and Liang’s approach and its subsequent developments. To mitigate the high cost of brute-
force leave-one-out (LOO) retraining, various methods have been proposed to estimate influence
(Koh & Liang, 2017; Grosse et al., 2023; Kwon et al., 2023; Pruthi et al., 2020; Basu et al., 2020). A
notable example is the approach introduced by Koh and Liang (Koh & Liang, 2017), which calculates
the change in model parameters when a sample z is up-weighted by a small amount ϵ. Specifically,
the optimal parameters θ˚

ϵ,z , resulting from up-weighting the sample z by ϵ, are formulated as:
θ˚
ϵ,z “ argminθPΘ

1
n

řn
i“1 ℓpzi, θq ` ϵℓpz, θq.

Then, according to Cook & Weisberg (1982), by applying a quadratic approximation to the empirical
risk around θ˚, the influence of up-weighting z on the parameters θϵ“0,z “ θ by ϵ is given by:

Iup,paramspzq “
dθ˚

ϵ,z

dϵ

ˇ

ˇ

ˇ

ϵ“0
“ ´H´1

θ˚ ∇θℓpz, θ
˚q, (2)

where Hθ˚ “ 1
n

řn
i“1 ∇2

θℓpzi, θ
˚q is the Hessian and is positive definite (PD) by assumption. Since

removing a point z is the same as up-weighting it by ϵ “ ´ 1
n , one can then approximate the parameter

by computing Iθpzq “ θ˚
´z ´ θ˚ « ´ 1

nIup,paramspzq.

With Iθpzq, the influence on the loss over the validation set V can be estimated as: Ipz,Vq “

x∇LpV, θ˚q, Iθpzqy. While these methods represent significant progress, they rely on the assumption
that the empirical risk is strongly convex with respect to the parameters—an assumption that is rarely
satisfied in practice (Choromanska et al., 2015; Dauphin et al., 2014). This limitation leads to reduced
approximation accuracy (see Figure 1) and suboptimal performance in real-world applications (see
Sec. 5). Additionally, the need to compute the inverse Hessian constrains the scalability of these
methods for large-scale applications.

TracIn. Recently, another notable work, TracIn (Pruthi et al., 2020; Xia et al., 2024), bypassed the
convex loss assumption by introducing a heuristic proxy metric to the original influence metric defined
in Eq.1, called TracInIdealpz,Vq “

ř

t:zt“z LpV, θtq ´ LpV, θt`1q. This metric measures
the total reduction in loss on the validation set V caused by the stochastic gradient descent process
whenever the training example z is used. TracIn approximates this heuristic proxy with an efficient
first-order estimator:

TracInpz,Vq “
ÿ

tPTm

ηtx∇LpV, θtq, ∇LpD, θtqy, (3)

where x¨, ¨y denotes the inner-product operation, ηt is the learning rate at the t-th iteration, and
Tm “ t1, ..., tm is a set of sampled time steps.

Due to its first-order approximation, TracIn is more scalable for large-scale datasets than the method
proposed by Koh and Liang (Koh & Liang, 2017). However, its heuristic goal differs from the original
definition, and when combined with approximation errors, it often leads to imprecise estimates (Kwon
et al., 2023). As shown in Fig. 1, the approximation accuracy of TracIn decreases as the dataset
size and the number of model parameters increase. Furthermore, this approach is not suitable for
estimating a sample z’s influence on the parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 INFLUENCE ESTIMATION VIA DIFFERENTIAL APPROXIMATION

In the following sections, we first explain how to expand the influence as the cumulative sum of
differences in Sec. 3.1 and introduce an efficient second-order estimator for the difference term
(Lemma 3.1) along with its first-order approximations (Eq. 6). Next, building on the derived
difference term, we present Diff-In, which estimates the influence on parameters and loss values in
Proposition 3.2. Finally, we discuss implementation details in Sec. 3.2. We will extend the method to
other optimizers in Sec. B.

3.1 DIFF-IN

Here, we formulate the influence as the cumulative sum of its differences between successive training
time steps. We denote the influence of sample z on the parameters at the t-th training iteration as
It
θpzq “ θt´z ´ θt. The sample-wise influence difference between adjacent training steps is given by

Dtpzq “ It`1
θ pzq ´ It

θpzq. Given that the maximum number of iterations is T , we have Iθ “ IT
θ .

Therefore, we can express It
θ as follows:

Iθpzq “
ÿ

tăT

´

It`1
θ pzq ´ It

θpzq

¯

` I0
θ pzq “

ÿ

tăT

Dt
pzq ` I0

θ pzq “
ÿ

tăT

Dt
pzq, (4)

where I0
θ pzq “ θ0´z ´ θ0 “ 0, since the removal or inclusion of sample z does not affect the initial

model parameters. Although simple, this approach allows us to approximate the difference terms
without this approach enables us to approximate the difference terms without relying on convexity
assumptions, as demonstrated below, thereby enhancing approximation accuracy.

Estimation for the difference term Dtpzq We can express Dtpzq as: Dtpzq “ pθt`1
´z ´ θt´zq ´

pθt`1 ´ θtq. Assuming the use of the SGD optimizer, according to the parameter update rule, we
have θt`1 ´ θt “ ´ηtG

t, where Gt represent the gradient at iteration t and ηt denotes the learning
rate. We can then approximate Dtpzq “ ´ηtpG

t
´z ´Gtq where Gt

´z denotes the gradient at iteration
t with sample z removed from the training set. It is important to highlight that our approximation
can be readily extended to other optimization methods by adjusting the parameter update rule as
necessary (see Sec. B). By furthering expressing Gt

´z ´ Gt using a continuous time approximation
and introducing a perturbation parameter ϵ for the gradient difference terms, following (Koh & Liang,
2017), we can derive Dtpzq using second-order and first-order terms through Taylor’s expansion.
This leads us to the following Lemma.
Lemma 3.1. Given the parameters θtD optimized via the SGD optimizer at the t-th iteration, by
supposing the time-step to be continuous, Dtpzq can be approximated as follow,

D̂tpzq “
ÿ

kďt

at,k

´

Hk
BkG

k
z ` Hk

z Gk
Bk

¯

, (5)

where Bt Ă D is the training mini-batch at the t-th, Ht
Bt “ ∇2LpBt, θtq is the hessian over the

batch, Gt
Bt “ ∇LpBt, θtq is the gradient over the batch. Ht

z “ ∇2ℓpz, θtq and Gt
z “ ∇ℓpz, θtq are

the hessian and the gradient on the sample z, respectively. The coefficient at,k “ ´pηtηkq2{N is a
function of the learning rate ηt and ηk.

The detailed proof is provided in Appendix F.1. Despite being a second-order estimator, the Hessian-
gradient product can be efficiently approximated using the classic finite difference method (Pearlmut-
ter, 1994), as described by the following rule:

HG « lim
ϵÑ0

r∇Lpθ ` ϵGq ´ ∇Lpθqs{ϵ, (6)

where the complexity is Oppq, with p representing the number of parameters, making it comparable
to first-order methods. This approximation can be easily implemented and efficiently executed using
existing deep learning frameworks like PyTorch (Adam Paszke et al., 2017).

Diff-In: influence on parameters and influence on loss. Using the approximation for the dif-
ference term of influence on parameters, D̂tpzq, as shown in Eq. 5, we can calculate the influence
on parameters by accumulating this term, as described in Eq. 4. Similarly, for the influence on the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

loss Ipz,Vq, we expand it by accumulating its differences over different time steps. By applying
first-order approximations of the loss and accounting for the influence of a sample z on model
parameters, Dtpzq, at different time steps t, we find Ipz,Vq can be computed by accumulating the
product of gradient of validation loss, ∇LpV, θtq, and the difference term of influence on parameters,
D̂tpzq:
Proposition 3.2. Let x¨, ¨y denote the inner-product operation. By using the estimation for Dtpzq in
Lemma 3.1 and keeping the symbol convention aforementioned, the differential influence function
calculates the influence on parameters Iθpzq and the influence on loss Ipz,Vq as:

Iθpzq “
ÿ

t

D̂tpzq, Ipz,Vq “
ÿ

t

A

∇LpV, θtq, D̂tpzq

E

. (7)

The proof of the above proposition is provided in Appendix F. It is important to note that the naive
calculation of this approximation is inefficient. This is because both the difference term in Eq. 5 and
the final Diff-In estimator in Eq. 7 require summing over historical time steps, which is impractical
for real-world applications. To address this issue, in the next subsection, we introduce practical
techniques involving the use of checkpoints to significantly reduce computational costs.

3.2 PRACTICAL IMPLEMENTATION USING CHECKPOINTS

Random 3 Random 5 Random 10 Random 15 The middle oneThe last one
Sampling strategy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Si

m
ila

rit
y

Figure 2: Comparison of the (Cosine) similarity be-
tween the estimated difference in Eq 5 via different
sampling strategies and the ground truth obtained by
retraining. [Random n] means randomly selecting n
time steps. [The middle one] indicates set k “ t{{2.
[The last one] indicates set k “ t as Eq. 8. This
experiment is done on CIFAR-10 with ResNet-18
where t “ 37.

Here, we present practical methods commonly
used in practice to accelerate influence estima-
tion. First, for the estimator for the influence
difference term in Eq. 5, we calculate it us-
ing the t-th checkpoint rather than all k ď t
learning steps:

D̂t
pzq «

´tpηt
q
2

N

´

Ht
BtG

t
z ` Ht

z Gt
Bt

¯

. (8)

This is equivalent to when we use sampling
to estimate the summation over time steps and
only take the very last time step (k “ t) as
the sampled time point. We have discovered
that this extremely simple operation is rather
effective in the experiments. The practical per-
formance of this strategy is better and more
stable than sampling five random time steps.
See Figure 2!

Second, computing Eq. 7 requires revisiting all
learning steps, which is impractical in practice.
To address this, we adopt two practical strate-
gies. Following the approach in (Pruthi et al.,
2020; Tan et al., 2023), we calculate the influence using saved intermediate checkpoints rather than
all learning steps. By applying the efficient empirical rule in Eq.8, we have the influence calculation
with checkpoints:

Iθpzq “
1

m

ÿ

tPTm

´tpηt
q
2

N

´

Ht
BtG

t
z ` Ht

z Gt
Bt

¯

,

Ipz,Vq “
1

m

ÿ

tPTm

´tpηt
q
2

N

A

∇LpV, θtq,
´

Ht
BtG

t
z ` Ht

z Gt
Bt

¯E

,

(9)

where Tm “ tt1, ..., tmu is a set of randomly selected time-steps. Since the calculation requires
access to the batch of data Bt used during training, which is often unavailable, we instead sample a
random batch of data for the calculation, following (Pruthi et al., 2020). The pseudocode for Diff-In
is provided in Appendix A.

The impact of the hyper-parameter m is explored in Sec. 5.4. As demonstrated in the experiments
in Sec.5.4, we found that a relatively small number of sampled time steps is sufficient to achieve

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

strong performance. A similar sampling strategy could be seen in (Pruthi et al., 2020; Tan et al., 2023;
Ghorbani & Zou, 2019).

The naive calculation for Diff-In in Proposition 3.2 has a complexity of OpT 2pq, where T is the total
number of training and p is the number of parameters. However, since T can be very large, tracing
every time step would be computationally expensive and resource-intensive. To address this, we
introduce the aforementioned time-step sampling strategy, and the overall complexity is reduced to
Opmpq.

4 APPROXIMATION ERROR

We analyze the approximation error of the proposed influence estimator in Proposition 3.2, where Ipzq

is the estimated influence and IExactpzq is the exact influence calculated by the vanilla leave-one-out
retraining:

Proposition 4.1. Supposing the loss has ℓ-Lipschitz continuous gradient and the gradient norm of the
parameter is upper-bounded by g, and assuming the learning rate η ď 1 and the momentum weight
β ď 1 (if available), the error between the approximated Ipzq and the exact IExactpzq is bounded
by:

|Ipzq ´ IExactpzq| ď 2T 2ℓpT ` 1qC `
T 2

N
g, (10)

where | ¨ | is the norm, and T is the maximum iteration, N is the number of training samples, C
represents the farthest distance the neural network parameters move away from their initial state
during training when any subset Ds Ă D is used as the training set, under the fixed environmental
settings, initialization and training strategy, that is, C “ maxDsĂD,tďT |θtDs

´ θ0|. Note that C has
a polynomial growth with T , e.g. when using the SGD optimizer, C ď Tg, where C is less than the
product of the number of time steps T and the upper bound of the gradient norm g.

The detailed derivation is provided in Appendix G. This Proposition highlights several key points:
(1) Approximation becomes more challenging as the number of iterations increases, since the
approximation error grows polynomially with the number of time steps. This aligns with findings in
previous works (Schioppa et al., 2024; Tan et al., 2023). (2) The approximation accuracy of Diff-In is
superior to that of earlier approaches such as (Hara et al., 2019; Schioppa et al., 2024), where the
error exhibited exponential growth with increasing training iterations. (3) Models with smoother loss
surfaces (corresponding to smaller g and ℓ) will be easier to obtain better approximate accuracy.

5 EXPERIMENTS

We extensively evaluate and benchmark our method on three major data-centric tasks: dataset cleaning
(Sec.5.1), data deletion (Sec.5.2), and coreset selection (Sec.5.3). Then, we conduct ablation studies
and analysis on Diff-In (Sec.5.4). All the results are averaged over 5 independent runs. More details
on the implementation and experiments are reported in the Appendix D.

5.1 DATA CLEANING: FINDING THE WRONGLY LABELED SAMPLES

Setup. Data cleaning (Csaba Kertész, 2021; Tang et al., 2021) is a crucial step in the data pre-
processing pipeline aimed at improving the quality and reliability of dataset labels. In our experiments,
we define data cleaning as the process of identifying mislabeled samples within the dataset. Detailed
experimental settings can be found in Appendix E.

We assess label quality by examining a sample’s influence on its own loss (Pruthi et al., 2020).
According to the definition of a single data point’s influence on the loss function (Eq. 1), setting the
validation set as the sample z itself, i.e., V “ z, yields an important self-influence metric, Ipz, zq:

Ipz, zq “ Lpz, θ˚
´zq ´ Lpz, θ˚q, (11)

which represents the influence of a training point z on its own loss. Self-influence plays a key role in
identifying mislabeled points (Pruthi et al., 2020; Koh & Liang, 2017). Outliers or mislabeled data
can significantly impact their own loss, or self-influence (Pruthi et al., 2020), because the model may

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Experimental results of data cleaning, aiming to identify the noisy data of the given dataset.
The performance metric is the Precision in Eq. 12. The best results are bolded. Please check Appendix
D.3 for std information. In Table.12, we present more experimental results on GSM8K for IP (Yang
et al., 2024) and OGI (Chhabra et al., 2024a).

Dataset (Ñ) SVHN Tiny-ImageNet GSM8K
Selection Rate (Ñ) 20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 70%
Random 20.0 30.0 40.0 50.0 60.0 70.0 20.0 30.0 40.0 50.0 60.0 70.0 20.0 30.0 40.0 50.0 60.0 70.0
Loss value 27.2 43.4 51.0 65.9 69.1 72.2 21.2 31.7 42.1 52.2 62.6 65.3 28.4 39.3 51.5 57.4 63.7 69.4

IF 41.6 46.3 59.5 66.8 72.5 78.1 21.1 31.6 42.0 52.2 62.3 69.4 67.2 71.4 79.6 88.5 94.7 97.7
DataInf 42.9 46.6 61.9 68.5 72.9 77.6 26.9 38.6 45.5 58.6 64.8 70.5 68.5 73.4 84.2 90.1 96.2 98.5
TracIN 81.4 90.2 95.5 98.2 99.2 99.6 76.3 91.0 95.9 97.8 98.4 99.3 78.4 84.5 92.2 99.2 99.2 100.0
GEX 80.7 84.9 86.7 89.5 91.5 94.5 72.7 77.2 81.9 87.3 90.1 92.2 77.2 87.1 91.6 95.3 99.9 100.0

Diff-In 90.2 96.4 98.7 99.6 99.6 99.9 88.2 98.0 98.6 99.0 99.8 100.0 86.1 92.2 99.3 99.9 99.9 100.0

not receive sufficient information from other samples to handle these outliers effectively, leading to
higher self-influence values for such samples.

Experiments. We perform experiments on two image classification datasets, namely SVHN (Netzer
et al., 2011) and Tiny-ImageNet (Ya Le & Xuan S. Yang, 2015). Additionally, we also conduct
experiments with the GSM8K (Cobbe et al., 2021) dataset for large language models (Llama Team,
2024). To create a noisy dataset, we randomly select 20% of the data and perturb their corresponding
labels by following (Pruthi et al., 2020; Kim et al., 2024). The experimental results are presented in
Table 1, where we report the Precision metric under different selection ratio settings,

Precision “ Nfound{Nall, (12)

where Nfound indicates the number of noise samples found by algorithms and Nall is the number of
all noise samples. Detailed introduction for settings and datasets can be seen in Appendix E.1 and
E.3. For experiments on SVHN (Netzer et al., 2011) and Tiny-ImageNet (Ya Le & Xuan S. Yang,
2015), we train ResNet-18 models from scratch. For GSM8K, we LoRA-finetune a Llama 3.1 8B
model (Llama Team, 2024) on GSM8K (Cobbe et al., 2021) and then use the parameters of LoRA to
calculate influence by following (Xia et al., 2024; Kwon et al., 2023). Other influence estimators,
such as IF (Koh & Liang, 2017), TracIn (Pruthi et al., 2020), GEX (Kim et al., 2024), and DataInf
(Kwon et al., 2023), are also employed to compute the self-influence metric. We additionally take the
loss value for data cleaning as a classical metric. The greater the loss, the more probable it is that a
sample is a noise sample.

Diff-In outperforms the compared methods in all scenarios. For instance, considering the challenging
Tiny-ImageNet dataset, where both the IF and entropy-based methods only achieve marginal improve-
ments over random selection. When employing Diff-In to select the top 20% samples, it is possible to
identify over 88% of the erroneous samples, exceeding others like TracIN by approximately 12.0%.
For GSM8K, when the selection rate is 20%, using Diff-In surpasses the second-best method, TracIN,
by around 9.0%. Refer to Appendix D.2 for more experiments.

5.2 DATA DELETION: REMOVING THE INFLUENCE OF NOISY DATA WITHOUT RETRAINING

Table 2: The experimental results of data deletion,
where the column "Noise" contains results on the
noise set while the column "Oracle" contains results
retraining on the cleaned set (all noise samples are
removed). The performance metric is Accuracy@1.

Dataset (Ñ) SVHN CIFAR-100 Tiny-ImageNet

Noise 77.4 64.5 39.7
Oracle 83.6 74.1 45.7

IF (Koh & Liang, 2017) 79.2˘1.86 65.1˘1.92 38.2˘2.25

MC-IF (Fu et al., 2022) 80.7˘0.94 71.9˘1.26 40.3˘1.23

SEEE (Peste et al., 2021) 81.4˘0.82 72.2˘1.71 41.5˘1.04

Diff-In 83.0˘0.71 73.5˘0.85 42.9˘1.04

Setup. Data deletion, also known as machine
unlearning (Fu et al., 2022), is the task of
eliminating the impact of certain training data
items from a learned model. It is notewor-
thy that some methods in this field rely on
retraining, while others do not. Diff-In falls
into the latter category. To ensure fairness,
the baselines discussed here exclusively con-
sist of methods that do not depend on retrain-
ing. Herein, we employ influence estimators
to eliminate the impact on the learned model
by noisy samples. We introduce 20% label
noise into the dataset and train a ResNet-18
model. Note that this experiment is different
from the Data Cleaning shown above. Data Cleaning aims to find mislabeled data, while the purpose

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of Data deletion here is: given that the model has already been trained on a dataset, use some methods
to eliminate the influence of particular data samples without retraining. Detailed experimental settings
can be seen in Appendix E.

Deletion with influence functions. Considering the physical meaning of the influence Iθpzq “

θ˚
´z ´ θ˚, we can approximately obtain the leaving-one-retraining parameters by θ˚

´z “ Iθpzq ` θ˚

after calculating the approximation Iθpzq. Hence, θ˚
´z is the approximated parameter after performing

data deletion. For deleting a set of samples Z from the model, according to the additivity assumption
of influence functions Koh & Liang (2017); Koh et al. (2019); Yang et al. (2023); Tan et al. (2023),
we can add up their influence as a whole, specifically, θ˚

´Z “
ř

zPZ Iθpzq ` θ˚. Note that many
methods (Pruthi et al., 2020; Kim et al., 2024; Ko et al., 2024; Kwon et al., 2023) do not provide
the influence on parameters, Ipθq, and therefore cannot be applied in this experiment (see Table 6).
To execute data deletion for noise samples, we compute the influence of those noisy data on the
parameter denoted by IθpDnq, where Dn signifies the subset encompassing all the noisy data.

Experiments. For comparison, apart from the simplistic retraining method (referred to as the Oracle),
we also engage in a comparison with the Influence Function estimator (abbreviated as IF) put forward
by Koh and Liang (Koh & Liang, 2017) and the MCMC-IF (Fu et al., 2022), SEEE (Peste et al., 2021)
as baseline approaches. The experiments are carried out on SVHN (Netzer et al., 2011), CIFAR-100
(Alex Krizhevsky, 2009), and Tiny-ImageNet (Ya Le & Xuan S. Yang, 2015). The experimental
results are presented in Table 2. Diff-In attains a superior performance of 2.0% compared to MCMC-
IF (Fu et al., 2022). It is noteworthy that the performance disparities to the Oracle brute-force
retraining on SVHN and CIFAR-100 are approximately 0.6%.

5.3 CORESET SELECTION

Setup. Coreset selection aims to identify a compact subset of the training data in such a way that
the model’s performance on this subset closely approximates its performance on the entire dataset
(Ozan Sener & Silvio Savarese, 2018; Sorscher et al., 2022). The proportion of the selected subset
to the original dataset is termed the selection ratio. We carried out experiments on both an image
classification task and a vision-language pretraining task. The detailed experimental setups can be
found in Appendix E. For all experiments, we first pre-train a model on the full training set, then
calculate the influence score for each training sample on the training loss (Koh & Liang, 2017;
Kim et al., 2024; Kwon et al., 2023), that is, Ipz,Dq. A higher influence score on the training loss
indicates that a sample may have a more positive influence (Tan et al., 2023). Finally, we retain the
subset corresponding to the highest influence scores as the coreset. Further particulars regarding the
experimental setups are provided in Appendix E. In Table.11, we present more experimental results
on the coreset for supervised-finetuning Llama-3-8B on OpenMathInstruct (Toshniwal et al., 2024).

Image classification. We carried out experiments on three public benchmarks: CIFAR-100 (Alex
Krizhevsky, 2009), Tiny-ImageNet (Ya Le & Xuan S. Yang, 2015), and ImageNet-1K (Russakovsky
et al., 2015). In these experiments, we compared the performance of Diff-In with various influence
estimators, including IF (Koh & Liang, 2017), TracIn (Pruthi et al., 2020), GEX (Kim et al., 2024),
and DataInf (Kwon et al., 2023). Notably, to mimic real-world limitations on computational resources,
the pre-trained model was trained for only a few epochs. Additionally, we compared Diff-In to state-
of-the-art coreset selection methods such as Prototypicality Coreset (also termed SSP) (Sorscher
et al., 2022) and Moderate Coreset (Xia et al., 2023).

The experimental results are presented in Table 3. Among all the influence estimators, Diff-In
consistently achieves the best results across most settings and datasets. This superiority is especially
prominent at lower selection ratios. For instance, on Tiny-ImageNet, Diff-In outperforms the best
baseline estimator (TracIn) by 2.4% at a selection rate of 20%. On ImageNet, Diff-In surpasses
TracIn by 3.9% at a selection rate of 30%. Moreover, even when contrasted with methods specifically
designed for coreset selection such as SSP and Moderate Coreset, Diff-In remains highly competitive,
sustaining superior performance in nearly all settings—except for the 70% setting on CIFAR-100 and
Tiny-ImageNet and the 40% setting on ImageNet-1K.

Vision language pretraining. We carried out experiments on the vision-language dataset CC12M
(Soravit Changpinyo et al., 2021), which encompasses 12 million image-text pairs sourced from the
Internet, for CLIP-like vision-language pre-training. The pre-trained CLIP model (Alec Radford
et al., 2021) is frequently employed to rate image-text data from the vision-language dataset, wherein

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Experimental results of coreset selection on three image classification datasets with ResNet-
50 model. The best results are bolded for baselines and ours, respectively. The performance metric is
Accuracy@1. Please check Appendix D.3 for std information.

Dataset (Ñ) CIFAR10 Tiny-ImageNet ImageNet-1K
Selection Rate (Ñ) 20% 30% 50% 70% 80% 100% 20% 30% 50% 70% 80% 100% 20% 30% 50% 70% 80% 100%
Random 50.2 53.6 64.3 71.0 74.1 78.1 24.0 29.7 34.4 40.9 45.7 49.3 61.6 65.9 67.7 70.3 72.9 76.4

SSP 44.4 54.6 62.9 70.7 75.2 - 20.8 27.6 32.5 39.6 44.9 - 31.2 51.4 60.3 69.8 75.5 -
Moderate 51.8 57.7 64.9 71.8 74.2 - 25.2 30.5 34.8 41.4 46.0 - 61.1 67.8 70.0 73.0 75.3 -

IF 26.4 36.1 47.1 51.2 63.5 - 14.3 19.1 24.5 31.2 37.9 - 25.6 30.5 49.9 56.7 68.1 -
DataInf 26.9 35.8 48.2 52.5 65.5 - 16.1 21.2 27.7 33.1 42.4 - 27.7 32.3 52.6 58.2 67.0 -
TracIn 50.4 58.4 63.9 70.4 72.3 - 24.2 28.8 35.3 40.1 45.8 - 61.3 64.4 70.3 71.4 73.6 -
GEX 44.8 50.0 57.5 62.0 69.9 - 20.5 23.0 29.4 36.6 41.6 - 55.3 58.7 65.7 69.8 70.1 -

Diff-In 52.0 59.4 65.7 71.5 75.3 - 26.6 30.5 36.0 40.9 46.4 - 61.7 68.3 69.8 73.6 75.5 -

Table 4: Experimental results of coreset selection on vision-language pertaining. Regarding Diff-In,
we contemplate two time-step configurations: randomly selecting times (designated as Diff-In, the
normal setting) and selecting only the final time step (designated as Diff-In-F, the efficient setting).
The top-2 highest results are bolded.

Dataset (Ñ) Zero-shot Classification (Acc@1) I2T Retrieval (Recall@1) T2I Retrieval (Recall@1) Linear Prob (Acc@1)

Selection Rate (Ñ) 10% 20% 40% 60% 100% 10% 20% 40% 60% 100% 10% 20% 40% 60% 100% 10% 20% 40% 60% 100%
Random 19.7 21.3 25.3 29.0 37.2 29.9 32.1 38.1 42.3 51.7 21.2 23.1 25.4 28.6 44.5 41.6 45.4 51.3 59.1 67.5

SSP 18.0 20.4 23.2 28.4 - 24.5 31.8 35.0 39.4 - 21.1 22.5 24.8 29.2 - 40.8 44.6 52.0 58.4 -
CLIP-score 24.1 27.4 32.4 34.1 - 33.9 39.1 45.2 47.1 - 23.7 28.4 36.4 40.3 - 47.4 52.9 59.3 62.1 -
Moderate 24.7 27.7 31.7 32.0 - 33.4 37.5 41.0 43.7 - 22.7 25.8 34.2 38.9 - 47.9 51.4 56.5 60.2 -

IF 22.3 24.8 29.0 30.4 - 30.4 37.3 42.5 45.9 - 20.8 25.2 30.4 35.7 - 43.3 47.1 54.7 60.7 -
DataInf 22.5 25.4 29.8 31.3 - 30.1 37.2 43.3 46.7 - 21.5 25.9 31.9 35.6 - 43.8 48.3 55.1 59.4 -
GEX 22.2 27.5 30.6 33.3 - 31.6 37.9 42.9 47.1 - 21.9 26.0 35.9 39.3 - 43.1 51.4 57.1 61.6 -
TracIn 24.7 27.1 31.9 34.5 - 33.1 39.5 45.5 47.8 - 22.4 28.1 36.7 40.8 - 47.8 53.0 58.9 63.0 -

Diff-In-F 24.3 27.8 32.9 34.4 - 34.2 39.5 45.4 47.7 - 23.5 29.0 37.1 40.7 - 47.8 53.1 59.5 62.5 -
Diff-In 25.8 28.3 33.5 36.2 - 34.4 40.6 46.4 48.9 - 23.9 29.7 38.0 41.1 - 48.3 53.7 60.2 63.4 -

a higher CLIP score denotes superior image-text alignment. Consequently, there exists a prevalent
and valuable coreset baseline (Christoph Schuhmann et al., 2022; Li et al., 2022; 2023) for vision-
language datasets that retain data with higher CLIP scores. In addition to those influence-based
approaches employed in the image classification task, we consider another baseline, the Moderate
coreset (Xia et al., 2023) over CLIP scores: Selecting those samples with the median score since the
highly-scored samples might be the too-easy samples.

For all methods, we train a CLIP-Vit-Base model on CC12M; the detailed settings are introduced
in the appendix. Regarding Diff-In, we use two time-steps: randomly selecting times (designated
as Diff-In) and selecting only the final time step (designated as Diff-In-F). After data selection, we
conduct CLIP pre-training on the coreset and evaluate the model on four downstream tasks: Zero-
shot ImageNet Classification, Image-to-Text Retrieval, and Text-to-Image Retrieval on Flickr30K
(Plummer et al., 2015), and Linear Probing on ImageNet; refer to Appendix. E.2 for more particulars.

The experimental results are shown in Table 4. For all 12M samples, it takes about 9.4 minutes to
calculate CLIP scores, 10.2 minutes to calculate Diff-In-F, and 59.2 minutes to calculate Diff-In.
Diff-In consistently outperforms all baselines across all selection ratios, surpassing the CLIP score
by 1%-2% in most cases. Notably, with a similar time cost as the popular CLIP score, Diff-In-F
performs better than the CLIP score on all experiments except the (selection-rate=10%) T2I retrieval
experiment. This is because CLIP scores focus solely on evaluating text-image alignment and favor
simpler, more obvious matches, potentially overlooking more complex but informative samples.
By considering influence, Diff-In offers a more comprehensive evaluation, considering a sample’s
alignment and informativeness.

5.4 ABLATION STUDY

Here we conduct ablation studies for the effect of the number of sampled time steps on the final
performance and speed, and the generalization ability to various optimizer choices. In Table.11, we
present more ablation results for the choice of the number of sampled time steps and the speed test
on the coreset for supervised-finetuning Llama-3-8B on OpenMathInstruct (Toshniwal et al., 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(b) (c)(a)

Figure 3: In (a), on CIFAR-10, we study the effect of the number of sampled time steps, where
“Res” refers to the ResNet-18 (He et al., 2016) and “Swin” refers to the Swin-Transformer (Tiny)
(Liu et al., 2021a). In (b), on CIFAR-10 and with ResNet-18, the results show the practical time
consumption comparison, where “(Last layer)” refers to the computation that only takes into account
the parameters of the last layer, otherwise, all the parameters are considered. In (c), on CIFAR-10 and
with ResNet-18, the figure compares the approximation precision of our Diff-In and other baselines
under different optimizer settings, namely the vanilla SGD optimizer, the SGD optimizer with a
momentum weight of 0.9, and the Adam optimizer.
Study of sampled time steps. For the Diff-In with checkpoints in Sec. 3.2, the larger m (the number
of sampled time steps), the closer the estimation in Proposition 3.2, but also the higher the computation
cost. Here, we study this by measuring the Pearson correlation between the approximation and the
exact brute-force retraining influence under different settings for m P t2, 3, 4, 5, 10, 20, 40, 60, 100u.
The experiment is conducted on the CIFAR-10 dataset (Alex Krizhevsky, 2009) using ResNet-18
(He et al., 2016) and Swin-Transformer (Liu et al., 2021a) with the vanilla SGD optimizer. Fig. 3 (a)
visualize the results with std bar. In conclusion, the performance growth will gradually slow down
when m exceeds 5 and eventually converges. Hence, we recommend m “ 5 for most settings.

Speed comparison. Figure 3(b) compares the practical computation speed of our Diff-In with TracIn
(Pruthi et al., 2020). Here, we consider settings for the calculation: using all parameters (Koh &
Liang, 2017), or only using the parameters in the last layer (Yang et al., 2023; Tan et al., 2023). The
experiment is conducted on the CIFAR-10 dataset (Alex Krizhevsky, 2009) using ResNet-18 (He
et al., 2016). With only the last layer’s parameters and m “ 5, Diff-In and TracIn can significantly
speed up the calculation by two orders of magnitude and achieve similar speeds. Moreover, by setting
m “ 5, the time cost can be further reduced to 0.02 sec for Diff-In. Note that the classic influence
estimator proposed by Koh and Liang (Koh & Liang, 2017) costs around 3 sec and 0.7 sec with all
parameters and the last layer’s parameters respectively, which is not displayed in the figure.

Approximation precision comparison. Here, we compare the precision of our approach with Koh’s
method (Koh & Liang, 2017) (abbreviated as IF), DataInf (Kwon et al., 2023), SGD-Inf (Hara et al.,
2019), and TracIn (Pruthi et al., 2020), in terms of approximation precision. This study is conducted
under three optimizer settings: vanilla SGD, SGD with momentum, and Adam (Kingma & Ba, 2015).
Diff-In consistently maintains the highest level of approximation precision across all settings. Diff-In
shows the leading performance, especially under momentum-based optimizer settings, where TracIn’s
and SGD-Inf’s precision significantly decreases.

6 CONCLUSION

In conclusion, this paper has presented a novel formulation, Diff-In, which approximates a sam-
ple’s influence by accumulating the differences in influence between consecutive learning steps.
Through the use of second-order approximations, Diff-In has been able to achieve high accuracy
in approximating the difference terms without the need for model convexity required by traditional
methods. Despite its second-order nature, it maintains a computational complexity comparable
to first-order methods, making it scalable and efficient, achieved by computing the product of the
Hessian and gradient using finite differences of first-order gradients. Theoretically and empirically,
Diff-In has shown remarkable performance. The theoretical analysis indicates its significantly lower
approximation error compared to existing estimators, and extensive experiments across multiple
benchmark datasets in various data-centric tasks such as data cleaning, data deletion, and coreset
selection have further validated its superiority.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Adam Paszke, Sam Gross, Soumith Chintala, G Chanan, E Yang, Zachary Devito, Zeming Lin, Alban
Desmaison, L Antiga, A Lerer, and et.al. Automatic differentiation in pytorch. In Advances in
neural information processing systems Workshop, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, ditya Ramesh, Gabriel Goh, Sandhini Agarwa, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. CoRR, abs/2103.00020,
2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment
anything. arXiv:2304.02643, 2023.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
2022.

Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions for
black-box predictions. In International Conference on Machine Learning, 2020.

Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
International Conference on Learning Representations, 2021.

Siu Lun Chau, Robert Hu, Javier Gonzalez, and Dino Sejdinovic. Rkhs-shap: Shapley values for
kernel methods. Advances in neural information processing systems, 35:13050–13063, 2022.

Hugh Chen, Scott M Lundberg, and Su-In Lee. Explaining a series of models by propagating shapley
values. Nature communications, 13(1):4512, 2022a.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient
data relevance analysis for interpreting deep neural networks, 2022b.

Anshuman Chhabra, Bo Li, Jian Chen, Prasant Mohapatra, and Hongfu Liu. Outlier gradient analysis:
Efficiently identifying detrimental training samples for deep learning models, 2024a.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. ”what data benefits my
classifier?” enhancing model performance and interpretability through influence-based data
selection. In International Conference on Learning Representations, 2024b.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, Jeff Schneider, Eduard Hovy, Roger
Grosse, and Eric Xing. What is your data worth to gpt? llm-scale data valuation with influence
functions, 2024. URL https://arxiv.org/abs/2405.13954.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gerard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. Journal of Machine Learning Research, 38:192–204, 2015.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, and et. al. LAION-5b: An open large-
scale dataset for training next generation image-text models. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

R Dennis Cook. Assessment of local influence. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 48(2):133–155, 1986.

11

https://arxiv.org/abs/2405.13954

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

R. Dennis. Cook and Sanford Weisberg. Residuals and influence in regression / R. Dennis Cook
and Sanford Weisberg. Monographs on statistics and applied probability. Chapman and Hall, New
York, 1982. ISBN 041224280X.

Csaba Kertész. Automated cleanup of the imagenet dataset by model consensus, explainability and
confident learning. arXiv preprint arXiv:2103.16324, 2021.

Zheng Dai and David K Gifford. Training data attribution for diffusion models. arXiv preprint
arXiv:2306.02174, 2023.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in Neural Information Processing Systems, pp. 2933–2941, 2014.

Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. Influence function based data poisoning attacks
to top-n recommender systems. In Proceedings of the ACM Web Conference, pp. 3019–3025, 2020.

Vitaly Feldman and Zhang Chiyuan. What neural networks memorize and why: Discovering the long
tail via influence estimation. In Advances in neural information processing systems, 2020.

Shaopeng Fu, Fengxiang He, and Dacheng Tao. Knowledge removal in sampling-based bayesian
inference. In International Conference on Learning Representations, 2022.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
arXiv preprint arXiv:2212.04612, 2022.

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with sgd.
Advances in Neural Information Processing Systems, 32, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE / CVF Computer Vision and Pattern Recognition Conference, 2016.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. arXiv preprint arXiv:1908.08619, 2019.

Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
Dawn Song. Scalability vs. utility: Do we have to sacrifice one for the other in data importance
quantification? In IEEE / CVF Computer Vision and Pattern Recognition Conference, 2021.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018.

SungYub Kim, Kyungsu Kim, and Eunho Yang. Gex: A flexible method for approximating influence
via geometric ensemble. Advances in Neural Information Processing Systems, 36, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Yegor Klochkov and Yang Liu. Revisiting inverse hessian vector products for calculating influence
functions, 2024.

Myeongseob Ko, Feiyang Kang, Weiyan Shi, Ming Jin, Zhou Yu, and Ruoxi Jia. The mirrored
influence hypothesis: Efficient data influence estimation by harnessing forward passes. In CVPR,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pang Koh, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. On the accuracy of influence functions
for measuring group effects. In Advances in neural information processing systems, 2019.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based
data relabeling. In International Conference on Learning Representations, 2022.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Advances in Neural Information Processing Systems, 2018.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In ICML, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

Peizhao Li and Hongfu Liu. Achieving fairness at no utility cost via data reweighing with influence,
2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Liu, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021a.

Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, and Conghui He. Influence selection
for active learning. In International Conference on Computer Vision, 2021b.

AI@Meta Llama Team. The llama 3 herd of models, 2024.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A coreset
approach. In International Conference on Learning Representations, 2018.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Barak A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 6(1):147–160,
1994.

Alexandra Peste, Dan Alistarh, and Christoph H. Lampert. Ssse: Efficiently erasing samples from
trained machine learning models, 2021.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models. In Proceedings of the IEEE international conference on computer
vision, pp. 2641–2649, 2015.

Garima Pruthi, Frederick Liu, Sundararajan Mukund, and Satyen Kale. Estimating training data
influence by tracing gradient descent. arXiv preprint arXiv:2002.08484, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. arXiv preprint arXiv:2112.10752, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, and others. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In Advances in Neural Information Processing Systems, 2018.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. Advances in Neural Information Processing Systems,
36, 2024.

Lloyd S Shapley et al. A value for n-person games. 1953.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-
scale image-text pre-training to recognize long-tail visual concepts. In IEEE / CVF Computer
Vision and Pattern Recognition Conference, 2021.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. In Advances in Neural Information
Processing Systems, 2022.

Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, and Liang Wan. Exploring example influence in
continual learning. Advances in Neural Information Processing Systems, 35:27075–27086, 2022.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
pruning via moving-one-sample-out. In Advances in neural information processing systems, 2023.

Siyi Tang, Amirata Ghorbani, Rikiya Yamashita, Sameer Rehman, Jared Dunnmon, James Zou, and
Daniel L. Rubin. Data valuation for medical imaging using shapley value and application to a
large-scale chest x-ray dataset. Science Report, 11:8366, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, and et. al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. In Advances in Neural
Information Processing Systems, 2024.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal
method of data selection for real-world data-efficient deep learning. In International Conference
on Learning Representations, 2023.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
training data by examining generalization influence. In International Conference on Learning
Representations, 2023.

Ziao Yang, Han Yue, Jian Chen, and Hongfu Liu. Revisit, extend, and enhance hessian-free influence
functions, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

LIMITATIONS

Like many existing methods, Diff-In focuses on sample-level influence and is currently limited in its
ability to address more general applications, such as the influence of neural network parameters or
hyperparameters. In future work, we plan to develop more comprehensive and unified theoretical
tools to better understand the influence of various factors affecting neural network training.

BROADER IMPACT

This paper presents a novel and effective influence analysis algorithm to advance the deep learning
area. There are some potential positive societal effects, such as helping people better understand the
role of data to develop more robust deep learning systems and possibly even be used to eliminate
data bias. As for the potential negative impacts, we believe that this technology, and even the entire
field of artificial intelligence, may be applied to inhumane social surveillance, which should be taken
seriously by legislative bodies worldwide.

Table 5: Comprehensive overview of the notational convention.

Notation Description

D The training set, and the size of the training set is |D| “ N .
x¨, ¨y The inner-product operator.
z P D A training data.
D{z The training set excluded the sample z.
V The validation set.
Bt The mini-batch at the t-th iteration.
ℓp¨q The loss function over one data point.
Lp¨q The averaged loss over batch or set.
θ˚ The learned parameters optimized on the full training set after training.
θt The learned parameters optimized on the full training set at the t-th iteration.
θ˚

´z The learned parameters optimized on the dataset excluded the sample z after
training.

θt´z The learned parameters optimized on the dataset excluded the sample z at the
t-th iteration.

θ˚
´Z The learned parameters optimized on the dataset excluded a sample set Z

after training.
p The number of trainable parameters.
G The gradient of the model parameter.
H The hessian of the model parameter.
Gt

z The gradient of the parameters at the t-th training iteration over the sample z.
Ht

z The Hessian of the parameters at the t-th training iteration over the sample z.
Gt

´z The gradient of the parameters at the t-th training iteration over D{z.
T The maximum iteration of the training process.
Tm A set of m randomly selected time-steps Tm “ tt1, ..., tmu.
m The number of randomly selected time-steps in Tm.
Iθpzq, The influences on parameters, also the Cook’s distance (Cook, 1986).
Ipz,Vq The influences on loss over the validation set V.
Dt The influence difference between two adjacent time steps t and t ´ 1.
η The learning rate in the optimizer.
β The momentum weight in the optimizer.
ℓ The Lipschitz constant.
g The upper bound of the gradient norm.
C The farthest distance the neural network parameters move away from their

initial state during training when any subset Ds Ă D is used as the training
set.

LOO Leave-one-out.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Comparison of different methods. We compare several kinds of influence estimators,
including, IF (Koh & Liang, 2017), DataInf (Kwon et al., 2023), GEX (Kim et al., 2024), and TracIn
(Pruthi et al., 2020). Both IF (Koh & Liang, 2017) and DataInf (Kwon et al., 2023) require the loss
convexity assumption and the stationarity assumption (the solution should be a stationary point). In
this table, only TracIn and our Diff-In can be aware of training dynamics. Only our Diff-In has all the
advantages, such as not requiring assumptions of convexity and stationarity, being able to consider
the training dynamics, and being applicable for estimating the influence on parameters.

IF DataInf GEX TracIn Diff-In

Avoids loss convexity No No Yes Yes Yes

Avoids stationarity No No Yes Yes Yes

Training dynamics No No No Yes Yes

Influence on loss Yes Yes Yes Yes Yes

Influence on parameters Yes No No No Yes

A PSEUDO-CODE OF DIFF-IN

We summarize the calculation in Algorithm 1. Given a selected training sample z, a validation set V,
and several time steps, we first randomly sample m time steps from the training process and select
the corresponding model checkpoints pθtDqtPtt1,...,tmu. Note that we can randomly select m time
steps before training and save the corresponding model checkpoints during training, without saving
checkpoints at all steps. For each time-step t, we calculate the influence-difference term Dtpzq using
Eq.4. Finally, after iterating over all the sampled time steps, it outputs the influence of the selected
training sample z on the model parameters and the loss on V.

B HOW TO EXTEND DIFF-IN TO OTHER OPTIMIZERS?

Thus far, the method primarily addresses models optimized with standard SGD. However, thanks
to our new formulation, it can be easily extended to momentum-based gradient descents, such as
SGD-M, by adjusting the parameter update equation in the derivation. For instance, consider the
general form of gradient descent with momentum: θt`1 “ θt ´ ηt

´

p1 ´ βqGt ` βMt´1

¯

. The

corresponding generalized form of the estimator for D̂tpzq is:

D̂tpzq “
ÿ

kăt

αt
k

”

ÿ

qăk

Hq
ÿ

eăq

αq
e∇ℓpz, θeq `

ÿ

qăk

∇2ℓpz, θqq
ÿ

eăq

αq
eG

e
ı

,

where the coefficient αt
k “ 1

N

´

ś

kăaăt ηaβ1

¯

ηkp1 ´ β1q is defined by the learning rate η and the
momentum weight β at each step. Notably, the estimator for SGD in Lemma 3.1 is a special case of
this formulation, obtained by setting β “ 0, since the key distinction between SGD and SGD-M lies
in the inclusion of momentum. The detailed proof is provided in the Appendix F.

The Adam optimizer (Kingma & Ba, 2015) uses adaptive moment estimates to adjust the learning
rate for each parameter individually, resulting in faster convergence and improved performance.
Given the two hyperparameters, β1 and β2, in Adam, we reformulate the parameter update in the
form of SGD-M: θt`1 “ θt ´ η˚

t

´

p1 ´ β1qGt ` β1Mt´1

¯

. The general learning rate η˚ is a

vector that η˚ “ ηt

M´

p1 ´ β1qp
a

V̂t ` ϵq
¯

, where V̂t “ Gb2
t `

β2

1´β2
Vt´1, Gb2

t is the element-
wise squaring operation on Gt. The vector V could be easily obtained from the Adam optimizer
in PyTorch (Adam Paszke et al., 2017). Thus, our estimator in Lemma 3.1 by just calculating
αt
k “ 1

N

´

ś

kăaăt η
˚
aβ1

¯

η˚
k p1 ´ β1q with the general learning rate η˚.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C RELATED WORKS

C.1 INFLUENCE ANALYSIS

Influence analysis is a technique to elucidate the connection between training data and model
predictions (Hammoudeh & Lowd, 2022; Cook, 1986; Koh & Liang, 2017; Shapley et al., 1953;
Chau et al., 2022). A straightforward way to measure the significance of a sample is to perform
leave-one-out (LOO) retraining, which involves re-training the model on the training set without
the sample and then comparing the discrepancy between it and the model trained on the full set.
Nevertheless, the high computational expense of retraining for each sample is generally prohibitive
due to the enormous size of contemporary deep-learning datasets (Russakovsky et al., 2015; Christoph
Schuhmann et al., 2022; Soravit Changpinyo et al., 2021). Even some works that try to reduce the
cost of retraining, such as by dividing the full set into subsets (Feldman & Chiyuan, 2020), still incur
a high overall expense.

Instead of performing any retraining, Koh et al. (Koh & Liang, 2017) estimate the model change from
a small weight change of training data. Specifically, this method utilizes the inverse-Hessian-gradient-
product-based estimator to approximate the sample-wise influence. However, Koh’s estimator has
some limitations. The first one is that it relies on an overly strong assumption that the loss function
with parameters should be convex, which is often not the practice case (Choromanska et al., 2015;
Dauphin et al., 2014). The second limitation is that it can not be easily scaled up to large models
and large datasets due to the heavy computation of the inverse-Hessian-gradient-product. The
third shortcoming is that it cannot model the training dynamics since it only uses the parameters
checkpoint from the very last iteration. Even so, it has attracted considerable attention from the
academic community. Subsequently, there have been various research efforts to improve this method
in various directions. For better scalability, a line of work (Grosse et al., 2023; Schioppa et al., 2022;
Kwon et al., 2023) has been proposed. Grosse et al. (2023) proposed an efficient decomposition
of Hessian to speed up the estimator’s calculation. Another excellent work (Schioppa et al., 2022)
introduced the novel Arnoldi iteration technique for accelerating the computation of the inverse
Hessian, enabling applications to large-scale Transformer models in language and vision tasks,
even when they have hundreds of millions of parameters. DataInf (Kwon et al., 2023) proposed a
novel closed-form approximation for the inverse-Hessian better efficiency in both computational and
memory complexities. Klochkov & Liu (2024) studied some hyper-parameters affecting the precision
of using LiSSA algorithm to calculate the Hessian-related operation for influence function. Yang
et al. (2024) proposed a Hessian-free approach to estimate the influence function by only calculating
the inner product in the gradient space thereby achieving better scalability. As for the group effect
(Yang et al., 2023), some works also analyze (Koh et al., 2019) and improve (Basu et al., 2020) the
influence function on measuring group effects, for instance, Basu et al. (2020) extended influence
functions to directly account for sub-population-group effects by considering higher-order terms in
Taylor approximation. Moreover, PBRF (Bae et al., 2022) analyzes several practical reasons for the
failure of Koh’s estimator, e.g. the distinction between cold-start and warm-start response, the implicit
regularizer, and the non-converged parameters. Additionally, it proposes the proximal Bregman
response function to improve the performance. However, the requirement of Koh’s estimator on
the convex property of loss function and the neglect of training dynamics are not well solved in the
above method. Recently, some work has attempted to estimate the effect of a sample by comparing
the changes in the representation of some samples before and after additional training (Kim et al.,
2024; Ko et al., 2024). They will perform better than Koh’s estimator, but additional training will
undoubtedly bring additional computational costs, especially if the data set is large. Chhabra et al.
(2024b) proposed to combine the influence function with tree-structure to provide interpretations of
which sample features contribute positively or negatively to the model’s performance.

In recent years, a series of works represented by SGD-Inf (Hara et al., 2019), TracIn (Pruthi et al.,
2020) and MoSo (Tan et al., 2023) have brought new solutions to this problem. All three are achieved
by calculating the gradient information during training. For example, SGD-Inf (Hara et al., 2019)
proposes an approximator with theoretical guarantees by tracking the gradient information of each
sample at each epoch during training. TracIn (Pruthi et al., 2020) greatly improves the computational
efficiency by sampling time steps. These schemes not only eliminate the requirement of convexity of
the loss function in the calculation of influence but also fully perceive training dynamics. However,
these methods are also problematic, they either do not estimate the influence of a sample on model
parameters. In addition, in training, the choice of optimizer also has a significant impact on training,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1: Calculate differential influence function for a single sample z.

1: Input: A set of training data D, a validation set V, and a training sample z P D;
2: Input: Several checkpoints pθtqtPtt1,...,tmu during training;
3: Initialization: Iθ “ 0 and Ipz,Vq “ 0;
4: for t P tt1, ..., tmu do
5: Compute the influence difference Dtpzq by Eq.5;
6: Iθ Ð Iθ ` Dtpzq, Ipz,Vq Ð Ipz,Vq ` ∇LpV, θtqT Dtpzq, see Eq.7;
7: end for
8: Output: Iθ and Ipz,Vq.

and these schemes are designed for one particular optimizer, namely the stochastic gradient descent
(SGD). So they don’t account for the impact of the optimizer’s variability (e.g. the widely used Adam
(Kingma & Ba, 2015)), thereby limiting their broader applicability.

Besides the aforementioned methods, another very effective scheme for estimating the influence is
the Shapley value (Shapley et al., 1953) based on cooperative game theory. It can be interpreted
as the contribution of each sample to the model’s performance by quantifying the marginal gain in
performance when a sample is added to a randomly selected subset. However, the computation of the
Shapley value is very expensive, since it requires evaluating all possible subsets. Therefore, some
approximation methods, such as Monte-Carlo sampling (Ghorbani & Zou, 2019), kernel method
(Chau et al., 2022), or KNN-based method (Jia et al., 2019), have been proposed to reduce the
computational cost.

C.2 APPLICATIONS

The technique of influence analysis, which measures the impact of training samples on the model’s
performance, has been explored by the academic community in many scenarios. Here we list some
representative topics and works. (1) Dataset pruning / Coreset selection (Yang et al., 2023; Jia
et al., 2021; Choe et al., 2024): selecting a subset of the dataset that preserves the model’s accuracy
while reducing the size or complexity of the data. For example, LoGra (Choe et al., 2024) proposed
an extremely efficient influence-based pipeline to conduct data valuation and selection for large
language models. (2) Noise and outlier sample detection (Koh & Liang, 2017; Jia et al., 2021; Tang
et al., 2021; Hara et al., 2019; Chhabra et al., 2024a) and noise label correction (Kong et al., 2022):
identifying and removing or correcting the samples that have incorrect or misleading labels or features
that degrade the model’s quality. (3) Adversarial attack (Koh & Liang, 2017; Fang et al., 2020):
generating samples that can fool or attack the model by exploiting its weaknesses or vulnerabilities.
(4) Continual learning (Sun et al., 2022): the process of constantly monitoring and retraining machine
learning models with updated data to prevent concept drifts and maintain accuracy and reliability. (5)
Machine unlearning (Fu et al., 2022): removing the influence of a specific sample or group of samples
from the model, which can be useful for privacy, security, or legal reasons. (6) Data attribution
(Grosse et al., 2023; Chen et al., 2022a; Park et al., 2023; Dai & Gifford, 2023; Ilyas et al., 2022):
attributing the model’s output or behavior to the input data or features that contributed to it. For
example, Li & Liu (2022) proposed an influence-based data reweighting pipeline to enhance better
fairness. HYDRA (Chen et al., 2022b) attributes the model’s output by unrolling the hyper-gradient of
test loss throughout the training trajectory. Datamodels (Ilyas et al., 2022) proposed an interpretable
pipeline by introducing a simple surrogate model (like a linear model) to understand the relation
between data and prediction and then give rise to various interesting applications. (7) ISAL (Liu
et al., 2021b) designed an active learning pipeline by utilizing the influence function to pick up the
most influential data points at each iteration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Generalization to unseen architecture test on CIFAR-100 and Tiny-ImageNet (denoted by
Tiny in the table). Here, we tested the generalization performance of the coresets selected using
various methods on network architectures different from the surrogate network’s architecture. We
chose two different architectures, SENet (Jie Hu et al., 2018) and EfficientNet-B0 (Mingxing Tan &
Quoc Le, 2019) (denoted by EB0 in the table). In all experiments, the selection ratio of the coresets
from all methods is 20%.

Settings SENet CIFAR EB0 CIFAR SENet Tiny EB0 Tiny

Random 53.57 42.42 34.13 32.88
SSP 54.16 43.65 31.74 30.99
Moderate 55.57 48.58 36.04 34.26

IF 47.81 36.94 32.82 30.75
DataInf 48.98 39.42 33.24 31.63
TracIn 53.12 46.09 34.25 33.54
GEX 51.67 42.87 34.84 31.93

Ours 55.62 48.82 36.41 34.52

D SUPPLEMENTARY EXPERIMENTS

D.1 GENERALIZATION TEST OF THE CORESET

To test whether the selected coresets are overfitting to the specific network architecture, we assessed
their ability to generalize to different architectures using CIFAR-100 and Tiny-ImageNet datasets
in our experiments. Specifically, we evaluated the performance of the coresets on two different
architectures: SENet (Jie Hu et al., 2018) and EfficientNet-B0 (Mingxing Tan & Quoc Le, 2019),
which were not used in the initial selection process.

Based on the results presented in Table 7, our approach consistently outperforms other methods in
terms of generalization to unseen architectures. Specifically, our method achieves the highest perfor-
mance on both SENet and EfficientNet-B0 architectures for both CIFAR-100 and Tiny-ImageNet
datasets. For example, on the EfficientNet-B0 architecture over CIFAR-100, our method achieves
an accuracy of 48.82%, which is 0.24% higher than the second-best method (Moderate). On the
Tiny-ImageNet dataset, our method again achieves the highest accuracy of 36.41% and 34.52% on
the SENet and EfficientNet-B0 architectures, respectively. It is worth noting that some methods,
such as IF, DataInf, and GEX, sometimes perform even worse than the randomly selected random
coreset, while our Diff-In achieves the largest margin of improvement over random selection. This
demonstrates the good generalization ability of our method.

D.2 FURTHER STUDY ON DATA CLEANING

Here, we conducted further experiments on data cleaning as a supplement to the experiments in
Section 5.1 of the main text. In this set of experiments, all data-cleaning techniques are applied to the
Tiny-ImageNet (Ya Le & Xuan S. Yang, 2015) dataset. The purpose of this experiment is to simulate
the noise that can occur during the annotation process by introducing a certain percentage of random
label noise, denoted as rn%. The experiment aims to evaluate the ability of different methods to
identify and remove noisy data from the dataset.

The results are presented in Table 8, where the numbers represent the proportion of noise samples
in the selected rn% data points to the total noise samples in the entire dataset. A higher number in
the table indicates a better ability of the method to identify and filter out noisy data. Our method
outperforms others by a significant margin. Note that as the noise ratio increases, the performance
of all methods except our method gradually decreases to the level of random selection, while our
method’s performance remains stable.

We visually displayed some results of identifying noisy samples in Figure 4. We compared the results
of identifying noise by IF (Koh & Liang, 2017) and our Diff-In. In this experiment, 20% of the data
labels were randomly replaced with incorrect labels to introduce label noise. Diff-In is a powerful

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Additional data cleaning experiment on Tiny-ImageNet (Ya Le & Xuan S. Yang, 2015). For
all experiments, we introduce rn% random label noise to simulate the noise that can occur during
the annotation process. The numbers in the table below represent the proportion of noise samples in
the selected data with a ratio of rn% to the total noise samples in the entire data set. The larger the
number, the better the method’s ability to identify noise data.

Dataset Tiny-ImageNet

Noise ratio rn% 10% 20% 30% 40% 50% 60% 70% 80%
Selection ratio 10% 20% 30% 40% 50% 60% 70% 80%

Random 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Entropy 11.1 21.2 31.6 41.2 50.9 60.7 70.2 80.1
Margin 10.7 20.6 30.7 40.7 50.5 60.3 70.1 80.1

IF(Koh & Liang, 2017) 10.4 21.1 36.1 40.7 50.1 60.0 69.9 79.9
DataInf(Kwon et al., 2023) 12.5 26.9 37.6 41.3 53.1 62.3 71.5 80.5
TracIN(Pruthi et al., 2020) 70.7 76.3 79.0 76.7 75.7 70.4 70.2 82.3
GEX(Kim et al., 2024) 65.9 72.7 74.7 75.0 72.4 71.6 71.5 80.5

Ours 78.6 88.2 85.4 86.3 88.1 84.8 88.9 87.5

noise-label indicator, while IF identifies more difficult samples that are correct in category but have
some recognition difficulty in image content.

Frog
(Bottle)

Frog
(Frog)

Frog
(Frog)

Frog
(Frog)

Frog
(Frog)

Frog
(Frog)

Frog
(Dam)

Frog
(Bottle)

Frog
(Bridge)

Frog
(Fish)

HIF:

IF:

HIF:

IF:

Bucket
(Bear)

Bucket
(Dog)

Bucket
(Dog)

Bucket
(Spider)

Bucket
(Goose)

Bucket
(Lake)

Bucket
(Bucket)

Bucket
(Bucket)

Bucket
(Bucket)

Bucket
(Bucket)

Bottle
(Scorpion)

Bottle
(Spyglass)

Bottle
(Scorpion)

Bottle
(Monkey)

Bottle
(Socks)

Bottle
(Bottle)

Bottle
(Bottle)

Bottle
(Centipede)

Bottle
(Bottle)

Bottle
(Scorpion)

HIF:

IF:

Frog
(Bottle)

Frog
(Frog)

Frog
(Frog)

Frog
(Frog)

Frog
(Frog)

Frog
(Frog)

Frog
(Dam)

Frog
(Bottle)

Frog
(Bridge)

Frog
(Fish)

HIF:

IF:

HIF:

IF:

Bucket
(Bear)

Bucket
(Dog)

Bucket
(Dog)

Bucket
(Spider)

Bucket
(Goose)

Bucket
(Lake)

Bucket
(Bucket)

Bucket
(Bucket)

Bucket
(Bucket)

Bucket
(Bucket)

Bottle
(Scorpion)

Bottle
(Spyglass)

Bottle
(Scorpion)

Bottle
(Monkey)

Bottle
(Socks)

Bottle
(Bottle)

Bottle
(Bottle)

Bottle
(Centipede)

Bottle
(Bottle)

Bottle
(Scorpion)

HIF:

IF:

Figure 4: Some results of data cleaning results by ours and IF (Koh & Liang, 2017). In this
experiment, 20% of the data labels were replaced with random incorrect labels to introduce label
noise. Each image in the above corresponds to a ground-truth label in black and a generated label,
which is represented by a wrong label in red or a correct label in green.

D.3 EXPERIMENTAL RESULTS WITH STD

Due to limited space in the main paper, we present experimental results with std information here as
a supplement to Table 3 and Table 1. Please see Table 9 for results of the coreset experiment with std
information. And please check Table 10 for the results of the data cleaning with std information.

Table 9: Experimental results with std-values of coreset selection on three public datasets with
ResNet-50 model. Training on the full CIFAR-100, Tiny-ImageNet, and ImageNet-1K datasets
without data selection achieved 78.1%, 49.3%, and 76.4%, respectively. The best results are bolded
for baselines and ours, respectively.

Dataset CIFAR-100 Tiny-ImageNet ImageNet-1K

Selection Rate 20% 30% 50% 70% 80% 20% 30% 50% 70% 80% 20% 30% 40% 60% 80%

Random 50.2 53.6 64.3 71.0 74.1 24.0 29.7 34.4 40.9 45.7 61.6 65.9 67.7 70.3 72.9

SSP (Sorscher et al., 2022) 44.4˘2.5 54.6˘2.1 62.9˘1.2 70.7˘0.8 75.2˘0.4 20.8˘0.4 27.6˘0.5 32.5˘0.3 39.6˘0.3 44.9˘0.3 31.2˘0.6 51.4˘0.6 60.3˘0.5 69.8˘0.6 75.5˘0.4

Moderate (Xia et al., 2023) 51.8˘1.5 57.7˘1.6 64.9˘0.9 71.8˘0.9 74.2˘0.4 25.2˘0.3 30.5˘0.2 34.8˘0.5 41.4˘0.4 46.0˘0.3 61.1˘0.6 67.8˘0.4 70.0˘0.5 73.0˘0.4 75.3˘0.4

IF (Koh & Liang, 2017) 26.4˘1.3 36.1˘1.2 47.1˘1.1 51.2˘0.8 63.5˘0.6 14.3˘1.2 19.1˘1.1 24.5˘1.0 31.2˘0.8 37.9˘0.6 25.6˘1.1 30.5˘1.0 49.9˘0.9 56.7˘0.7 68.1˘0.6

DataInf (Kwon et al., 2023) 26.9˘1.6 35.8˘1.3 48.2˘1.1 52.5˘0.9 65.5˘0.7 16.1˘1.3 21.2˘1.2 27.7˘1.0 33.1˘0.9 42.4˘0.7 27.7˘1.2 32.3˘1.1 52.6˘1.0 58.2˘0.8 67.0˘0.8

TracIn (Pruthi et al., 2020) 50.4˘1.0 58.4˘0.9 63.9˘0.8 70.4˘0.6 72.3˘0.6 24.2˘0.7 28.8˘0.6 35.3˘0.6 40.1˘0.5 45.8˘0.4 61.3˘0.7 64.4˘0.6 70.3˘0.6 71.4˘0.5 73.6˘0.5

GEX (Kim et al., 2024) 44.8˘1.1 50.0˘0.9 57.5˘0.8 62.0˘0.6 69.9˘0.6 20.5˘0.8 23.0˘0.8 29.4˘0.8 36.6˘0.8 41.6˘0.6 55.3˘0.8 58.7˘0.7 65.7˘0.6 69.8˘0.6 70.1˘0.4

Ours 52.0˘1.0 59.4˘1.0 65.7˘0.8 71.5˘0.7 75.3˘0.6 26.6˘0.8 30.5˘0.6 36.0˘0.5 40.9˘0.4 46.4˘0.4 61.7˘0.6 68.3˘0.6 69.8˘0.5 73.6˘0.4 75.5˘0.4

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Experimental results with std values of data cleaning, aiming to identify the noisy data of
the given dataset. The reported performance represents the percentage of the noisy samples contained
in the selected subset (under different selection rates) compared to the total number of noisy samples
in the entire dataset. The best results are bolded.

Dataset SVHN Tiny-ImageNet GSM8K

Selection Rate 20% 30% 40% 50% 60% 20% 30% 40% 50% 60% 20% 30% 40% 50% 60%

Random 20.0 30.0 40.0 50.0 60.0 20.0 30.0 40.0 50.0 60.0 20.0 30.0 40.0 50.0 60.0

Loss value 27.2˘3.1 43.4˘3.4 51.0˘3.3 65.9˘2.9 69.1˘2.9 21.2˘3.1 31.7˘2.8 42.1˘2.1 52.2˘2.1 62.6˘1.7 28.4˘2.4 39.3˘2.2 51.5˘1.9 57.4˘1.8 63.7˘2.0

IF (Koh & Liang, 2017) 41.6˘1.8 46.3˘1.7 59.5˘1.5 66.8˘1.3 72.5˘1.3 21.1˘1.4 31.6˘1.5 42.0˘1.4 52.2˘1.1 62.3˘1.1 67.2˘3.2 71.4˘2.5 79.6˘2.1 88.5˘2.4 94.7˘1.4

DataInf (Kwon et al., 2023) 42.9˘2.1 46.6˘1.9 61.9˘1.6 68.5˘1.6 72.9˘1.5 26.9˘2.3 38.6˘2.2 45.5˘2.2 58.6˘1.8 64.8˘1.7 68.5˘1.7 73.4˘1.4 84.2˘1.6 90.1˘1.7 96.2˘1.1

TracIN (Pruthi et al., 2020) 81.4˘1.7 90.2˘1.1 95.5˘0.5 98.2˘0.1 99.2˘0.1 76.3˘2.4 91.0˘0.7 95.9˘0.7 97.8˘0.3 98.4˘0.3 78.4˘2.5 84.5˘1.1 92.2˘0.2 99.2˘0.2 99.2˘0.2

GEX (Kim et al., 2024) 80.7˘2.2 84.9˘1.9 86.7˘1.7 89.5˘1.5 91.5˘1.2 72.7˘1.9 77.2˘1.8 81.9˘1.8 87.3˘1.7 90.1˘1.4 77.2˘1.8 87.1˘1.4 91.6˘1.3 95.3˘0.9 99.9˘0.0

Ours 90.2˘0.7 96.4˘0.6 98.7˘0.4 99.6˘0.1 99.6˘0.2 88.2˘1.6 98.0˘0.4 98.6˘0.4 99.0˘0.2 99.8˘0.0 86.1˘1.7 92.2˘0.8 99.3˘0.2 99.9˘0.1 99.9˘0.1

Table 11: Further experimental results on the influence of the choice of hyper-parameter m on the
performance and speed. The experiments are coreset selection for the supervised fine-tuning of a
Llama-3-8B-instruct model on the OpenMathInstruct dataset. We report the performance on GSM8K
of supervised fine-tuning large language models on the selected coreset. The selection rate is 30%.

Method 8-shot (CoT) on GSM8K Time cost of the selection procedure (GPU-hours)

The Llama model 77.2 -
SFT on all data 85.3 -
DataInf (Kwon et al., 2023) 79.8 15.2
EK-FAC (Grosse et al., 2023) 80.3 18.4
Arnoldi(Schioppa et al., 2022) 80.4 19.9
TraK (Park et al., 2023) 82.7 21.7
TracIn (m=5) (Pruthi et al., 2020) 81.3 26.3
Diff-In (m=3) 82.1˘1.03 17.4
Diff-In (m=5) 84.4˘0.39 28.7
Diff-In (m=10) 84.6˘0.11 56.8

D.4 FURTHER EXPERIMENTS ON LARGE LANGUAGE MODELS

Here, we show more studies on the choice of the hyper-parameter m (which is the number of selected
time steps in the calculation of Diff-In), comparison with SOTA methods, and the guidelines for the
selection of random time steps. The first set of results is on the coreset selection experiment for the
supervised fine-tuning of a Llama-3-8B-instruct model on the OpenMathInstruct dataset (Toshniwal
et al., 2024) (a dataset containing 1.8M high-quality question-answer pairs). The selection pipeline is:
first LoRA fine-tuning the model on all data, then estimation sample-wise influence with the LoRA
parameters by different influence estimators, and finally selecting the most influential samples as the
coreset.

D.4.1 FURTHER PERFORMANCE AND SPEED COMPARISON WITH SOTA METHODS

The selected baselines contain: TracIn (Pruthi et al., 2020), TraK (Park et al., 2023), DataInf (Kwon
et al., 2023), and EK-FAC (Grosse et al., 2023), and Arnoldi-IF (Schioppa et al., 2022). The results
are shown in Table 11. Diff-In (m=5) outperformed TracIn and TRAK by 3.1 Acc and 1.7 Acc
respectively, at the cost of an extra 2 hours compared with TracIn. EK-FAC is the fastest, but it is also
significantly behind in performance (because it is still based on the convexity assumption for the deep
models). Overall, the computation time across all methods (m=3 or 5 for Diff-In) was comparable,
efficient, and scalable to large-scale models. The results demonstrate that Diff-In outperforms all
other methods, highlighting its effectiveness in measuring sample importance for large datasets and
models.

Moreover, we also conduct Diff-In with two influence-based effective outlier and noise detection
approaches, namely IP (Yang et al., 2024) and OGI (Chhabra et al., 2024a). As for introducing
these two baselines, we recommend Sec.C.1 and Sec.C.2. This experiment is a supplement to the
GSM8K cleaning experiments in Sec.5.1, and we keep the basic settings all the same. The noise
rate is 20%. Experimental results are shown in Table 12. In these experiments, Diff-In consistently
achieved significantly superior performance, further demonstrating its effectiveness. Moreover, we
also implement the Diff-In for the validation influence for data cleaning. A slight drop in performance
was observed, suggesting that self-influence may be a more effective method for identifying incorrect
or outlier data. Additionally, self-influence is computationally more efficient, as it requires only the
sample itself to calculate influence, rather than relying on a separate validation dataset.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 12: Comparison of the noise sample cleaning experiments for GSM8K as a supplement to the
GSM8K cleaning experiments in Sec.5.1. The newly selected baselines contain IP (Koh & Liang,
2017), OGI (Chhabra et al., 2024a). The noise rate is 20%.

Method Precision at the selection rate of 20%

IF 67.2
DataInf (Kwon et al., 2023) 68.5
TracIn (Grosse et al., 2023) 78.4
Gex(Schioppa et al., 2022) 77.2
IP (Park et al., 2023) 74.4
OGI (Pruthi et al., 2020) 81.2
Diff-In (self-influence) (m=5) 86.1
Diff-In (validation-influence) (m=5) 85.8

Table 13: Furthe ablation study for the settings of the number of selected time steps on CC12M.

The choice of m Zero - shot classification on ImageNet - 1K Linear Prob on ImageNet - 1K I2T Retrieval T2I Retrieval

3 24.3 ˘ 1.25 33.2 ˘ 0.42 20.7 ˘ 1.14 46.5 ˘ 1.21
5 25.8 ˘ 0.43 34.4 ˘ 0.10 23.9 ˘ 0.82 48.3 ˘ 0.79
20 26.1 ˘ 0.21 34.6 ˘ 0.11 24.4 ˘ 0.65 48.2 ˘ 0.31

D.4.2 THE EFFECT OF THE CHOICE OF m

This study was performed on two large-scale scenarios: vision-language pre-training (VLP) using
CLIP-ViT-Base on CC12M (Soravit Changpinyo et al., 2021) and supervised fine-tuning (SFT) of a
large language model on the OpenMathInstruct dataset (Toshniwal et al., 2024). First, we present
the VLP results at a selection rate of 10% in Table 13. The results indicate that as increases, both
performance and stability improve. However, this improvement plateaus once exceeds 5.

Then, on the OpenMathInstruct, we change the choice of m from 3 to 10 for our DIff-In to study the
influence of the choice of the number m of selected checkpoints on the performance and speed. We
show the results in Table 11. The results show the same trend as that in the ablation study in Sec.5.4.
Specifically, Diff-In consistently delivers the best performance. As m increases, both performance
and stability improve, with diminishing returns once ě 5. These findings align with the ablation study
in the main paper. We observed that with 5 checkpoints, Diff-In incurred only about 2 additional GPU
hours compared to TracIn while improving performance by over 3%. This checkpoint configuration
is robust across different settings and does not require re-validation on new datasets and tasks.

All these conclusions are consistent with that from the ablation study on CIFAR in Sec.5.4.

D.4.3 GUIDELINES FOR CHECKPOINT SELECTION

In addition, we found that the effect of random checkpoint selection is good and stable. The intrinsic
reason for this is that the uniformly random sample can guarantee that the selected checkpoint will
span uniformly across different training stages. In the middle and later stages of model training,
the model changes very little. This also reveals the guideline for selecting checkpoints, that is, to
sample evenly and ensure that the time step is selected across different training stages. To further
illustrate this, we set up three sampling modes based on the coreset experiments of ResNet-50 and
ImageNet-1K at a selection rate of 20%. The mode-1 is to randomly sample 5 checkpoints, mode-2 is
to select the checkpoints of the first 5 epochs in the training, and mode-3 is to select the checkpoints
of the last 5 epochs. The final results of these three modes are: 61.7, 54.3, 60.2. We found that the
approximation accuracy of mode 1 was significantly better!

D.5 FURTHER EXPERIMENTS AND DISCUSSION FOR THE BOUND OF DIFF-IN

D.5.1 POLYNOMIAL ERROR BOUND

The bound proposed in Theorem 4.1 shows that the upper bound of the approximation error of Diff-In
grows with the increase of the training times T . The reason that increasing the training steps leads
to larger errors is that the optimized parameters diverge further from the initialized parameters as
training progresses. This divergence makes accurate estimation more challenging and contributes to

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the accumulation of approximation errors. It is also worth noting that some methods, such as those in
(Hara et al., 2019; Schioppa et al., 2024), exhibit a faster increase in error as T grows. In contrast, our
approach, with its polynomial error bound, demonstrates a significantly smaller growth rate compared
to other methods, such as the exponential growth observed with SGD-Inf (Hara et al., 2019). This
indicates that our method effectively mitigates error accumulation over time, even as T increases.

It is important to emphasize that this bound reflects a worst-case scenario for error. In practice,
Diff-In performs robustly even with larger T values. As training progresses and the model approaches
convergence, parameter changes become minimal, meaning larger T typically has a negligible impact
on errors. Here, we show the performance change of the coreset selected by Diff-In vs the change of T
on ImageNet. When T “ 50 (the default setting in this paper), the top-1 accuracy of the model trained
on coreset is 61.7. When T “ 100 and T “ 200, the performance is 61.4 and 62.4 respectively.
Notably, increasing T does not degrade Diff-In’s practical performance.

D.5.2 BASIC ASSUMPTIONS ON THE SMOOTHNESS

Lipschitz continuity and gradient norms are commonly used to characterize the smoothness of a
neural network’s loss landscape. Modern deep learning models incorporate techniques such as
normalization layers (e.g., batch normalization and layer normalization) and shortcut connections to
enhance smoothness and continuity (Santurkar et al., 2018; Li et al., 2018), facilitating optimization.
These techniques make the assumption of smoothness generally valid in practice. This stands in
contrast to many studies (Koh & Liang, 2017; Grosse et al., 2023) that rely heavily on the convexity
of neural networks. Our assumption, by comparison, is much easier to satisfy in real-world scenarios.
If the conditions for ℓ-Lipschitz continuous gradients are not met, the gradient norms g, the values of
g and ℓ can become very large. In such cases, the error bound derived from these parameters may
lose its practical relevance. However, this does not necessarily imply that the algorithm will fail in
practice.

E EXPERIMENTAL SETTINGS

E.1 DATASETS AND GENERAL SETTINGS

Here, we introduce the datasets used in this work: (1). CIFAR-100 (Alex Krizhevsky, 2009) consists
of 50,000 training examples categorized into 100 classes. (2). CIFAR-10 (Alex Krizhevsky, 2009) has
50,000 training images and 10,000 test images belonging to 10 different classes. (3). Tiny-ImageNet
(Ya Le & Xuan S. Yang, 2015) comprises 100,000 images belonging to 200 classes. (4). SVHN
(Netzer et al., 2011), which stands for Street View House Numbers, is an image digit recognition
dataset with 73,257 training images and 26,032 testing images. (5). ImageNet-1K (Russakovsky et al.,
2015) covers 1,000 classes and contains over 1 million training images. (6). SM8K (Grade School
Math 8K) is a dataset launched by OpenAI (Cobbe et al., 2021), aiming to study the capabilities of
large language models in solving mathematical problems. This dataset contains 8500 high-quality and
linguistically diverse primary school math problems, mainly involving basic arithmetic operations.
Here we provide an example problem:

Problem: Beth bakes 4.2 dozen batches of cookies in a week. If these cookies are shared equally
among 16 people, how many cookies does each person consume?

Answer: 6

Note that when approximating Diff-In, we need to compute the information over the entire dataset,
e.g., the gradient G “ ∇LpD, θq over the whole dataset. In practice, we use a random batch as
an efficient proxy to the entire dataset. This random batch has a size of 2048 for experiments on
ImageNet-1K (Russakovsky et al., 2015) while 512 for others. Similar proxy schemes were also
adopted in previous works (Koh & Liang, 2017; Tan et al., 2023; Pruthi et al., 2020; Yang et al.,
2023).

E.2 CORESET SELECTION.

Our experiments were mainly conducted with Pytorch (Adam Paszke et al., 2017) on a server with
8 Tesla-V100 GPUs. ResNet-50 (He et al., 2016) is adopted for surrogate network training and

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

final training on the coreset. All the surrogate networks are trained for 50 epochs for efficiency. For
CIFAR-100, we utilize the SGD optimizer with a learning rate of 0.1 and a batch size of 128. For
Tiny-ImageNet, we use the SGD optimizer with a learning rate of 0.3 and a batch size of 64. For
ImageNet-1K, we use the SGD optimizer with a learning rate of 0.4 and a batch size of 256. For data
augmentation, we only adopt RandomResizedCrop and RandomHorizontalFlip in the TorchVision
package for all experiments. To calculate the mathematical expectation in Proposition 3.2, we
randomly select 5 time steps. For the training on the final subset, we set the maximum epochs for
CIFAR-100, Tiny-ImageNet, and ImageNet-1K as 200, 200, and 100 epochs, respectively. For coreset
selection on the vision-language dataset CC12M (Soravit Changpinyo et al., 2021), all experiments
are conducted on 16 NVIDIA V100 GPUs. The selected model is CLIP model (Alec Radford et al.,
2021). We follow the settings provided in the original paper. Specifically, the CLIP model Alec
Radford et al. (2021) is trained for 32 epochs with AdamW optimizer, weight decay 0.2, and a batch
size of 2048. After 1 warmup epoch, the learning rate gradually decreases from 1e-4 following the
cosine strategy.

Zero-shot ImageNet classification. The CLIP model has two encoders, one for text and one for
images. During the zero-shot classification process, text descriptions corresponding to the ImageNet
classes are formulated. For example, if a class "dog" exists, a text description like "a picture of a
dog" might be created. These text descriptions are encoded by the text encoder of CLIP to obtain
text embeddings. At the same time, the images from the ImageNet dataset are encoded by the image
encoder of CLIP to get image embeddings. Then, the similarity between each image embedding and
all the text embeddings (representing different classes) is calculated. The image is classified into the
class whose text embedding has the highest similarity to the image embedding.

Linear Prob. This is a technique used to evaluate and analyze the performance of a pre-trained model.
For the CLIP model, linear probing involves adding a linear layer on top of the pre-trained CLIP
model and then training only this linear layer while keeping the rest of the CLIP model’s parameters
fixed.

Image-Text Retrieval. This is a task where the goal is to find the most relevant text description for a
given image or find the most relevant image for a given text description. Let us use the Image-to-Text
Retrieval as an example. The image is encoded using the vision encoder. This results in an image
embedding that represents the visual features of the image. Then, text documents are also encoded
(using the text encoder) to obtain their respective text embeddings. The similarity between the image
embedding and all the text embeddings is computed. The text with the highest similarity score is
retrieved as the relevant description for the image.

E.3 DATA CLEANING AND DATA DELETION

For experiments on the (classification) data cleaning and data deletion experiments, we use ResNet-18
(He et al., 2016) is adopted for the three datasets, namely CIFAR-10/100 (Alex Krizhevsky, 2009)
and Tiny-ImageNet (Ya Le & Xuan S. Yang, 2015). For experiments on CIFAR-10/100, we utilize
the SGD optimizer with a learning rate of 0.1 and a batch size of 128, with the maximum epoch
setting as 200. For experiments on Tiny-ImageNet, we utilize the SGD optimizer with a learning rate
of 0.3 and a batch size of 128, with the maximum epoch setting as 200. To calculate the mathematical
expectation in Proposition 3.2, we also randomly select 5 time steps as in the coreset experiments.

For the data cleaning on GSM8K: Here we provide an example problem from GSM8K:

Problem: Beth bakes 4.2 dozen batches of cookies in a week. If these cookies are shared equally
among 16 people, how many cookies does each person consume?

Answer: 6

Here, in order to test the current various schemes’ ability to identify noisy data, we introduce label
noise by randomly perturbing the answer. For example, we will randomly change the answer in
the above text to other numbers (for example, change the answer 6 to 9). Then, we will use the
corrupted data to perform LoRA fine-tuning on the Llama 3.1 8B model. Finally, we calculate the
self-influence of each sample during the LoRA fine-tuning process using each influence estimator,
where the involved parameters are all LoRA parameters (Xia et al., 2024; Kwon et al., 2023). The
specific settings for LoRA fine-tuning are as follows: the Lora-rank is 64, bf-16 precision is used, the
number of epochs is 2, the Lora-target-modules include q-proj, k-proj, v-proj, o-proj, the learning

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

rate is 1e´05, the batch size is 8, the gradient accumulation steps is 16, and the AdamW optimizer is
used. This experiments is conducted on a server with 8 A100 GPUs.

E.4 APPROXIMATION PRECISION STUDY

In Figure 1, Figure 3(a), and Figure 3(b) from the main paper, we examined the precision of Diff-In in
approximating the self-influence, which involves calculating Ipz,Vq with V “ tzu. We choose 30
data points with the highest influence scores for each type of influence estimator and then calculate
the correlation between the estimated values and the exact value obtained by the brute-force LOO
retraining. The model and dataset used for each experiment are ResNet-18 and CIFAR-10 for Figure
1(a), ResNet-101 and CIFAR-10 for Figure 1(b), ResNet-18 and ImageNet-1K for Figure 1(c),
ResNet-18/Swin-Tiny and CIFAR-10 for Figure 3(a), ResNet-18 and CIFAR-10 for Figure 3(b) and
(c).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F PROOF FOR PROPOSITION 3.2

Proposition 3.2 Let us keep the symbol convention of Dtpzq, ct and αt from Lemma 3.1. By using
Lemma 3.1, the calculation for Iθpzq and Ipz,Vq could be formulated as:

Iθpzq “ T ¨ Et„P ptq

´

Dtpzq

¯

,

Ipz,Vq “ T ¨ Et„P ptq

A

Gt
V, Dtpzq

E

,
(13)

where the P ptq “ Uniformp0, ..., T ´ 1q is the uniform time-step distribution, Gt
V “ ∇LpV, θtq

indicates the gradient over the query set V of parameters θt at the t´th iteration, and x¨, ¨y is the
inner product operation.

Proof. First, we revisit the differentiation operation. Let It
θpzq denote the influence on parameters

at the t-th iteration caused by just removing the sample z from the training set, and Dtpzq “

It`1
θ pzq ´ It

θpzq denote the sample-wise influence difference between adjacent time steps. First, we
differentiate the influence by representing it as the sum of the differences between all two adjacent
time steps,

Iθpzq “
ÿ

tăT

Dt
pzq ` I0

θ pzq, (14)

where I0
θ pzq “ 0 since there is no training for the initial guess. Lemma 3.1 offers an estimate for

the difference in influence terms. Therefore, the main focus of the proof for Proposition 3.2 lies in
demonstrating the validity of Lemma 3.1.

For the Ipz,Vq, we can also differentiate it:

Ipz,Vq “
ÿ

tăT

”

It`1
pz,Vq ´ It

pz,Vq

ı

“
ÿ

tăT

”

LpV, θt`1
´z q ´ LpV, θt`1

q ´ LpV, θt´zq ` LpV, θtq
ı

.
(15)

By adopting the first-order Taylor approximation, we have

LpV, θt`1
q ´ LpV, θtq « Gt

”

θt`1
´ θt

ı

, (16)

and
LpV, θt`1

´z q ´ LpV, θt´zq

“LpV, θt`1
´z q ´ LpV, θtq ` LpV, θtq ´ LpV, θt´zq

“LpV, θt`1
´z q ´ LpV, θtq ´

´

LpV, θt´zq ´ LpV, θtq
¯

.

(17)

If we use θ1 and θ2 to denote θt and θt`1
´z respectively, we have:

LpV, θ2q ´ LpV, θ1q « ∇LpV, θ1qpθ2 ´ θ1q,

where that V is the validation set that has nothing with the training process. So, we have

LpV, θt`1
´z q ´ LpV, θt´zq

«Gt
V

”

θt`1
´z ´ θt

ı

´ Gt
V

”

θt´z ´ θt
ı

“Gt
V

”

θt`1
´z ´ θt´z

ı

.

(18)

Hence, the differentiation form of Ipz,Vq could be estimated as
Ipz,Vq

“
ÿ

tăT

”

LpV, θt`1
´z q ´ LpV, θt`1

q ´ LpV, θt´zq ` LpV, θtq
ı

«
ÿ

tăT

!

Gt
V

”

θt`1
´z ´ θt´z

ı

´ Gt
V

”

θt`1
´ θt

ı)

“
ÿ

tăT

!

Gt
V

”

θt`1
´z ´ θt`1

ı

´ Gt
V

”

θt´z ´ θt
ı)

“
ÿ

tăT

A

Gt
V,Dt

pzq

E

,

(19)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

where Dtpzq “ It`1
θ pzq ´ It

θpzq denote the sample-wise influence difference between adjacent time
steps. So, we can find that the core of the estimation also lies in demonstrating the validity of Lemma
4.1 since it provides an estimation for Dtpzq.

F.1 PROOF FOR LEMMA 3.1

F.1.1 DIFF-IN FOR THE SGD OPTIMIZER

Let θt and θt´z be the parameters at the t-th time step trained on the full-set D and the sub set D{z
excluding data point z. So, we have that

Dtpzq “ It`1
θ pzq ´ It

θpzq

“

´

θt`1
´z ´ θt`1

¯

´

´

θt´z ´ θt
¯

“

´

θt`1
´z ´ θt´z

¯

´

´

θt`1 ´ θt
¯

.

(20)

Considering the SGD update rules where ηt is the learning rate and βt is the momentum weight, we
have the following equation:

θt`1 ´ θt “ ´ ηtG
t, (21)

where Gt is the gradient over the training set at the t-th step. Thus, we have the following detailed
form for the influence differentiation, that is,

Dtpzq “ ´ηt
´

Gt
´z ´ Gt

¯

“ ´ηt
´

Gt
´z ´ G0 ` G0 ´ Gt

¯

“ ´ηt
´

pGt
´z ´ G0

´zq ´ pGt ´ G0q ´
1

N
G0

z

¯

“ ´ηt
´

Qt
´z ´ Qt ´

1

N
G0

z

¯

« ´ηt
´

Qt
´z ´ Qt

¯

,

(22)

where we introduce Qt and Qt
´z to denote the gradient difference terms Gk

´z ´ G0
´z and Gk ´ G0.

We disregard the term 1
NG0

z because it is a random factor, given that the network parameter is
randomly generated at the initial stage. By treating the time-step to be continuous, we can estimate
the gradient difference term as:

Qt “ Gt ´ G0 «

ż t

0

BGk

Bθ

Bθ

Bk
dk

«

t
ÿ

k“0

Hk
´

θk`1 ´ θk
¯

“

t
ÿ

k“0

´ηkHkGk.

(23)

The loss function during the optimization process has the following relationship, N
N´1LpD{z, θq “

LpD, θq´ 1
N ℓpz, θq. Since the size of the training set N is generally greatly larger than 1, so N

N´1 « 1.
Hence, the above relation could be approximated as LpD{z, θq “ LpD, θq`ϵℓpz, θq, where ϵ “ ´ 1

N
is a very small perturbation coefficient. Note that this approximation is also widely used in influence
analysis (Koh & Liang, 2017; Cook, 1986; Yang et al., 2023; Koh et al., 2019; Grosse et al., 2023).
Based on this relation, we treat the gradient difference function Q as a function of ϵ by following
(Koh & Liang, 2017; Yang et al., 2023), that is, Qt

´z “ Qt
ϵ“

´1
N

and Qt “ Qt
ϵ“0. Here, we provide

the general form for Qt
ϵ:

Qt
ϵ «

t
ÿ

k“0

´ηkHk
ϵ G

k
ϵ , (24)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where Ht
ϵ “ ∇2

”

LpD, θtq ` ϵℓpz, θtq
ı

is the Hessian and Gt
ϵ “ ∇

”

LpD, θtq ` ϵℓpz, θtq
ı

is the

gradient. So, we can approximate Qt
´z with Qt by taking the Taylor expansion of the function with

respect to the perturbation variable ϵ without retraining a model on the leave-one-out subset D{z,

Qt
´z ´ Qt “ Qt

ϵ“
´1
N

´ Qt
ϵ“0 « ´

1

N

BQt
ϵ

Bϵ

ˇ

ˇ

ˇ

ϵ“0
. (25)

Obviously, BQt
ϵ

Bϵ

ˇ

ˇ

ˇ

ϵ“0
, the derivative of Qt

ϵ with respect to the perturbation variable ϵ can be easily
obtained, that is,

BQt
ϵ

Bϵ

ˇ

ˇ

ˇ

ϵ“0
“ ´

t
ÿ

k“0

ηkHk∇ℓpz, θkq ´

t
ÿ

k“0

ηk∇2ℓpz, θkqGk, (26)

where we use simple expression Ht to denote the Hessian Ht
D and use the short expression Gt to

denote the gradient Gt
D. By substituting this formula into Eq.32, we obtain the estimator for the

influence difference term Dtpzq, that is,

Dt
pzq

« ´ηt
´

Qt
´z ´ Qt

¯

«

t
ÿ

k“0

´ηtηk

N

´

HkGk
z ` Hk

zG
k

¯

,

(27)

where Gk
z “ ∇ℓpz, θkq is the gradient over sample z at k-th step and Hk

z “ ∇2ℓpz, θkq is the gradient
over sample z at k-th step.

F.1.2 DIFF-IN FOR THE MOMENTUM-BASED OPTIMIZER

Let θt and θt´z be the parameters at the t-th time step trained on the full-set D and the sub set D{z
excluding data point z. So, we have that

Dtpzq “ It`1
θ pzq ´ It

θpzq

“

´

θt`1
´z ´ θt`1

¯

´

´

θt´z ´ θt
¯

“

´

θt`1
´z ´ θt´z

¯

´

´

θt`1 ´ θt
¯

.

(28)

Considering the SGD-M update rules where ηt is the learning rate and βt is the momentum weight,
we have the following equation:

θt`1 ´ θt “ ´ ηt

´

p1 ´ βtqG
t ` βtpθ

t ´ θt´1q

¯

“

t
ÿ

k“0

´

ź

kăaăt

ηaβa

¯

ηkpβk ´ 1qGk,
(29)

where Gt is the gradient over the training set at the t-th step. By using αt
k to denote

´

ś

kăaăt ηaβa

¯

ηkpβk ´ 1q, we obtain the short formulation for the rule:

θt`1 ´ θt “

t
ÿ

k“0

αt
kG

k, (30)

Thus, we have the following detailed form for the influence differentiation, that is,

Dtpzq “

t
ÿ

k“0

αt
k

´

Gk
´z ´ Gk

¯

. (31)

To obtain the precise calculation of the gradient Gk
´z , it is necessary to perform the extremely costly

LOO retraining. Therefore, we must rely on estimation methods. Here, we introduce an intermediate

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

term G0 “ G0
´z ` 1

NG0
z , where G0

z is the gradient over the data point z at the initial step. Hence, the
influence differentiation could be rewritten as:

Dt
pzq “

t
ÿ

k“0

αt
k

´

Gk
´z ´ G0

` G0
´ Gk

¯

“

t
ÿ

k“0

αt
k

´

pGk
´z ´ G0

´zq ´ pGk
´ G0

q ´
1

N
G0

z

¯

“

t
ÿ

k“0

αt
k

´

Qk
´z ´ Qk

´
1

N
G0

z

¯

«

t
ÿ

k“0

αt
k

´

Qk
´z ´ Qk

¯

,

(32)

where we introduce Qk and Qk
´z to denote the gradient difference terms Gk

´z ´ G0
´z and Gk ´ G0.

We disregard the term 1
NG0

z because it is essentially a random factor, given that the network parameter
is randomly generated at the initial stage.

By treating the time-step to be continuous, we can estimate the gradient difference term as:

Qt “ Gt ´ G0 «

ż t

0

BGk

Bθ

Bθ

Bk
dk

«

t
ÿ

k“0

Hk
´

θk`1 ´ θk
¯

.

(33)

By substituting the concrete form of θt`1 ´ θt in Eq.30 into gradient difference, we have

Qt «

t
ÿ

k“0

Hk
k

ÿ

q“0

αk
qG

q, (34)

where αk
q “

´

ś

qăaăk ηaβa

¯

ηqpβq ´1q is the coefficient. The loss function during the optimization

process has the following relationship, N
N´1LpD{z, θq “ LpD, θq ´ 1

N ℓpz, θq. Since the size of
the training set N is generally greatly larger than 1, so N

N´1 « 1. Hence, the above relation could
be approximated as LpD{z, θq “ LpD, θq ` ϵℓpz, θq, where ϵ “ ´ 1

N is a very small perturbation
coefficient. Note that this approximation is also widely used in influence analysis (Koh & Liang,
2017; Cook, 1986; Yang et al., 2023; Koh et al., 2019; Grosse et al., 2023). Based on this relation, we
treat the gradient difference function Q as a function of ϵ by following (Koh & Liang, 2017; Yang
et al., 2023), that is, Qt

´z “ Qt
ϵ“

´1
N

and Qt “ Qt
ϵ“0. Here, we provide the form for Qt

ϵ:

Qt
ϵ «

t
ÿ

k“0

Hk
ϵ

k
ÿ

q“0

αk
qG

q
ϵ , (35)

where Ht
ϵ “ ∇2

”

LpD, θtq ` ϵℓpz, θtq
ı

is the Hessian and Gt
ϵ “ ∇

”

LpD, θtq ` ϵℓpz, θtq
ı

is the
gradient.

So, we can approximate Qt
´z with Qt by taking the Taylor expansion of the function with respect to

the perturbation variable ϵ without retraining a model on the leave-one-out subset D{z,

Qt
´z ´ Qt “ Qt

ϵ“
´1
N

´ Qt
ϵ“0 « ´

1

N

BQt
ϵ

Bϵ

ˇ

ˇ

ˇ

ϵ“0
. (36)

Obviously, BQt
ϵ

Bϵ

ˇ

ˇ

ˇ

ϵ“0
, the derivative of Qt

ϵ with respect to the perturbation variable ϵ can be easily
obtained, that is,

BQt
ϵ

Bϵ

ˇ

ˇ

ˇ

ϵ“0

“

t
ÿ

k“0

Hk
k

ÿ

q“0

αk
q∇ℓpz, θqq `

t
ÿ

k“0

∇2ℓpz, θkq

k
ÿ

q“0

αk
qG

q,

(37)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where we use simple expression Ht to denote the Hessian Ht
D and use the short expression Gt to

denote the gradient Gt
D. By substituting this formula into Eq.32, we obtain the estimator for the

influence difference term Dtpzq, that is,

Dt
pzq

«

t
ÿ

k“0

αt
k

´

Qk
´z ´ Qk

¯

«

t
ÿ

k“0

´αt
k

N

´

k
ÿ

q“0

Hq
q

ÿ

e“0

αq
e∇ℓpz, θeq `

k
ÿ

q“0

∇2ℓpz, θqq

q
ÿ

e“0

αq
eG

e
¯

«

t
ÿ

k“0

´αt
k

N

´

k
ÿ

q“0

Hq
q

ÿ

e“0

αq
eG

e
z `

k
ÿ

q“0

Hq
z

q
ÿ

e“0

αq
eG

e
¯

,

(38)

where Gq
z “ ∇ℓpz, θqq is the gradient over sample z at q-th step and Hk

z “ ∇2ℓpz, θkq is the gradient
over sample z at k-th step. And αt

k “

´

ś

kăaăt ηaβa

¯

ηkpβk ´ 1q is a coefficient defined by the
learning rate η at each step and the momentum weight β at each step.

If we update the definition of αt
k by set to αt

k Ð ´1
N αt

k “ 1
N

´

ś

kăaăt ηaβa

¯

ηkp1 ´ βkq, then, we
have,

Dt
pzq «

t
ÿ

k“0

αt
k

´

k
ÿ

q“0

Hq
q

ÿ

e“0

αq
eG

e
z `

k
ÿ

q“0

Hq
z

q
ÿ

e“0

αq
eG

e
¯

, (39)

G PROOF FOR PROPOSITION 4.1

As shown in the last section, the core for the calculation is using Lemma 4.1 to estimate the influence
difference term denoted by Dtpzq, where we use Eq.32 to estimate the gradient difference term
Qk “ Gk ´ G0. This term is also the primary source of approximation error. Let Dt˚pzq and Dtpzq

to denote the actual term and our estimated term, respectively. Therefore, we can formulate the error
term as follows:

ˇ

ˇ

ˇ
Dt˚

pzq ´ D̂t
pzq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

t
ÿ

k“0

αt
k

´

Qk˚
´z ´ Qk˚

´
1

N
G0

z ´

´

Qk
´z ´ Qk

¯¯
ˇ

ˇ

ˇ

ď2T
ˇ

ˇ

ˇ
Qk˚

´ Qk
ˇ

ˇ

ˇ
`

T

N

ˇ

ˇ

ˇ
G0

z

ˇ

ˇ

ˇ
,

(40)

which always holds by assuming αt
k ď 1. And this assumption is generally true because αt

k is
obtained by multiplying the historical learning rate η and the weight of the momentum item β, where
η and β are both real-valued float numbers generally within p0, 1q.

By assuming the gradient is upper-bounded by g, so, we obtain
ˇ

ˇ

ˇ
Dt˚

pzq ´ Dt
pzq

ˇ

ˇ

ˇ
ď 2T

ˇ

ˇ

ˇ
Qk˚

´ D̂k
ˇ

ˇ

ˇ
`

T

N
g, (41)

where Qk˚ “ Gk ´ G0. Compared with the actual Qk˚, the error of Qk comes from the Eq.33,
where we use Gk to estimate G0 to establish the functional relation between Qk and the perturbation
variable ϵ (see Eq.35 for more details). Hence, by using Ĝ0 to denote the estimated one, we can
further mine the error inequality:

ˇ

ˇ

ˇ
Dt˚

pzq ´ D̂t
pzq

ˇ

ˇ

ˇ
ď2T

ˇ

ˇ

ˇ
Qk˚

´ Qk
ˇ

ˇ

ˇ
`

T

N
g

“2T
ˇ

ˇ

ˇ
G0

´ Ĝ0
ˇ

ˇ

ˇ
`

T

N
g

“2T
ˇ

ˇ

ˇ
G0

´ Gk
`

t
ÿ

k“0

Hk
ϵ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g

ď2T
ˇ

ˇ

ˇ
G0

´ Gk
ˇ

ˇ

ˇ
` 2T

ˇ

ˇ

ˇ

t
ÿ

k“0

Hk
ϵ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g.

(42)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Assuming the gradient is Lipschitz-continuous, we have

ˇ

ˇ

ˇ
Dt˚

pzq ´ D̂t
pzq

ˇ

ˇ

ˇ
ď2T

ˇ

ˇ

ˇ
G0

´ Gk
ˇ

ˇ

ˇ
` 2T

ˇ

ˇ

ˇ

t
ÿ

k“0

Hk
ϵ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g

ď2T
ˇ

ˇ

ˇ
G0

´ Gk
ˇ

ˇ

ˇ
` 2T

t
ÿ

k“0

ˇ

ˇ

ˇ
Hk

ϵ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g

ď2T
ˇ

ˇ

ˇ
G0

´ Gk
ˇ

ˇ

ˇ
` 2Tℓ

t
ÿ

k“0

ˇ

ˇ

ˇ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g

ď2T
ˇ

ˇ

ˇ
G0

´ Gk
ˇ

ˇ

ˇ
` 2T 2ℓmax

k

ˇ

ˇ

ˇ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g

ď2Tℓmax
tďT

||θt ´ θ0|| ` 2T 2ℓmax
k

ˇ

ˇ

ˇ

k
ÿ

q“0

αk
qG

q
ˇ

ˇ

ˇ
`

T

N
g.

(43)

By using the equation of the difference of the parameters between time steps in Eq.30, that is,
θt`1 ´ θt “

řt
k“0 α

t
kG

k. By assuming maxtďT ||θt ´ θ0|| " maxtăT ||θt`1 ´ θt||, we can further
derive this error bound,

ˇ

ˇ

ˇ
Dt˚

pzq ´ D̂t
pzq

ˇ

ˇ

ˇ
ď2Tℓmax

tďT
||θt ´ θ0|| ` 2T 2ℓmax

tăT
||θt`1

´ θt|| `
T

N
g

ď2TℓpT ` 1qC `
T

N
g,

(44)

where we use the notation C to indicate the maximum parameter gap maxtďT ||θt ´ θ0||. Finally,
we have

|Ipzq ´ IExactpzq| ď |
ÿ

t

Dt ˚ pzq ´ D̂tpzq|

ď T max
t

ˇ

ˇ

ˇ
Dt˚pzq ´ D̂tpzq

ˇ

ˇ

ˇ

ď 2T 2ℓpT ` 1qC `
T 2

N
g.

(45)

31

	Introduction
	Preliminaries
	Revisiting Influence Estimation

	Influence Estimation via Differential Approximation
	Diff-In
	Practical Implementation Using Checkpoints

	Approximation Error
	Experiments
	Data Cleaning: Finding the Wrongly Labeled Samples
	Data Deletion: Removing the influence of noisy data without retraining
	Coreset Selection
	Ablation Study

	Conclusion
	Pseudo-code of Diff-In
	How to Extend Diff-In to Other Optimizers?
	Related Works
	Influence Analysis
	Applications

	Supplementary Experiments
	Generalization test of the coreset
	Further study on data cleaning
	Experimental results with std
	Further experiments on Large Language models
	Further performance and speed comparison with SOTA methods
	The effect of the choice of m
	Guidelines for checkpoint selection

	Further experiments and discussion for the Bound of Diff-In
	Polynomial Error Bound
	Basic assumptions on the smoothness

	Experimental settings
	Datasets and General Settings
	Coreset selection.
	Data cleaning and data deletion
	Approximation precision study

	Proof for Proposition 3.2
	Proof for Lemma 3.1
	Diff-In for the SGD Optimizer
	Diff-In for the Momentum-based Optimizer

	Proof for proposition 4.1

