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ABSTRACT

Knowledge distillation (KD) has proven highly effective for compressing large
models and enhancing the performance of smaller ones. However, its effective-
ness diminishes in cross-modal scenarios, such as vision-to-language distillation,
where inconsistencies in representation across modalities lead to difficult knowl-
edge transfer. To address this challenge, we propose frequency-decoupled cross-
modal knowledge distillation, a method designed to decouple and balance knowl-
edge transfer across modalities by leveraging frequency-domain features. We ob-
serve that low-frequency features tend to capture modality-agnostic, generalizable
information, while high-frequency features are more modality-specific. Accord-
ingly, we apply distinct losses to these features: enforcing strong alignment in
the low-frequency domain and introducing relaxed alignment for high-frequency
features. Additionally, we propose a scale consistency loss to address distribu-
tional shifts between modalities, and employ a shared classifier to unify feature
spaces. Extensive experiments across multiple benchmark datasets show that our
method substantially outperforms traditional KD and state-of-the-art cross-modal
KD approaches.

1 INTRODUCTION

Knowledge Distillation (KD) has emerged as a fundamental technique for model compression and
performance improvement. The core concept of KD involves utilizing a large and high-capacity
teacher model to mentor a smaller yet more efficient student model. Through this process, the
student model learns to approximate the behavior of the teacher model, often achieving comparable
or even superior performance despite its reduced complexity.

Despite the substantial success of traditional distillation methods in unimodal settings, such as im-
age or text tasks, many real-world applications inherently involve multimodal data, including vision,
language, and audio. In these cross-modal scenarios, effectively transferring knowledge among
modalities presents unique challenges. As a result, researchers have increasingly turned their atten-
tion to devise cross-modal knowledge distillation (CMKD) framework to enhance the performance
of a student model in one modality by leveraging the knowledge of a teacher model in a different
modality.

While preliminary progress has been made in cross-modal distillation, existing methods (Gupta
et al., 2016; Thoker & Gall, 2019; Afouras et al., 2020; Liu et al., 2023; Jin et al., 2023) often suffer
from several limitations: they are typically restricted to specific scenarios or primarily focus on dis-
tillation from a stronger modality to a weaker one. Recently, C2KD (Huo et al., 2024) introduced a
cross-modal distillation technique based on logits to reduce the gap between modalities. However,
this method overlooks the distillation of challenging samples with misaligned soft labels, which are
crucial for effective cross-modal knowledge transfer. Furthermore, C2KD exclusively emphasizes
logit-level distillation, while intermediate features, which encapsulate richer modal details and se-
mantic information in cross-modal settings, play a more pivotal role in facilitating complementary
and effective knowledge transfer. This motivates us to explore cross-modal feature distillation, ad-
dressing the challenges posed by discrepant feature representations and misaligned feature spaces.

In this paper, we thoroughly analyze the feature representations across different modalities and re-
veal that these features contain both modality-specific and modality-generic information. Inspired
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by (Williams & Li, 2018; Xu et al., 2020; Pham et al., 2024; Zhang et al., 2024), we investi-
gate the frequency representations of multimodal features, and show that features decomposed into
different frequency bands exhibit varying levels of effectiveness for representation. Specifically,
low-frequency features tend to carry more modality-generic information, whereas high-frequency
features are more modality-specific. As illustrated in Figure 1, low-frequency features obtain the
highest CKA scores, indicating that they contain more modality-generic information. In contrast,
high-frequency features show lower CKA scores, suggesting they are more modality-specific. This
sheds light on decoupling and handle these two types of information independently for an effective
distillation strategy.

Based on these insights, we propose a new approach of decomposing features into low-frequency
and high-frequency components for distillation, applying distinct loss functions to each of them,
respectively. For low-frequency features, we employ the traditional mean squared error (MSE) loss
to ensure “strong consistency” such that modality-generic information from the teacher model can be
better captured. Meanwhile, since high-frequency features contain modality-specific knowledge and
exhibit greater variation, making the full alignment less suited, we introduce the logarithmic mean
squared error (logMSE) loss to maintain “weak consistency”. Furthermore, given that distribution
differences are critical for effective knowledge transfer (Pan & Yang, 2009; Li et al., 2019; Sun &
Saenko, 2016), we propose a scale consistency loss by the alignment of different modalities through
feature standardization, to address the significant discrepancies between modalities. This allows
the model to focus on intrinsic discriminative features and reduces the impact of scale variations.
We also introduce a shared classifier to align feature spaces further to ensure consistent decision
boundaries across modalities, thereby enhancing the effectiveness of cross-modal distillation.

To summarize, our contributions are three-fold:

• By analyzing features across different modalities, we found that low-frequency features ex-
hibit stronger correlations than high-frequency features. Based on this discovery, we intro-
duce a novel cross-modal feature distillation framework. Our method decouples modality-
specific and modality-generic information from a frequency perspective, allowing for more
effective knowledge transfer by processing each component independently.

• We propose various modality-specific and modality-generic improvements for feature dis-
tillation, which enhance focus on valuable discriminative features and improve the align-
ment of feature representations across different modalities.

• We perform extensive experiments on diverse datasets, covering various modalities and
tasks and employing different network architectures to demonstrate the effectiveness of our
approach.

2 RELATED WORK

2.1 GENERIC KNOWLEDGE DISTILLATION

Traditional knowledge distillation methods fall into two main categories: logit-based distillation
and feature-based distillation. Logit-based distillation, first introduced by (Hinton et al., 2015),
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transfers knowledge by minimizing the Kullback-Leibler (KL) divergence between the teacher and
student model outputs, helping the student learn inter-class relationships. DKD (Zhao et al., 2022)
refines this process by separating target and non-target class distillation, allowing better learning
of category-specific information. DML (Zhang et al., 2018) enhances transfer by having two mod-
els train each other as teachers, while DIST (Huang et al., 2022) uses correlation loss to improve
logit distillation by capturing inter-class and intra-class relationships. Feature-based distillation uses
intermediate features from the teacher model to supervise the student, aiding in better data represen-
tation. FitNet (Romero et al., 2014) was the first to have the student mimic the teacher’s intermediate
features. Review (Chen et al., 2021) introduced a mechanism that allows the student to learn teacher
features layer by layer. Relational Knowledge Distillation (RKD) (Park et al., 2019) focuses on
transferring relationships between samples, while PKD (Cao et al., 2022) preserves relational in-
formation using Pearson correlation. Attention-based Feature Distillation (AFD) (Ji et al., 2021)
utilizes attention mechanisms to dynamically match features, selectively transferring important in-
formation. OFD (Heo et al., 2019) employs partial L2 loss, ignoring unhelpful features and focusing
on beneficial ones. Generic Knowledge Distillation performs well in single-modal tasks, but due to
differences in modality representation, it underperforms in cross-modal scenarios.

2.2 CROSS-MODAL KNOWLEDGE DISTILLATION

In cross-modal knowledge distillation (CMKD) research, various studies have explored effective
methods for transferring knowledge across modalities. (Gupta et al., 2016) proposed an early CMKD
framework that transferred labeled supervision from RGB images to depth and optical flow, enhanc-
ing the performance of these unlabeled modalities. For action recognition, studies such as (Thoker &
Gall, 2019; Dai et al., 2021; Lee et al., 2023) leveraged RGB or optical flow to design CMKD frame-
works that improved action detection accuracy. In medical image segmentation, (Wang et al., 2023)
addressed missing modalities by selecting the most contributive one for cross-modal distillation in
multi-modal learning. CMKD has also been applied to tasks like camera-radar object detection
and visual place recognition, as seen in works like (Zhao et al., 2024; Wang et al., 2024). These
works are limited to specific scenarios or focus on distillation for individual modalities. (Xue et al.,
2022) introduced the Modality Focusing Hypothesis (MFH), offering the first theoretical analysis
of CMKD’s effectiveness, highlighting modality-generic decisive features as crucial for knowledge
transfer. More recently, (Huo et al., 2024) identified modality imbalance and soft label misalign-
ment as major challenges for CMKD, and introduced the C2KD framework, which significantly
improved performance through bidirectional distillation and dynamic selection. These works fall
short in addressing the inconsistencies in specific modality information and fail to fully leverage
modality-generic features for effective cross-modal transfer. Our work overcomes these limitations
by introducing a frequency-domain feature decoupling approach.

3 HOW CROSS-MODAL FEATURES DIFFER?

The major difference between conventional KD in single modality and cross-modal knowledge dis-
tillation (CMKD) is that, CMKD is designed to distill the knowledge from another different modal-
ity. This difference poses a significant challenge since the teacher and student are trained with data
in different modalities, and therefore have more distinct feature representations. Therefore, to de-
sign our cross-modal feature distillation method, it is necessary to first analyze the difference of
cross-modal features. In this section, we present two of our major findings: (1) modality-generic
and modality-specific features act differently in frequency domain; (2) The features of different
modalities exhibit significant differences in scale.

3.1 DECOUPLING MODALITY-SPECIFIC AND MODALITY-GENERIC FEATURES

Features from a modality can generally be divided into modality-specific and modality-generic com-
ponents (Ngiam et al., 2011). The modality-generic component shares the same semantic efficacy
across different modalities. While the modality-specific component contains unique and intrinsic
information in a certain modality that can hardly be transferred to other modalities. Therefore, to
improve knowledge transfer in CMKD, separating these two types of features is crucial. One effec-
tive approach to achieving this separation is by analyzing features in the frequency domain (Bruna
& Mallat, 2013). By decomposing features into high-frequency and low-frequency components,
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we can further decouple the modality-specific and modality-generic aspects of the features. Low-
frequency components typically capture the broader, structural patterns that are more likely to be
modality-generic and transferable across domains. In contrast, high-frequency components tend to
represent finer, modality-specific details that may not generalize as well across modalities.

To demonstrate the above hypotheses, we leverage Centered Kernel Alignment (CKA) (Kornblith
et al., 2019) to measure the similarities between different modalities in the decoupled low-frequency
and high-frequency features. The calculation method for the CKA Score is in Appendix B. We
decoupled the original features of audio and vision models trained on CREMA-D (Cao et al., 2014)
and AVE (Tian et al., 2018) datasets, and calculated their CKA scores between audio and vision
modalities. As shown in Figure 1, despite all scores are small due to modality and model differences,
the low-frequency obtains the highest scores, while the high-frequency are more dissimilar than
the original features. This indicates that, more modality-generic information is represented in low
frequency, and modality-specific information is more likely to be in high frequency.

As a result, for a better cross-modal distillation, it is beneficial to decouple the features into low-
frequency and high-frequency features, and treat them respectively based on their unique character-
istics. We will formally introduce our strategy in Section 4.

3.2 SCALE DIFFERENCES ACROSS MODALITIES

In transfer learning, distribution differences play a crucial role in determining whether knowledge
can be effectively transferred. If there are significant differences between the distributions of the
source and target domains, the model may fail to capture useful information during the transfer
process, leading to a substantial decrease in the effectiveness of the transfer.

In cross-modal knowledge distillation, we found that directly using MSE loss based on the raw
features resulted in a significant performance drop in the distillation model compared to the single-
modal model, as shown in Table 1.For example, the accuracy of the model distilled using raw fea-
tures on the CREMA-D dataset decreased by 1.5% and 2.5% on the audio and visual modalities,
respectively, compared to the uni-modal model. We hypothesize that this sharp decline in perfor-
mance is likely due to the distribution differences between features from different modalities. We
calculated the mean and standard deviation of audio and visual features in the CREMA-D and AVE
datasets, as shown in Figure 2. The results show that there are significant differences in the mean and
standard deviation between different modalities. For example, on the CREMA-D dataset, the mean
and standard deviation of the audio modality features are higher than those of the visual modality by
0.21 and 0.08, respectively.

When MSE is used to force the alignment of the student model’s features with those of the teacher
model, the student’s features may shift towards the mean of the teacher model’s features. However,
this may conflict with the optimal mean expected in the student’s modality, leading to suboptimal
performance in the student model.

Therefore, we should not directly use MSE loss to learn features from different modalities. Instead,
we should design a loss function that respects the inherent scale differences between modalities to
achieve more effective knowledge transfer.

4 OUR APPROACH

As previously discussed, we found that modality-specific and modality-generic information can be
effectively decoupled through frequency domain analysis, and there are significant differences in
the feature distributions across different modalities. In this section, we will formally introduce our
method to improve CMKD: (1) We decouple the features into low-frequency and high-frequency
components and apply different loss functions for distillation accordingly. (2) We ensure the features
from different modalities are consistent in scale and feature space.

4.1 FREQUENCY-DECOUPLED DISTILLATION

We identified frequency decoupling of features as a effective way to disentangle the modality-generic
and modality-specific information in the features. Formally, given the original feature Xm ∈ RD
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Figure 3: Framework of our method. We decouple the features of different modalities in the
frequency domain into high-frequency and low-frequency components. For low-frequency features,
MSE loss is applied, while logMSE loss is used for high-frequency features. Additionally, we ensure
consistency in feature scale and feature space across modalities through feature normalization and
alignment modules.

for a certain modality m, we compose the following three computation steps to decouple it into two
features, namely low-frequency feature Xm

low and high-frequency feature Xm
high.

(1) Spatio-temporal domain to frequency domain. To decouple the original features, we first use
Fourier transform to convert them into frequency domain, i.e.,

Xm
f = DFT(Xm), (1)

where Xm
f represents the corresponding Fourier-transformed feature in complex frequency domain.

(2) High-pass and low-pass filtering. In the frequency domain, we decompose Xm
f into different

frequency components by designing a low-pass filter Mlow and a high-pass filter Mhigh. Then the
low-frequency part Xm

low,f and the high-frequency part Xm
high,f are computed as follows:

Xm
f,low = Xm

f ·Mlow, Xm
f,high = Xm

f ·Mhigh. (2)

(3) Feature reconstruction with inverse Fourier transform. To obtain the reconstructed low-
frequency and high-frequency features, we apply the Inverse Discrete Fourier Transform (IDFT) to
transform the low-frequency and high-frequency components from the frequency domain back to
the spatio-temporal domain, then we can obtain the decoupled features as

Xm
low = IDFT(Xm

f,low), Xm
high = IDFT(Xm

f,high). (3)

The next task is to pinpoint the most suitable design of distillation loss for each type of features,
respectively. As analyzed in Section 3.1, low-frequency features primarily encompass modality-
generic information, highly shared across different modalities. Hence, it is imperative to maintain
“strong consistency” for low-frequency features across different modalities so that their generality
can be guaranteed. On the other hand, high-frequency features tend to capture modality-specific
fine-grained information and are often accompanied by more noises. To preserve modality-specific
details whilst reducing sensitivity to large errors stemming from the noises, we only require “weak
consistency” for high-frequency features across different modalities.

As a result, for the low-frequency features on two different modalities a and b, we use the conven-
tional mean square error (MSE) as the loss function, i.e.,

Llow =
1

ND

∥∥Xa
low −Xb

low

∥∥2 , (4)

where N and D denote the batch size and dimension, respectively.

While for the distillation of high-frequency features, a proper way is suppressing the significant gra-
dient values caused by the noises and abnormally-large features. To this end, we leverage log mean
square error (LogMSE) as the distillation loss, which has smoother gradients when the difference of
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two feature values is large, as shown in Figure 4. The distillation loss for high-frequency features is
formulated as

Lhigh =
1

ND

∥∥σ(Xa
high)− σ(Xb

high)
∥∥2 (5)

with σ(X) =

{
log(1 +X), X ≥ 0

−log(1−X), X < 0
, (6)

where N and D denotes the batch size and dimension, respectively.

4.2 ALIGNMENT OF FEATURE SCALE AND FEATURE SPACE
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Figure 4: Comparison of loss and gradient between MSE
and logMSE.

The consistency of feature distribu-
tions is pivotal for knowledge transfer.
However, the significant differences in
feature distributions between different
modalities result in poor performance
in cross-modal knowledge transfer. To
mitigate the distribution discrepancies
between modalities, we propose solu-
tions from both the feature scale and
feature space perspectives.

(1) Feature scale alignment. The in-
consistency in feature scales is typi-
cally reflected in the fact that feature
vectors from different modalities may
have varying numerical ranges, which
can negatively impact the effectiveness
of knowledge distillation. To achieve
feature scale alignment, we employed a
Feature Standardization strategy, which includes the following steps:

1. Mean Subtraction: First, mean subtraction is applied to the feature vectors to ensure that
the mean of the features is zero, eliminating any bias in the features.

2. L2 Normalization: Next, L2 normalization is performed on the zero-centered feature vec-
tors to ensure that the L2 norm of each feature vector is 1. This ensures that all feature
vectors are compared on the same scale, avoiding computational biases caused by differ-
ences in the lengths of the feature vectors.

Herein is the formula for feature standardization:

Std(X) =
X− X̄

∥X− X̄∥2
, (7)

where X represents the input feature vector, X̄ represents the mean of the features, and ∥·∥2 denotes
the L2 norm. In practice, the mean subtraction operation can be directly implemented by using a DC
filter in the frequency domain (as shown in Figure 3). By doing so, the previous distillation losses
in Eq. 4 and Eq. 5 can be reformulated as follows:

Llow =
1

ND

∥∥Std(Xa
low)− Std(Xb

low)
∥∥2 , (8)

Lhigh =
1

ND

∥∥σ(Std(Xa
high))− σ(Std(Xb

high))
∥∥2 . (9)

(2) Feature space alignment. Although feature scale alignment can alleviate the inconsistency
in the numerical ranges of features from different modalities, solely relying on scale alignment is
insufficient to address the fundamental differences in feature distributions across modalities. Fea-
tures from different modalities not only differ in numerical scales but may also exhibit significant
variations in the specific shapes of their distributions and the delineation of class boundaries.

To further enhance the effective transfer of cross-modal knowledge, we propose an alignment strat-
egy from the perspective of feature space, ensuring that the features of the teacher model and the
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student model are comparable within the same space, thereby narrowing the distribution differences
between modalities.

As shown in Figure 3, we designed an alignment module based on a shared classifier to achieve
feature space alignment. Through the shared classifier, the features of both the teacher model and
the student model can be aligned within the same decision space, thus reducing the distribution
differences between modalities. Specifically, the features from the teacher model and the student
model are fed into the same shared classifier, where they are classified through the shared classifier,
and the classification alignment loss is defined as follows:

Lalign = CE(Φh(X
a
high), y) +CE(Φh(X

b
high), y) +CE(Φl(X

a
low), y) +CE(Φl(X

b
low), y), (10)

where CE(·) denotes the cross-entropy loss, Φh and Φl represent the shared classifiers for high-
frequency and low-frequency features, respectively, and y denotes the ground truth labels.

Overall loss function. In addition to the aforementioned losses, we also compute the cross-entropy
loss on the raw features, low-frequency features, and high-frequency features of the student model,
respectively, to ensure that these features are discriminative (Mao et al., 2023). We denote this loss
as Ltask. See Figure 3 for an easier reference of all the losses we conduct. As a result, the total loss
function can be expressed as follows:

Ltotal = Ltask + Lalign + λ1Llow + λ2Lhigh, (11)

where λ1 and λ2 represent the weighting parameters for the distillation losses of low-frequency and
high-frequency features, respectively.

5 EXPERIMENTS

We evaluate our method on classification and semantic segmentation tasks across various multi-
modal datasets. We provide experimental settings before detailing the result analysis.

5.1 CLASSIFICATION TASK

Dataset. CREMA-D (Cao et al., 2014) is an emotion recognition dataset with audio and vision,
featuring six emotions: happy, sad, angry, fear, disgust, neutral. AVE (Tian et al., 2018) is an audio-
visual event localization dataset with 4, 143 videos across 28 event categories. While VGGSound
(Chen et al., 2020) is a large-scale audio-visual dataset with 210K ten-second videos, a subset of 50
categories for our experiments. CrisisMMD (Alam et al., 2018) is a multimodal dataset for natural
disaster research, including annotated tweets and images from Twitter in image and text formats.
For more detailed information about the dataset, please refer to Appendix A.

Experimental Settings. Our experimental settings follow (Huo et al., 2024; Fan et al., 2024; Wei
et al., 2024). We use the ResNet-18 (He et al., 2016) as the backbone for audio-visual datasets and
train them for 100 epochs in total. In the CrisisMMD dataset, we employ BERT-base (Devlin, 2018)
and MobileNetV2 (Sandler et al., 2018) to extract text and visual features, respectively. We only
train text modality for 20 epochs. We utilize the SGD optimizer with a momentum of 0.9, and the
batch size for training is set to 64. For detailed training information, see Appendix A.

Results Analysis. In Table 1, we present the performance of our method on classification bench-
marks. We compare the logit-based, feature-based, and cross-modal state-of-the-art distillation
methods. that our proposed method consistently achieves the best performance across all datasets
and modalities. For example, on the AVE dataset’s visual modality, our method improves perfor-
mance by 9%, reaching 47.8%, compared to the unimodal baseline. This highlights the effectiveness
of our approach in transferring knowledge across modalities. Notably, our method excels in trans-
ferring knowledge from low-performing modalities to high-performing ones, where other methods
fail. For instance, on CREMA-D’s visual modality, AVE’s audio modality, and VGGSound’s au-
dio modality, most methods underperform compared to the unimodal baseline, while our approach
consistently improves performance by effectively transferring knowledge from weaker modalities.
Additionally, our method is stable in bidirectional cross-modal transfer. On CrisisMMD, while
DKD works well for text but not visual, and AFD succeeds for visual but fails for text, our method
performs consistently across both modalities, achieving 79.1% on text and 72.7% on visual. This
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Table 1: The comparison of methods on Audio-Visual and Image-Text classification tasks. The
metric is the top-1 accuracy(%). ‘A’, ‘V’, and ‘T’ represent Audio, Visual, and Text modalities,
respectively. “Uni” refers to unimodal models without distillation. “Logit” and “Feat” correspond
to the original logit-based and feature-based distillation methods. “NKD” denotes the method where
only Non-target Class logits are used for distillation. “C2KD” represents the cross-modal distillation
method mentioned in (Huo et al., 2024). The best is in bold, and the second is underlined.

Category Method
CREMA-D AVE VGGSound CrisisMMD
A V A V A V T V

Uni-Modal w/o KD 62.4 66.8 63.7 38.8 68.9 44.9 77.4 70.2

Logits

Logit 61.7 62.6 60.0 39.1 65.7 45.4 78.5 70.5
DIST 62.2 64.0 62.4 40.3 66.4 45.5 78.3 71.3
DML 52.7 61.2 60.2 43.3 57.8 44.9 78.2 71.2
NKD 62.4 61.8 60.7 38.1 65.6 44.9 78.1 71.2
DKD 61.0 61.4 60.5 38.1 64.4 44.5 79.0 70.7

Feature

Feat 60.9 64.3 58.7 39.6 67.7 45.5 77.7 70.8
PKD 60.4 64.8 58.0 41.0 62.9 46.9 77.5 70.9
OFD 60.6 61.6 58.0 39.6 68.5 45.8 78.1 71.2
AFD 61.2 59.5 62.7 38.8 68.7 45.8 69.8 72.3

Cross-Modal
C2KD 57.5 59.8 62.7 39.3 67.0 47.9 77.9 71.4
Ours 64.1 71.0 64.9 47.8 70.0 48.1 79.1 72.7

Table 2: The comparison of methods on semantic segmentation task. The metric denotes the
mean Intersect ion over Union(mIoU:%).

Method Uni Logit DIST DKD Feat PKD AFD C2KD Ours

Depth 30.9 29.7 32.3 32.5 29.4 31.0 30.2 31.8 33.2
RGB 34.1 32.8 34.9 35.3 32.8 33.7 32.7 34.8 36.9

outstanding performance is attributed to our method’s ability to capture both modality-specific and
modality-agnostic information through frequency decomposition and customized loss functions, as
well as mitigating inherent feature distribution differences through feature alignment. This ensures
robust results across various modality pairs (A-V, T-V) and network architectures (ResNet-ResNet,
BERT-MobileNet).

5.2 SEMANTIC SEGMENTATION TASK

Dataset. NYU-Depth V2 (Wofk et al., 2019) is a multimodal dataset for indoor scene understanding
research. It provides two modalities of depth information and RGB image information. There are a
total of 40 categories. It contains 1, 449 densely labeled RGB and depth image alignment pairs.

Experimental Settings. Following C2KD (Huo et al., 2024), the DeepLab V3+ (Chen et al., 2018)
model is utilized with ResNet-18 as the backbone, which is initialized with the pre-trained weights
on ImageNet (Deng et al., 2009). We train the student for 50 epochs in total and the batch size is 16.

Results Analysis. Regarding segmentation task, Table 2 shows the performance of various KD
methods on NYU-Depth V2. Our method still consistently outperforms all other methods, with
33.2% mIoU for Depth and 36.9% mIoU for RGB. These results surpass the next best method (DIST
for Depth, DKD for RGB) by a notable margin of 0.9% and 1.6%, respectively. As highlighted in
Section 5.1 for classification tasks, our method is also stable in bidirectional cross-modal transfer in
segmentation tasks.
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6 ANALYSIS

In this section, we first evaluate the effectiveness of the key components in our CMKD method,
including frequency decomposition, feature alignment, and loss functions, through ablation studies.
We then conduct sensitivity analyses on frequency loss and loss coefficients to ascertain their im-
pact on performance. Finally, we visualize the feature distributions using t-SNE, showcasing the
improved feature separation and cross-modal knowledge transfer achieved by our proposed method,
when compared with traditional techniques.

6.1 EFFECTIVENESS OF COMPONENTS IN CMKD

Table 3: The ablation analysis of different components. Freq
represents frequency decomposition, Align refers to the feature
space alignment module, Scale indicates feature standardiza-
tion for scale alignment, and Log represents the use of logMSE
loss on high-frequency features. Baseline refers to the original
feature distillation.

Method CREMAD AVE
Freq Align Scale Log A V A V

60.9 64.3 58.7 39.6
✓ 60.8 68.7 61.0 43.3

✓ 60.9 67.9 63.2 41.3
✓ ✓ 61.8 68.7 62.4 45.8
✓ ✓ 62.2 70.0 62.4 44.8
✓ ✓ ✓ 62.2 70.6 62.4 46.0
✓ ✓ ✓ ✓ 64.1 71.0 64.9 47.8

We perform experiments to show
the effectiveness of each proposed
component in CMKD in Table 3.
Firstly, it is evident that each indi-
vidual component contributes pos-
itively to the overall performance.
Frequency decomposition distil-
lation provides improvements for
most modalities as it helps to
separate modality-specific infor-
mation from modality-generic in-
formation. However, these im-
provements are not always con-
sistent; for example, on the au-
dio (A) modality of the CREMA-
D dataset, there is a 0.1% per-
formance drop. This inconsis-
tency may stem from significant
differences in feature distributions
across modalities. When we add the Feature space alignment and Feature standardization mod-
ules, the cross-modal performance improves significantly, highlighting the importance of reducing
feature distribution discrepancies between modalities. Moreover, applying logMSE loss to high-
frequency features enhances the transmission of modality-specific information, indicating that it
is not necessary to fully align modality-specific information, and maintaining a weak consistency
is more effective for transferring such information. Finally, the comprehensive integration of all
components ensures more robust cross-modal knowledge transfer, thereby achieving more stable
performance across different modalities.

6.2 SENSITIVITY STUDY OF FREQUENCY

Table 4: The analysis of frequency loss.

Method CREMAD AVE
High Low A V A V
✓ 62.4 67.5 64.9 44.0

✓ 62.1 69.1 64.2 44.5
✓ ✓ 64.1 71.0 64.9 47.8

In this paper, we employ high-frequency and low-
frequency features to imitate the teacher model, re-
spectively. In this subsection, we conduct exper-
iments on high-frequency loss and low-frequency
loss to investigate their influences on performance.
As shown in Table 4, both the high-frequency loss
and low-frequency loss lead to significant accuracy
improvements. Furthermore, considering the fre-
quency with character, we find high-frequency ben-
efits more to the audio modality and low-frequency benefits more to the visual modality. Besides,
when combining the high-frequency loss and low-frequency loss, we achieve the best performance,
which indicates that transferring modality-generic information and modality-specific information
can complement each other effectively to enhance the overall performance.

9
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Figure 5: Sensitivity study of high and low-frequency loss weight.

6.3 SENSITIVITY STUDY OF LOSS COEFFICIENTS

In Eq. 11, we utilize the coefficients λ1 and λ2 to balance the low-frequency and high-frequency,
respectively. In this subsection, we do the sensitivity study of loss weight on CREMA-D and AVE.
The results are shown in Figure 5. We conducted experiments by setting the weights to 0.5, 1, 3,
and 5, respectively. On the CREMA-D dataset, both modalities achieve the best performance when
λ1 = 1 and λ2 = 1. On the AVE dataset, the audio modality performs best with λ1 = 1 and λ2 = 1,
while the visual modality achieves the highest accuracy with λ1 = 0.5 and λ2 = 0.5. Therefore,
λ1 = 1 and λ2 = 1 generally represent a good configuration.

6.4 VISUALIZATION
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Figure 6: t-SNE visualization comparison between the conven-
tional feature distillation method and our proposed approach. We
selected six classes from the VGGSound testset for visualization.

In Figure 6, we present
a t-SNE (Van der Maaten
& Hinton, 2008) visualiza-
tion to compare the per-
formance of the original
feature distillation method
and our proposed approach
in cross-modal knowledge
distillation. Figure 6(a) il-
lustrates the result of tra-
ditional feature distillation,
where there is significant
overlap between the fea-
tures of the visual modality
(teacher) and audio modal-
ity (student). This indicates that the method fails to effectively differentiate between modality-
specific features, leading to suboptimal retention of modality-specific information and reduced dis-
criminative capacity in the student model. In contrast, Figure 6(b) demonstrates the visualization of
our approach, where the features from different modalities are clearly separated, forming two dis-
tinct clusters. This separation suggests that our method successfully disentangles modality-generic
and modality-specific information, improving feature discrimination. These results validate our fre-
quency decomposition strategy, which preserves modality-specific characteristics while enhancing
cross-modal knowledge transfer.

7 CONCLUSION

In this paper, we investigated the non-negligible challenges faced cross-modal knowledge distil-
lation, particularly focusing on the discrepancies between modality-specific and modality-generic
information, and the differences in feature distributions across modalities. Based on the experimen-
tal observation that low-frequency features exhibit stronger correlations than high-frequency fea-
tures, we proposed a novel distillation framework – It decouples these types of information through
frequency-based feature analysis and introduces a differentiated distillation strategy for different
frequency components. Additionally, we addressed feature distribution discrepancies by incorpo-
rating a scale consistency loss and using a shared classifier for feature space alignment. Extensive
experiments have demonstrated the effectiveness of our approach.
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A EXPERIMENTAL SETUP

A.1 DATASET

CREMA-D (Cao et al., 2014) is a dataset for emotion recognition research, including two modalities
of audio and vision. The dataset includes six emotion categories: happy, sad, angry, fear, disgust,
and neutral. It contains 7,442 video clips, of which 6,698 are used as the training set and 744 are
used as the test set.

AVE (Tian et al., 2018) is a dataset for audio-visual event localization, including two modalities of
audio and vision. It contains a total of 4,143 videos, covering 28 event categories. The division of
the training set, validation set, and test set refers to (Tian et al., 2018).

VGGSound (Chen et al., 2020) is a large-scale audio-visual dataset consisting of more than 210,000
10-second videos. We randomly selected a dataset composed of 50 categories for experiments. In
total, it includes 32,496 videos, of which 29,999 are divided into the training set and 2,497 are
divided into the test set.

CrisisMMD (Alam et al., 2018) is a multimodal dataset for research related to natural disasters.
It consists of manually annotated tweets and pictures from Twitter, including two modalities of
image and text. In total, it includes five categories (rescue, not humanitarian, affected individuals,
infrastructure and utility damage, other relevant information) and XX pieces of data. The division
of the training set, validation set, and test set refers to (Alam et al., 2018).

NYU-Depth V2 (Wofk et al., 2019) is a multimodal dataset for indoor scene understanding research.
It provides two modalities of depth information and RGB image information. There are a total of 40
categories. It contains 1,449 densely labeled RGB and depth image alignment pairs. Among them,
795 are divided into the training set and 654 are divided into the test set.

A.2 DATA PREPROCESSING DETAILS

We follow (Huo et al., 2024; Fan et al., 2024; Wei et al., 2024) and provide our preprocessing details.
For the audio-visual datasets, the audio data is converted into spectrograms with a size of 257×299
for CREMA-D and 257×1,004 for both AVE and VGGSound. The spectrograms are generated
using a window length of 512 and an overlap of 353. For visual modality, during training, 1 frame
is extracted from AVE and CREMA-D, while 3 frames are uniformly sampled from VGGSound.
During testing, the middle frame is selected. Random cropping and flipping data augmentation
methods were applied during training, and the same approach was used for the visual modality in
the CrisisMMD dataset. For the NYU V2 dataset, we applied random HSV and random flipping as
data augmentation techniques on the RGB modality.

A.3 NETWORK ARCHITECTURES

For the audio-visual datasets, we use ResNet-18 as the backbone network. In the CrisisMMD
dataset, we use the pre-trained BERT-base as the backbone for text and MobileNetV2 as the back-
bone for images. For the NYU V2 dataset, we use DeeplabV3+ with a ResNet-18 backbone as
the network architecture. Additionally, during distillation, we use the features extracted before the
ReLU activation. Since the core of segmentation tasks is to generate pixel-level classification results
rather than mapping global features to a fixed class, our method does not use a shared classifier
alignment module for segmentation tasks.

A.4 TRAINING DETAILS

Optimizer: For BERT, we use the Adam optimizer, while for the others, we use the SGD optimizer
with a momentum of 0.9.

Learning rate: For BERT, a fixed learning rate of 1e-5 is used. For segmentation tasks, the initial
learning rate is 0.02 and decays according to the ‘poly’ policy with a power of 0.9. For all other
tasks, the initial learning rate is set to 1e-2 and follows the ‘poly’ decay policy with a power of 0.9.

Batch size: For segmentation tasks, the batch size is 16, while for all other tasks, it is set to 64.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Epochs: For BERT, since it is pre-trained, we only train for 20 epochs. For segmentation tasks, we
train for 50 epochs, and for all other tasks, we train for 100 epochs.

A.5 TRAINING ENVIRONMENT

All experiments were conducted on NVIDIA Tesla V100 and RTX 3090 GPUs using CUDA 12.5
with the PyTorch framework.

B CALCULATION OF CKA SCORE

Centered Kernel Alignment (CKA) is a metric used to measure the similarity between two sets of
feature representations, often from different layers or models. It helps in understanding how neural
networks encode data.

CKA compares two sets of features by aligning their Gram matrices, which capture pairwise simi-
larities between samples. It has the following properties:

• Invariant to orthogonal transformations: Features can be compared even if they are in
different spaces.

• Scale invariant: The score is unaffected by differences in feature magnitudes.

Given two sets of feature representations X ∈ Rn×p and Y ∈ Rn×q , where n is the number of
samples, the steps are as follows:

1. Gram matrix:
KX = XX⊤, KY = YY⊤

2. Centering the Gram matrices:

K̃X = KX − 1

n
1KX − 1

n
KX1+

1

n2
1KX1

3. CKA Score:

CKA(X,Y) =
Tr(K̃XK̃Y)√

Tr(K̃XK̃X)Tr(K̃YK̃Y)

The CKA score ranges from 0 to 1. A score close to 1 indicates high similarity between the two sets
of features, while a score near 0 indicates low similarity.
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