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Abstract

Visually Rich Documents (VRDs), encompass-
ing elements like charts, tables, and references,
convey complex information across various
fields. However, extracting information from
these documents is labour-intensive, especially
given their inconsistent formats and domain-
specific requirements. While pretrained mod-
els for VRD Understanding have progressed,
their reliance on large, annotated datasets lim-
its scalability. This paper introduces the Do-
main Adaptive Visually-rich Document Under-
standing (DAViD) framework, which utilises
machine-generated synthetic data for domain
adaptation. DAViD integrates fine-grained and
coarse-grained document representation learn-
ing and employs synthetic annotations to re-
duce the need for costly manual labelling. By
leveraging pretrained models and synthetic
data, DAViD achieves competitive performance
with minimal annotated datasets. Extensive
experiments validate DAViID’s effectiveness,
demonstrating its ability to efficiently adapt
to domain-specific VRDU tasks. !.

1 Introduction

Visually Rich Documents (VRDs) containing nu-
merically qualified and potentially sensitive infor-
mation are typically shared intra-departmentally or
between institutions rather than being publicly ac-
cessible. Automatically extracting information pre-
cisely and economically from domain knowledge-
intensive documents is challenging, especially
given the rapidly increasing demands across mul-
tiple domains such as finance (Ding et al., 2023),
education (Wang et al., 2021), and politics (Wang
et al., 2023), unlike highly qualified academic pa-
pers (Ding et al., 2024a), the flexible formats fur-
ther complicate the task. To meet these demands,
various pretrained VRD understanding frameworks
(Huang et al., 2022; Lyu et al., 2024) leverage
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self-supervised pretraining to capture general doc-
ument domain knowledge. However, deploying
these frameworks effectively in real-world scenar-
ios often requires extensive domain-specific anno-
tations from experts, which can be labour-intensive
and time-consuming, potentially delaying projects
and hindering practical deployment.
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Figure 1: Structure and content manual and synthetic
annotation samples.

From a human perspective, understanding a new
domain document starts with examining its format
and layout, and then analysing its content based
on user needs. Substantial manual annotations are
usually required to grasp the layout structure of
documents in specific domains (Pfitzmann et al.,
2022; Cheng et al., 2023), equipping deep learn-
ing models (He et al., 2017; Zhu et al.) to under-
stand them. Acquiring high-quality, well-annotated
layout structures (as shown in Figure 1) is time-
intensive and laborious, requiring effort to under-
stand both layout and logical arrangement. Off-
the-shelf tools can efficiently produce large-scale,
roughly annotated layouts, which can be refined
using source files like XML or HTML to create
high-quality VRD structure understanding datasets
(Zhong et al., 2019). However, leveraging syntheti-
cally generated structures for domain-aware VRD
understanding, particularly in unstructured scanned
documents, remains largely unexplored.

In addition, to effective understanding of docu-
ment content often requires training models on task-



specific, well-annotated datasets tailored to end-
user needs. Various manually annotated datasets
have been designed for tasks such as key informa-
tion extraction (KIE) and question answering (QA)
across domains like finance (Ding et al., 2023),
academia (Ding et al., 2024a), and scanned receipts
(Huang et al., 2019). Creating these annotations of-
ten demands domain expertise to align content with
user requirements and typically involves prelimi-
nary layout annotation, as shown in Figure 1. How-
ever, real-world VRDU solutions need to reduce re-
liance on labour-intensive annotations by enabling
deep learning frameworks to achieve competitive
performance with minimal manual effort. Large
language models (LLMs) (Touvron et al., 2023)
and multimodal large language models (MLLMs)
(Liu et al., 2024b) have shown significant advance-
ments in zero-shot VRDU tasks (Mathew et al.,
2021) and facilitate VRD QA dataset generation via
prompt engineering (Ding et al., 2024a), leveraging
extensive training on diverse corpora. Nevertheless,
the potential of using synthetic content annotation
to tackle domain-specific VRD in real-world appli-
cations also remains largely underexplored.

This paper introduces the Domain Adaptive
Visually-rich Document understanding framework,
DAViD, which leverages a small number of anno-
tated documents to achieve performance compara-
ble to models fine-tuned on large well-annotated
sets. As a joint-grained framework, DAViD lever-
age pretrained backbones to encode both fine-
grained (word-level) and coarse-grained (document
entity-level) features to harness implicit pretrained
knowledge (Yu et al., 2022; Ding et al., 2024b). To
bridge domain distribution gaps, DAViD incorpo-
rates a Domain Knowledge Infuser, which em-
ploys diverse domain adaptation strategies to train
the joint-grained framework, capturing structural
and task-oriented semantics from synthetic datasets.
Then, Task-Specific Knowledge Enhancers fur-
ther refine the model using limited, high-quality
annotations. A synthetic annotation workflow is in-
troduced, leveraging off-the-shelf tools and LLMs
to generate structural and semantic annotations.

This paper’s contributions could be summarized
as follows: 1) Introduce a joint-grained VRDU
framework, DAVID, that distils implicit knowledge
from general domain pretrained models and cap-
tures domain-specific knowledge from synthetic
annotations within the target domain’s document
collection. 2) A well-designed synthetic annotation
workflow is proposed, complemented by domain

adaptation strategies to address structural and con-
tent shifts from the general to the target domain.
3) Extensive experiments are conducted to validate
the effectiveness of the proposed approaches.

2 Related Work

Visually-Rich Document Understanding Heuris-
tic methods (Watanabe et al., 1995; Seki et al.,
2007; Rusinol et al.,, 2013) and statistical ma-
chine learning (Oliveira and Viana, 2017) were
applied to closed-domain document applications,
but required expert customization. Recent ad-
vances in deep learning, including feature-driven
approaches (Yu et al., 2021; Zhang et al., 2020;
Wang et al., 2021), and layout-aware pre-trained
frameworks (Xu et al., 2020; Huang et al., 2022;
Wang et al., 2022; Hong et al., 2022), and joint-
grained frameworks (Yu et al., 2022; Lyu et al.,
2024), have shown promise in enhancing docu-
ment representation, but rely heavily on extensive,
well-annotated data for domain-specific knowledge
transfer. LLM/MLLM-based frameworks (He et al.,
2023; Fujitake, 2024; Luo et al., 2024) have demon-
strated improved zero-shot performance for VRD
understanding tasks by leveraging broad pretrain-
ing and instruct-tuning. However, the reliance on
large-scale, annotated datasets remains a barrier,
underscoring the need for scalable solutions like
synthetic data generation, as explored in this paper.

Domain Adaptation and Knowledge Distilla-
tion Domain adaptation is crucial in transfer learn-
ing, encompassing several variants such as unsu-
pervised domain adaptation (Wang et al., 2020)
and source-free domain adaptation (Liang et al.,
2020), which focus on transferring knowledge from
one source domain to a target domain that differs
from our scenarios. Another subproblem within
transfer learning, knowledge distillation(Hinton
et al., 2015), involves transferring knowledge from
a large-scale teacher to small student networks.
This has been widely applied in language (Adhikari
et al., 2020), vision (Fang et al., 2021), and multi-
modal applications (Ma et al., 2023), yet there is a
lack of research exploring knowledge distillation
in VRDU. While some efforts (Ding et al., 2024b)
have explored joint-grained knowledge distillation
for VRDU, they continue to rely heavily on large,
annotated datasets and require extensive fine-tuning
for practical use. Our work addresses this gap by
utilising synthetic data to enable domain adaptation
and distillation, achieving competitive results with-



out the need for large-scale manual annotations.

3 Problem Formulation

Preliminary Definition Given a collection of doc-
uments D = {Dy, Dy,...,D,,} from a specific
domain containing m documents, the task aims to
extract the predefined k types of key information
Y = {\1,Ys,---,Y;} from D. The entire docu-
ment collection can be divided into three subsets,
including a larger unannotated set D,,, a manually
annotated guidance set Dy, and D; a set containing
practical inference cases of arbitrary size. Follow-
ing the setting up of the joint-grained frameworks,
(Gu et al., 2021; Ding et al., 2024b), a document
D € D has fine/coarse-grained information. Fine-
grained sequence of textual tokens of document
D is represented as Tp = {t1,ta, -+ ,t,} with
text content and the coordinates of the box of the
bounding of each token, t = (text, box). Coarse-
grained a set of document semantic entities are
represented Ep = {e1, ez, - ,e,}, where each
entity, e.g. paragraph, table, also comprised by
e = (text,box).

Task Clarification Information extraction from
VRDs involves fine/coarse-grained processes that
are tailored to the application and the granu-
larity of the information. For the fine-grained
level, each token in a sequence {t1,%2,--- ,ty}
is classified into predefined categories of the
set Y. The goal is to determine the most
likely sequence of labels {y1,y2, - ,yn} cor-
responding to the token sequence, maximizing
argmax(P(yl,yg,--- 7yn|t17t27"' ’tn))vy €
Y. Entity-level extraction, as outlined by (Ding
et al., 2023), employs a set of predefined keys
Yiey;, € Y and a group of entities EFp =
{e1,e2,- -+, e,} toidentify and retrieve a specific
target entity ey,, which aims to maximize condi-
tional probability argmax(P(ex,;|Ykey,, ED))-
Problem Formulation Suppose F is a KIE
model incorporating pretrained backbones (teach-
ers) from diverse domains like VRDs (Huang
et al., 2022) or natural scene images (Tan and
Bansal, 2019). G is a well-trained model in the
target domain D, and D and L are the proba-
bility distance and loss functions, respectively.
Ji is F trained in the guidance set Dy, repre-
sented as F; = argmin(L(F(Xp,))). Fn is
F learned on the synthetically annotated dataset
Fn = argmin(L(F(Xp,))) and F,; is F,, fur-
ther fine-tuned on D, represented as F,; =

argmin(L(F,(Xp,))). Here, Xp denotes the en-
coded document representation of any target doc-
ument collection. This paper aims to propose ap-
proaches to distill knowledge from pretrained back-

bones and a synthetically annotated set D,,, in order
to achieve D(Fyt,G) < D(F, G).

4 Methodology

This section introduces the DAViID architecture,
which consists of the Domain Knowledge In-
fuser (Ap) and the Task-Specific Knowledge
Enhancers (A7 and Ag). The Domain Knowl-
edge Infuser adapts domain-specific knowledge
into inter-grained frameworks using synthetic data
(Dy,) and strategies like Structural Domain Shifting
(SDS) and Synthetic Instructed-Tuning (SIT), result-
ing in the adapted module Ap, . The Task-Specific
Knowledge Enhancers refine the model on tasks
using a smaller, well-annotated guidance set (D)
to improve domain-specific performance.

4.1 Multimodal Feature Representation

For the well-annotated guidance set D, each docu-
ment D; € D, contains high-quality n; textual
tokens, represented as tp, = {ti,t2,...,tn,}
and m; entity annotations, denoted as €p, =
{e1,€e2,...,em,}. In contrast, for the unannotated
set D,, with synthetic annotations, containing n,,
tokens tp, = {t1,%2,...,t,, } and m,, entities,
ep, = {é1,é2,...,6én, }. For coarse-grained rep-
resentations, we follow previous work (Luo et al.,
2022) by utilizing a pretrained backbone to acquire
semantic S and visual V representations of each en-
tity e. To better integrate layout information and
capture the correlation between token-entity pairs,
we introduce a new layout embedding method,
named Layout to Vector (L.2V), which converts
layout information to visual cues by rendering each
input document image to a colour-coded image
based on the x and y coordinates. A pretrained
CNN-backbone extracts Rol features using Rol-
Align to get L2V embedding as layout representa-
tion L of e. Thus, each token ¢ and entity e can be
represented as {¢ : text, bbox} and {e : S, V, L}.

4.2 Domain Knowledge Infuser

To acquire the domain-specific knowledge from
synthetic document collections in D,,, we introduce
the Domain Knowledge Infuser, .Ap, which is built
on General Domain Encoders (GDEs), including
pretrained fine-grained £ and coarse-grained £
encoders. Various domain adaptation strategies are
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Figure 2: DAViD model architecture contains a Domain Knowledge Infuser and Task-Specific Knowledge Enhancer.

utilised to leverage synthetic data for mitigating dis-
tribution gaps between general domain pretrained
models and target domain D.

General Domain Encoders (GDEs) To encode
the fine-grained features of any D € D, we feed
the initial word token sequence t along with docu-
ment image [ into a VRDU model, £7, pretrained
on a general document collection to obtain a mul-
timodal token representation T = {77, ..., Ty }.
Each T; is additive with the corresponding L2V
embedding L7, to produce the final token repre-
sentation T;, where all n’ tokens in D are repre-
sented as T = {71,...,T,/}. Similarly, for the
coarse-grained level, the initial visual embedding
V; of an entity E; is fed into a visual-language
pretrained model (VLPM) £, to obtain the aug-
mented Vj’ . We then fuse multimodal entity rep-
resentations by the linear projection of the con-
catenated Vj’ and T}, addictive with L E; to get E;,
represented as E; = Linear (V] @ Tj) + Lg,. All
m’ semantic entities in document D can be repre-
sented as E = {F, ..., E,/}. For coarse-grained
level tasks, the query text features, (), could be
acquired from Eg.

Domain Adaptation Strategies To ensure the mod-
ule effectively captures structural and semantic in-
formation from synthetic sets D,,, various domain
adaptation strategies are introduced.

i) Structural Domain Shifting (SDS) is built on
a joint-grained transformer encoder, &, to learn
inter-grained correlation. Document representa-
tion learned from GDE:s are fed into &j, to obtain
augmented token and entity representations, repre-
sented as [T',E'] = &4([T,E]). To acquire more
domain-specific knowledge and boost inter-grained
contextual learning from the large unannotated set
D,,, an inter-grained alignment task is applied to
predict the existence of parent-child relationships

between paired tokens and entities. For any syn-
thetic token-entity pair (;, €;), where #; € t and
é; € e, If parent-child relation, r, between tg and

&) existed,  , = 1, otherwise r ., = 0. Sup-
€5 €5

posing 77 and E; are &;; outputs, the predicted
score 7y is vy, o = Linear(T}) @ Linear(E!). We
have a ground truth relation matrix M:[’é = R/ xm
and a predicted matrix M. é . for all token and entity

pairs. The training objective of SDS is to minimize
the mean square error between relation matrices:

argemin»CMSE (p(Mf’é|9)’p(Mi/,é))> . (1)

ii) Synthetic Sequence Tagging (SST) is introduced
to train the Domain Knowledge Infuser Ap for
capturing fine-grained domain-specific knowledge
from D,,. For a document D € D,, each to-
ken {; € thasa corresponding label y;, where
Y = {91, ..., 0n}. Even if the synthetic labels of
Y differ from those in the guidance set Y, training
Ap on SST helps to encode more domain-specific
implicit knowledge to enhance fine-grained VRDU
tasks. The enhanced token representations T/ and
entity representations E’ are then fed into Dy as
source and memory inputs, refining inter-grained
contextual learning. The output T" from Dr is
fed into a linear layer to predict the logits Y/.:
YA’T = Linear(DT(TA’T,IAE’ )). The training target
is to minimize the cross-entropy loss between Y’
and Y:

argmin Lop(p(Y'[T).p(Y). @)
iii) Synthetic Instructed-Tuning (SIT) is introduced
to train Ap for enhancing the coarse-grained level
representations. For each document D € D,,, we
use LLMs to generate synthetic question-answer



pairs Yg = Yiey, @ €uyse ooy Yiey, @ €v,}, Where
€y € EDt. The entity representations are fed
as source inputs into entity decoder Dg, with
the memory inputs being the combined embed-
ding of synthetic key/question, Q and fine-grained
representations T. A pointer net (PN) is placed
on top of linear projection outputs of Dg to
get the final prediction, represented as Y}, =
PN (Linear(Dg(E',[Q : E'))).

4.3 Task-Specific Knowledge Enhancers

Task-Specific Knowledge Enhancers are employed
to fine-tune the DAViID framework for vaious
downstream tasks using the manually annotated
guidance set D,y. The output token embeddings
T = {T},...,T)} and entity embeddings E' =
{E{},...,E}} from Domain Knowledge Infuser
Ap are fed into different Knowledge Enhancers
to perform fine-tuning for specific tasks based on
the required granularity. For fine-tuning sequence-
tagging tasks, a max-pooling layer is applied to
extract significant information from each encoding
component, which is then fed into a linear classi-
fier:

Y, = Linear(Ma:vpool(T, 7)) (3

For coarse-grained entity retrieval tasks, a trans-
former decoder D,, is used, where the inputs are
max-pooled entity representation and the memory
embeddings are the query sequence embeddings:

/E = PN(DET(MaxPOOZ(E/a E//)a Q)) (4)
4.4 DAViID Overall Workflow

We provide the overall workflow to show repro-
ducible steps for adapting the DAViD framework
to domain-specific VRD understanding tasks. First,
the Domain Knowledge Infuser is trained on do-
main adaptation tasks using D,, to learn domain-
specific representations. Token and entity represen-
tations, T and E, are generated by GDEs (&, &),
while Structural Domain Shifting (SDS) predicts
parent-child relations between tokens (T’ ) and en-
tities (E’ ) via the inter-grained encoder &;,. Pre-
trained components are frozen to preserve inter-
grained representations during further adaptation
and fine-tuning. Next, Synthetic Sequence Tag-
ging (SST) trains Dy to capture detailed informa-
tion with synthetic annotations, while Synthetic
Instructed-Tuning (SIT) augments query-aware en-
tity representations. After domain adaptation, man-
ually annotated tokens tp, and entities ep, are pro-
cessed by the tuned Ap to produce Tp; and Ep "

which are fine-tuned using Task-Specific Knowl-
edge Enhancers. Finally, the framework is evalu-
ated on the inference set D;.

5 Environmental Setup

5.1 Datasets and Preparation

Benchmark Datasets Two domain-specific VRD
understanding datasets are utilized to evaluate the
effectiveness of the DAViD framework. 1) CORD
(Park et al., 2019) is proposed for scanned receipt
understanding. Following prior document under-
standing frameworks (Xu et al., 2021; Huang et al.,
2022), we focus on sequence tagging (ST) to iden-
tify key entity types of each input word, such as
"store name" and "menu quantity". 2) Form-NLU
(Ding et al., 2023) is a financial dataset for under-
standing multi-format forms within the same do-
main. This paper addresses key information extrac-
tion from printed (P) and handwritten (H) forms,
to retrieve the target semantic entity based on input
keys (e.g., "Shareholder Name", "Share Class").
Synthetic Annotation Workflow We introduce
a workflow to generate synthetic structure and
content annotations of document collections, as
shown by Figure 3. Document Collection Re-
allocation and Synthetic Layout Annotation are ap-
plied for synthetically structural annotation. For
task-specific content annotation, additional proce-
dures like Synthetic Sequence Tagging and Syn-
thetic Inquiry Generation simulate practical scenar-
ios. Each procedure is described as follows:

a) Document Collection Re-allocation replicates
real-world conditions by dividing the benchmark
dataset into three subsets: a synthetic annotated set
D,, (training set), a manually annotated set D, (val-
idation set), and a test set D; (test set). Then, dif-
ferent synthetic annotation generation procedures
are applied on D,,, helping the model learn and
differentiate layout and semantic information at
various granularities. b) Synthetic Layout Anno-
tation extracts grouped textual tokens, textlines,
or document semantic entities by using tools like
PDFMiner, OCR tools 2. Acquired synthetic layout
annotations, including bounding box coordinates
and textual content can be used to understand tar-
get domain structure after domain adaptation (e.g.
SDS). ¢) Synthetic Tagging Generation aims to gen-
erate synthetic annotations for token sequences to
facilitate fine-grained sequence tagging. Leverag-

For example, PaddleOCR:
PaddlePaddle/PaddleOCR

https://github.com/


https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
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Figure 3: Workflow for generating synthetic annotations for domain-specific understanding.

ing LLMs (OpenAl, 2023), text tokens from target
documents are paired with a predefined label set.
Conducting domain adaptation (e.g. SST) on these
synthetic annotations improves the model’s con-
textual understanding, especially at a fine-grained
level. d) Synthetic Inquiry Generation utilizes
LLM-generated question-answer pairs, drawing in-
spiration from previous VRD dataset generation
efforts (Ding et al., 2024a). Prompts guide the gen-
eration of QA pairs, which are aligned with entities
extracted during Synthetic Layout Annotation. The
highest-matched entity is selected as the retrieval
target for each inquiry.>

5.2 Baselines and Implementation Details

We employ a variety of pretrained backbones from
both fine-grained and entity-level frameworks to en-
code multi-granularity features.*. 1) Fine-grained
Baselines We utilize three recently proposed fine-
grained document understanding models: Lay-
outLMv3 (Huang et al., 2022), LiLT (Wang et al.,
2022), and UDop (Tang et al., 2023), which lever-
age multimodal information pretrained on gen-
eral document collections, like IIT-CDIP (Lewis
et al., 2006), to perform key information extrac-
tion through sequence tagging tasks, achieving
state-of-the-art performance when fully trained on
benchmark datasets. 2) Entity-level Baselines
For entity-level document understanding, we in-
clude Rol-based Vision-Language Pretrained Mod-
els (VLPMs) such as LXMERT (Tan and Bansal,
2019) and VisualBERT (Li et al., 2019) as base-
lines for entity retrieval. After properly fine-tuning
those models on the well-annotated dataset, they
can achieve decent performance on VRD QA or
KIE tasks. We follow the configurations of baseline
models for both token and entity levels as specified
in (Huang et al., 2022; Wang et al., 2022; Tang

3See Appendix C for detailed dataset description, statistics
and synthetic data analysis.

“Please refer to Appendix A to check more details about
each group of models and LLMs/MLLM zero-shot settings.

et al., 2023; Ding et al., 2023). Implementation
Details are in Appendix B.

6 Results and Discussion

We conduct comprehensive experiments accompa-
nied by an in-depth analysis to demonstrate the
effectiveness of the proposed frameworks across
diverse scenarios. Furthermore, additional evalu-
ation discussions, including analysis about break-
down, LLMs/MLLM:s performance, are provided
in Appendix E for a more thorough comparison
and understanding.

6.1 Opverall Performance Analysis

Table 1 presents the performance of various model
configurations, demonstrating the effectiveness of
the proposed domain adaptation methods in captur-
ing domain knowledge. Due to their strong baseline
performance, LayoutLMv3 and LXMERT were se-
lected as token and entity encoders to construct
the joint-grained Domain Knowledge Infusers Ap.
The results show that integrating fine and coarse-
grained information within F outperforms mono-
grained baselines, boosting downstream task per-
formance. We note that incorporating fine-grained
features significantly enhanced entity representa-
tion in FormNLU, with a performance gain of ap-
proximately 8% for the printed and 21% for the
handwritten sets. All domain adaptation methods,
including the novel L2V positional features, im-
proved performance. Detailed analyses are in sub-
sequent sections.

6.2 Results with Stepped Training Ratios

Few-shot Testing We evaluated the robustness of
our methods with varying amounts of annotated
data from D, using training sizes from 10% to
100% of D;. As shown in Table 1, applying domain
adaptation consistently outperformed non-adapted
baselines by leveraging domain-specific informa-
tion from the synthetic dataset D,,, although per-
formance sensitivity varied across different tasks
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Transformer | 88.62 | 74.06 | LayoutLMv3 | 96.56 SDS (ep. 2) 8993 8660 | SDS(ep 2) 89,08
VisualBERT | 85.90 | 70.14 LiLT 96.07 SDS (ep. 3) 91.11 8442 | SDS (ep. 3) 87.35
LXMERT | 94.15 | 82.80 UDOP 97.58 SIT (ep. 1) 90.94  87.77 | SST(ep. 1) 88.83
—— - SIT (ep. 2) 8691 8375 | SST(ep.2) 87.54
Tuning in Guidance Set (D,) SIT (ep. 3) 86.07 8141 | SST (ep.3) 85.71
Transformer | 72.82 | 60.30 | LayoutLMv3 87.08 SDS+SIT @ 1) L1l 8911 | SDS+SST@p D 5695

. . ep. . . ep. .
VisualBERT | 46.48 | 48.41 LIiLT 86.74 SDS+SIT (ep. 2) 9262 83.61 | SDS+SST (ep. 2) 90.25
LXMERT | 81.21 | 64.66 UDOP 80.88 SDS+SIT (ep. 3) 8758 8392 | SDS+SST (ep. 3) 87.49
Vanilla 89.60 | 85.76 Vanilla 87.48 SDS Frozen 91.11  88.78 | SDS Frozen 89.08
SDS Unfrozen 91.61 85.59 SDS Unfrozen 86.91
+L2v 90.60 | 87.60 +L2v 88.11 SDS+SIT Frozen ~ 92.62 8559 | SDS+SST Frozen  90.25
+SDS 91.11 | 88.78 + SDS 89.08 SDS+SIT Unfrozen 8859  85.93 | SDS+SST Unfrozen  86.64
+SIT 90.77 | 87.94 +SST 88.83 SDS with L2V 9L1I  89.11 | SDSwithL2V 89.08
+SIT+SDS | 92.62 | 88.61 | + SST+SDS | 90.25 SDS without L2V 8926  84.25 | SDS without L2V 87.57
SIT with L2V 90.94  87.77 | SST with L2V 88.83
SIT without L2V 8591  87.94 | SST without L2V 87.19

Table 1: Performance using full and limited training sets
with domain adaptation strategies.
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Figure 4: Performance of DAViD with stepped training
set ratios on three test sets.

and training sizes. For the entity-level FormNLU,
both printed (P) and handwritten (H) test sets im-
proved as training sizes increased. Without do-
main adaptation, performance was poor in few-
shot scenarios. With just 10% of D, applying SDS
achieved over 80% accuracy on both P and H sets,
demonstrating its ability to capture domain-specific
structural information. For token-level results in
CORD, incorporating coarse-grained information
improved performance across training sizes. SDS
consistently outperformed other configurations, ef-
fectively utilizing synthetic structural information
from D,,. However, SIT and SST underperformed
in few-shot settings, likely due to reliance on syn-
thetic LLM-generated samples that need more data
to bridge distribution gaps.

FormNLU | CORD
Config P H | Config Test
Baseline 1.67 0.5 Baseline 0
Joint-grained 0 0 Joint-grained 0
+L2Vv 0 0 +L2Vv 0
+ SDS 8742 81.74 | +SDS 0.05
+SIT 5.7 0.17 +SST 0.25
+SIT+SDS  47.65 4422 | +SST+SDS 4.21

Table 2: Comparison of zero-shot performance on vari-
ous configurations.

Zero-shot Testing We evaluated zero-shot per-
formance (Table 2) to assess domain knowledge

Table 3: Ablation results for FormNLU and CORD

infusion of diverse domain adaptation strategies.
SDS effectively distilled structural knowledge from
D,., achieving 87.42% on FormNLU (printed) and
81.74% (handwritten). In contrast, SIT showed mi-
nor improvements on the printed set but decreased
on the handwritten set, possibly due to the distri-
bution gap between digital-born QA pairs from D,
and handwritten tests. For CORD, domain adapta-
tion had less impact than entity-level tasks, as the
joint-grained framework benefits entity representa-
tions more than token representations.

6.3 Ablation Study

Effects of Training Epochs We observed that vary-
ing the number of training epochs (ep.) for different
domain adaptation strategies impacts fine-tuning
results in Table 3. Insufficient training can result in
limited domain-specific information infusion. For
instance, training the SDS+SST method for just
one epoch on the CORD dataset yields about 2.5%
lower performance than two epochs. Conversely,
increasing training epochs can cause the model dis-
tribution to shift closer to D,,, but further away from
D,. Excessive training may shift the model closer
to D,, but further from D, as seen with SDS+SIT
on FUNSD, where three epochs caused 2.5% and
5% drops on sets P and R, respectively. Optimal
epochs depend on the dataset and task, requiring
careful tuning.

Effects of Freezing To retain domain knowledge
infused from D,, by the joint-grained encoder &;g,
freezing its parameters after applying SDS proved
beneficial. It preserved the learned structure and
semantic insights, leading to better performance
during fine-tuning. As shown in Table 3, unfreez-
ing the models resulted in lower performance. For
example, SDS+SIT on FormNLU-P dropped to



(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained

(iv) + SDS (¥) + SST (vi) + SDS + SIT

Figure 5: CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (v) Incorrect predictions
marked with red rectangles under various configurations. (vi) The best performance was achieved using two domain

adaptation methods, with no incorrect predictions.

88.58% when the parameters were not frozen.
Effects of L2V We evaluated the impact of the
L2V positional feature on domain adaptation meth-
ods. As shown in Table 3, removing L2V led to an
approximate 2% performance drop. This suggests
that L2V enhances positional awareness in token
and entity representations, contributing to better
document understanding.

6.4 DAVID Robustness Analysis

X~NO1,y#9 | X~N(01),§=0

Model ‘

| P2 P15 P | P Pys Py
Baseline 86.08 82.65 74.83 85.58 82.09 75.20
Joint-grained 85.47 82.81 74.45 86.21 82.79 76.40
+SDS 84.28 81.79 74.62 85.78 80.19 76.82
+SST 85.70 8196  75.73 84.36 81.99  75.80
+SDS+SST 87.20 82.26 76.23 86.32 82.89 75.52

Table 4: Performance comparison of models under dif-
ferent types of synthetic annotation label (incorrect and
incomplete) across varying synthesis ratios.

To evaluate the robustness of the proposed frame-
work and domain adaptation strategies, synthetic
label noise was introduced into the guidance set
D, of the CORD dataset. Instances were randomly
selected using a normal distribution, X ~ N (0, 1),
and their ground truth labels y were replaced with
randomly chosen labels § from the label space Y
or assigned "Unknown" (). By controlling the pa-
rameter ), the proportion of noisy instances was
adjusted to P(|X| > A\) = P,, enabling an in-
depth analysis of the framework’s ability to handle
varying levels of label corruption.

As shown in Table 4, the joint-grained frame-
work consistently demonstrates superior robust-
ness compared to the baseline in both incorrect
and incomplete label scenarios. Its integration of
coarse-grained information significantly mitigates
the negative impact of noisy or missing labels. Do-
main adaptation strategies further enhance perfor-
mance, illustrating the framework’s capability to

adapt to challenging, label-deficient conditions in
real-world applications.

7 Qualitative Analysis: Case Studies

To qualitatively demonstrate the effectiveness of
the proposed framework, a real-world example
from the CORD is presented in Figure 5. Compared
to baseline models, the joint-grained framework
produces fewer incorrect predictions, likely due to
the integration of coarse-grained information. In
this case, while SDS alone does not improve results,
the SST approach shows noticeable enhancements.
Furthermore, combining both domain adaptation
methods results in entirely accurate predictions.
This highlights the effectiveness of proposed do-
main adaptation techniques in leveraging domain
knowledge from noisily annotated data to improve

downstream task performance °.

8 Conclusion

This paper presents DAViD, a framework that en-
hances VRDU by capturing domain-specific knowl-
edge using synthetic annotations, achieving strong
performance with minimal labelled data. DAViD
utilizes domain adaptation techniques to transition
from general-purpose encoders to those optimized
for domain-specific document collections. The
framework introduces SDS to create a robust joint-
grained representation by aligning fine- and coarse-
grained features. For granularity-specific tasks,
LLMs generate synthetic annotations, supporting
SIT and SST. Extensive evaluations demonstrate
that DAViD effectively captures domain-specific
knowledge, significantly improving performance
across benchmarks with limited annotated samples.

>More visualised quantitative examples with analysis could
be found in Appendix E.6



Limitations

While DAVID provides an effective framework for
leveraging synthetic data and VRD domain adapta-
tion approaches to infuse domain-specific knowl-
edge and achieve competitive performance, limi-
tations remain in two key areas: the training pro-
cess and synthetic data generation. First, achiev-
ing strong results with minimal manual annotation
requires a complete and carefully tuned training
process, including appropriate hyperparameter ad-
justments (e.g., learning rate, and epoch settings for
each stage) for different domain adaptation strate-
gies. Second, synthetic data generation and its uti-
lization still have significant room for improvement.
Generating synthetic data from the target document
collection based on the proposed workflow is es-
sential, but exploring better generation techniques
and leveraging strategies can further enhance per-
formance. As the first paper in this direction, David
highlights the need for further exploration of alter-
native domain adaptation strategies and synthetic
data approaches.
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A2

A3

A Baseline Models

A.1 Fine-grained Document Understanding

Frameworks

e LayoutLM-v3 (Huang et al., 2022): is the
first model to leverage visual cues in VRDU
without using pretrained CNN backbones.
Various pretraining methods were proposed to
fuse the multimodal features from the general
domain and achieve SOTA on several VRDU
downstream tasks.

* LILT (Wang et al., 2022): is a language-
independent layout transformer which sup-
ports pertained on a single language document
collections but fine-tuned on other language
tasks. A bi-directional attention complemen-
tation mechanism to learn the layout and tex-
tual modality interaction with layout-aware
pretraining tasks for capturing more general
document text-layout interaction.

e UDop (Tang et al., 2023): is an encoder-
decoder structure that leverages text, image
and layout modalities to conduct the VRDU
tasks in a sequence generation style. UDop is
pretrained in a cross-modal, self-supervised
learning way and pretrained supervised tasks
on cross-domain benchmark datasets to ac-
quire more robust representations.

Coarse-grained Vision-Language
Pretrained Models

* VisualBERT (Li et al, 2019): is a
transformer-based vision-language pretrained
(VLPM) model that contextualizes the un-
derstanding of visual cues from detected re-
gions of interest (Rol) and accompanying text
within the domain of general scene images.

e LXMERT (Tan and Bansal, 2019): is a
VLPM that utilizes the bounding boxes of
Regions of Interest (Rols) to capture spatial
relations between them. This approach leads
to a more comprehensive multimodal repre-
sentation for general domain vision-language
tasks.

LLMs/MLLMs for Zero-shot Testing

e LLaVA-1.5 (Liu et al., 2024a): is built upon
LLaVA, which was the first model to ex-
tend instruction-tuning to the language-image
multimodal space. LLaVA-1.5 addresses
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LLaVA’s limitations, particularly its underper-
formance in generating short-form answers
on academic benchmarks, by introducing a
new MLP-based cross-modal connector and
employing scaling-up techniques, such as
handling high-resolution images. We use

1lava-hf/llava-1.5-7b-hf checkpoints
for zero-shot testing.

QWen-VL (Bai et al., 2023): QWen-VL em-
ploys the large language model QWen-7B
as its foundational component and integrates
a Vision Transformer as the vision encoder.
These components are jointly trained using
a cross-attention-based vision-language adap-
tor. The model undergoes a two-stage pre-
training process, initially learning from large-
scale weakly labeled image-text pairs, fol-
lowed by fine-tuning with high-quality, fine-
grained vision-language annotations. We use
Qwen/Qwen-VL checkpoints for zero-shot
testing.

xGen-MM (Xue et al., 2024): utilizes a Vi-
sion Transformer (ViT) as its vision encoder
and incorporates a perceiver resampler to effi-
ciently downsample the image embeddings.
The phi3-mini model serves as the large
language model decoder. This framework
is designed for scalability in large language
model (LLM) training by utilizing a mix of
multimodal interleaved datasets, curated cap-
tion datasets, and other publicly available re-
sources. For zero-shot testing, we employ the
3B xgen-mm-phi3-mini-instruct-r-vi
checkpoints.

GPT-3.5 (OpenAl, 2023): is one of the
most powerful closed-source mono-modality
LLMs, achieving remarkable performance
and being widely employed across diverse
daily applications such as customer support,
content creation, and language translation. It
is frequently used as a baseline for evaluating
zero-shot performance on various linguistic-
related tasks. We use gpt-3.5-turbo-0125
checkpoints for zero-shot testing.

GPT-40 (OpenAl, 2024): is an advanced
multimodal LLM that extends its capabili-
ties to process diverse inputs, including lan-
guage, vision, and audio. It demonstrates ex-
ceptional performance across various multi-



Fine-grained | Coarse-Grained | Configure #Para # Trainable
LiLT N/A Baseline 130,169,799 | 130,169,799
N/A Baseline 125,332,359 | 125,332,359
LayoutLMv3 JG-Encoders | 393,227,514 | 19,586,415
LXMERT | " jG.c&D | 440,494,842 | 66,853,743

Table 5: Model configurations and parameters. David is
built on top of LayoutLMv3 and LXMERT following
joint-grained encoder and task-specific decoders, which
is bolded.

modal benchmark datasets and is widely used
as a baseline for assessing zero-shot perfor-
mance in complex multimodal tasks. We use

gpt-40-2024-08-06 checkpoints for zero-
shot testing.

B Implementation Details

We follow the configurations of baseline models for
both token and entity levels as specified in (Huang
et al., 2022; Wang et al., 2022; Tang et al., 2023;
Ding et al., 2023). LayoutLMv3 and LXMERT are
used as the token (£7) and entity (£g) encoders,
respectively, based on their proven performance.
Our architecture features six-layer transformer en-
coders with a hidden size of 768 for the joint-
grained encoder (£5¢g). Two additional six-layer
transformer decoders with a hidden size of 768
serve as the token (Dr) and entity (Dg) decoders.
We maintain a consistent learning rate of 2e-5 and
a batch size of 2 for domain adaptation and fine-
tuning phases. All experiments are conducted on
a 16GB NVIDIA V100 GPU, with 60 epochs for
CORD and 15 for Form-NLU, each training epoch
is around 10 minutes for domain adaptation and
3 minutes for fine-tuning. The entire model and
trainable number of parameters are given in Table 5.
The size of open-source MLLMs can be found in
Appendix sec:baseline.

C Dataset Information

C.1 Detailed Dataset Description

CORD (Park et al., 2019) provides multi-level
annotations to support a range of task-specific or
end-to-end printed/scanned (P) receipt understand-
ing tasks. In line with previous document un-
derstanding frameworks (Xu et al., 2021; Huang
et al., 2022), our focus lies on sequence tagging
to identify the entity type of each textual token
extracted from scanned receipts, including "store
name", "menu quantity", and "void total".

Form-NLU (Ding et al., 2023): delves into under-

standing layout structure (Task A) and extracting
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key information (Task B) from digital (D), printed
(P), and handwritten (7{) financial forms obtained
from Australian Stock Exchange filings. This pa-
per specifically focuses on Task B, which supplies
ground truth bounding boxes of form semantic en-
tities and query text (e.g., "Shareholder Name",
"Share Class"), enabling the utilization of the pro-
posed model to retrieve the target entity.

C.2 Dataset Statistics

The detailed statistics of adopted datasets with
the machine-generated synthetic set statistics are
listed there. For FormNLU datasets, as it’s an text-
embedded form which can be processed by the
PDF parser, the number of entities are counted as
the textlines extracted by the PDFMiner. For the
CORD dataset, we use PaddleOCR to extract the
text lines of the scanned receipts to acquire 13200
entities.

C.3 Synthetic Data Analysis

We analyze the distribution characteristics of syn-
thetic annotations generated by off-the-shelf tools,
focusing on two primary types: 1) Layout struc-
ture variations arise from inaccuracies in the re-
gions of document semantic entities extracted by
document parsing tools. However, text content
variations result from improperly grouped words
and misrecognized text during the parsing process.
From Figures 6b and 6a, most documents exhibit
mismatches in layout structures, with the average
Intersection over Union (IoU) between detected en-
tities and ground truth entities falling below 0.3 in
both datasets. 2) Text content variations exhibit
even lower Jaccard similarities, dropping below 0.2
for Form-NLU and 0.1 for CORD. Errors in entity
detection can propagate during text recognition,
resulting in a larger distribution gap between ex-
tracted text sequences and the ground truth. Com-
pared to text-embedded source files that can be
processed by PDF parsing tools like PDFMiner,
scanned documents processed by OCR tools tend
to introduce even more variations, further compli-
cating the adaptation of models to these documents.

D Pseudocode Overview of DAViID
Framework

To enhance clarity and reproducibility of the do-
main adaptation and fine-tuning procedures for
other VRD understanding tasks, we provide a step-
by-step pseudocode that outlines the overall work-
flow, aligning with Section 4.4.



Split . . Synthetic Dataset Size
Dataset | e T Val | Test | Year |  Domain Task Seript | Lang. e # Entities | #QA | # Cat
FormNLU | 535 76 | 50/50 | 2023 | Financial Form | Key Entity Retrieval | P/H | English 535 103866 | 15278 | N/A
CORD 800 | 100 | 100 | 2019 Receipt Sequence Tagging P English 800 13200 N/A 40

Table 6: Original and synthetic annotated datasets of adopted datasets.

6

Median: 0.2321 Median: 0.1961

T
I
I
1
1
1
I
I
1
1
1
I
¥
1
1
Il

o = N w & ow
s s m -

00 01 02 03 04 05
Page-level Averaged IoU

(b) CORD Syn-Struct

0.0 01 0.2 0.3

Page-level Averaged loU

0.4

(a) FormNLU Syn-Struct

10

8

6

4

2

0 0
03
Page-level Averaged Jaccard Distance

000 005 010 015 020
Page-level Averaged Jaccard Distance

(c) FromNLU Syn-Text (d) CORD Syn-Text

Figure 6: Off-the-shelf-tool analysis. Synthetic-Structure (Syn-Struct) and Synthetic-Text (Syn-Text).

Algorithm 1 Overall Workflow

Input: Specific domain document collection D
Data Preprocessing: D = {D,,, Dy, D;}
Domain Shifting: Train Ap on D,
i) GDE(t,8) -5 T E

A A E: ~ A
i) SDS(T,E) =% T/, &/
iii) Freeze &, Ee and &;4

iv) Fine-grained only: SST(t, ) RN

-i—//

t
v) Coarse-grained only: SIT(t, &) 2% E”, Q"
Fine-Tuning: Train 7 on D,

DT/ E" = Ap(t,e)
ii) Fine-grained only: ST(T"") i> Yo

iii) Coarse-grained only: ER(E"”, Q") RNV
Inference: Test F on D;

E Additional Evaluation Results

Selected Category Breakdown Analysis Table 7
compares performance across various information
categories, highlighting the benefits of the joint-
grained framework in generating comprehensive
representations. This framework enriches entity
semantics and token structures, leading to no-
table improvements—such as a 58% increase in
“com_id" in FormNLU-H and an 18% increase in
"sc" in CORD. While L2V enhances feature rep-
resentation overall, it may introduce inconsisten-
cies in flexible layout categories, like handwritten
‘com_id" in FormNLU. The proposed methods, es-
pecially SDS, consistently show robust improve-
ments across most categories, demonstrating their
effectiveness in capturing domain-aware knowl-
edge. Although leveraging LL.M-generated tags
(SST) or QA pairs (SIT) boosts performance, it may
lead to occasional instability. For example, com-
bining SDS with SST or SIT improve specific cate-
gories but may yield lower results in others—such
as a 20% decrease in CORD’s "sc" when using
SDS+SST compared to SST.
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E.1 Comparison with LLMs/MLLMs

We evaluated the state-of-the-art LLMs and
MLLMs to address VRDU tasks using various
mono- and multi-modal prompts across different
model checkpoints based on various training ap-
proaches, comparing their performance and effi-
ciency with the DAViD framework in Table 8. For
close-source GPT-40, two prompts were used: the
text-only prompt P, : { K, C'}, where K is the key
text content and C' is the provided text content, and
the text-vision prompt Py, : {K,C, I}, where I is
the target form image. GPT-3.5 uses P, only and
other open source MLLMs are used P, to leverage
text and vision information. GPT-40 with prompt
P, outperforms GPT-3.5 using the same prompt,
while with the multimodal prompt P, GPT-40
achieves around a 13% increase in F1 score. Other
open-source MLLMs show an apparent gap be-

tween close GPT-series °.

However, a significant gap remains between the
results of DAVID tuned on the guidance set D,
and even the zero-shot setting DAViD-ZS. LLM-
s/MLLMs still struggle with VRDU under zero-
shot scenarios, especially open-source MLLMs. In
contrast, the DAViD demonstrates superior perfor-
mance, suggesting that the proposed frameworks
and domain adaptation techniques effectively distil
knowledge from both LLMs and VLPMs. Further-
more, the performance of DAViD could be further
enhanced by improving the quality of the synthet-
ically annotated set D,, and incorporating more
representative backbone architectures. We evalu-
ated that of LLMs and MLLMs on a subset of the
CORD dataset provided by LayoutLLLM (Luo et al.,
2024), and the results indicate that the performance

®Refer to Appendix E.5.1 for checking prompt details.
Detailed LLM-based analysis are in Appendix E.5.2



FormNLU CORD
Entity Level com_id ntc_dt gvn_dt prv_pct Token Level sc up cep selc
P H P H P H P H
LXMERT 45.83 | 30.00 | 72.00 | 69.39 | 78.00 | 83.67 | 98.00 | 67.35 | LayoutLMv3 | 55.17 | 93.53 | 85.71 | 82.54
Joint-grained | 50.00 | 88.00 | 66.00 | 18.37 | 92.00 | 79.80 | 100.00 | 89.80 | Joint-grained | 73.33 | 85.51 | 91.67 | 76.92
+ L2V 66.67 | 72.00 | 72.00 | 61.22 | 88.00 | 95.92 | 100.00 | 9592 | +L2V 64.29 | 94.12 | 84.62 | 82.54
+ SDS 79.17 | 88.00 | 66.00 | 61.22 | 88.00 | 89.80 | 100.00 | 95.92 | +SDS 80.00 | 94.89 | 100.00 | 89.23
+FST 62.50 | 78.00 | 72.00 | 67.35 | 90.00 | 85.71 | 100.00 | 100.00 | + SST 84.85 | 91.43 | 80.00 | 80.65
+FST + SDS | 79.17 | 78.00 | 80.00 | 81.63 | 92.00 | 85.71 | 96.00 | 95.92 | + SST +SDS | 64.29 | 97.06 | 88.89 | 90.32

Note: ‘com_id* = company identifier (ACN/ARSN),

‘ntc_dt* = notice date ‘gvn_dt‘ = notice given to company date, ‘prv_pct* = previous voting power

‘sc* = subtotal count, ‘up* = unit price, ‘ccp* = credit card price, ‘sefc‘ = subtotal others

Table 7: Selective breakdown results of performance across representative categories.

Form NLU

Model | FormNLUP | FormNLUH | CORD¥ Config. P H Config. CORD

| Time | F1 | Time | F1 | Time | ANLS No DW 89.60 | 85.76 No DW 88.11
GPT-3.5 03:49 | 3437 | 04:38 | 30.94 | 01:16 | 28.15% 12 SDS 90.60 | 86.93 12 SDS 89.27
GPT-4o (P;) | 04:46 | 42.09 | 04:19 | 36.00 | 01:48 | 29.55* 15 SIT 91.28 | 85.76 15 SST 87.93
LLava (Py) | 52:54 | 979 | 60:58 | 7.82 | 10:23 | 37.98 12 SDS+SIT | 90.60 | 85.59 | ¥2SDS+SST | 88.25
Bips (P | 3606 | 1262 | 3534 | 167 |10z | 53 DS OLIL| 8878 | SDS | 89.8
GPT-4o(thw) 20:02 | 5088 | 20:49 | 49.15 | 07:55 | 79.46% SIT 90.77 | 87.94 SST 88.83
DAVID.ZS 0337 | 8742 | 0331 1 8i7a | - - SDS+SIT 92.62 | 88.61 | SDS+SST 90.25
DAViD-D, 03:37 | 92.62 | 03:31 | 88.78 | 00:31 | 90.25

Table 8: Performance between LLM/MLLMs and
DAViD. CORD* is adopted QA-style subset introduced
by LayoutLLM.

of LLMs/MLLMs remains suboptimal for this task,
as well as with less efficiency.

E.2 Effects of Synthetic Set Size

In practical applications, the availability of syn-
thetic document collections often depends on
domain-specific factors. To evaluate the impact
of varying D,, sizes, we analysed how performance
changes with different synthetic set sizes, as shown
in Table 9 to demonstrate the effectiveness of the
proposed framework. Generally, increasing D, im-
proves model performance during fine-tuning on
D,. Domain adaptation methods that address struc-
tural domain shifts are less sensitive to D,, size,
while methods like synthetic inquiry tuning and
sequence tagging are more affected. This indicates
that even a limited amount of synthetic structural
information can effectively bridge domain gaps,
though a larger D,, size further strengthens model
robustness and overall performance.

E.3 All Breakdown Results

In Section 6.1 of the main paper, we analyze the
performance under different configurations of se-
lective categories. This section presents detailed ex-
perimental results for each sub-category, providing
insights into the effects of the proposed methods
and modules on specific categories.
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Table 9: Effects of changing the size of synthetic anno-
tated set D,,

E.3.1 FormNLU Dataset

Tables 10 and 11 compare the performance of the
printed and handwritten sets. Overall, the printed
set demonstrates better performance, particularly
for target entities located in the "7Table" area. This
may be due to a smaller domain gap between the
digital training set and the printed set P, as com-
pared to the handwritten set H. Additionally, joint-
grained frameworks consistently outperform mono-
grained baselines, and incorporating domain adap-
tation methods significantly enhances both perfor-
mance and robustness across the framework.

E.3.2 CORD Dataset

The overall and breakdown results of CORD
datasets are also represented in Table 12 and 13.
Compared with integrating fine-grained level infor-
mation to coarse-grained, there is limited improve-
ment on integrating coarse-grained information to
fine-grained baselines.

E.4 Stepped Guidance Set Ratio Results

To explore the effects of the size of the guidance
set on test set performance, we reported and anal-
ysed the performance on Figure 4. The exact per-
formance of each guidance set ratio is lised with
additional analysis.



Model F1 cnm cid hnm  hid cdt pdt gdt cls ppn pvp cpn cvp

LXMERT 81.21 94.00 84.00 79.17 45.83 78.00 72.00 78.00 72.00 94.00 98.00 82.00 96.00
Joint-grained 89.60 98.00 92.00 97.92 50.00 88.00 66.00 92.00 100.00 100.00 100.00 92.00 98.00

+ L2V 90.60 98.00 98.00 79.17 66.67 94.00 72.00 88.00 98.00 98.00 100.00 96.00 98.00
+ SDS 91.11 100.00 94.00 91.67 79.17 90.00 66.00 88.00 100.00 86.00 100.00 100.00 98.00
+ SIT 90.77 96.00 94.00 93.75 62.50 82.00 72.00 90.00 100.00 100.00 100.00 100.00 98.00

+SIT+SDS 9228 98.00 94.00 9583 79.17 86.00 80.00 92.00 98.00 92.00 96.00 98.00 98.00

Table 10: Model breakdown performance on FormNLU printed set. Explanation of abbreviations: cnm (Company
Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt (Change Date), pdt (Previous Notice
Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s Votes), pvp (Previous Voting Power), cpn
(Current Person’s Votes), cvp (Current Voting Power).

Model F1 cnm cid hnm hid cdt pdt gdt cls ppn pPvp cpn cvp

LXMERT 64.66 66.00 76.00 88.00 30.00 58.00 69.39 83.67 8.00 84.00 6735 72.00 74.00
Joint-grained 85.76 100 100 100 88.00 92.00 1837 79.59 94.00 90.00 89.80 90.00 96.00

+L2V 87.60 100 98.00 96.00 72.00 96.00 6122 9592 100 92.00 9592 62.00 92.00
+ SDS 88.78 100 100 100 88.00 92.00 61.22 89.80 84.00 88.00 95.92 82.00 84.00
+ SIT 8794 100 98.00 100 78.00 60.00 67.35 8571 100 98.00 100.00 88.00 80.00

+SIT+SDS 88.61 100 96.00 98.00 78.00 78.00 81.63 8571 86.00 92.00 95.92 90.00 82.00

Table 11: Model breakdown performance on FormNLU handwritten set. Explanation of abbreviations: cnm
(Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt (Change Date), pdt
(Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s Votes), pvp (Previous
Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).

Model Overall CNT DscP NM Num Pr¢c SubC SubNM SubPrc¢ UntPrc CshPrc

LayoutLMv3  87.08 96.00 47.06 92.80 58.82 9359 5517 55.56 50.00 93.53 66.67
Joint-grained ~ 87.48  96.02 47.06 92.87 76.19 93.15 7333 57.53 72.73 85.51 46.15

+ L2V 88.11 9581 4444 91.60 6250 9435 6429 57.14 58.82 94.12 62.50
+ SDS 89.08 97.53 4444 9257 30.77 95.09 80.00 62.16 64.86 94.89 55.56
+ SST 88.83 9559 58.33 9326 58.82 9393 8485 62.16 60.00 91.43 62.50

+SST+SDS  90.25 9559 5333 92.08 73.68 9548 6429 5246 74.29 97.06 50.00

Table 12: Model Comparison on Various Metrics (Part 1), including count (CNT), discount price (DscP), miscella-
neous items (Etc), item subtotal (ItmSubT), name (NM), number (Num), price (Prc), subtotal count (SubC), sub
name (SubNM), subtotal price (SubPrc), and unit price (UntPrc).

Model ChgPrc CrdPrc EmnyPrc MQtyC MTypC TotEtc TotPrc DscPrc SubTotEtc SrvPrc SubTotPrc
LayoutLMv3 13.33 85.71 87.94 89.13 84.14 83.72  58.54  40.00 82.54 16.67 18.18
Joint-grained 0.00 91.67 91.55 86.87 86.30 94.12 5091 28.57 76.92 36.36 0.00
+ L2V 0.00 84.62 92.65 93.62 87.42 94.02 57.14 16.67 82.54 20.00 28.57
+ SDS 0.00 100.00 90.65 91.49 92.09 9412  62.50 10.00 89.23 25.00 0.00
+SST 14.29 80.00 90.65 94.74 88.59 94.74  57.78 50.00 80.65 46.15 0.00

+ SST + SDS 0.00 88.89 91.97 93.48 91.03 96.55 6341 33.33 90.32 40.00 11.11

Table 13: Model comparison on various metrics (Part 2), including cash price (CshPrc), change price (ChgPrc),
credit card price (CrdPrc), e-money price (EmnyPrc), menu quantity count (MQtyC), menu type count (MTypC),
total etcetera (TotEtc), total price (TotPrc), discount price (DscPrc), subtotal etcetera (SubTotEtc), service price
(SrvPrc), and subtotal price (SubTotPrc).
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E.4.1 FormNLU Dataset

In the FormNLU dataset, both the printed set (P)
and handwritten set (H) exhibit similar patterns as
represented by Table 14 and Table 15. While in-
corporating fine-grained information can enhance
performance and robustness, especially when us-
ing smaller guidance sets, the overall performance
still falls short compared to mono-grained base-
lines. However, the proposed domain adaptation
approaches significantly improve robustness when
the guidance set size, D,,, is reduced. In particular,
Structural Domain Shifting (SDS) demonstrates
a strong ability to capture domain-specific infor-
mation across all guidance set ratios. Moreover,
combining Synthetic Sequence Tagging (SST) with
SDS results in even better performance when a
larger, well-annotated guidance set is available.

E.4.2 CORD Dataset

For the CORD dataset, different from coarse-
grained level task, integrating coarse-grained infor-
mation into fine-grained framework bring limited
improvement.

E.5 More Results and Analysis about
LLMs/MLLMs testing.

E.5.1 Prompt Details

The prompt details for each employed LLM/M-
LLM within the FormNLU dataset are provided in
Table 17. The generated outputs are subsequently
post-processed to compute the Jaccard distance
between target entities, thereby ensuring accurate
identification of the entity most closely matching
the ground truth. For the CORD dataset, we adopt
the LayoutLLM (Luo et al., 2024) configurations,
utilizing ANLS as the evaluation metric.

E.5.2 LLMs/MLLMs Performance Analysis

We show the breakdown performance of different
LLMs/MLLMs perdictions under zero-shot scenar-
ios of printed set in Table 18 and handwritten set
in Table 19, respectively. The results indicate that
closed-source models exhibit relatively lower per-
formance compared to other models. Consistent
with the overall performance trends, closed-source
models, even when utilizing non-multimodal out-
put forms, tend to underperform against open-
source MLLMs across the majority of categories.
Notably, the digit-based entities, e.g. ppn, pvp,
located within the table remains challenging us-
ing text inputs alone, suggesting that incorporating
visual information could enhance performance.
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E.6 Qualitative Analysis: Limitations of
LLM/MLLMs

Layout/Structure Interpretation LLMs excel at
processing unstructured text but struggle with un-
derstanding the spatial relationships and visual
structures in form-based documents. This limi-
tation results in misaligned content, missed logical
groupings, and poor performance in tasks requiring
precise layout comprehension, such as interpreting
complex templates or extracting values from nested
structures, as shown in Figure 9.

Inconsistency LLMs frequently produce incon-
sistent outputs when handling form-based docu-
ments, generating conflicting associations for the
same key-value pairs or contradicting themselves
across different sections. This lack of coherence
highlights their difficulty in maintaining logical
consistency in structured content interpretation.
For example, as shown in Figure 8, the LLM clas-
sifies differently between the exactly same form or
the same company forms with the same person’s
hand writing. The same limitation was there in the
receipt dataset, CORD10.

Lack of Contextual Understanding LL.Ms of-
ten generate incorrect answers by relying on super-
ficial patterns rather than understanding contextual
relationships within the document. This results
in confusion between unrelated elements, making
LLMs unsuitable for accurately processing struc-
tured documents that require deeper contextual and
spatial alignment, as shown in Figure 7

F Supplementary of Case Studies

Quantitative and qualitative case studies have been
conducted to demonstrate the effectiveness and ro-
bustness of the proposed joint-grained framework
and domain adaptation methods. Additional sup-
plementary materials and comprehensive analyses
are provided herein for further insights.

F.1 Synthetic Label Synthesis Distribution

As discussed in Section 6.4, synthetic noise is in-
troduced into the guidance set D, of the CORD
dataset. This noisy dataset is then used to fine-tune
the model, which is subsequently tested on a well-
annotated test set D;. Compared to the FormNLU
dataset, the CORD dataset shows limited perfor-
mance improvement. To demonstrate the robust-
ness of the proposed DAViID framework, rather
than focusing solely on performance, we applied
random noise following a normal distribution. This



Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Baseline 0.00 59.73 67.45 7836 80.54 7634 7886 7886 78.02 79.70 81.21
Joint-grained  0.00 47.65 76.68 79.87 83.89 8574 8691 87.42 86.24 8893 89.60
+ L2V 0.00 48.83 76.68 85.57 8423 88.93 8742 86.58 87.92 89.93 90.60
+ SDS 87.42 8943 88.93 90.77 8859 90.77 8742 90.77 91.61 91.28 91.11
+ SST 0.17 54.03 73.66 86.74 8540 86.74 86.41 89.26 85.57 91.61 90.77
+SST+SDS 47.65 8557 8826 88.93 88.26 89.09 88.26 91.78 90.27 90.77 92.62
Table 14: Performance comparison of models at different guidance set ratios on printed set P.
Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Baseline 0.00 48.58 6332 68.17 66.00 66.67 6750 6298 6533 64.82 64.66
Joint-grained  0.00 36.85 71.86 73.37 71.19 8291 84.25 82.75 82.41 8559 85.76
+ L2V 0.00 40.03 7253 82.08 81.07 8040 84.09 8241 82.58 86.41 87.60
+ SDS 81.74 85.26 8693 8291 8339 8526 84.09 8945 8794 87.77 88.78
+ SST 5.70 4439 67.17 8124 76.55 83.25 84.09 8794 84.09 87.10 87.94
+SST +SDS 4422 8241 84.59 87.44 83.56 8526 84.76 86.77 85.09 89.45 88.61

Table 15: Performance comparison of models at different guidance set ratios on printed set H.

noise is introduced by replacing the original labels
with incorrect labels (Figure 12) or marking them
as unknown (Figure 13). Figures 12 and 13 illus-
trate the distribution of original and noisy labels
across varying levels of noise rates.

F.2 Additional Qualitative Analysis

To highlight the strengths and weaknesses of the
proposed DAViD framework, additional qualitative
analyses were conducted to compare the inference
performance in a more straightforward manner.

F.2.1 Qualitative Analysis on CORD

Additional visualized qualitative analysis samples
are provided below, accompanied by more detailed
descriptions in the captions.

F.2.2 Qualitative Analysis on FormNLU

The visualized qualitative analysis for both the
FormNLU printed and handwritten datasets is also
presented. A more detailed analysis for each case
is provided in the corresponding captions.
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Model 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Baseline 0.00 6921 7791 79.26 7848 8359 8431 86.13 8528 8736 87.08
Joint-grained 0.00 68.57 75.77 78.68 79.24 83.33 84.03 86.24 85.01 86.98 87.48
+ L2V 0.00 71.01 76.68 78.82 78.68 8225 84.47 8493 8524 87.08 88.11
+ SDS 0.05 72.03 77.85 77.10 78.69 84.83 8521 86.41 8584 8820 88.81
+ SST 025 6373 7121 7332 7631 8126 8237 83.03 8491 87.76 88.78

+SST+SDS 4.21 68.61 77.67 79.34 8031 8535 8522 87.38 8648 88.25 89.33

Table 16: Performance comparison of models at different guidance set ratios on CORD dataset.

Model Prompt Image

Context: {} \n Above is the context of the target form document,
GPT-3.5 please extract the {} \n, the output format strictly follow: Value: N
XXX

Context: {} \n Above is the context of the target form document,
GPT-40-t please extract the {} \n, the output format strictly follow: Value: N
XXX

USER: Below image is the target form image. <image>\n Con-
text: {} \n Above is the context of the target form document, please
extract the {} only \n, the output format strictly follow: \n ASSIS-
TANT:

LLAVAL.S

Below image is the target form image. <image>\n Context: {} \n
QWen-VL  Above is the context of the target form document, please extract Y
the {} only \n, the output format should strictly follow: \n Answer:

Context: {} \n Above is the context of the target form document,

xGen-MM which is {} \n, output the answer only: \n Answer: Y
Below image is the target form image. <image> Context: {}
GPT-Ao-y \n Above is the document image and context of the target form

document, please extract the { } \n, the output format strictly follow:
Value: xxx

Table 17: Comparison of prompts and image utilization across different LLMs/MLLMs.

Models F1 cnm cid hnm hid cdt pdt gdt cls ppn  pvp cpn cvp

GPT-3.5 3437 96.00 88.00 4792 17.00 32.00 30.00 66.00 96.00 0.00 4.00 12.00 4.00
GPT-4o-t 42.09 98.00 94.00 87.50 56.25 32.00 28.00 56.00 98.00 0.00 4.00 6.00 0.00
LLaVA-1.5 9.79 10.00 72.00 1042 16.67 0.00 8.00 20.00 12.00 0.00 0.00 46.00 0.00
QWen-VL 984 800 56.00 3125 1042 6.00 10.00 48.00 2.00 200 6.00 800 6.00
xGen-MM 12,62 46.00 6.00 1250 22.02 26.00 10.00 40.00 34.00 4.00 14.00 34.00 6.00
GPT-40-v  59.88 34.00 52.00 92.00 6.00 46.00 14.00 93.75 94.00 98.00 90.00 60.16 82.00
Ours - Best  92.62 98.00 94.00 95.83 79.17 86.00 80.00 92.00 98.00 92.00 96.00 98.00 98.00

Table 18: Zero-shot LLMs/MLLMs overall F1 and Breakdown Accuracy on FormNLU printed set. Explanation
of abbreviations: cnm (Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt
(Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s
Votes), pvp (Previous Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).
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Models F1 cnm cid hnm hid cdt pdt gdt cls ppn  pvp cpn cvp
GPT-3.5 3094 86.00 62.77 58.00 18.74 20.00 16.33 3435 90.00 494 10.12 31.00 6.17
GPT-40-t 36.00 96.00 78.00 84.00 41.05 24.00 1837 2041 9440 4.17 2.00 12.00 1.09
LLAVA 7.82 14.00 5231 10.00 3356 0.00 0.00 204 1600 200 0.00 6.00 0.00
QWen-VL  6.00 843 36.00 20.00 24.00 20.00 6.12 1837 2.00 200 408 200 8.00
xGen-MM  11.67 8.16 10.00 32.00 10.00 36.00 6.12 2041 14.00 200 8.16 16.00 18.00
GPT-40-v  49.15 98.00 29.59 54.73 97.14 39.78 24.15 26.00 78.77 96.00 20.18 48.06 5.41
Ours - Best 88.78 100 96.00 98.00 78.00 78.00 81.63 85.71 86.00 92.00 95.92 90.00 82.00

Table 19: Zero-shot LLMs/MLLM:s overall F1 and Breakdown Accuracy on FormNLU handwritten set. Explanation
of abbreviations: cnm (Company Name/Scheme), cid (Company ID), hnm (Holder Name), hid (Holder ID), cdt
(Change Date), pdt (Previous Notice Date), gdt (Given Date), cls (Class of Securities), ppn (Previous Person’s
Votes), pvp (Previous Voting Power), cpn (Current Person’s Votes), cvp (Current Voting Power).

Figure 7:

(i) Exactly Same Forms — xGen-MM

Notice of change of iatarests of substantial holder

powmeee VR Bio Medical L

Voo Py LG
— E ——

GPT 4-0-v

Q: What is “The previous notice was

dated”
A: 7/1/2003
GT: N/A

GPT 4-0-v

Q: What is “ACN/ARSN of substantial holder”?
A: “There was a change in the interests of the

substantial holder on”

GT: “*

(ii) Same Compony Forms — xGen-MM

Figure 8: FormNLU sample with LLM-based document understanding (Inconsistency)
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FormNLU sample with LLM-based document understanding (Lack of Contextual Understanding)




200

(i) Qwen-VL (ii) LayoutLMv3

Figure 9: FormNLU sample with LLM-based document understanding (Lack of Layout Interpretation)

EBEEEEEEEE. I

Figure 11: CORD LLM Case Study. (Inconsistency)
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Figure 12: Comparison of category distributions in the ground truth and after applying varying levels of noise,
where the ground truth labels are randomly replaced with another category following a normal distribution.
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Figure 13: Comparison of category distributions in the ground truth and after applying varying levels of noise,
where the ground truth labels are randomly replaced with unknown categories following a normal distribution.

(iv) + SDS (v)+ SST (vi) + SDS + SST

(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained

Figure 14: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (iv)
Incorrect predictions marked with red rectangles under various configurations. (v,vi) The best performance was
achieved after applying SST to extract all key information correctly.
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(i) Ground Truth (i) LayoutLMv3 (iii) Joint-grained (iv) + SDS (v) + SST (vi) + SDS + SST

Figure 15: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (vi)
Incorrect predictions marked with red rectangles under various configurations. (vi) The best performance was
achieved using two domain adaptation methods, with only one incorrect predictions. Compared to the fine-grained-
only baseline LayoutL.Mv3, the Joint-grained framework effectively reduces the number of incorrect cases. The
application of SDS further decreases erroneous predictions. While the number of errors remains unchanged after
applying SST, combining SST with SDS leads to improved robustness.

(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained (iv) + SDS (v) +8ST (vi) + SDS + SST

Figure 16: Real-world CORD dataset sample: (i) Ground truth key information highlighted in green. (ii) - (iv)
Incorrect predictions marked with red rectangles under various configurations. (v,vi) The best performance was
achieved after applying SST to extract all key information correctly.

(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained (iv) + SDS (v) + SIT (vi) + SDS + SIT

Figure 17: Real-world FormNLU printed dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (vi) Incorrect predictions marked with red rectangles under various configurations and red dashed rectangles
representing missing detection (unknown). The joint-grained framework significantly enhances performance
on the target sample image by integrating fine-grained information into coarse-grained representations. While
applying individual domain adaptation methods does not effectively reduce the number of error cases, combining
both methods yields the best performance, with only one target entity value missing.
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(i) Ground Truth (iiy LayoutLMv3 (iii) Joint-grained (iv) + SDS (V) +SIT (vi) + SDS + SIT

Figure 18: Real-world FormNLU printed dataset sample: (i) Ground truth target value entities are highlighted in
green. (ii,v) Incorrect predictions marked with red rectangles under various configurations. Other configurations
could detect all cases correctly, which may result from the effectiveness of joint-grained frameworks.

(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained (iv) + SDS (v) + SIT (vi) + SDS + SIT

Figure 19: Real-world FormNLU printed dataset sample: (i) Ground truth key information highlighted in green.

(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained (iv) + SDS (¥v)+SIT (vi) + SDS + SIT

Figure 20: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in green.
(ii) - (vi) Incorrect predictions marked with red rectangles under various configurations. Joint-grained framework
could effectively reduce the number of incorrect predictions.

(i) Ground Truth (iiy LayoutLMv3 (iii) Joint-grained (iv) + SDS (V) + SIT (vi) + SDS + SIT

Figure 21: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in
green. (ii) - (vi) Incorrect predictions marked with red rectangles under various configurations. A joint-grained
framework significantly reduces incorrect predictions by integrating both coarse and fine-grained features. The
addition of SDS further enhances the prediction quality, resulting in more accurate and reliable outcomes.
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(i) Ground Truth (ii) LayoutLMv3 (iii) Joint-grained (iv) + SDS (v) + SIT (vi) + SDS + SIT

Figure 22: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in green.

achieved using any domain adaptation method, resulting in no incorrect predictions.

(i) Ground Truth (i) LXMERT (iii) Joint-grained (iv) + SDS () +SIT (vi) + SDS + SIT

Figure 23: Real-world FormNLU handwritten dataset sample: (i) Ground truth key information highlighted in
green. (ii) - (v) Incorrect predictions marked with red rectangles under various configurations. (vi) The best
performance was achieved using two domain adaptation methods, with no incorrect predictions. The joint-grained
framework significantly enhances performance on the target sample image by integrating fine-grained information
into coarse-grained representations. While applying individual domain adaptation methods does not effectively
reduce the number of error cases, combining both methods yields the best performance, without any incorrect
prediction.
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