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Abstract

Diffusion Probabilistic Model (DPM) has recently become one of the hottest topics in com-
puter vision. Its image generation applications, such as Imagen, Latent Diffusion Models,
and Stable Diffusion, have demonstrated impressive generation capabilities, which have
sparked extensive discussions in the community. Furthermore, many recent studies have
found DPM to be useful in a variety of other vision tasks, including image deblurring,
super-resolution, and anomaly detection. Inspired by the success of DPM, we propose
MedSegDiff, the first DPM-based model for general medical image segmentation tasks.
To enhance the step-wise regional attention in DPM for medical image segmentation, we
propose Dynamic Conditional Encoding, which establishes state-adaptive conditions for
each sampling step. Additionally, we propose the Feature Frequency Parser (FF-Parser)
to eliminate the negative effect of high-frequency noise components in this process. We
verify the effectiveness of MedSegDiff on three medical segmentation tasks with different
image modalities, including optic cup segmentation over fundus images, brain tumor seg-
mentation over MRI images, and thyroid nodule segmentation over ultrasound images. Our
experimental results show that MedSegDiff outperforms state-of-the-art (SOTA) methods
by a considerable performance gap, demonstrating the generalization and effectiveness of
the proposed model.

Keywords: diffusion probabilistic model, medical image segmentation, brain tumor, optic
cup, thyroid nodule
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1. Introduction

Medical image segmentation is the process of partitioning a medical image into meaningful
regions. This is a fundamental step in many medical image analysis applications, such as
diagnosis, surgical planning, and image-guided surgery. In recent years, there has been
a growing interest in automatic medical image segmentation methods. These methods
have the potential to reduce the time and effort required for manual segmentation and to
improve the consistency, accuracy and trustworthy of results, which is significant for the
black-box deep learning technology(Zhang et al., 2021, 2022a,b). With the development of
deep learning techniques, more and more studies have successfully applied neural network
(NN) based models to medical image segmentation tasks, from the popular convolution
neural networks (CNN) (Ji et al., 2021) to the recent vision transformers (ViT) (Chen
et al., 2021; Wang et al., 2021; Liu et al., 2022a; Zhao et al., 2021; Zhang et al., 2022c;
Zhang et al.).

Recently, the diffusion probabilistic model (DPM) has gained popularity as a powerful
class of generative models (Ho et al., 2020). These models are capable of generating images
with high diversity and synthesis quality. Large diffusion models, such as DALL-E2 (Ramesh
et al., 2022), Imagen (Saharia et al., 2022a), and Stable Diffusion (Rombach et al., 2022),
have demonstrated incredible generation capabilities (Zhao and Shi, 2021; Goodfellow et al.,
2020). Diffusion models were originally applied in fields in which there is no absolute ground
truth. However, very recent studies have shown that they are also effective for problems in
which the ground truth is unique, such as super-resolution (Saharia et al., 2022b), deblurring
(Whang et al., 2022) , and segmentation (Amit et al., 2021).

Inspired by the recent success of DPM, we propose a unique DPM-based segmentation
model for medical image segmentation tasks. To our knowledge, we are the first to propose a
DPM-based model for general medical image segmentation. We note that in medical image
segmentation tasks, lesions/organs are often ambiguous and difficult to discriminate from
the background. In this case, an adaptive calibration process is crucial to obtain accurate
results. Following this idea, we propose Dynamic Conditional Encoding over vanilla condi-
tional DPM to design the proposed model, named MedSegDiff. In the iterative sampling
process, MedSegDiff conditions each step with the image prior to learn the segmentation
map. To achieve adaptive regional attention, we integrate the segmentation map of the
current step into the image prior encoding at each step. Specifically, we fuse the current-
step segmentation mask with the image prior on the feature level in a multi-scale manner.
This allows the corrupted current-step mask to dynamically enhance the condition features
and improve the reconstruction accuracy. To eliminate high-frequency noise in the cor-
rupted mask, we propose the Feature Frequency Parser (FF-Parser) to filter the features
in the Fourier space. FF-Parsers are adopted on each skip connection path for multi-scale
integration.

We evaluate MedSegDiff on three medical segmentation tasks: optic cup segmentation,
brain tumor segmentation, and thyroid nodule segmentation. These tasks use different
modalities, including fundus images, brain MRI images, and ultrasound images, respec-
tively. MedSegDiff outperforms the previous state-of-the-art on all three tasks with different
modalities, demonstrating the generalization and effectiveness of the proposed method. In
brief, the contributions of the paper are:
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• We propose the first DPM-based model for general medical image segmentation.

• We introduce Dynamic Conditional Encoding strategy to enable step-wise attention.

• We propose the FF-Parser method to effectively eliminate high-frequency noise com-
ponents.

• Our model achieves state-of-the-art performance on three different medical segmen-
tation tasks with diverse image modalities.

2. Method

We design our model based on diffusion model proposed in (Ho et al., 2020).Diffusion models
are generative models that consist of two stages: a forward diffusion stage and a reverse
diffusion stage. In the forward process, a segmentation label x0 is gradually corrupted by
Gaussian noise through a series of T steps. In the reverse process, a neural network is trained
to recover the original data by reversing the noising process. This can be represented as:

pθ(x0:T−1|xT ) =
T∏
t=1

pθ(xt−1|xt), (1)

where θ is the set of parameters for the reverse process. Starting from a Gaussian noise
distribution, pθ(xT ) = N (xT ; 0, In×n), where I is the original image, the reverse process
transforms the latent variable distribution pθ(xT ) to the data distribution pθ(x0). To be
symmetrical to the forward process, the reverse process recovers the noisy image step by
step to obtain the final clear segmentation.

Following the standard implementation of DPM, we adopt a UNet as the network for the
learning. An illustration is shown in Figure 1. To achieve the segmentation, we condition
the step estimation function ϵ using the raw image prior, which is given by:

ϵθ(xt, I, t) = D((EI
t + Ex

t , t), t), (2)

where EI
t is the conditional feature embedding of the raw image, Ex

t is the feature embedding
of the segmentation map at the current step. These two embeddings are added and passed
through a UNet decoder D for the reconstruction. The step index t is integrated with the
added embedding and decoder features, and is embedded using a shared learned look-up
table, as described in (Ho et al., 2020).

2.1. Dynamic Conditional Encoding

In most conditional DPM, the conditional prior will be a unique feature embedding. How-
ever, medical image segmentation is known for being challenging due to ambiguous objects,
with lesions or tissues often difficult to distinguish from the background. This issue is
further compounded by low-contrast image modalities like MRI or ultrasound images. To
address this problem, we propose a Dynamic Conditional Encoding for each step. We ob-
serve that the raw image contains accurate segmentation target information, but it is hard
to distinguish from the background. Meanwhile, the current-step segmentation map con-
tains enhanced target regions but is not entirely accurate. This motivates us to integrate
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Figure 1: An illustration of MedSegDiff. For the clarity, the time step encoding is omitted
in the figure.

the current-step segmentation information xt into the conditional raw image encoding for
mutual complement. Specifically, we implement integration on the feature level. In the raw
image encoder, we enhance its intermediate feature with the current-step encoding features.
Each scale of the conditional feature map mk

I is fused with the xt encoding features mk
x of

the same shape, where k is the index of the layer. The fusion is achieved using an attentive-
like mechanism A. In this mechanism, we first apply layer normalization to both feature
maps and then multiply them together to get an affinity map. We then multiply the affinity
map with the condition encoding features to enhance the attentive region, as follows:

A(mk
I ,m

k
x) = (LN(mk

I )⊗ LN(mk
x))⊗mk

I , (3)

where ⊗ denotes element-wise multiplication, and LN denotes layer normalization. We ap-
ply this operation on the middle two stages, where each is a convolutional stage implemented
following ResNet34.

This Dynamic Conditional Encoding strategy helps MedSegDiff to dynamically localize
and calibrate the segmentation. But it may introduce additional high-frequency noise due
to the integration of the noise-corrupted xt embedding. To address this issue, we further
propose the FF-Parser to constrain the high-frequency components in the features.

2.2. FF-Parser

We incorporate FF-Parser into the feature integration pathway to address the issue of high-
frequency noise introduced by the integration of xt embedding. FF-Parser is designed to
constrain the noise-related components in the xt features. The main idea is to learn a
parameterized attentive map that is applied in the Fourier-space features. Given a decoder
feature map m ∈ RH×W×C , we first perform 2D FFT (fast Fourier transform) along the
spatial dimensions, which can be represented as:

M = F [m] ∈ CH×W×C , (4)

4



MedSegDiff

where F [·] denotes the 2D FFT. Next, we modulate the spectrum of m by multiplying a
parameterized attentive map A ∈ CH×W×C to M :

M ′ = A⊗M, (5)

where ⊗ denotes the element-wise product. Finally, we reverse M ′ back to the spatial
domain by adopting inverse FFT:

m′ = F−1[M ′]. (6)

FF-Parser can be regarded as a learnable version of frequency filters, which are widely ap-
plied in digital image processing (Pitas, 2000). Unlike spatial attention, FF-Parser globally
adjusts the components of specific frequencies. Thus, it can be trained to constrain the
high-frequency components for adaptive integration.

2.3. Training and Architecture

MedSegDiff is trained following the standard process of DPM (Ho et al., 2020). Specifically,
the loss can be represented as:

L = Ex0,ϵ,t[||ϵ− ϵθ(
√
âtx0 +

√
1− âtϵ, Ii, t)||2]. (7)

In each iteration, a random pair of raw image Ii and segmentation label Si is sampled for
training. The iteration number is sampled from a uniform distribution, and ϵ is sampled
from a Gaussian distribution.

The main architecture of MedSegDiff is a modified ResUNet (Yu et al., 2019), which
we implement using a ResNet encoder followed by a UNet decoder. We follow the detailed
network settings of (Nichol and Dhariwal, 2021). Both I and xt are encoded using two in-
dividual encoders. Each encoder consists of convolution stages containing multiple residual
blocks. The number of residual blocks in each stage follows that of ResNet34. Each residual
block is composed of two convolutional blocks, each one consisting of a group-normalization
layer and a SiLU (Elfwing et al., 2018) activation layer, followed by a convolutional layer.
The residual block receives the time embedding through a linear layer, a SiLU activation,
and another linear layer. The result is then added to the output of the first convolutional
block. The obtained EI and Ext are added together and sent to the last encoding stage. A
standard convolutional decoder is connected to predict the final result.

3. Experiments

3.1. Dataset

We conducted experiments on three different medical tasks using different image modalities:
optic-cup segmentation from fundus images, brain tumor segmentation from MRI images,
and thyroid nodule segmentation from ultrasound images. We evaluated the performance
of our method for glaucoma, thyroid cancer, and melanoma diagnosis on the REFUGE-
2 dataset (Fang et al., 2022), BraTs-2021 dataset (Baid et al., 2021), and DDTI dataset
(Pedraza et al., 2015), which contain 1200, 2000, and 8046 samples, respectively. Both
segmentation and diagnosis labels are publicly available in these datasets, and we split the
data into train/validation/test sets following the default settings of the respective datasets.
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3.2. Implementation Details

We experimented with four different variants of our model: MedSegDiff-L, MedSegDiff-B,
and MedSegDiff-S, which correspond to huge, large, basic, and small variants, respectively.
We used UNet with 4x, 5x, and 6x downsampling for MedSegDiff-S, MedSegDiff-B, and
MedSegDiff-L, respectively. In our experiments, we employed 100 diffusion steps for the
inference, which is much smaller than in most previous studies (Ho et al., 2020; Nichol
and Dhariwal, 2021). All experiments were implemented using the PyTorch platform and
trained/tested on four Tesla P40 GPUs with 24GB of memory, except for MedSegDiff-L.
All images were uniformly resized to 256x256 pixels. The networks were trained end-to-end
using the AdamW optimizer (Loshchilov and Hutter, 2017). MedSegDiff-B and MedSegDiff-
S were trained with a batch size of 32, while MedSegDiff-L were trained with a batch size
of 64. The initial learning rate was set to 1e-4. All models were run 25 times for ensemble
inference, and the STAPLE algorithm (Warfield et al., 2004) was used to fuse the different
samples. For fair comparison, we reproduced the diffusion-based competitor EnsemDiff
(Wolleb et al., 2021) and SegDiff (Amit et al., 2021) using the same ensemble settings.

3.3. Main Results

We compared our approach with state-of-the-art (SOTA) segmentation methods proposed
for the three specific tasks and general medical image segmentation methods. The main
results are presented in Table 1. Specifically, ResUnet(Yu et al., 2019) and BEAL(Wang
et al., 2019) were proposed for optic disc/cup segmentation, TransBTS(Wang et al., 2021)
and EnsemDiff(Wolleb et al., 2021) were proposed for brain tumor segmentation, and MT-
Seg(Gong et al., 2021) and UltraUNet(Chu et al., 2021) were proposed for thyroid nodule
segmentation. CENet(Gu et al., 2019), MRNet(Ji et al., 2021), nnUNet(Isensee et al., 2021),
and TransUNet(Chen et al., 2021) were proposed for general medical image segmentation.
We also included SegDiff(Amit et al., 2021) and SegNet(Badrinarayanan et al., 2017), which
were proposed for natural image segmentation, because of their close relationship with our
method. The segmentation performance was evaluated using Dice score and IoU for 2D im-
ages, and an additional 95th percentile Hausdorff Distance (HD95) metric for 3D volumes.

In Table 1, we compare our method with those implemented with various network archi-
tectures, including CNN (ResUNet, BEAL, nnUNet, SegNet), vision transformer (Trans-
BTS, TransUNet) and DPM (EnsemDiff, SegDiff). We can observe that advanced network
architectures commonly achieve better results. For instance, in optic-cup segmentation, the
ViT-based general segmentation method TransUNet performs even better than the CNN-
based task-specific method BEAL. On brain tumor segmentation, the recently proposed
DPM-based segmentation method EnsemDiff outperforms all previous ViT-based competi-
tors, i.e., TransBTS and TransUNet. MedSegDiff not only adopts the successful DPM
but also designs a suitable strategy specifically for the general medical image segmenta-
tion task. We can observe that MedSegDiff outperforms all other methods on the three
different tasks, demonstrating its generalization capability towards different medical seg-
mentation tasks and different image modalities. When compared to the DPM-based model
proposed specifically for brain tumor segmentation, i.e., EnsemDiff, MedSegDiff improves
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Table 1: The comparison of MedSegDiff with SOTA segmentation methods. Best results
are denoted as bold. The grey background denotes the methods are proposed for
that/these particular tasks.

Optic-Cup Brain-Turmor Thyroid Nodule

Dice IoU Dice IoU HD95 Dice IoU

ResUnet 80.1 72.3 78.4 71.3 18.71 78.3 70.7
BEAL 83.5 74.1 78.8 71.7 18.53 78.6 71.6

TransBTS 85.4 75.7 87.6 78.44 12.44 78.6 71.6
EnsemDiff 84.2 74.4 88.7 80.9 10.85 83.9 75.3

MTSeg 82.3 73.1 82.2 74.5 15.74 82.3 75.2
UltraUNet 83.1 73.78 84.5 76.3 14.03 84.5 76.2

CENet 78.6 69.4 76.2 68.9 19.35 78.9 71.2
MRNet 84.2 75.1 83.4 75.6 15.18 80.4 73.4
SegNet 80.4 70.7 80.2 72.9 17.42 81.7 74.5
SegDiff 82.5 71.9 85.7 77.0 14.31 81.9 74.8
nnUNet 84.9 75.1 88.5 80.6 11.20 84.2 76.2

TransUNet 85.6 75.9 86.6 79.0 13.74 83.5 75.1

MedSegDiff-S 81.2 71.7 82.3 73.6 15.85 80.8 73.7
MedSegDiff-B 85.9 76.2 88.9 81.2 10.41 84.8 76.4
MedSegDiff-L 86.9 78.5 89.9 82.3 8.72 86.1 79.6

2.3% on Dice and 2.4% on IoU, which indicates the effectiveness of our unique techniques,
i.e., Dynamic Conditioning Encoding and FF-Parser.

Figure 2 showcases several typical examples generated by our proposed MedSegDiff
method and other state-of-the-art (SOTA) methods. As can be observed, the target lesions
and tissues in these medical images are often ambiguous and difficult to identify even for
human eyes. However, our proposed method outperforms other computer-aided methods,
generating more accurate segmentation maps, especially in the ambiguous regions. This
improvement can be attributed to the effective combination of Dynamic Conditional En-
coding and FF-Parser with DPM, which allows for better localization and calibration of the
segmentation on low-contrast or ambiguous images.

3.4. Ablation Study

We conducted a comprehensive ablation study to verify the effectiveness of the proposed
Dynamic Conditional Encoding and FF-Parser. We used a basic conditional-diffusion model
proposed in SegDiff (Amit et al., 2021) as the baseline and incrementally added the proposed
modules over it. An illustration is shown in Fig. 3. We evaluated the performance using
Dice score (%) on all three tasks, and the quantitative comparison results are shown in
Table 2. We use Dy-Cond to denote Dynamic Conditional Encoding. From the table,
we can see that Dy-Cond provides considerable improvements over baseline. For tasks
where region localization is important, such as optic-cup segmentation, it improves the
performance by 1.9%. For tasks with low-contrast images, such as brain tumor and thyroid
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Figure 2: The visual comparison of competing general medical image segmentation methods
in Table 1. From top to down are brain-tumor segmentation, optic-cup segmen-
tation and thyroid nodule segmentation, respectively.

Figure 3: An illustration of the ablation study. Dy-Cond denotes the proposed Dynamic
Conditional Encoding strategy.

nodule segmentation, Dy-Cond improves the performance by 1.8% and 1.7%, respectively.
These results indicate that Dy-Cond is a generally effective strategy for DPM in both cases.
FF-Parser, which is built on top of Dy-Cond, mitigates high-frequency noise and further
optimizes the segmentation results. It helps MedSegDiff achieve the best performance on
all three tasks, with an additional improvement of nearly 1%.

Table 2: An ablation study on Dynamic Condition Encoding and FF-Parser. Dice score(%)
is used as the metric.

Name Dy-Cond FF-Parser OpticCup BrainTumor ThyroidNodule

(a). SegDiff 82.5 85.7 81.9
(b). ✓ 84.4 87.5 83.6

(c). MedSegDiff (proposed) ✓ ✓ 85.9 88.9 84.8
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4. Conclusion

In this paper, we present MedSegDiff, a scheme for DPM-based general medical image
segmentation, that incorporates two novel techniques: Dynamic Conditional Encoding and
FF-Parser, to improve segmentation performance. Our comparison experiments on three
medical image segmentation tasks with different image modalities demonstrate that our
model outperforms previous SOTA methods. Being the first DPM-based application in
general medical image segmentation, we believe that MedSegDiff will serve as an essential
benchmark for future research in this field.

9



Wu Fu Fang Zhang Yang Xiong Liu Xu

References

Tomer Amit, Eliya Nachmani, Tal Shaharbany, and Lior Wolf. Segdiff: Image segmentation
with diffusion probabilistic models. arXiv preprint arXiv:2112.00390, 2021.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pattern anal-
ysis and machine intelligence, 39(12):2481–2495, 2017.

Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol
Colak, Keyvan Farahani, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak Pati,
et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and
radiogenomic classification. arXiv preprint arXiv:2107.02314, 2021.

Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L
Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image
segmentation. arXiv preprint arXiv:2102.04306, 2021.

Chen Chu, Jihui Zheng, and Yong Zhou. Ultrasonic thyroid nodule detection method based
on u-net network. Computer Methods and Programs in Biomedicine, 199:105906, 2021.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning. Neural Networks, 107:3–11,
2018.

Huihui Fang, Fei Li, Huazhu Fu, Xu Sun, Xingxing Cao, Jaemin Son, Shuang Yu, Menglu
Zhang, Chenglang Yuan, Cheng Bian, et al. Refuge2 challenge: Treasure for multi-domain
learning in glaucoma assessment. arXiv preprint arXiv:2202.08994, 2022.

Haifan Gong, Guanqi Chen, Ranran Wang, Xiang Xie, Mingzhi Mao, Yizhou Yu, Fei Chen,
and Guanbin Li. Multi-task learning for thyroid nodule segmentation with thyroid region
prior. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pages
257–261. IEEE, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020.

Zaiwang Gu, Jun Cheng, Huazhu Fu, Kang Zhou, Huaying Hao, Yitian Zhao, Tianyang
Zhang, Shenghua Gao, and Jiang Liu. Ce-net: Context encoder network for 2d medical
image segmentation. IEEE transactions on medical imaging, 38(10):2281–2292, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in Neural Information Processing Systems, 33:6840–6851, 2020.

Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein.
nnu-net: a self-configuring method for deep learning-based biomedical image segmenta-
tion. Nature methods, 18(2):203–211, 2021.

10



MedSegDiff

Wei Ji, Shuang Yu, Junde Wu, Kai Ma, Cheng Bian, Qi Bi, Jingjing Li, Hanruo Liu,
Li Cheng, and Yefeng Zheng. Learning calibrated medical image segmentation via multi-
rater agreement modeling. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12341–12351, 2021.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model un-
certainty in deep convolutional encoder-decoder architectures for scene understanding.
arXiv preprint arXiv:1511.02680, 2015.

Chenyang Liu, Rui Zhao, and Zhenwei Shi. Remote-sensing image captioning based on
multilayer aggregated transformer. IEEE Geoscience and Remote Sensing Letters, 19:
1–5, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv
preprint arXiv:2206.00927, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR,
2021.

Lina Pedraza, Carlos Vargas, Fabián Narváez, Oscar Durán, Emma Muñoz, and Eduardo
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5. Appendix

5.1. Detailed Analysis and Discussion

5.1.1. The inference time and model complexity

Diffusion model requires more inference time than a traditional neural network due to its
iterative nature. In Table 3, we provide a comparison of model complexity and inference
time with competing segmentation methods. The inference time is recorded for processing
a single 256× 256 image or slice of a volume. Despite not increasing the model complexity,
MedSegDiff requires much more inference time, which is a natural limitation of all diffusion-
based methods and remains a pressing challenge in the research community.

Table 3: Comparison of parameters and inference times with competing segmentation meth-
ods. The unit of parameter numbers is million. The unite of inference time is
seconds per image.

Model Params (M) Inference Time (s/Image)

ResUNet 12 0.02
MRNet 48 0.09
nnUNet 19 0.03

TransUNet 96 0.08

MedSegDiff-S 13 12.50
MedSegDiff-B 25 16.27
MedSegDiff-L 41 19.76

We have also attempted to apply several recently proposed DPM accelerating algo-
rithms, including DPM-Solver (Lu et al., 2022), Flow-S&F (Liu et al., 2022b), and DDSS
(Watson et al., 2022), to MedSegDiff-B, as shown in Table 4. However, we found that in our
conditional-DPM segmentation setting, these algorithms did not perform as well as they
did in the image generation case. This suggests that the Conditional-DPM variants may
require specific acceleration algorithms. We consider this to be a very interesting finding
and plan to explore it further in our future work.

Table 4: The performance is evaluated by Dice Score (%) on three datasets, with the value
in [ ] indicating the reduction in performance for faster inference.

Model Optic-Cup Brain-Tumor Thyroid Nodule Inference Time (s/Image)

DPM-solver (Neurips 2022) 83.69 [-2.26] 84.71 [-4.26] 81.95 [-2.88] 6.30
Flow-S&F (ICLR2023) 84.13 [-1.82] 85.49 [-3.48] 82.27 [-2.56] 8.67
DDSS (ICLR2022) 84.63 [-1.32] 85.27 [-3.70] 82.06 [-2.77] 5.81

5.1.2. Effect of ensemble

Similar to the previous observation(Wolleb et al., 2021), we find ensemble of different runs
plays an important role in diffusion-based prediction. However, it is important to note that
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while both are referred to as ensemble, there are significant differences between diffusion
ensemble and traditional model ensemble. Diffusion model ensemble fuses predictions from
multiple runs of a single model, while traditional ensemble fuses predictions from multiple
different models.

We quantitatively verify the effect of ensemble over MedSegDiff-L in Table 5. We run
each setting 20 times to compute its variance. We find the model performance increases
rapidly in the first 5 ensemble (commonly comparative to SOTA) and then stabilizes. The
best performance is commonly achieved after about 25 ensemble. Besides the performance
improvement, the increased ensemble size also leads to smaller performance variance. For
instance, the variance of BraTs decreases from 0.74% for a single sample to 0.52% for a
5-run ensemble and further drops to 0.40% for a 25-run ensemble. Over 25 runs, more times
of ensemble can slightly mitigate the variance but cannot improve the mean performance
anymore. Another noteworthy finding is that STAPLE algorithm(Warfield et al., 2004),
which previously used for multi-rater fusion, can effectively improve performance and mit-
igate variance when used for ensembles. For example, STAPLE improves the 0.53% mean
performance and mitigates 0.6% variance for 5-run ensemble over BraTs. The effectiveness
of STAPLE will decrease as the number of ensemble increases, which is intuitive as more
ensembles naturally lead to better consensus.

Table 5: The comparison of different ensemble settings. The performance is evaluated over
three datasets by mean Dice Score (%) ± its variance.

Ensemble Optic-Cup Brain-Tumor Thyroid Nodule

one sample 84.65 ± 1.04 87.65 ± 0.74 84.45 ± 0.69
5 runs 85.78 ± 0.56 88.60 ± 0.52 85.27 ± 0.41

5 runs + STAPLE 86.61 ± 0.44 89.13 ± 0.46 85.84 ± 0.27
25 runs 86.42 ± 0.29 89.76 ± 0.40 85.95 ± 0.21

25 runs + STAPLE 86.94 ± 0.25 89.92 ± 0.37 86.18 ± 0.16
50 runs 86.80 ± 0.22 89.90 ± 0.33 86.16 ± 0.15

50 runs + STAPLE 86.84 ± 0.21 89.91 ± 0.31 86.20 ± 0.12

5.2. Implement Details

We provide the implement details of the comparing methods:

• ResUNet: During model training, we used Adam optimization with an initial learning
rate of 0.05. we set the training batch size to 32. The backbone of the framework is
ResNet-34 with a standard UNet decoder. We employ the two-steps training strategy
following their paper. We train its Step 1 and Step 2 with 50 and 100 epochs on
REFUGE-2 dataset, 70 and 140 epochs on BraTs dataset, and 60 and 110 epochs on
DDIT dataset, respectively.

• BEAL: We trained the framework using a minibatch size of 32. The discriminators
De and Db were optimized using the SGD algorithm, while the segmentation network
was optimized using the Adam optimizer. The initial learning rate for SGD was set
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to 1e-3 and decreased by a factor of 0.2 every a half of the epochs for a total of 100,
140, and 110 epochs for REFUGE-2, BraTs2021, and DDIT datasets, respectively.
The learning rate for discriminator training was set to 2.5e-5.

• TransBTS: We trained the model using a batch size of 32 and the Adam optimizer.
We set the initial learning rate to 10−4 and used a polynomial learning rate strategy,
with the initial rate decaying by each iteration with power 0.9. The model is trained
with 2000, 8000, and 2000 epochs on REFUGE-2, BraTs2021, and DDIT datasets,
respectively.

• EnsemDiff: We used a linear noise schedule for T = 1000 steps. The model is trained
using the hybrid loss objective, with a learning rate of 10−4 for the Adam optimizer,
and a batch size of 32. The first layer has 128 channels, and we use one attention head
at a resolution of 16. We train the model for 60,000 iterations on all three datasets.

• MTSeg: As suggested by the authors, the model is initialized using Xavier initializa-
tion. We optimized the model using SGD with a learning rate of 0.001 and a batch
size of 32. The model is trained for a total of 100, 140 and 110 epochs for REFUGE-2,
BraTs2021, and DDIT datasets, respectively.

• UltraUNet: The backbone of the model is a standard UNet with 4 down-sampling
modules. We train the model using a batch size of 32 with Adam optimizer. The
initial learning rate is set as 10−4. The model is trained for a total of 100, 140 and
110 epochs for REFUGE-2, BraTs2021, and DDIT datasets, respectively.

• CE-Net: We utilized mini-batch stochastic gradient descent (SGD) with a batch size
of 32, momentum of 0.9, and weight decay of 0.0001. We employed the poly learning
rate policy, where the learning rate is multiplied by (1 - iter/max iter)p̂ower with a
power of 0.9 and an initial learning rate of 4e-3. The maximum number of epochs
was set to 100, 140, and 110 epochs for REFUGE-2, BraTs2021, and DDIT datasets,
respectively.

• MRNet: The framework utilizes the U-Net architecture with ResNet34 as the back-
bone, and the MRM module adopts the DeepLab-V3+ architecture with VGG-16 as
the backbone. The network is trained in an end-to-end manner using the Adam opti-
mizer. For training, we set a mini-batch size of 32 and use 100, 140, and 110 epochs
for REFUGE-2, BraTs2021, and DDIT datasets, respectively. The learning rate is
initially set as 10−4.

• SegNet: We train the SegNet as proposed in (Kendall et al., 2015), with a learning
rate of 10−4 for the Adam optimizer and a batch size of 32. Training is performed
with the binary cross-entropy loss and is stopped after 100, 140, and 110 epochs for
REFUGE-2, BraTs2021, and DDIT datasets, respectively.

• SegDiff: We trained SegDiff using the AdamW optimizer with a learning rate of 10−4,
and the same backbone setting as MedSegDiff for a fair comparison. The batch size
was set to 32, unless specified otherwise, and 64 for SegDiff++. The model was trained
for 60,000 iterations on all three datasets.
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• nnU-Net: We take over all hyper-parameter settings as proposed in their official im-
plementation, which can be found at https://github.com/MIC-DKFZ/nnUNet. The
configurations are automatically set by their pipeline.

• TransUNet: We use a hybrid encoder design with combined ResNet-50 and ViT. The
models are trained using the SGD optimizer with a learning rate of 0.01, momentum of
0.9, and weight decay of 1e-4. The batch size is 32, and the number of training epochs
are 100, 140, and 110 for REFUGE-2, BraTs2021, and DDIT datasets, respectively.
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