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Abstract

Visually Rich Documents (VRDs), encompass-001
ing elements like charts, tables, and references,002
convey complex information across various003
fields. However, extracting information from004
these documents is labour-intensive, especially005
given their inconsistent formats and domain-006
specific requirements. While pretrained mod-007
els for VRD Understanding have progressed,008
their reliance on large, annotated datasets lim-009
its scalability. This paper introduces the Do-010
main Adaptive Visually-rich Document Under-011
standing (DAViD) framework, which utilises012
machine-generated synthetic data for domain013
adaptation. DAViD integrates fine-grained and014
coarse-grained document representation learn-015
ing and employs synthetic annotations to re-016
duce the need for costly manual labelling. By017
leveraging pretrained models and synthetic018
data, DAViD achieves competitive performance019
with minimal annotated datasets. Extensive020
experiments validate DAViD’s effectiveness,021
demonstrating its ability to efficiently adapt022
to domain-specific VRDU tasks. 1.023

1 Introduction024

Visually Rich Documents (VRDs) containing nu-025

merically qualified and potentially sensitive infor-026

mation are typically shared intra-departmentally or027

between institutions rather than being publicly ac-028

cessible. Automatically extracting information pre-029

cisely and economically from domain knowledge-030

intensive documents is challenging, especially031

given the rapidly increasing demands across mul-032

tiple domains such as finance (Ding et al., 2023),033

education (Wang et al., 2021), and politics (Wang034

et al., 2023), unlike highly qualified academic pa-035

pers (Ding et al., 2024a), the flexible formats fur-036

ther complicate the task. To meet these demands,037

various pretrained VRD understanding frameworks038

(Huang et al., 2022; Lyu et al., 2024) leverage039

1The code will be released after acceptance

self-supervised pretraining to capture general doc- 040

ument domain knowledge. However, deploying 041

these frameworks effectively in real-world scenar- 042

ios often requires extensive domain-specific anno- 043

tations from experts, which can be labour-intensive 044

and time-consuming, potentially delaying projects 045

and hindering practical deployment. 046
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Figure 1: Structure and content manual and synthetic
annotation samples.

From a human perspective, understanding a new 047

domain document starts with examining its format 048

and layout, and then analysing its content based 049

on user needs. Substantial manual annotations are 050

usually required to grasp the layout structure of 051

documents in specific domains (Pfitzmann et al., 052

2022; Cheng et al., 2023), equipping deep learn- 053

ing models (He et al., 2017; Zhu et al.) to under- 054

stand them. Acquiring high-quality, well-annotated 055

layout structures (as shown in Figure 1) is time- 056

intensive and laborious, requiring effort to under- 057

stand both layout and logical arrangement. Off- 058

the-shelf tools can efficiently produce large-scale, 059

roughly annotated layouts, which can be refined 060

using source files like XML or HTML to create 061

high-quality VRD structure understanding datasets 062

(Zhong et al., 2019). However, leveraging syntheti- 063

cally generated structures for domain-aware VRD 064

understanding, particularly in unstructured scanned 065

documents, remains largely unexplored. 066

In addition, to effective understanding of docu- 067

ment content often requires training models on task- 068
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specific, well-annotated datasets tailored to end-069

user needs. Various manually annotated datasets070

have been designed for tasks such as key informa-071

tion extraction (KIE) and question answering (QA)072

across domains like finance (Ding et al., 2023),073

academia (Ding et al., 2024a), and scanned receipts074

(Huang et al., 2019). Creating these annotations of-075

ten demands domain expertise to align content with076

user requirements and typically involves prelimi-077

nary layout annotation, as shown in Figure 1. How-078

ever, real-world VRDU solutions need to reduce re-079

liance on labour-intensive annotations by enabling080

deep learning frameworks to achieve competitive081

performance with minimal manual effort. Large082

language models (LLMs) (Touvron et al., 2023)083

and multimodal large language models (MLLMs)084

(Liu et al., 2024b) have shown significant advance-085

ments in zero-shot VRDU tasks (Mathew et al.,086

2021) and facilitate VRD QA dataset generation via087

prompt engineering (Ding et al., 2024a), leveraging088

extensive training on diverse corpora. Nevertheless,089

the potential of using synthetic content annotation090

to tackle domain-specific VRD in real-world appli-091

cations also remains largely underexplored.092

This paper introduces the Domain Adaptive093

Visually-rich Document understanding framework,094

DAViD, which leverages a small number of anno-095

tated documents to achieve performance compara-096

ble to models fine-tuned on large well-annotated097

sets. As a joint-grained framework, DAViD lever-098

age pretrained backbones to encode both fine-099

grained (word-level) and coarse-grained (document100

entity-level) features to harness implicit pretrained101

knowledge (Yu et al., 2022; Ding et al., 2024b). To102

bridge domain distribution gaps, DAViD incorpo-103

rates a Domain Knowledge Infuser, which em-104

ploys diverse domain adaptation strategies to train105

the joint-grained framework, capturing structural106

and task-oriented semantics from synthetic datasets.107

Then, Task-Specific Knowledge Enhancers fur-108

ther refine the model using limited, high-quality109

annotations. A synthetic annotation workflow is in-110

troduced, leveraging off-the-shelf tools and LLMs111

to generate structural and semantic annotations.112

This paper’s contributions could be summarized113

as follows: 1) Introduce a joint-grained VRDU114

framework, DAViD, that distils implicit knowledge115

from general domain pretrained models and cap-116

tures domain-specific knowledge from synthetic117

annotations within the target domain’s document118

collection. 2) A well-designed synthetic annotation119

workflow is proposed, complemented by domain120

adaptation strategies to address structural and con- 121

tent shifts from the general to the target domain. 122

3) Extensive experiments are conducted to validate 123

the effectiveness of the proposed approaches. 124

2 Related Work 125

Visually-Rich Document Understanding Heuris- 126

tic methods (Watanabe et al., 1995; Seki et al., 127

2007; Rusinol et al., 2013) and statistical ma- 128

chine learning (Oliveira and Viana, 2017) were 129

applied to closed-domain document applications, 130

but required expert customization. Recent ad- 131

vances in deep learning, including feature-driven 132

approaches (Yu et al., 2021; Zhang et al., 2020; 133

Wang et al., 2021), and layout-aware pre-trained 134

frameworks (Xu et al., 2020; Huang et al., 2022; 135

Wang et al., 2022; Hong et al., 2022), and joint- 136

grained frameworks (Yu et al., 2022; Lyu et al., 137

2024), have shown promise in enhancing docu- 138

ment representation, but rely heavily on extensive, 139

well-annotated data for domain-specific knowledge 140

transfer. LLM/MLLM-based frameworks (He et al., 141

2023; Fujitake, 2024; Luo et al., 2024) have demon- 142

strated improved zero-shot performance for VRD 143

understanding tasks by leveraging broad pretrain- 144

ing and instruct-tuning. However, the reliance on 145

large-scale, annotated datasets remains a barrier, 146

underscoring the need for scalable solutions like 147

synthetic data generation, as explored in this paper. 148

Domain Adaptation and Knowledge Distilla- 149

tion Domain adaptation is crucial in transfer learn- 150

ing, encompassing several variants such as unsu- 151

pervised domain adaptation (Wang et al., 2020) 152

and source-free domain adaptation (Liang et al., 153

2020), which focus on transferring knowledge from 154

one source domain to a target domain that differs 155

from our scenarios. Another subproblem within 156

transfer learning, knowledge distillation(Hinton 157

et al., 2015), involves transferring knowledge from 158

a large-scale teacher to small student networks. 159

This has been widely applied in language (Adhikari 160

et al., 2020), vision (Fang et al., 2021), and multi- 161

modal applications (Ma et al., 2023), yet there is a 162

lack of research exploring knowledge distillation 163

in VRDU. While some efforts (Ding et al., 2024b) 164

have explored joint-grained knowledge distillation 165

for VRDU, they continue to rely heavily on large, 166

annotated datasets and require extensive fine-tuning 167

for practical use. Our work addresses this gap by 168

utilising synthetic data to enable domain adaptation 169

and distillation, achieving competitive results with- 170
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out the need for large-scale manual annotations.171

3 Problem Formulation172

Preliminary Definition Given a collection of doc-173

uments D = {D1, D2, . . . , Dm} from a specific174

domain containing m documents, the task aims to175

extract the predefined k types of key information176

Y = {Y1, Y2, · · · , Yk} from D. The entire docu-177

ment collection can be divided into three subsets,178

including a larger unannotated set Dn, a manually179

annotated guidance set Dg, and Di a set containing180

practical inference cases of arbitrary size. Follow-181

ing the setting up of the joint-grained frameworks,182

(Gu et al., 2021; Ding et al., 2024b), a document183

D ∈ D has fine/coarse-grained information. Fine-184

grained sequence of textual tokens of document185

D is represented as TD = {t1, t2, · · · , tn} with186

text content and the coordinates of the box of the187

bounding of each token, t = (text, box). Coarse-188

grained a set of document semantic entities are189

represented ED = {e1, e2, · · · , ep}, where each190

entity, e.g. paragraph, table, also comprised by191

e = (text, box).192

Task Clarification Information extraction from193

VRDs involves fine/coarse-grained processes that194

are tailored to the application and the granu-195

larity of the information. For the fine-grained196

level, each token in a sequence {t1, t2, · · · , tn}197

is classified into predefined categories of the198

set Y. The goal is to determine the most199

likely sequence of labels {y1, y2, · · · , yn} cor-200

responding to the token sequence, maximizing201

argmax(P (y1, y2, · · · , yn|t1, t2, · · · , tn)), y ∈202

Y . Entity-level extraction, as outlined by (Ding203

et al., 2023), employs a set of predefined keys204

Ykeyi ∈ Y and a group of entities ED =205

{e1, e2, · · · , ep} to identify and retrieve a specific206

target entity eki , which aims to maximize condi-207

tional probability argmax(P (eki |Ykeyk , ED)).208

Problem Formulation Suppose F is a KIE209

model incorporating pretrained backbones (teach-210

ers) from diverse domains like VRDs (Huang211

et al., 2022) or natural scene images (Tan and212

Bansal, 2019). G is a well-trained model in the213

target domain D, and D and L are the proba-214

bility distance and loss functions, respectively.215

Ft is F trained in the guidance set Dg, repre-216

sented as Ft = argmin(L(F(XDg))). Fn is217

F learned on the synthetically annotated dataset218

Fn = argmin(L(F(XDn))) and Fnt is Fn fur-219

ther fine-tuned on Dg, represented as Fnt =220

argmin(L(Fn(XDi))). Here, XD denotes the en- 221

coded document representation of any target doc- 222

ument collection. This paper aims to propose ap- 223

proaches to distill knowledge from pretrained back- 224

bones and a synthetically annotated set Dn, in order 225

to achieve D(Fnt,G) < D(Ft,G). 226

4 Methodology 227

This section introduces the DAViD architecture, 228

which consists of the Domain Knowledge In- 229

fuser (AD) and the Task-Specific Knowledge 230

Enhancers (AT and AE). The Domain Knowl- 231

edge Infuser adapts domain-specific knowledge 232

into inter-grained frameworks using synthetic data 233

(Dn) and strategies like Structural Domain Shifting 234

(SDS) and Synthetic Instructed-Tuning (SIT), result- 235

ing in the adapted module ADn . The Task-Specific 236

Knowledge Enhancers refine the model on tasks 237

using a smaller, well-annotated guidance set (Dg) 238

to improve domain-specific performance. 239

4.1 Multimodal Feature Representation 240

For the well-annotated guidance set Dg, each docu- 241

ment Dt ∈ Dg contains high-quality nt textual 242

tokens, represented as tDt = {t1, t2, . . . , tnt} 243

and mt entity annotations, denoted as eDt = 244

{e1, e2, . . . , emt}. In contrast, for the unannotated 245

set Dn with synthetic annotations, containing nn 246

tokens tDn = {t̂1, t̂2, . . . , t̂nn} and mn entities, 247

eDn = {ê1, ê2, . . . , êmn}. For coarse-grained rep- 248

resentations, we follow previous work (Luo et al., 249

2022) by utilizing a pretrained backbone to acquire 250

semantic S and visual V representations of each en- 251

tity e. To better integrate layout information and 252

capture the correlation between token-entity pairs, 253

we introduce a new layout embedding method, 254

named Layout to Vector (L2V), which converts 255

layout information to visual cues by rendering each 256

input document image to a colour-coded image 257

based on the x and y coordinates. A pretrained 258

CNN-backbone extracts RoI features using RoI- 259

Align to get L2V embedding as layout representa- 260

tion L of e. Thus, each token t and entity e can be 261

represented as {t : text, bbox} and {e : S, V, L}. 262

4.2 Domain Knowledge Infuser 263

To acquire the domain-specific knowledge from 264

synthetic document collections in Dn, we introduce 265

the Domain Knowledge Infuser, AD, which is built 266

on General Domain Encoders (GDEs), including 267

pretrained fine-grained ET and coarse-grained EE 268

encoders. Various domain adaptation strategies are 269
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Figure 2: DAViD model architecture contains a Domain Knowledge Infuser and Task-Specific Knowledge Enhancer.

utilised to leverage synthetic data for mitigating dis-270

tribution gaps between general domain pretrained271

models and target domain D.272

General Domain Encoders (GDEs) To encode273

the fine-grained features of any D ∈ D, we feed274

the initial word token sequence t along with docu-275

ment image I into a VRDU model, ET , pretrained276

on a general document collection to obtain a mul-277

timodal token representation T̃ = {T̃1, . . . , T̃n′}.278

Each T̃i is additive with the corresponding L2V279

embedding LTi to produce the final token repre-280

sentation Ti, where all n′ tokens in D are repre-281

sented as T = {T1, . . . , Tn′}. Similarly, for the282

coarse-grained level, the initial visual embedding283

Vj of an entity Ej is fed into a visual-language284

pretrained model (VLPM) EE , to obtain the aug-285

mented V ′
j . We then fuse multimodal entity rep-286

resentations by the linear projection of the con-287

catenated V ′
j and Tj , addictive with LEj to get Ej ,288

represented as Ej = Linear(V ′
j ⊕ Tj) +LEj . All289

m′ semantic entities in document D can be repre-290

sented as E = {E1, . . . , Em′}. For coarse-grained291

level tasks, the query text features, Q, could be292

acquired from EE .293

Domain Adaptation Strategies To ensure the mod-294

ule effectively captures structural and semantic in-295

formation from synthetic sets Dn, various domain296

adaptation strategies are introduced.297

i) Structural Domain Shifting (SDS) is built on298

a joint-grained transformer encoder, Ejg to learn299

inter-grained correlation. Document representa-300

tion learned from GDEs are fed into Ejg to obtain301

augmented token and entity representations, repre-302

sented as [T′,E′] = Eig([T,E]). To acquire more303

domain-specific knowledge and boost inter-grained304

contextual learning from the large unannotated set305

Dn, an inter-grained alignment task is applied to306

predict the existence of parent-child relationships307

between paired tokens and entities. For any syn- 308

thetic token-entity pair (t̂i, êj), where t̂i ∈ t and 309

êj ∈ e, If parent-child relation, r, between t̂′i and 310

ê′j existed, rt̂′i,ê′j = 1, otherwise rt̂′i,ê′j
= 0. Sup- 311

posing T̂ ′
i and Ê′

j are Eij outputs, the predicted 312

score γ is γt̂i,êj = Linear(T̂ ′
i )⊗Linear(Ê′

i). We 313

have a ground truth relation matrix Mt̂,ê = Rn′×m′
314

and a predicted matrix M ′
t̂,ê

for all token and entity 315

pairs. The training objective of SDS is to minimize 316

the mean square error between relation matrices: 317

argmin
θ

LMSE

(
p(Mt̂,ê|θ), p(M

′
t̂,ê
))
)
. (1) 318

ii) Synthetic Sequence Tagging (SST) is introduced 319

to train the Domain Knowledge Infuser AD for 320

capturing fine-grained domain-specific knowledge 321

from Dn. For a document D ∈ Dn, each to- 322

ken t̂i ∈ t̂ has a corresponding label ŷi, where 323

Ŷ = {ŷ1, . . . , ŷn′}. Even if the synthetic labels of 324

Ŷ differ from those in the guidance set Y, training 325

AD on SST helps to encode more domain-specific 326

implicit knowledge to enhance fine-grained VRDU 327

tasks. The enhanced token representations T̂′ and 328

entity representations Ê′ are then fed into DT as 329

source and memory inputs, refining inter-grained 330

contextual learning. The output T̂′′ from DT is 331

fed into a linear layer to predict the logits Ŷ′
T : 332

Ŷ′
T = Linear(DT (T̂′

T , Ê
′)). The training target 333

is to minimize the cross-entropy loss between Ŷ′ 334

and Ŷ: 335

argmin
T′′

LCE(p(Ŷ
′|T̂′′), p(Ŷ)). (2) 336

iii) Synthetic Instructed-Tuning (SIT) is introduced 337

to train AD for enhancing the coarse-grained level 338

representations. For each document D ∈ Dn, we 339

use LLMs to generate synthetic question-answer 340
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pairs ŶE = Ŷkey1 : ev1 , . . . , Ŷkeyj : êvj}, where341

êv ∈ ÊDt . The entity representations are fed342

as source inputs into entity decoder DE , with343

the memory inputs being the combined embed-344

ding of synthetic key/question, Q̂ and fine-grained345

representations T̂. A pointer net (PN) is placed346

on top of linear projection outputs of DE to347

get the final prediction, represented as Ŷ′
E =348

PN(Linear(DE(Ê′, [Q̂′ : Ê′]))).349

4.3 Task-Specific Knowledge Enhancers350

Task-Specific Knowledge Enhancers are employed351

to fine-tune the DAViD framework for vaious352

downstream tasks using the manually annotated353

guidance set Dg. The output token embeddings354

T′ = {T ′
0, . . . , T

′
n} and entity embeddings E′ =355

{E′
0, . . . , E

′
n} from Domain Knowledge Infuser356

AD are fed into different Knowledge Enhancers357

to perform fine-tuning for specific tasks based on358

the required granularity. For fine-tuning sequence-359

tagging tasks, a max-pooling layer is applied to360

extract significant information from each encoding361

component, which is then fed into a linear classi-362

fier:363

Y′
T = Linear(Maxpool(T̃,T′,T′′)) (3)364

For coarse-grained entity retrieval tasks, a trans-365

former decoder Der is used, where the inputs are366

max-pooled entity representation and the memory367

embeddings are the query sequence embeddings:368

Y′
E = PN(Der(Maxpool(E′,E′′), Q)) (4)369

4.4 DAViD Overall Workflow370

We provide the overall workflow to show repro-371

ducible steps for adapting the DAViD framework372

to domain-specific VRD understanding tasks. First,373

the Domain Knowledge Infuser is trained on do-374

main adaptation tasks using Dn to learn domain-375

specific representations. Token and entity represen-376

tations, T̂ and Ê, are generated by GDEs (Et, Ee),377

while Structural Domain Shifting (SDS) predicts378

parent-child relations between tokens (T̂ ′) and en-379

tities (Ê′) via the inter-grained encoder Eig. Pre-380

trained components are frozen to preserve inter-381

grained representations during further adaptation382

and fine-tuning. Next, Synthetic Sequence Tag-383

ging (SST) trains DT to capture detailed informa-384

tion with synthetic annotations, while Synthetic385

Instructed-Tuning (SIT) augments query-aware en-386

tity representations. After domain adaptation, man-387

ually annotated tokens tDg and entities eDg are pro-388

cessed by the tuned AD to produce TDt and EDg ,389

which are fine-tuned using Task-Specific Knowl- 390

edge Enhancers. Finally, the framework is evalu- 391

ated on the inference set Di. 392

5 Environmental Setup 393

5.1 Datasets and Preparation 394

Benchmark Datasets Two domain-specific VRD 395

understanding datasets are utilized to evaluate the 396

effectiveness of the DAViD framework. 1) CORD 397

(Park et al., 2019) is proposed for scanned receipt 398

understanding. Following prior document under- 399

standing frameworks (Xu et al., 2021; Huang et al., 400

2022), we focus on sequence tagging (ST) to iden- 401

tify key entity types of each input word, such as 402

"store name" and "menu quantity". 2) Form-NLU 403

(Ding et al., 2023) is a financial dataset for under- 404

standing multi-format forms within the same do- 405

main. This paper addresses key information extrac- 406

tion from printed (P) and handwritten (H) forms, 407

to retrieve the target semantic entity based on input 408

keys (e.g., "Shareholder Name", "Share Class"). 409

Synthetic Annotation Workflow We introduce 410

a workflow to generate synthetic structure and 411

content annotations of document collections, as 412

shown by Figure 3. Document Collection Re- 413

allocation and Synthetic Layout Annotation are ap- 414

plied for synthetically structural annotation. For 415

task-specific content annotation, additional proce- 416

dures like Synthetic Sequence Tagging and Syn- 417

thetic Inquiry Generation simulate practical scenar- 418

ios. Each procedure is described as follows: 419

a) Document Collection Re-allocation replicates 420

real-world conditions by dividing the benchmark 421

dataset into three subsets: a synthetic annotated set 422

Dn (training set), a manually annotated set Dg (val- 423

idation set), and a test set Di (test set). Then, dif- 424

ferent synthetic annotation generation procedures 425

are applied on Dn, helping the model learn and 426

differentiate layout and semantic information at 427

various granularities. b) Synthetic Layout Anno- 428

tation extracts grouped textual tokens, textlines, 429

or document semantic entities by using tools like 430

PDFMiner, OCR tools 2. Acquired synthetic layout 431

annotations, including bounding box coordinates 432

and textual content can be used to understand tar- 433

get domain structure after domain adaptation (e.g. 434

SDS). c) Synthetic Tagging Generation aims to gen- 435

erate synthetic annotations for token sequences to 436

facilitate fine-grained sequence tagging. Leverag- 437

2For example, PaddleOCR: https://github.com/
PaddlePaddle/PaddleOCR.
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Figure 3: Workflow for generating synthetic annotations for domain-specific understanding.

ing LLMs (OpenAI, 2023), text tokens from target438

documents are paired with a predefined label set.439

Conducting domain adaptation (e.g. SST) on these440

synthetic annotations improves the model’s con-441

textual understanding, especially at a fine-grained442

level. d) Synthetic Inquiry Generation utilizes443

LLM-generated question-answer pairs, drawing in-444

spiration from previous VRD dataset generation445

efforts (Ding et al., 2024a). Prompts guide the gen-446

eration of QA pairs, which are aligned with entities447

extracted during Synthetic Layout Annotation. The448

highest-matched entity is selected as the retrieval449

target for each inquiry.3450

5.2 Baselines and Implementation Details451

We employ a variety of pretrained backbones from452

both fine-grained and entity-level frameworks to en-453

code multi-granularity features.4. 1) Fine-grained454

Baselines We utilize three recently proposed fine-455

grained document understanding models: Lay-456

outLMv3 (Huang et al., 2022), LiLT (Wang et al.,457

2022), and UDop (Tang et al., 2023), which lever-458

age multimodal information pretrained on gen-459

eral document collections, like IIT-CDIP (Lewis460

et al., 2006), to perform key information extrac-461

tion through sequence tagging tasks, achieving462

state-of-the-art performance when fully trained on463

benchmark datasets. 2) Entity-level Baselines464

For entity-level document understanding, we in-465

clude RoI-based Vision-Language Pretrained Mod-466

els (VLPMs) such as LXMERT (Tan and Bansal,467

2019) and VisualBERT (Li et al., 2019) as base-468

lines for entity retrieval. After properly fine-tuning469

those models on the well-annotated dataset, they470

can achieve decent performance on VRD QA or471

KIE tasks. We follow the configurations of baseline472

models for both token and entity levels as specified473

in (Huang et al., 2022; Wang et al., 2022; Tang474

3See Appendix C for detailed dataset description, statistics
and synthetic data analysis.

4Please refer to Appendix A to check more details about
each group of models and LLMs/MLLM zero-shot settings.

et al., 2023; Ding et al., 2023). Implementation 475

Details are in Appendix B. 476

6 Results and Discussion 477

We conduct comprehensive experiments accompa- 478

nied by an in-depth analysis to demonstrate the 479

effectiveness of the proposed frameworks across 480

diverse scenarios. Furthermore, additional evalu- 481

ation discussions, including analysis about break- 482

down, LLMs/MLLMs performance, are provided 483

in Appendix E for a more thorough comparison 484

and understanding. 485

6.1 Overall Performance Analysis 486

Table 1 presents the performance of various model 487

configurations, demonstrating the effectiveness of 488

the proposed domain adaptation methods in captur- 489

ing domain knowledge. Due to their strong baseline 490

performance, LayoutLMv3 and LXMERT were se- 491

lected as token and entity encoders to construct 492

the joint-grained Domain Knowledge Infusers AD. 493

The results show that integrating fine and coarse- 494

grained information within F outperforms mono- 495

grained baselines, boosting downstream task per- 496

formance. We note that incorporating fine-grained 497

features significantly enhanced entity representa- 498

tion in FormNLU, with a performance gain of ap- 499

proximately 8% for the printed and 21% for the 500

handwritten sets. All domain adaptation methods, 501

including the novel L2V positional features, im- 502

proved performance. Detailed analyses are in sub- 503

sequent sections. 504

6.2 Results with Stepped Training Ratios 505

Few-shot Testing We evaluated the robustness of 506

our methods with varying amounts of annotated 507

data from Dg, using training sizes from 10% to 508

100% of Dt. As shown in Table 1, applying domain 509

adaptation consistently outperformed non-adapted 510

baselines by leveraging domain-specific informa- 511

tion from the synthetic dataset Dn, although per- 512

formance sensitivity varied across different tasks 513
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Entity Level FormNLU Token Level CORDP H
Full Training Set (Original Well-Annotated Training Set)
Transformer 88.62 74.06 LayoutLMv3 96.56
VisualBERT 85.90 70.14 LiLT 96.07
LXMERT 94.15 82.80 UDOP 97.58

Tuning in Guidance Set (Dg)
Transformer 72.82 60.30 LayoutLMv3 87.08
VisualBERT 46.48 48.41 LiLT 86.74
LXMERT 81.21 64.66 UDOP 80.88

Vanilla 89.60 85.76 Vanilla 87.48
+ L2V 90.60 87.60 + L2V 88.11
+ SDS 91.11 88.78 + SDS 89.08
+ SIT 90.77 87.94 + SST 88.83

+ SIT + SDS 92.62 88.61 + SST + SDS 90.25

Table 1: Performance using full and limited training sets
with domain adaptation strategies.

(a) P (b) H (c) CORD

Figure 4: Performance of DAViD with stepped training
set ratios on three test sets.

and training sizes. For the entity-level FormNLU,514

both printed (P) and handwritten (H) test sets im-515

proved as training sizes increased. Without do-516

main adaptation, performance was poor in few-517

shot scenarios. With just 10% of Dg, applying SDS518

achieved over 80% accuracy on both P and H sets,519

demonstrating its ability to capture domain-specific520

structural information. For token-level results in521

CORD, incorporating coarse-grained information522

improved performance across training sizes. SDS523

consistently outperformed other configurations, ef-524

fectively utilizing synthetic structural information525

from Dn. However, SIT and SST underperformed526

in few-shot settings, likely due to reliance on syn-527

thetic LLM-generated samples that need more data528

to bridge distribution gaps.529

FormNLU CORD
Config P H Config Test
Baseline 1.67 0.5 Baseline 0
Joint-grained 0 0 Joint-grained 0
+ L2V 0 0 + L2V 0
+ SDS 87.42 81.74 + SDS 0.05
+ SIT 5.7 0.17 + SST 0.25
+ SIT + SDS 47.65 44.22 + SST + SDS 4.21

Table 2: Comparison of zero-shot performance on vari-
ous configurations.
Zero-shot Testing We evaluated zero-shot per-530

formance (Table 2) to assess domain knowledge531

FormNLU CORD

Config P H Config Test

SDS (ep. 1) 91.11 88.78 SDS (ep. 1) 88.45
SDS (ep. 2) 89.93 86.60 SDS (ep. 2) 89.08
SDS (ep. 3) 91.11 84.42 SDS (ep. 3) 87.35

SIT (ep. 1) 90.94 87.77 SST (ep. 1) 88.83
SIT (ep. 2) 86.91 83.75 SST (ep. 2) 87.54
SIT (ep. 3) 86.07 81.41 SST (ep. 3) 85.71

SDS+SIT (ep. 1) 91.11 89.11 SDS+SST (ep. 1) 86.95
SDS+SIT (ep. 2) 92.62 88.61 SDS+SST (ep. 2) 90.25
SDS+SIT (ep. 3) 87.58 83.92 SDS+SST (ep. 3) 87.49

SDS Frozen 91.11 88.78 SDS Frozen 89.08
SDS Unfrozen 91.61 85.59 SDS Unfrozen 86.91
SDS+SIT Frozen 92.62 85.59 SDS+SST Frozen 90.25
SDS+SIT Unfrozen 88.59 85.93 SDS+SST Unfrozen 86.64

SDS with L2V 91.11 89.11 SDS with L2V 89.08
SDS without L2V 89.26 84.25 SDS without L2V 87.57
SIT with L2V 90.94 87.77 SST with L2V 88.83
SIT without L2V 85.91 87.94 SST without L2V 87.19

Table 3: Ablation results for FormNLU and CORD

infusion of diverse domain adaptation strategies. 532

SDS effectively distilled structural knowledge from 533

Dn, achieving 87.42% on FormNLU (printed) and 534

81.74% (handwritten). In contrast, SIT showed mi- 535

nor improvements on the printed set but decreased 536

on the handwritten set, possibly due to the distri- 537

bution gap between digital-born QA pairs from Dg 538

and handwritten tests. For CORD, domain adapta- 539

tion had less impact than entity-level tasks, as the 540

joint-grained framework benefits entity representa- 541

tions more than token representations. 542

6.3 Ablation Study 543

Effects of Training Epochs We observed that vary- 544

ing the number of training epochs (ep.) for different 545

domain adaptation strategies impacts fine-tuning 546

results in Table 3. Insufficient training can result in 547

limited domain-specific information infusion. For 548

instance, training the SDS+SST method for just 549

one epoch on the CORD dataset yields about 2.5% 550

lower performance than two epochs. Conversely, 551

increasing training epochs can cause the model dis- 552

tribution to shift closer to Dn, but further away from 553

Dg. Excessive training may shift the model closer 554

to Dn but further from Dg, as seen with SDS+SIT 555

on FUNSD, where three epochs caused 2.5% and 556

5% drops on sets P and R, respectively. Optimal 557

epochs depend on the dataset and task, requiring 558

careful tuning. 559

Effects of Freezing To retain domain knowledge 560

infused from Dn by the joint-grained encoder Ejg, 561

freezing its parameters after applying SDS proved 562

beneficial. It preserved the learned structure and 563

semantic insights, leading to better performance 564

during fine-tuning. As shown in Table 3, unfreez- 565

ing the models resulted in lower performance. For 566

example, SDS+SIT on FormNLU-P dropped to 567
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Figure 5: CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (v) Incorrect predictions
marked with red rectangles under various configurations. (vi) The best performance was achieved using two domain
adaptation methods, with no incorrect predictions.

88.58% when the parameters were not frozen.568

Effects of L2V We evaluated the impact of the569

L2V positional feature on domain adaptation meth-570

ods. As shown in Table 3, removing L2V led to an571

approximate 2% performance drop. This suggests572

that L2V enhances positional awareness in token573

and entity representations, contributing to better574

document understanding.575

6.4 DAViD Robustness Analysis576

Model X ∼ N(0, 1), y ̸= ŷ X ∼ N(0, 1), ŷ = ∅

P2 P1.5 P1 P2 P1.5 P1

Baseline 86.08 82.65 74.83 85.58 82.09 75.20
Joint-grained 85.47 82.81 74.45 86.21 82.79 76.40
+SDS 84.28 81.79 74.62 85.78 80.19 76.82
+SST 85.70 81.96 75.73 84.36 81.99 75.80
+SDS+SST 87.20 82.26 76.23 86.32 82.89 75.52

Table 4: Performance comparison of models under dif-
ferent types of synthetic annotation label (incorrect and
incomplete) across varying synthesis ratios.

To evaluate the robustness of the proposed frame-577

work and domain adaptation strategies, synthetic578

label noise was introduced into the guidance set579

Dg of the CORD dataset. Instances were randomly580

selected using a normal distribution, X ∼ N (0, 1),581

and their ground truth labels y were replaced with582

randomly chosen labels ŷ from the label space Y583

or assigned "Unknown" (∅). By controlling the pa-584

rameter λ, the proportion of noisy instances was585

adjusted to P (|X| > λ) = Pλ, enabling an in-586

depth analysis of the framework’s ability to handle587

varying levels of label corruption.588

As shown in Table 4, the joint-grained frame-589

work consistently demonstrates superior robust-590

ness compared to the baseline in both incorrect591

and incomplete label scenarios. Its integration of592

coarse-grained information significantly mitigates593

the negative impact of noisy or missing labels. Do-594

main adaptation strategies further enhance perfor-595

mance, illustrating the framework’s capability to596

adapt to challenging, label-deficient conditions in 597

real-world applications. 598

7 Qualitative Analysis: Case Studies 599

To qualitatively demonstrate the effectiveness of 600

the proposed framework, a real-world example 601

from the CORD is presented in Figure 5. Compared 602

to baseline models, the joint-grained framework 603

produces fewer incorrect predictions, likely due to 604

the integration of coarse-grained information. In 605

this case, while SDS alone does not improve results, 606

the SST approach shows noticeable enhancements. 607

Furthermore, combining both domain adaptation 608

methods results in entirely accurate predictions. 609

This highlights the effectiveness of proposed do- 610

main adaptation techniques in leveraging domain 611

knowledge from noisily annotated data to improve 612

downstream task performance 5. 613

8 Conclusion 614

This paper presents DAViD, a framework that en- 615

hances VRDU by capturing domain-specific knowl- 616

edge using synthetic annotations, achieving strong 617

performance with minimal labelled data. DAViD 618

utilizes domain adaptation techniques to transition 619

from general-purpose encoders to those optimized 620

for domain-specific document collections. The 621

framework introduces SDS to create a robust joint- 622

grained representation by aligning fine- and coarse- 623

grained features. For granularity-specific tasks, 624

LLMs generate synthetic annotations, supporting 625

SIT and SST. Extensive evaluations demonstrate 626

that DAViD effectively captures domain-specific 627

knowledge, significantly improving performance 628

across benchmarks with limited annotated samples. 629

5More visualised quantitative examples with analysis could
be found in Appendix E.6
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Limitations630

While DAViD provides an effective framework for631

leveraging synthetic data and VRD domain adapta-632

tion approaches to infuse domain-specific knowl-633

edge and achieve competitive performance, limi-634

tations remain in two key areas: the training pro-635

cess and synthetic data generation. First, achiev-636

ing strong results with minimal manual annotation637

requires a complete and carefully tuned training638

process, including appropriate hyperparameter ad-639

justments (e.g., learning rate, and epoch settings for640

each stage) for different domain adaptation strate-641

gies. Second, synthetic data generation and its uti-642

lization still have significant room for improvement.643

Generating synthetic data from the target document644

collection based on the proposed workflow is es-645

sential, but exploring better generation techniques646

and leveraging strategies can further enhance per-647

formance. As the first paper in this direction, David648

highlights the need for further exploration of alter-649

native domain adaptation strategies and synthetic650

data approaches.651
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A Baseline Models910

A.1 Fine-grained Document Understanding911

Frameworks912

• LayoutLM-v3 (Huang et al., 2022): is the913

first model to leverage visual cues in VRDU914

without using pretrained CNN backbones.915

Various pretraining methods were proposed to916

fuse the multimodal features from the general917

domain and achieve SOTA on several VRDU918

downstream tasks.919

• LiLT (Wang et al., 2022): is a language-920

independent layout transformer which sup-921

ports pertained on a single language document922

collections but fine-tuned on other language923

tasks. A bi-directional attention complemen-924

tation mechanism to learn the layout and tex-925

tual modality interaction with layout-aware926

pretraining tasks for capturing more general927

document text-layout interaction.928

• UDop (Tang et al., 2023): is an encoder-929

decoder structure that leverages text, image930

and layout modalities to conduct the VRDU931

tasks in a sequence generation style. UDop is932

pretrained in a cross-modal, self-supervised933

learning way and pretrained supervised tasks934

on cross-domain benchmark datasets to ac-935

quire more robust representations.936

A.2 Coarse-grained Vision-Language937

Pretrained Models938

• VisualBERT (Li et al., 2019): is a939

transformer-based vision-language pretrained940

(VLPM) model that contextualizes the un-941

derstanding of visual cues from detected re-942

gions of interest (RoI) and accompanying text943

within the domain of general scene images.944

• LXMERT (Tan and Bansal, 2019): is a945

VLPM that utilizes the bounding boxes of946

Regions of Interest (RoIs) to capture spatial947

relations between them. This approach leads948

to a more comprehensive multimodal repre-949

sentation for general domain vision-language950

tasks.951

A.3 LLMs/MLLMs for Zero-shot Testing952

• LLaVA-1.5 (Liu et al., 2024a): is built upon953

LLaVA, which was the first model to ex-954

tend instruction-tuning to the language-image955

multimodal space. LLaVA-1.5 addresses956

LLaVA’s limitations, particularly its underper- 957

formance in generating short-form answers 958

on academic benchmarks, by introducing a 959

new MLP-based cross-modal connector and 960

employing scaling-up techniques, such as 961

handling high-resolution images. We use 962

llava-hf/llava-1.5-7b-hf checkpoints 963

for zero-shot testing. 964

• QWen-VL (Bai et al., 2023): QWen-VL em- 965

ploys the large language model QWen-7B 966

as its foundational component and integrates 967

a Vision Transformer as the vision encoder. 968

These components are jointly trained using 969

a cross-attention-based vision-language adap- 970

tor. The model undergoes a two-stage pre- 971

training process, initially learning from large- 972

scale weakly labeled image-text pairs, fol- 973

lowed by fine-tuning with high-quality, fine- 974

grained vision-language annotations. We use 975

Qwen/Qwen-VL checkpoints for zero-shot 976

testing. 977

• xGen-MM (Xue et al., 2024): utilizes a Vi- 978

sion Transformer (ViT) as its vision encoder 979

and incorporates a perceiver resampler to effi- 980

ciently downsample the image embeddings. 981

The phi3-mini model serves as the large 982

language model decoder. This framework 983

is designed for scalability in large language 984

model (LLM) training by utilizing a mix of 985

multimodal interleaved datasets, curated cap- 986

tion datasets, and other publicly available re- 987

sources. For zero-shot testing, we employ the 988

3B xgen-mm-phi3-mini-instruct-r-v1 989

checkpoints. 990

• GPT-3.5 (OpenAI, 2023): is one of the 991

most powerful closed-source mono-modality 992

LLMs, achieving remarkable performance 993

and being widely employed across diverse 994

daily applications such as customer support, 995

content creation, and language translation. It 996

is frequently used as a baseline for evaluating 997

zero-shot performance on various linguistic- 998

related tasks. We use gpt-3.5-turbo-0125 999

checkpoints for zero-shot testing. 1000

• GPT-4o (OpenAI, 2024): is an advanced 1001

multimodal LLM that extends its capabili- 1002

ties to process diverse inputs, including lan- 1003

guage, vision, and audio. It demonstrates ex- 1004

ceptional performance across various multi- 1005
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Fine-grained Coarse-Grained Configure # Para # Trainable
LiLT N/A Baseline 130,169,799 130,169,799

LayoutLMv3
N/A Baseline 125,332,359 125,332,359

LXMERT
JG-Encoders 393,227,514 19,586,415

JG-E&D 440,494,842 66,853,743

Table 5: Model configurations and parameters. David is
built on top of LayoutLMv3 and LXMERT following
joint-grained encoder and task-specific decoders, which
is bolded.

modal benchmark datasets and is widely used1006

as a baseline for assessing zero-shot perfor-1007

mance in complex multimodal tasks. We use1008

gpt-4o-2024-08-06 checkpoints for zero-1009

shot testing.1010

B Implementation Details1011

We follow the configurations of baseline models for1012

both token and entity levels as specified in (Huang1013

et al., 2022; Wang et al., 2022; Tang et al., 2023;1014

Ding et al., 2023). LayoutLMv3 and LXMERT are1015

used as the token (ET ) and entity (EE) encoders,1016

respectively, based on their proven performance.1017

Our architecture features six-layer transformer en-1018

coders with a hidden size of 768 for the joint-1019

grained encoder (Ejg). Two additional six-layer1020

transformer decoders with a hidden size of 7681021

serve as the token (DT ) and entity (DE) decoders.1022

We maintain a consistent learning rate of 2e-5 and1023

a batch size of 2 for domain adaptation and fine-1024

tuning phases. All experiments are conducted on1025

a 16GB NVIDIA V100 GPU, with 60 epochs for1026

CORD and 15 for Form-NLU, each training epoch1027

is around 10 minutes for domain adaptation and1028

3 minutes for fine-tuning. The entire model and1029

trainable number of parameters are given in Table 5.1030

The size of open-source MLLMs can be found in1031

Appendix sec:baseline.1032

C Dataset Information1033

C.1 Detailed Dataset Description1034

CORD (Park et al., 2019) provides multi-level1035

annotations to support a range of task-specific or1036

end-to-end printed/scanned (P) receipt understand-1037

ing tasks. In line with previous document un-1038

derstanding frameworks (Xu et al., 2021; Huang1039

et al., 2022), our focus lies on sequence tagging1040

to identify the entity type of each textual token1041

extracted from scanned receipts, including "store1042

name", "menu quantity", and "void total".1043

Form-NLU (Ding et al., 2023): delves into under-1044

standing layout structure (Task A) and extracting1045

key information (Task B) from digital (D), printed 1046

(P), and handwritten (H) financial forms obtained 1047

from Australian Stock Exchange filings. This pa- 1048

per specifically focuses on Task B, which supplies 1049

ground truth bounding boxes of form semantic en- 1050

tities and query text (e.g., "Shareholder Name", 1051

"Share Class"), enabling the utilization of the pro- 1052

posed model to retrieve the target entity. 1053

C.2 Dataset Statistics 1054

The detailed statistics of adopted datasets with 1055

the machine-generated synthetic set statistics are 1056

listed there. For FormNLU datasets, as it’s an text- 1057

embedded form which can be processed by the 1058

PDF parser, the number of entities are counted as 1059

the textlines extracted by the PDFMiner. For the 1060

CORD dataset, we use PaddleOCR to extract the 1061

text lines of the scanned receipts to acquire 13200 1062

entities. 1063

C.3 Synthetic Data Analysis 1064

We analyze the distribution characteristics of syn- 1065

thetic annotations generated by off-the-shelf tools, 1066

focusing on two primary types: 1) Layout struc- 1067

ture variations arise from inaccuracies in the re- 1068

gions of document semantic entities extracted by 1069

document parsing tools. However, text content 1070

variations result from improperly grouped words 1071

and misrecognized text during the parsing process. 1072

From Figures 6b and 6a, most documents exhibit 1073

mismatches in layout structures, with the average 1074

Intersection over Union (IoU) between detected en- 1075

tities and ground truth entities falling below 0.3 in 1076

both datasets. 2) Text content variations exhibit 1077

even lower Jaccard similarities, dropping below 0.2 1078

for Form-NLU and 0.1 for CORD. Errors in entity 1079

detection can propagate during text recognition, 1080

resulting in a larger distribution gap between ex- 1081

tracted text sequences and the ground truth. Com- 1082

pared to text-embedded source files that can be 1083

processed by PDF parsing tools like PDFMiner, 1084

scanned documents processed by OCR tools tend 1085

to introduce even more variations, further compli- 1086

cating the adaptation of models to these documents. 1087

D Pseudocode Overview of DAViD 1088

Framework 1089

To enhance clarity and reproducibility of the do- 1090

main adaptation and fine-tuning procedures for 1091

other VRD understanding tasks, we provide a step- 1092

by-step pseudocode that outlines the overall work- 1093

flow, aligning with Section 4.4. 1094
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Dataset Split Year Domain Task Script Lang. Synthetic Dataset Size
Train Val Test # IMG # Entities # QA # Cat

FormNLU 535 76 50/50 2023 Financial Form Key Entity Retrieval P/H English 535 103866 15278 N/A
CORD 800 100 100 2019 Receipt Sequence Tagging P English 800 13200 N/A 40

Table 6: Original and synthetic annotated datasets of adopted datasets.

(a) FormNLU Syn-Struct (b) CORD Syn-Struct (c) FromNLU Syn-Text (d) CORD Syn-Text

Figure 6: Off-the-shelf-tool analysis. Synthetic-Structure (Syn-Struct) and Synthetic-Text (Syn-Text).

Algorithm 1 Overall Workflow

Input: Specific domain document collection D
Data Preprocessing: D = {Dn,Dg,Di}
Domain Shifting: Train AD on Dn

i) GDE(t̂, ê)
Et,Ee−−−→ T̂, Ê

ii) SDS(T̂, Ê)
Ejg−−→ T̂′, Ê′

iii) Freeze Et, Ee and Ejg

iv) Fine-grained only: SST(t̂, ê) Dt−−→ T̂′′

v) Coarse-grained only: SIT(t̂, ê) De−−→ Ê′′, Q̂′′

Fine-Tuning: Train F on Dg

i) T′′,E′′ = AD(t, e)

ii) Fine-grained only: ST(T′′)
At−−→ YT

iii) Coarse-grained only: ER(E′′, Q′′)
Ae−−→ YE

Inference: Test F on Di

E Additional Evaluation Results1095

Selected Category Breakdown Analysis Table 71096

compares performance across various information1097

categories, highlighting the benefits of the joint-1098

grained framework in generating comprehensive1099

representations. This framework enriches entity1100

semantics and token structures, leading to no-1101

table improvements—such as a 58% increase in1102

“com_id" in FormNLU-H and an 18% increase in1103

"sc" in CORD. While L2V enhances feature rep-1104

resentation overall, it may introduce inconsisten-1105

cies in flexible layout categories, like handwritten1106

‘com_id" in FormNLU. The proposed methods, es-1107

pecially SDS, consistently show robust improve-1108

ments across most categories, demonstrating their1109

effectiveness in capturing domain-aware knowl-1110

edge. Although leveraging LLM-generated tags1111

(SST) or QA pairs (SIT) boosts performance, it may1112

lead to occasional instability. For example, com-1113

bining SDS with SST or SIT improve specific cate-1114

gories but may yield lower results in others—such1115

as a 20% decrease in CORD’s "sc" when using1116

SDS+SST compared to SST.1117

E.1 Comparison with LLMs/MLLMs 1118

We evaluated the state-of-the-art LLMs and 1119

MLLMs to address VRDU tasks using various 1120

mono- and multi-modal prompts across different 1121

model checkpoints based on various training ap- 1122

proaches, comparing their performance and effi- 1123

ciency with the DAViD framework in Table 8. For 1124

close-source GPT-4o, two prompts were used: the 1125

text-only prompt Pt : {K,C}, where K is the key 1126

text content and C is the provided text content, and 1127

the text-vision prompt Ptv : {K,C, I}, where I is 1128

the target form image. GPT-3.5 uses Pt only and 1129

other open source MLLMs are used Ptv to leverage 1130

text and vision information. GPT-4o with prompt 1131

Pt outperforms GPT-3.5 using the same prompt, 1132

while with the multimodal prompt Ptv, GPT-4o 1133

achieves around a 13% increase in F1 score. Other 1134

open-source MLLMs show an apparent gap be- 1135

tween close GPT-series 6. 1136

However, a significant gap remains between the 1137

results of DAViD tuned on the guidance set Dg 1138

and even the zero-shot setting DAViD-ZS. LLM- 1139

s/MLLMs still struggle with VRDU under zero- 1140

shot scenarios, especially open-source MLLMs. In 1141

contrast, the DAViD demonstrates superior perfor- 1142

mance, suggesting that the proposed frameworks 1143

and domain adaptation techniques effectively distil 1144

knowledge from both LLMs and VLPMs. Further- 1145

more, the performance of DAViD could be further 1146

enhanced by improving the quality of the synthet- 1147

ically annotated set Dn and incorporating more 1148

representative backbone architectures. We evalu- 1149

ated that of LLMs and MLLMs on a subset of the 1150

CORD dataset provided by LayoutLLM (Luo et al., 1151

2024), and the results indicate that the performance 1152

6Refer to Appendix E.5.1 for checking prompt details.
Detailed LLM-based analysis are in Appendix E.5.2
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Entity Level
FormNLU

Token Level
CORD

com_id ntc_dt gvn_dt prv_pct sc up ccp setc
P H P H P H P H

LXMERT 45.83 30.00 72.00 69.39 78.00 83.67 98.00 67.35 LayoutLMv3 55.17 93.53 85.71 82.54
Joint-grained 50.00 88.00 66.00 18.37 92.00 79.80 100.00 89.80 Joint-grained 73.33 85.51 91.67 76.92
+ L2V 66.67 72.00 72.00 61.22 88.00 95.92 100.00 95.92 + L2V 64.29 94.12 84.62 82.54
+ SDS 79.17 88.00 66.00 61.22 88.00 89.80 100.00 95.92 + SDS 80.00 94.89 100.00 89.23
+ FST 62.50 78.00 72.00 67.35 90.00 85.71 100.00 100.00 + SST 84.85 91.43 80.00 80.65
+ FST + SDS 79.17 78.00 80.00 81.63 92.00 85.71 96.00 95.92 + SST + SDS 64.29 97.06 88.89 90.32

Note: ‘com_id‘ = company identifier (ACN/ARSN), ‘ntc_dt‘ = notice date ‘gvn_dt‘ = notice given to company date, ‘prv_pct‘ = previous voting power

‘sc‘ = subtotal count, ‘up‘ = unit price, ‘ccp‘ = credit card price, ‘setc‘ = subtotal others

Table 7: Selective breakdown results of performance across representative categories.

Model FormNLU P FormNLU H CORD*

Time F1 Time F1 Time ANLS

GPT-3.5 03:49 34.37 04:38 30.94 01:16 28.15*
GPT-4o (Pt) 04:46 42.09 04:19 36.00 01:48 29.55*

LLava (Ptv) 52:54 9.79 60:58 7.82 10:23 37.98
QWen (Ptv) 1:36:00 9.84 1:58:00 8.43 18:13 37.58
Blip3 (Ptv) 36:06 12.62 35:24 11.67 10:12 43.73
GPT-4o (Ptv) 20:02 59.88 20:49 49.15 07:55 79.46*

DAViD-ZS 03:37 87.42 03:31 81.74 - -
DAViD-Dg 03:37 92.62 03:31 88.78 00:31 90.25

Table 8: Performance between LLM/MLLMs and
DAViD. CORD* is adopted QA-style subset introduced
by LayoutLLM.

of LLMs/MLLMs remains suboptimal for this task,1153

as well as with less efficiency.1154

E.2 Effects of Synthetic Set Size1155

In practical applications, the availability of syn-1156

thetic document collections often depends on1157

domain-specific factors. To evaluate the impact1158

of varying Dn sizes, we analysed how performance1159

changes with different synthetic set sizes, as shown1160

in Table 9 to demonstrate the effectiveness of the1161

proposed framework. Generally, increasing Dn im-1162

proves model performance during fine-tuning on1163

Dg. Domain adaptation methods that address struc-1164

tural domain shifts are less sensitive to Dn size,1165

while methods like synthetic inquiry tuning and1166

sequence tagging are more affected. This indicates1167

that even a limited amount of synthetic structural1168

information can effectively bridge domain gaps,1169

though a larger Dn size further strengthens model1170

robustness and overall performance.1171

E.3 All Breakdown Results1172

In Section 6.1 of the main paper, we analyze the1173

performance under different configurations of se-1174

lective categories. This section presents detailed ex-1175

perimental results for each sub-category, providing1176

insights into the effects of the proposed methods1177

and modules on specific categories.1178

Config. Form NLU Config. CORDP H
No DW 89.60 85.76 No DW 88.11
½ SDS 90.60 86.93 ½ SDS 89.27
½ SIT 91.28 85.76 ½ SST 87.93
½ SDS+SIT 90.60 85.59 ½ SDS+SST 88.25
SDS 91.11 88.78 SDS 89.08
SIT 90.77 87.94 SST 88.83
SDS+SIT 92.62 88.61 SDS+SST 90.25

Table 9: Effects of changing the size of synthetic anno-
tated set Dn

E.3.1 FormNLU Dataset 1179

Tables 10 and 11 compare the performance of the 1180

printed and handwritten sets. Overall, the printed 1181

set demonstrates better performance, particularly 1182

for target entities located in the "Table" area. This 1183

may be due to a smaller domain gap between the 1184

digital training set and the printed set P, as com- 1185

pared to the handwritten set H. Additionally, joint- 1186

grained frameworks consistently outperform mono- 1187

grained baselines, and incorporating domain adap- 1188

tation methods significantly enhances both perfor- 1189

mance and robustness across the framework. 1190

E.3.2 CORD Dataset 1191

The overall and breakdown results of CORD 1192

datasets are also represented in Table 12 and 13. 1193

Compared with integrating fine-grained level infor- 1194

mation to coarse-grained, there is limited improve- 1195

ment on integrating coarse-grained information to 1196

fine-grained baselines. 1197

E.4 Stepped Guidance Set Ratio Results 1198

To explore the effects of the size of the guidance 1199

set on test set performance, we reported and anal- 1200

ysed the performance on Figure 4. The exact per- 1201

formance of each guidance set ratio is lised with 1202

additional analysis. 1203
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Model F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp

LXMERT 81.21 94.00 84.00 79.17 45.83 78.00 72.00 78.00 72.00 94.00 98.00 82.00 96.00
Joint-grained 89.60 98.00 92.00 97.92 50.00 88.00 66.00 92.00 100.00 100.00 100.00 92.00 98.00
+ L2V 90.60 98.00 98.00 79.17 66.67 94.00 72.00 88.00 98.00 98.00 100.00 96.00 98.00
+ SDS 91.11 100.00 94.00 91.67 79.17 90.00 66.00 88.00 100.00 86.00 100.00 100.00 98.00
+ SIT 90.77 96.00 94.00 93.75 62.50 82.00 72.00 90.00 100.00 100.00 100.00 100.00 98.00
+ SIT + SDS 92.28 98.00 94.00 95.83 79.17 86.00 80.00 92.00 98.00 92.00 96.00 98.00 98.00

Table 10: Model breakdown performance on FormNLU printed set. Explanation of abbreviations: cnm (Company
Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt (Change Date), pdt (Previous Notice
Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s Votes), pvp (Previous Voting Power), cpn
(Current Person’s Votes), cvp (Current Voting Power).

Model F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp

LXMERT 64.66 66.00 76.00 88.00 30.00 58.00 69.39 83.67 8.00 84.00 67.35 72.00 74.00
Joint-grained 85.76 100 100 100 88.00 92.00 18.37 79.59 94.00 90.00 89.80 90.00 96.00
+ L2V 87.60 100 98.00 96.00 72.00 96.00 61.22 95.92 100 92.00 95.92 62.00 92.00
+ SDS 88.78 100 100 100 88.00 92.00 61.22 89.80 84.00 88.00 95.92 82.00 84.00
+ SIT 87.94 100 98.00 100 78.00 60.00 67.35 85.71 100 98.00 100.00 88.00 80.00
+ SIT + SDS 88.61 100 96.00 98.00 78.00 78.00 81.63 85.71 86.00 92.00 95.92 90.00 82.00

Table 11: Model breakdown performance on FormNLU handwritten set. Explanation of abbreviations: cnm
(Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt (Change Date), pdt
(Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s Votes), pvp (Previous
Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).

Model Overall CNT DscP NM Num Prc SubC SubNM SubPrc UntPrc CshPrc

LayoutLMv3 87.08 96.00 47.06 92.80 58.82 93.59 55.17 55.56 50.00 93.53 66.67
Joint-grained 87.48 96.02 47.06 92.87 76.19 93.15 73.33 57.53 72.73 85.51 46.15
+ L2V 88.11 95.81 44.44 91.60 62.50 94.35 64.29 57.14 58.82 94.12 62.50
+ SDS 89.08 97.53 44.44 92.57 30.77 95.09 80.00 62.16 64.86 94.89 55.56
+ SST 88.83 95.59 58.33 93.26 58.82 93.93 84.85 62.16 60.00 91.43 62.50
+ SST + SDS 90.25 95.59 53.33 92.08 73.68 95.48 64.29 52.46 74.29 97.06 50.00

Table 12: Model Comparison on Various Metrics (Part 1), including count (CNT), discount price (DscP), miscella-
neous items (Etc), item subtotal (ItmSubT), name (NM), number (Num), price (Prc), subtotal count (SubC), sub
name (SubNM), subtotal price (SubPrc), and unit price (UntPrc).

Model ChgPrc CrdPrc EmnyPrc MQtyC MTypC TotEtc TotPrc DscPrc SubTotEtc SrvPrc SubTotPrc

LayoutLMv3 13.33 85.71 87.94 89.13 84.14 83.72 58.54 40.00 82.54 16.67 18.18
Joint-grained 0.00 91.67 91.55 86.87 86.30 94.12 50.91 28.57 76.92 36.36 0.00
+ L2V 0.00 84.62 92.65 93.62 87.42 94.02 57.14 16.67 82.54 20.00 28.57
+ SDS 0.00 100.00 90.65 91.49 92.09 94.12 62.50 10.00 89.23 25.00 0.00
+ SST 14.29 80.00 90.65 94.74 88.59 94.74 57.78 50.00 80.65 46.15 0.00
+ SST + SDS 0.00 88.89 91.97 93.48 91.03 96.55 63.41 33.33 90.32 40.00 11.11

Table 13: Model comparison on various metrics (Part 2), including cash price (CshPrc), change price (ChgPrc),
credit card price (CrdPrc), e-money price (EmnyPrc), menu quantity count (MQtyC), menu type count (MTypC),
total etcetera (TotEtc), total price (TotPrc), discount price (DscPrc), subtotal etcetera (SubTotEtc), service price
(SrvPrc), and subtotal price (SubTotPrc).
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E.4.1 FormNLU Dataset1204

In the FormNLU dataset, both the printed set (P)1205

and handwritten set (H) exhibit similar patterns as1206

represented by Table 14 and Table 15. While in-1207

corporating fine-grained information can enhance1208

performance and robustness, especially when us-1209

ing smaller guidance sets, the overall performance1210

still falls short compared to mono-grained base-1211

lines. However, the proposed domain adaptation1212

approaches significantly improve robustness when1213

the guidance set size, Dn, is reduced. In particular,1214

Structural Domain Shifting (SDS) demonstrates1215

a strong ability to capture domain-specific infor-1216

mation across all guidance set ratios. Moreover,1217

combining Synthetic Sequence Tagging (SST) with1218

SDS results in even better performance when a1219

larger, well-annotated guidance set is available.1220

E.4.2 CORD Dataset1221

For the CORD dataset, different from coarse-1222

grained level task, integrating coarse-grained infor-1223

mation into fine-grained framework bring limited1224

improvement.1225

E.5 More Results and Analysis about1226

LLMs/MLLMs testing.1227

E.5.1 Prompt Details1228

The prompt details for each employed LLM/M-1229

LLM within the FormNLU dataset are provided in1230

Table 17. The generated outputs are subsequently1231

post-processed to compute the Jaccard distance1232

between target entities, thereby ensuring accurate1233

identification of the entity most closely matching1234

the ground truth. For the CORD dataset, we adopt1235

the LayoutLLM (Luo et al., 2024) configurations,1236

utilizing ANLS as the evaluation metric.1237

E.5.2 LLMs/MLLMs Performance Analysis1238

We show the breakdown performance of different1239

LLMs/MLLMs perdictions under zero-shot scenar-1240

ios of printed set in Table 18 and handwritten set1241

in Table 19, respectively. The results indicate that1242

closed-source models exhibit relatively lower per-1243

formance compared to other models. Consistent1244

with the overall performance trends, closed-source1245

models, even when utilizing non-multimodal out-1246

put forms, tend to underperform against open-1247

source MLLMs across the majority of categories.1248

Notably, the digit-based entities, e.g. ppn, pvp,1249

located within the table remains challenging us-1250

ing text inputs alone, suggesting that incorporating1251

visual information could enhance performance.1252

E.6 Qualitative Analysis: Limitations of 1253

LLM/MLLMs 1254

Layout/Structure Interpretation LLMs excel at 1255

processing unstructured text but struggle with un- 1256

derstanding the spatial relationships and visual 1257

structures in form-based documents. This limi- 1258

tation results in misaligned content, missed logical 1259

groupings, and poor performance in tasks requiring 1260

precise layout comprehension, such as interpreting 1261

complex templates or extracting values from nested 1262

structures, as shown in Figure 9. 1263

Inconsistency LLMs frequently produce incon- 1264

sistent outputs when handling form-based docu- 1265

ments, generating conflicting associations for the 1266

same key-value pairs or contradicting themselves 1267

across different sections. This lack of coherence 1268

highlights their difficulty in maintaining logical 1269

consistency in structured content interpretation. 1270

For example, as shown in Figure 8, the LLM clas- 1271

sifies differently between the exactly same form or 1272

the same company forms with the same person’s 1273

hand writing. The same limitation was there in the 1274

receipt dataset, CORD10. 1275

Lack of Contextual Understanding LLMs of- 1276

ten generate incorrect answers by relying on super- 1277

ficial patterns rather than understanding contextual 1278

relationships within the document. This results 1279

in confusion between unrelated elements, making 1280

LLMs unsuitable for accurately processing struc- 1281

tured documents that require deeper contextual and 1282

spatial alignment, as shown in Figure 7 1283

F Supplementary of Case Studies 1284

Quantitative and qualitative case studies have been 1285

conducted to demonstrate the effectiveness and ro- 1286

bustness of the proposed joint-grained framework 1287

and domain adaptation methods. Additional sup- 1288

plementary materials and comprehensive analyses 1289

are provided herein for further insights. 1290

F.1 Synthetic Label Synthesis Distribution 1291

As discussed in Section 6.4, synthetic noise is in- 1292

troduced into the guidance set Dg of the CORD 1293

dataset. This noisy dataset is then used to fine-tune 1294

the model, which is subsequently tested on a well- 1295

annotated test set Dt. Compared to the FormNLU 1296

dataset, the CORD dataset shows limited perfor- 1297

mance improvement. To demonstrate the robust- 1298

ness of the proposed DAViD framework, rather 1299

than focusing solely on performance, we applied 1300

random noise following a normal distribution. This 1301
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Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Baseline 0.00 59.73 67.45 78.36 80.54 76.34 78.86 78.86 78.02 79.70 81.21
Joint-grained 0.00 47.65 76.68 79.87 83.89 85.74 86.91 87.42 86.24 88.93 89.60
+ L2V 0.00 48.83 76.68 85.57 84.23 88.93 87.42 86.58 87.92 89.93 90.60
+ SDS 87.42 89.43 88.93 90.77 88.59 90.77 87.42 90.77 91.61 91.28 91.11
+ SST 0.17 54.03 73.66 86.74 85.40 86.74 86.41 89.26 85.57 91.61 90.77
+ SST + SDS 47.65 85.57 88.26 88.93 88.26 89.09 88.26 91.78 90.27 90.77 92.62

Table 14: Performance comparison of models at different guidance set ratios on printed set P.

Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Baseline 0.00 48.58 63.32 68.17 66.00 66.67 67.50 62.98 65.33 64.82 64.66
Joint-grained 0.00 36.85 71.86 73.37 71.19 82.91 84.25 82.75 82.41 85.59 85.76
+ L2V 0.00 40.03 72.53 82.08 81.07 80.40 84.09 82.41 82.58 86.41 87.60
+ SDS 81.74 85.26 86.93 82.91 83.39 85.26 84.09 89.45 87.94 87.77 88.78
+ SST 5.70 44.39 67.17 81.24 76.55 83.25 84.09 87.94 84.09 87.10 87.94
+ SST + SDS 44.22 82.41 84.59 87.44 83.56 85.26 84.76 86.77 85.09 89.45 88.61

Table 15: Performance comparison of models at different guidance set ratios on printed set H.

noise is introduced by replacing the original labels1302

with incorrect labels (Figure 12) or marking them1303

as unknown (Figure 13). Figures 12 and 13 illus-1304

trate the distribution of original and noisy labels1305

across varying levels of noise rates.1306

F.2 Additional Qualitative Analysis1307

To highlight the strengths and weaknesses of the1308

proposed DAViD framework, additional qualitative1309

analyses were conducted to compare the inference1310

performance in a more straightforward manner.1311

F.2.1 Qualitative Analysis on CORD1312

Additional visualized qualitative analysis samples1313

are provided below, accompanied by more detailed1314

descriptions in the captions.1315

F.2.2 Qualitative Analysis on FormNLU1316

The visualized qualitative analysis for both the1317

FormNLU printed and handwritten datasets is also1318

presented. A more detailed analysis for each case1319

is provided in the corresponding captions.1320
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Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Baseline 0.00 69.21 77.91 79.26 78.48 83.59 84.31 86.13 85.28 87.36 87.08
Joint-grained 0.00 68.57 75.77 78.68 79.24 83.33 84.03 86.24 85.01 86.98 87.48
+ L2V 0.00 71.01 76.68 78.82 78.68 82.25 84.47 84.93 85.24 87.08 88.11
+ SDS 0.05 72.03 77.85 77.10 78.69 84.83 85.21 86.41 85.84 88.20 88.81
+ SST 0.25 63.73 71.21 73.32 76.31 81.26 82.37 83.03 84.91 87.76 88.78
+ SST + SDS 4.21 68.61 77.67 79.34 80.31 85.35 85.22 87.38 86.48 88.25 89.33

Table 16: Performance comparison of models at different guidance set ratios on CORD dataset.

Model Prompt Image

GPT-3.5
Context: {} \n Above is the context of the target form document,
please extract the {} \n, the output format strictly follow: Value:
xxx

N

GPT-4o-t
Context: {} \n Above is the context of the target form document,
please extract the {} \n , the output format strictly follow: Value:
xxx

N

LLAVA1.5

USER: Below image is the target form image. <image> \n Con-
text: {} \n Above is the context of the target form document, please
extract the {} only \n, the output format strictly follow: \n ASSIS-
TANT:

Y

QWen-VL
Below image is the target form image. <image>\n Context: {} \n
Above is the context of the target form document, please extract
the {} only \n, the output format should strictly follow: \n Answer:

Y

xGen-MM
Context: {} \n Above is the context of the target form document,
which is {} \n, output the answer only: \n Answer:

Y

GPT-4o-v

Below image is the target form image. <image> Context: {}
\n Above is the document image and context of the target form
document, please extract the {} \n, the output format strictly follow:
Value: xxx

Y

Table 17: Comparison of prompts and image utilization across different LLMs/MLLMs.

Models F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp

GPT-3.5 34.37 96.00 88.00 47.92 17.00 32.00 30.00 66.00 96.00 0.00 4.00 12.00 4.00
GPT-4o-t 42.09 98.00 94.00 87.50 56.25 32.00 28.00 56.00 98.00 0.00 4.00 6.00 0.00
LLaVA-1.5 9.79 10.00 72.00 10.42 16.67 0.00 8.00 20.00 12.00 0.00 0.00 46.00 0.00
QWen-VL 9.84 8.00 56.00 31.25 10.42 6.00 10.00 48.00 2.00 2.00 6.00 8.00 6.00
xGen-MM 12.62 46.00 6.00 12.50 22.02 26.00 10.00 40.00 34.00 4.00 14.00 34.00 6.00
GPT-4o-v 59.88 34.00 52.00 92.00 6.00 46.00 14.00 93.75 94.00 98.00 90.00 60.16 82.00
Ours - Best 92.62 98.00 94.00 95.83 79.17 86.00 80.00 92.00 98.00 92.00 96.00 98.00 98.00

Table 18: Zero-shot LLMs/MLLMs overall F1 and Breakdown Accuracy on FormNLU printed set. Explanation
of abbreviations: cnm (Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt
(Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s
Votes), pvp (Previous Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).

19



Models F1 cnm cid hnm hid cdt pdt gdt cls ppn pvp cpn cvp

GPT-3.5 30.94 86.00 62.77 58.00 18.74 20.00 16.33 34.35 90.00 4.94 10.12 31.00 6.17
GPT-4o-t 36.00 96.00 78.00 84.00 41.05 24.00 18.37 20.41 94.40 4.17 2.00 12.00 1.09
LLAVA 7.82 14.00 52.31 10.00 33.56 0.00 0.00 2.04 16.00 2.00 0.00 6.00 0.00
QWen-VL 6.00 8.43 36.00 20.00 24.00 20.00 6.12 18.37 2.00 2.00 4.08 2.00 8.00
xGen-MM 11.67 8.16 10.00 32.00 10.00 36.00 6.12 20.41 14.00 2.00 8.16 16.00 18.00
GPT-4o-v 49.15 98.00 29.59 54.73 97.14 39.78 24.15 26.00 78.77 96.00 20.18 48.06 5.41
Ours - Best 88.78 100 96.00 98.00 78.00 78.00 81.63 85.71 86.00 92.00 95.92 90.00 82.00

Table 19: Zero-shot LLMs/MLLMs overall F1 and Breakdown Accuracy on FormNLU handwritten set. Explanation
of abbreviations: cnm (Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt
(Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s
Votes), pvp (Previous Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).

Figure 7: FormNLU sample with LLM-based document understanding (Lack of Contextual Understanding)

Figure 8: FormNLU sample with LLM-based document understanding (Inconsistency)
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Figure 9: FormNLU sample with LLM-based document understanding (Lack of Layout Interpretation)

Figure 10: CORD LLM Case Study. (Inconsistency)

Figure 11: CORD LLM Case Study. (Inconsistency)
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Figure 12: Comparison of category distributions in the ground truth and after applying varying levels of noise,
where the ground truth labels are randomly replaced with another category following a normal distribution.

Figure 13: Comparison of category distributions in the ground truth and after applying varying levels of noise,
where the ground truth labels are randomly replaced with unknown categories following a normal distribution.

Figure 14: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (iv)
Incorrect predictions marked with red rectangles under various configurations. (v,vi) The best performance was
achieved after applying SST to extract all key information correctly.
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Figure 15: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (vi)
Incorrect predictions marked with red rectangles under various configurations. (vi) The best performance was
achieved using two domain adaptation methods, with only one incorrect predictions. Compared to the fine-grained-
only baseline LayoutLMv3, the Joint-grained framework effectively reduces the number of incorrect cases. The
application of SDS further decreases erroneous predictions. While the number of errors remains unchanged after
applying SST, combining SST with SDS leads to improved robustness.

Figure 16: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (iv)
Incorrect predictions marked with red rectangles under various configurations. (v,vi) The best performance was
achieved after applying SST to extract all key information correctly.

Figure 17: Real-world FormNLU printed dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (vi) Incorrect predictions marked with red rectangles under various configurations and red dashed rectangles
representing missing detection (unknown). The joint-grained framework significantly enhances performance
on the target sample image by integrating fine-grained information into coarse-grained representations. While
applying individual domain adaptation methods does not effectively reduce the number of error cases, combining
both methods yields the best performance, with only one target entity value missing.
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Figure 18: Real-world FormNLU printed dataset sample: (i) Ground truth target value entities are highlighted in
green. (ii,v) Incorrect predictions marked with red rectangles under various configurations. Other configurations
could detect all cases correctly, which may result from the effectiveness of joint-grained frameworks.

Figure 19: Real-world FormNLU printed dataset sample: (i) Ground truth key information highlighted in green.
(ii,iii) Incorrect predictions marked with red rectangles under various configurations. The best performance was
achieved using any domain adaptation method, resulting in no incorrect predictions.

Figure 20: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (vi) Incorrect predictions marked with red rectangles under various configurations. Joint-grained framework
could effectively reduce the number of incorrect predictions.

Figure 21: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in
green. (ii) - (vi) Incorrect predictions marked with red rectangles under various configurations. A joint-grained
framework significantly reduces incorrect predictions by integrating both coarse and fine-grained features. The
addition of SDS further enhances the prediction quality, resulting in more accurate and reliable outcomes.
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Figure 22: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in green.
(ii,iii) Incorrect predictions marked with red rectangles under various configurations. The best performance was
achieved using any domain adaptation method, resulting in no incorrect predictions.

Figure 23: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in
green. (ii) - (v) Incorrect predictions marked with red rectangles under various configurations. (vi) The best
performance was achieved using two domain adaptation methods, with no incorrect predictions. The joint-grained
framework significantly enhances performance on the target sample image by integrating fine-grained information
into coarse-grained representations. While applying individual domain adaptation methods does not effectively
reduce the number of error cases, combining both methods yields the best performance, without any incorrect
prediction.
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