R2-Dreamer: Redundancy-Reduced World Models without Decoders or Augmentation

Anonymous authors

000

001

002003004

005

006

008 009

010 011

012

013

014

015

016

017

018

019

021

022

025

026

027

028

029

031 032

033

037

041

042

043

044

046

048

049

051

052

Paper under double-blind review

Abstract

A central challenge in image-based Model-Based Reinforcement Learning (MBRL) is to learn representations that distill task-essential information from irrelevant details. While promising, approaches that learn representations by reconstructing input images often waste capacity on spatially large but task-irrelevant visual information, such as backgrounds. Decoder-free methods address this issue by leveraging data augmentation (DA) to enforce robust representations, but the reliance on such external regularizers to prevent collapse severely limits their versatility. To address this, we propose R2-Dreamer, an MBRL framework that introduces a self-supervised objective acting as an internal regularizer, thus preventing collapse without resorting to DA. The core of our method is a feature redundancy reduction objective inspired by Barlow Twins, which can be easily integrated into existing frameworks. In evaluations on the standard continuous control benchmark, DMC Vision, R2-Dreamer achieves performance competitive with strong baselines, including the leading decoder-based agent DreamerV3 and its decoder-free counterpart that relies on DA. Furthermore, its effectiveness is highlighted on a challenging benchmark with tiny but taskrelevant objects (DMC-Subtle), where our approach demonstrates substantial gains over all baselines. These results show that R2-Dreamer provides a versatile, high-performance framework for decoder-free MBRL by incorporating an effective internal regularizer.

1 Introduction

Learning effective latent representations is a cornerstone of world models in MBRL, yet this poses a significant challenge: representations must capture task-essential information without overfitting to irrelevant visual details. While architectures like the Recurrent State-Space Model (RSSM) have achieved remarkable success (Hafner et al., 2025), a fundamental question remains open: What is the optimal objective function for learning the representation itself? Many leading methods (Micheli et al., 2023; Zhang et al., 2023; Micheli et al., 2024; Hafner et al., 2025) rely on a pixel-wise reconstruction loss. This reliance creates a critical issue: the learning signal is dominated by spatially large but task-irrelevant parts of the observation, such as the background. Consequently, the model is incentivized to meticulously reconstruct these details, wasting representational capacity and computational resources at the expense of ignoring small but task-critical objects.

To address the limitations of pixel-wise reconstruction, decoder-free methods learn representations via self-supervised losses (Deng et al., 2022; Okada & Taniguchi, 2022; Burchi & Timofte, 2025). To prevent the representation collapse common in such approaches, they depend critically on Data Augmentation (DA) as an external regularizer. This reliance on DA is a significant bottleneck for general agents (Laskin et al., 2020; Ma et al., 2025), as the choice of transformation is task-dependent: random shifting can discard crucial small objects, while color jittering can be detrimental when color itself is a key feature.

In this work, we focus on the representation learning objective within the powerful RSSM framework and propose **R2-Dreamer** that breaks the dependency on decoders and DA. To isolate the impact of the learning objective itself, we build upon the well-established Dreamer

architecture. We introduce an internal regularizer inspired by Barlow Twins (Zbontar et al., 2021), which directly penalizes feature redundancy between image embeddings and latent states, providing a versatile and robust baseline capable of achieving competitive performance without external regularizers.

Our main contributions are:

- A new representation learning paradigm for RSSM-based decoder-free MBRL that replaces hand-engineered DA with an internal redundancy reduction objective.
- Competitive performance on standard benchmarks and superior performance on our new, challenging DMC-Subtle benchmark, highlighting the effectiveness of a decoder-free, DA-free approach.
- The release of our unified PyTorch codebase, including implementations of our method and baselines built on DreamerV3, along with the DMC-Subtle benchmark to facilitate future research.

2 Related Work

Our work is positioned at the intersection of MBRL and Self-Supervised Learning (SSL). We contextualize our approach by reviewing representation learning strategies in MBRL and how they address the challenge of regularization.

2.1 Representation Learning in World Models

Decoder-Based World Models A dominant paradigm in MBRL, popularized by the Dreamer series (Hafner et al., 2025), learns representations by reconstructing observations from a latent state. While successful, this reconstruction-based objective often forces the model to waste capacity on task-irrelevant details, such as backgrounds, motivating a shift towards decoder-free methods.

Decoder-Free World Models and the Reliance on DA To address the limitations of reconstruction, recent decoder-free methods learn representations through auxiliary objectives that do not involve pixel-wise reconstruction, such as predicting future rewards or learning via contrastive losses. However, despite the diversity in their learning signals, these prominent examples (Ye et al., 2021; Deng et al., 2022; Hansen et al., 2022; 2024; Wang et al., 2024; Burchi & Timofte, 2025) all critically rely on DA—typically random shifts—as an external regularizer to prevent representation collapse. This fundamental dependency on hand-engineered augmentations limits their versatility, a key bottleneck we address. While other internal regularization methods exist (Shu et al., 2020; Nguyen et al., 2021), our work is the first to demonstrate that a single, information-theoretic principle of redundancy reduction is sufficient for stable and effective representation learning in RSSM-based models without any DA.

2.2 From Invariance to Information-Based Regularization

DA-Driven Invariance Most self-supervised methods, including those used in existing decoder-free agents, are invariance-based. They rely on DA to create positive pairs (e.g., augmented views of the same image) and train the model to produce similar representations for them, as seen in contrastive (Chen et al., 2020; He et al., 2020; Caron et al., 2020) and non-contrastive (Grill et al., 2020; Chen & He, 2021) learning. In this paradigm, DA is essential to prevent collapse to trivial solutions.

DA-Free Internal Regularization Our work adopts a different approach from the information-based SSL literature (Zbontar et al., 2021; Bardes et al., 2022), which focuses on reducing feature redundancy. While these methods still use DA in their original computer vision context, we adapt this principle as a complete replacement for DA in the RL domain. By applying the redundancy reduction objective between the image encoder's output and the RSSM's latent state, we introduce an *internal regularizer* sufficient to prevent

representation collapse, thereby allowing us to build a more versatile and robust learning framework without task-specific augmentations.

3 Method

Our method, R2-Dreamer, redesigns the representation learning mechanism of the powerful DreamerV3 (Hafner et al., 2025) framework to be decoder-free and DA-free. We achieve this by replacing its reconstruction-based objective with a self-supervised objective based on redundancy reduction, inspired by Barlow Twins (Zbontar et al., 2021). To isolate the impact of our proposed learning objective, other components of the world model and the actor-critic objectives are kept identical to the original DreamerV3 implementation. This single change demonstrates notable improvements in computational efficiency and robustness. This section first details the latent dynamics model, introduces our new world model learning objective, and reviews the actor-critic learning process.

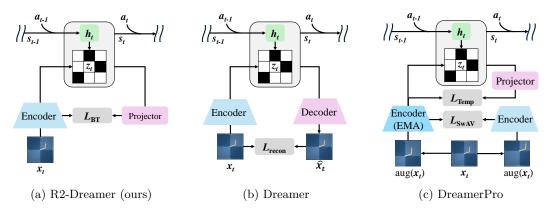


Figure 1: Comparison of representation learning mechanisms in world models. (a) R2-Dreamer learns representations without a decoder or DA. It uses an internal redundancy reduction objective (\mathcal{L}_{BT}) that aligns the latent state s_t (via a projector) with the embedding of the observation x_t . (b) Dreamer relies on a decoder to learn representations by reconstructing the observation (\hat{x}_t) from the latent state s_t , guided by a reconstruction loss (\mathcal{L}_{Recon}) . (c) DreamerPro removes the decoder but depends on DA. It enforces consistency between augmented views of the observation $(\operatorname{aug}(x_t))$ using a spatial loss (\mathcal{L}_{SwAV}) and a temporal loss (\mathcal{L}_{Temp}) that leverages an Exponential Moving Average (EMA) of the encoder weights.

3.1 Latent Dynamics Model

Following DreamerV3, we use the RSSM (Hafner et al., 2019) with a composite latent state $s_t = (h_t, z_t)$, where h_t is a deterministic state and z_t is a stochastic state. The model is trained on sequences of observations x_t , actions a_t , rewards r_t , and continuation flags c_t . The key difference in our architecture is the **complete removal of the image decoder** and the addition of a small **projector head**. The components of our model are:

 $\begin{array}{lll} \textbf{Image Encoder:} & e_t = f_\phi(x_t) \\ \textbf{Sequence Model:} & h_t = f_\phi(s_{t-1}, a_{t-1}) \\ \textbf{Dynamics Predictor:} & \hat{z}_t \sim p_\phi(\hat{z}_t \mid h_t) \\ \textbf{Representation Model:} & z_t \sim q_\phi(z_t \mid h_t, e_t) \\ \textbf{Reward Predictor:} & \hat{r}_t \sim p_\phi(\hat{r}_t \mid s_t) \\ \textbf{Continue Predictor:} & \hat{c}_t \sim p_\phi(\hat{c}_t \mid s_t) \\ \textbf{Projector:} & k_t = f_\phi(s_t) \\ \end{array} \tag{1}$

The projector is a linear head that maps the RSSM's latent state into the same feature space as the image embedding e_t . Unlike DreamerV3, which uses an image decoder $\hat{x}_t \sim p_{\phi}(\hat{x}_t \mid s_t)$ for representation learning, our model is trained with the objective described next.

3.2 World Model Learning

Our core contribution is a new learning objective for the world model that replaces the reconstruction loss of DreamerV3. As theoretically motivated in Appendix A, this new objective is a tractable surrogate for an extended Sequential Information Bottleneck (SIB) objective. We now detail the practical implementation of this objective, adhering to the original loss components from DreamerV3 where applicable.

DreamerV3 Objective The world model in DreamerV3 is trained by optimizing four distinct objectives: prediction, reconstruction, and two KL-divergence terms for regularizing the latent dynamics. The overall loss, shown in Eq. equation 2, is a weighted sum of these components.

$$\mathcal{L}_{\text{DreamerV3}}(\phi) = \mathbb{E}_{q_{\phi}} \sum_{t} \left(\mathcal{L}_{\text{pred}}(t) + \mathcal{L}_{\text{recon}}(t) + \beta_{\text{dyn}} \mathcal{L}_{\text{dyn}}(t) + \beta_{\text{rep}} \mathcal{L}_{\text{rep}}(t) \right)$$
(2)

The prediction and reconstruction losses are negative log-likelihoods. The dynamics and representation losses are regularized using KL balancing (Hafner et al., 2022) and free bits (Kingma et al., 2016). Each component is defined as:

$$\mathcal{L}_{\text{pred}}(t) = -\log p_{\phi}(r_t|s_t) - \log p_{\phi}(c_t|s_t)$$

$$\mathcal{L}_{\text{recon}}(t) = -\log p_{\phi}(x_t|s_t)$$

$$\mathcal{L}_{\text{dyn}}(t) = \max \left(1, \text{KL}\left[\text{sg}(q_{\phi}(z_t|h_t, e_t)) \parallel p_{\phi}(z_t|h_t)\right]\right)$$

$$\mathcal{L}_{\text{rep}}(t) = \max \left(1, \text{KL}\left[q_{\phi}(z_t|h_t, e_t) \parallel \text{sg}(p_{\phi}(z_t|h_t))\right]\right)$$
(3)

where sg denotes the stop-gradient operator.

R2-Dreamer Objective We remove the reconstruction term \mathcal{L}_{recon} and replace it with our proposed loss, \mathcal{L}_{BT} . The other components, including the KL balancing scheme and loss coefficients ($\beta_{dyn} = 1$, $\beta_{rep} = 0.1$), are adopted from DreamerV3:

$$\mathcal{L}_{\text{world}}(\phi) = \mathbb{E}_{q_{\phi}} \sum_{t} \left(\mathcal{L}_{\text{pred}}(t) + \beta_{\text{BT}} \mathcal{L}_{\text{BT}}(t) + \beta_{\text{dyn}} \mathcal{L}_{\text{dyn}}(t) + \beta_{\text{rep}} \mathcal{L}_{\text{rep}}(t) \right)$$
(4)

This formulation isolates the contribution of our method to the new representation learning signal provided by \mathcal{L}_{BT} .

Representation Learning via Redundancy Reduction (\mathcal{L}_{BT}) We adopt the Barlow Twins objective as our redundancy-reduction mechanism. Compared to other methods like VICReg (Bardes et al., 2022), it is chosen for its minimal implementation footprint and fewer hyperparameters, which reduces tuning effort. The objective is defined as:

s, which reduces tuning enort. The objective is defined as:
$$\mathcal{L}_{\mathrm{BT}}(t) = \sum_{i} \left(1 - (\mathbf{C}_t)_{ii}\right)^2 + \alpha \sum_{i \neq j} (\mathbf{C}_t)_{ij}^2$$
Redundancy Term
(5)

where C_t is the cross-correlation matrix at time t, computed between the projector output k_t and the image embedding e_t . The indices i and j refer to the feature dimensions. This loss is governed by a single hyperparameter, α , which weights the redundancy reduction term. Instead of creating artificial views via DA, we form a natural pair of views from the model's internal signals: the image embedding e_t and the projected latent state k_t . See the pseudocode in Appendix F for a practical implementation.

3.3 Actor-Critic Learning

To ensure our performance gains are attributable to the world model's representation quality, the actor-critic learning process remains unchanged from DreamerV3. The policy (actor) π_{θ} and value function (critic) V_{ψ} are trained on imagined trajectories generated by the learned world model.

The critic is trained to predict the distribution of λ -returns, a robust estimate of future rewards. The critic's loss is the maximum likelihood of predicting these returns:

$$\mathcal{L}_{\text{critic}}(\psi) = -\mathbb{E}_{p_{\phi}, \pi_{\theta}} \left[\sum_{t=1}^{H} \log p_{\psi}(R_{t}^{\lambda} | s_{t}) \right]$$
 (6)

where the λ -return R_t^{λ} is computed recursively as $R_t^{\lambda} = r_t + \gamma c_t ((1 - \lambda)V_{\psi}(s_{t+1}) + \lambda R_{t+1}^{\lambda})$, with discount γ and continuation flag c_t .

The actor is trained to maximize these returns using the REINFORCE gradient estimator, incorporating entropy regularization with a fixed scale η and robust return normalization:

$$\mathcal{L}_{\text{actor}}(\theta) = -\mathbb{E}_{p_{\phi}, \pi_{\theta}} \left[\sum_{t=1}^{H} \left(\text{sg} \left(\frac{R_{t}^{\lambda} - V_{\psi}(s_{t})}{\max(1, S)} \right) \log \pi_{\theta}(a_{t}|s_{t}) + \eta H[\pi_{\theta}(a_{t}|s_{t})] \right) \right]$$
(7)

where S is a dynamically scaled normalizer based on the percentile of returns, ensuring stable learning across diverse environments.

4 Experiments

In this section, we conduct a series of experiments to validate the core claims of our work: that R2-Dreamer learns high-quality representations in a decoder-free and DA-free manner, leading to a framework that is not only computationally efficient but also highly performant. Our evaluation is structured to answer the following key questions:

- 1. How does R2-Dreamer perform against leading decoder-based and decoder-free agents on standard continuous control benchmarks? (Sec. 4.2)
- 2. How does our internal regularization handle challenging scenarios where task-relevant information is subtle and easily missed by competing methods? (Sec. 4.3)
- 3. How does the learned representation qualitatively differ from baselines in focusing on task-relevant information? (Sec. 4.4)
- 4. What is the direct impact of our proposed redundancy reduction objective compared to other design choices, particularly DA? (Sec. 4.5)
- 5. What are the computational benefits of its decoder-free and DA-free design? (Sec. 4.6)

All experiments are conducted with five random seeds with 10 evaluation episodes.

4.1 Experimental Setup

Baselines We compare R2-Dreamer against a carefully selected set of competitive baselines to cover the main paradigms of image-based RL:

- **R2-Dreamer (ours)**: Implemented on top of our PyTorch-based DreamerV3 reproduction. This unified codebase is used for all decoder-free variants to ensure that performance differences are directly attributable to the representation learning objective.
- **DreamerV3** (Hafner et al., 2025): A leading and highly competitive decoder-based world model. To provide the strongest and most credible baseline, we use the author's official JAX implementation as our primary point of comparison.
- **Dreamer-InfoNCE**: A contrastive learning baseline using the InfoNCE loss (van den Oord et al., 2019) to investigate performance in the absence of DA, implemented on our DreamerV3 reproduction.
- DreamerPro (Deng et al., 2022): A leading decoder-free method that relies on DA, specifically random image shifts, to prevent representation collapse. Since the original implementation is based on DreamerV2, we re-implemented its core mechanism on our DreamerV3 reproduction to ensure a fair comparison. This re-implementation also improved its performance.

• **DrQ-v2** (Yarats et al., 2021): A strong and widely-used model-free method that heavily leverages DA, also using random image shifts as its core augmentation technique.

Environments We evaluate our method on two benchmark suites. First, we use the standard **DMC Vision** (Tassa et al., 2018) for continuous control from pixels. Second, to specifically probe the weaknesses of methods reliant on reconstruction or DA, we introduce **DMC-Subtle**, a new benchmark where task-critical objects' sizes are significantly reduced. For example, Figure 2 illustrates the Reacher task, where the target is scaled down to one-third of its original size. This benchmark demands a higher level of representational precision. Detailed modifications for all tasks are provided in Appendix B.

Figure 2: An example from the DMC-Subtle benchmark. Left: standard Reacher. Right: modified version with a significantly smaller target.

4.2 Performance on Standard Benchmarks

We first evaluate R2-Dreamer on 20 standard DMC tasks. As shown in Figure 3, our method consistently outperforms all decoder-based, decoder-free, and model-free baselines. This result indicates that our internal redundancy-reduction objective is a powerful learning signal, capable of achieving superior performance without a decoder or an external regularizer like DA. Detailed per-task curves are in Appendix C.

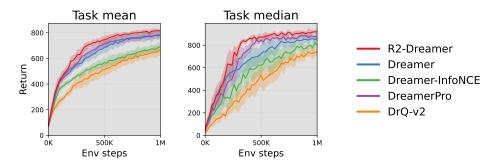


Figure 3: Mean and standard deviation of performance over 20 DMC tasks. R2-Dreamer achieves performance competitive with the baselines without requiring a decoder or DA.

4.3 Robustness in Challenging Environments

We now highlight the benefits of our approach on the DMC-Subtle benchmark, a challenging testbed designed to penalize methods that either overfit to irrelevant backgrounds or discard small, critical objects. We hypothesize that our redundancy reduction objective is particularly well-suited for these precision-demanding tasks. By not being driven by a reconstruction signal dominated by task-irrelevant backgrounds and avoiding the potential distortion of critical features from DA, our method should learn more focused representations. The results in Figure 4 confirm this hypothesis, showing a substantial performance gap over all baselines and demonstrating that R2-Dreamer can effectively isolate and attend

to task-critical information, a crucial capability for real-world applications where salient cues may be sparse. We further analyze the learned representations to understand the source of this robustness.

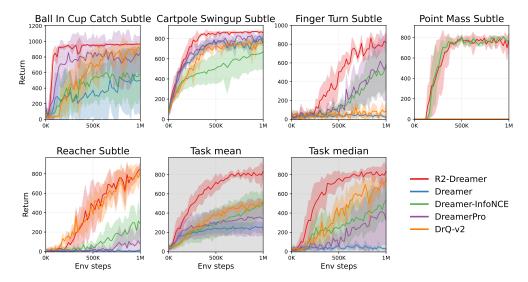


Figure 4: Performance on five challenging DMC-Subtle tasks. R2-Dreamer outperforms all baselines, demonstrating its robustness to subtle but critical visual information.

4.4 Analysis of Latent Representations

We visualize the policy's focus using an occlusion-based saliency method (Greydanus et al., 2018) to assess how well the learned representations capture task-relevant information. For this analysis on the DMC-Subtle Reacher task, we compute saliency maps on the first frame of each episode to isolate the spatial focus from temporal dynamics. The results in Figure 5 reveal a clear distinction: the saliency map for R2-Dreamer is sharply focused on the target, indicating its policy is grounded in task-critical visual evidence. In contrast, baselines exhibit more diffuse saliency, suggesting a less precise understanding of the task. This finding provides strong qualitative evidence that our redundancy-reduction objective encourages learning compact and relevant representations.

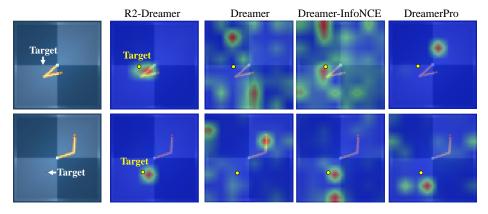


Figure 5: Policy saliency maps on the DMC-Subtle Reacher task. For clarity, the target location is marked with a yellow dot. The two rows show results from two different environment seeds, which are identical across all methods.

4.5 Ablation Studies

To isolate the core contributions of our work, we conduct a targeted ablation study on the effectiveness of our redundancy reduction objective against DA as the primary regularization strategy. We compare five variants: **R2-Dreamer** (our complete method), **R2-Dreamer** w/ DA (adding random shift augmentation), **DreamerPro** (a leading DA-reliant baseline), **DreamerPro** w/o DA (to measure its dependency on augmentation), and **Dreamer** w/o **Decoder** (a baseline without any auxiliary representation objective).

First, the results on 20 standard DMC tasks, shown in Figure 6, demonstrate that our internal redundancy reduction objective provides sufficient regularization. Adding DA to R2-Dreamer yields only marginal gains, while the performance of DreamerPro collapses without it, confirming its critical dependency on the external regularizer. Detailed per-task results are in Appendix D.

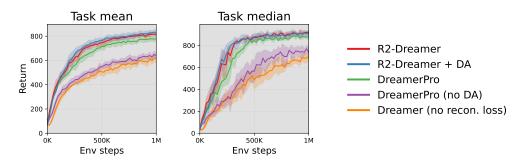


Figure 6: Ablation results on 20 DMC tasks. Our internal redundancy reduction objective proves more effective and robust than reliance on external DA.

Second, on the precision-demanding DMC-Subtle benchmark, DA proves detrimental. As shown in Figure 7, adding DA significantly degrades our method's performance. This highlights a key risk of external regularizers: while generally applicable, they can distort subtle, task-critical information. Our DA-free, internal mechanism provides a more robust solution in such cases, reinforcing its effectiveness as a principled regularizer for RSSM.

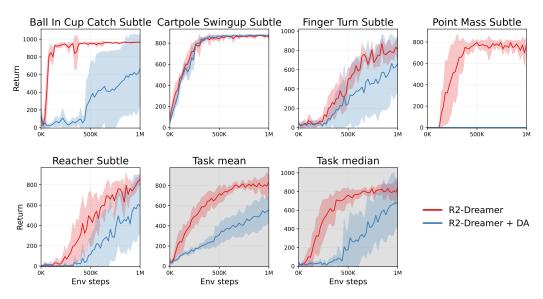


Figure 7: Comparison of R2-Dreamer with and without DA on the DMC-Subtle benchmark. The results highlight that DA can be detrimental in tasks requiring high precision, as it may distort subtle but critical information, underscoring the importance of a DA-free approach for such environments.

4.6 Computational Efficiency

A core advantage of our decoder-free design is its computational efficiency. To ensure a fair comparison, we measure the wall-clock training time of our method against baselines implemented on our unified DreamerV3 reproduction. As shown in Table 1, R2-Dreamer achieves a 1.59x speedup over our DreamerV3 reproduction by eliminating the computationally expensive image generation process. Furthermore, it demonstrates a 2.36x speedup compared to DreamerPro, which involves processing different augmented views of the input and subsequent relatively complex logic. We also include the training time of the original, highly optimized DreamerV3 JAX implementation. These results highlight that R2-Dreamer offers a more practical and scalable solution.

Table 1: Computational efficiency comparison on the DMC Walker Walk task. Wall-clock time is measured for 1 million environment steps on a single NVIDIA GeForce RTX 3080 Ti GPU.

Method	Training Time (hours)
R2-Dreamer	4.4
Dreamer	7.0
DreamerPro	10.4
Dreamer (Author's JAX impl.)	6.6

5 Conclusion

We demonstrated that a principled internal regularization objective can supplant the need for image reconstruction in MBRL. Our framework, R2-Dreamer, learns representations focused on salient features without decoders or task-specific DA.

The strength of this approach is most evident on our challenging DMC-Subtle benchmark, where R2-Dreamer substantially outperforms leading decoder-based and DA-reliant agents by isolating minuscule, critical objects. On standard benchmarks, it matches the performance of DreamerV3 while accelerating training by 59%.

A potential limitation lies in texture-rich environments. Future work could explore hybrid models incorporating generative objectives to capture such detail. Furthermore, rigorously testing out-of-distribution robustness is a critical step towards assessing the potential of such DA-free agents for real-world deployment.

By shifting the focus from visual fidelity to informational efficiency, our work provides a scalable foundation for building agents where augmentation design is non-trivial. This study opens a new inquiry into internal regularization as a principled path toward more general and capable learning agents.

Reproducibility Statement We will provide our unified PyTorch codebase for R2-Dreamer and all decoder-free baselines, including our novel DMC-Subtle benchmark, to ensure reproducibility as a supplementary zip file. For DreamerV3 and DrQ-v2, we refer to the authors' publicly available repositories: https://github.com/danijar/dreamerv3 and https://github.com/facebookresearch/drqv2. The core methodology and architecture are detailed in Sec. 3, with a theoretical motivation in App. A. The experimental setup, including environment details and baseline configurations, is described in Sec. 4.1 and App. B. All hyperparameters and a pseudocode implementation of our core loss function are provided in App. E and App. F.

References

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information bottleneck. In 5th International Conference on Learning Representations,

- - Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for self-supervised learning. In *International Conference on Learning Representations*, 2022.
 - Maxime Burchi and Radu Timofte. Learning transformer-based world models with contrastive predictive coding, 2025. URL https://arxiv.org/abs/2503.04416.
 - Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9912–9924. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf.
 - Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *Proceedings of the 37th International Conference on Machine Learning*, 2020.
 - Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753, 2021. doi: 10.1109/CVPR46437.2021.01549.
 - Fei Deng, Ingook Jang, and Sungjin Ahn. DreamerPro: Reconstruction-free model-based reinforcement learning with prototypical representations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 4956–4975. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/deng22a.html.
 - Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding Atari agents. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1792–1801. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/greydanus18a.html.
 - Jean-Bastien Grill, Florian Strub, Florent Altché, et al. Bootstrap your own latent: A new approach to self-supervised learning. In *Advances in Neural Information Processing Systems*, 2020.
 - Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 2555–2565. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/hafner19a.html.
 - Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors by latent imagination, 2020. URL https://arxiv.org/abs/1912.01603.
 - Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world models, 2022. URL https://arxiv.org/abs/2010.02193.
- Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks through world models. *Nature*, 640(8059):647-653, Apr 2025. ISSN 1476-4687. doi: 10.1038/s41586-025-08744-2. URL https://doi.org/10.1038/s41586-025-08744-2.

- Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive control. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-vari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 8387-8406. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/v162/hansen22a.html.
 - Nicklas A. Hansen, Sheng Yuan, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust, and efficient learning for continuous control. In *International Conference on Learning Representations*, 2024.
 - Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735, 2020. doi: 10.1109/CVPR42600. 2020.00975.
 - Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf.
 - Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforcement learning with augmented data. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19884–19895. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf.
 - Guozheng Ma, Zhen Wang, Zhecheng Yuan, Xueqian Wang, Bo Yuan, and Dacheng Tao. A comprehensive survey of data augmentation in visual reinforcement learning. *International Journal of Computer Vision*, jul 2025. ISSN 1573-1405. doi: 10.1007/s11263-025-02472-w. URL https://doi.org/10.1007/s11263-025-02472-w.
 - Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models, 2023. URL https://arxiv.org/abs/2209.00588.
 - Vincent Micheli, Eloi Alonso, and François Fleuret. Efficient world models with context-aware tokenization. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 35623-35638. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/v235/micheli24a.html.
 - Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive coding for model-based planning in latent space. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8130–8139. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/nguyen21h.html.
 - Masashi Okada and Tadahiro Taniguchi. Dreamingv2: Reinforcement learning with discrete world models without reconstruction. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 985–991, 2022. doi: 10.1109/IROS47612. 2022.9981405.
 - Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano Ermon, and Hung Bui. Predictive coding for locally-linear control. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 8862–8871. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/shu20a.html.

- Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. Deepmind control suite, 2018. URL https://arxiv.org/abs/1801.00690.
 - Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method, 2000. URL https://arxiv.org/abs/physics/0004057.
- Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding, 2019. URL https://arxiv.org/abs/1807.03748.
- Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. EfficientZero v2: Mastering discrete and continuous control with limited data. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 51041–51062. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/wang24at.html.
- Satosi Watanabe. Information theoretical analysis of multivariate correlation. *IBM Journal of Research and Development*, 4(1):66–82, 1960. doi: 10.1147/rd.41.0066.
- Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Improved data-augmented reinforcement learning, 2021. URL https://arxiv.org/abs/2107.09645.
- Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games with limited data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 25476-25488. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/d5eca8dc3820cad9fe56a3bafda65ca1-Paper.pdf.
- Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via redundancy reduction. In *Proceedings of the 38th International Conference on Machine Learning*, 2021.
- Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. STORM: Efficient stochastic transformer based world models for reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=WxnrX42rnS.

A Connecting Redundancy Reduction to the Sequential Information Bottleneck

Our World Model's loss function optimizes a variational bound on an extended Sequential Information Bottleneck (SIB) objective (Tishby et al., 2000). Building on DreamerV1 (Hafner et al., 2020), our formulation incorporates a spatial compression term that encourages disentanglement by minimizing the Total Correlation (TC) (Watanabe, 1960) of the latent states. The full objective is defined as:

$$\max \underbrace{\mathbf{I}(s_{1:T}; (o_{1:T}, r_{1:T}, c_{1:T}) \mid a_{1:T})}_{\text{Fidelity}} - \underbrace{\beta \mathbf{I}(s_{1:T}; i_{1:T} \mid a_{1:T})}_{\text{Temporal Compression}} - \underbrace{\gamma \sum_{t=1}^{I} \text{TC}(z_t)}_{\text{Spatial Compression}}$$
(8)

where $s_{1:T}$ is the latent state sequence, $(o_{1:T}, r_{1:T}, c_{1:T})$ are the observation, reward, and continuation sequences, and $a_{1:T}$ is the action sequence. Following (Alemi et al., 2017), i_t denotes the underlying data-generating index for the observation. The objective of compressing $s_{1:T}$ with respect to $i_{1:T}$ is to discard predictable information from the past, thereby encouraging the latent state to capture only novel information. Below, we derive tractable variational bounds for each term and demonstrate how our proposed loss function optimizes them.

Lower Bound on Fidelity The fidelity term ensures that the latent state $s_{1:T}$ retains predictive information about observation, reward, and continuation. As this term is intractable, we maximize a variational lower bound. The derivation begins with the chain rule for mutual information. For simplicity, considering only observations $o_{1:T}$:

$$I(s_{1:T}; o_{1:T} \mid a_{1:T}) = \sum_{t=1}^{T} I(s_{1:T}; o_t \mid o_{1:t-1}, a_{1:T})$$

$$\geq \sum_{t=1}^{T} I(s_t; o_t \mid o_{1:t-1}, a_{1:T})$$

$$\geq \sum_{t=1}^{T} I(s_t; e_t \mid o_{1:t-1}, a_{1:T})$$

$$\approx \sum_{t=1}^{T} I(s_t; e_t)$$
(9)

The first inequality holds as information cannot increase with a subset of variables, and the second follows from the data processing inequality $(e_t = \text{enc}(o_t))$. The final approximation drops the conditioning on history, a common simplification assuming s_t is a sufficient statistic of the past (Hafner et al., 2019). A similar derivation, omitting the data processing inequality step, can be applied to rewards and continuation signals. This yields the final surrogate objective for the fidelity term:

$$I(s_{1:T}; (o_{1:T}, r_{1:T}, c_{1:T}) \mid a_{1:T}) \gtrsim \sum_{t=1}^{T} I(s_t; e_t) + \sum_{t=1}^{T} I(s_t; r_t) + \sum_{t=1}^{T} I(s_t; c_t)$$
(10)

Upper Bound on Temporal Compression Following prior work (Hafner et al., 2020), the temporal compression term is upper-bounded by the KL divergence between the posterior and prior dynamics:

$$I(s_{1:T}; o_{1:T} \mid a_{1:T}) \leq \sum_{t=1}^{T} \mathbb{E}_q \Big[D_{KL} \big(q(s_t | s_{t-1}, a_{t-1}, o_t) \, \big\| \, p(s_t | s_{t-1}, a_{t-1}) \big) \Big]$$
(11)

Unification via Barlow Twins Crucially, the SIB objective's fidelity and spatial compression terms can be jointly optimized by a single surrogate loss based on the Barlow Twins objective (Eq. equation 5). This loss is applied to the image embedding e_t and the projected state k_t , and consists of two components:

- **Invariance**: The loss penalizes the deviation of the diagonal elements of the cross-correlation matrix from 1. This encourages the projected state k_t to predict the image embedding e_t , a surrogate for maximizing the fidelity term $I(s_t; e_t)$.
- Redundancy Reduction: The loss penalizes the off-diagonal elements of the cross-correlation matrix. This encourages the dimensions of k_t to be uncorrelated. Since k_t is a linear projection of the state (h_t, z_t) , i.e., $k_t = W[h_t; z_t]$, this pressure to decorrelate k_t directly incentivizes the model to learn a factorized representation. This, in turn, aligns the optimization to minimize the Total Correlation, thus satisfying the spatial compression objective.

This unified objective provides a practical and theoretically motivated mechanism for representation learning. While the SIB framework (Eq. equation 8) uses theoretical coefficients β and γ , our practical loss function (Eq. equation 4) implements these compression terms as a collection of weighted surrogate losses, including the KL balancing (Hafner et al., 2022).

B Detailed Descriptions of DMC-Subtle Tasks

This section details all five tasks in the DMC-Subtle benchmark introduced in Section 4.3. Figure 8 compares the standard version of each task with our modified version, where task-critical objects have been intentionally scaled down to just a few pixels. The specific modifications are as follows:

- Ball in Cup Catch: The agent must swing a tethered ball into a cup. The ball size and string width are reduced to 1/12 of the original.
- Cartpole Swingup: The agent must swing up and balance a pole on a cart. The pole width is reduced to 1/20 of the original.
- Finger Turn: The agent must spin a two-link finger to touch a target. The target size is reduced to 1/2 of the original.
- Point Mass: The agent must move a point mass to a target. The goal is removed as it is always at the center, and the point mass size is reduced to 1/6 of the original.
- Reacher: The agent must guide a two-link arm to reach a target. The target size is reduced to 1/3 of the original.

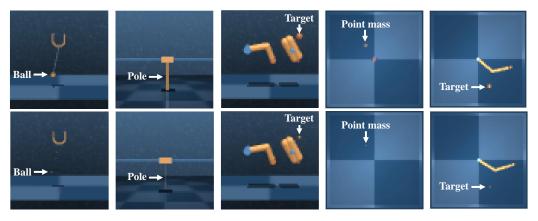


Figure 8: DMC-Subtle benchmark. Top: original versions of the five tasks (left to right: Ball in Cup Catch, Cartpole Swingup, Finger Turn, Point Mass, Reacher). Bottom: modified versions with downscaled task-critical objects in the same order.

C DETAILED RESULTS ON DEEPMIND CONTROL SUITE

This section provides the individual learning curves for all 20 tasks in the DMC benchmark, corresponding to the aggregated results shown in Figure 3 in the main text.

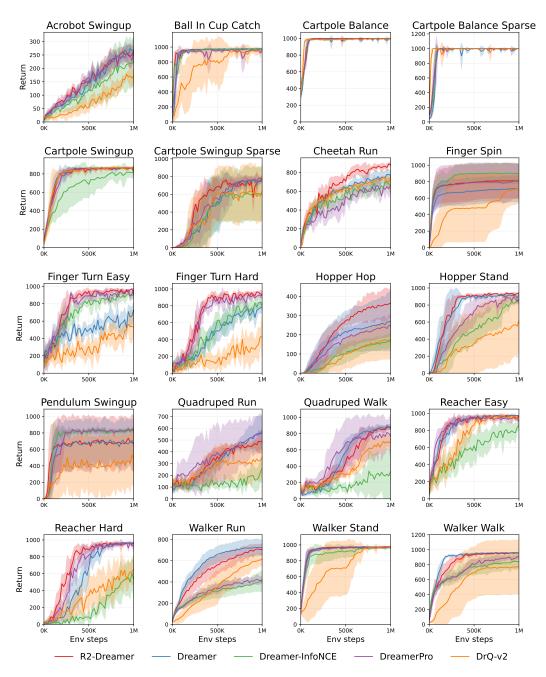


Figure 9: Per-task learning curves for all 20 DMC tasks, comparing our method against the baselines.

D DETAILED RESULTS ON ABLATION STUDIES

This section provides the individual learning curves for all 20 tasks in our ablation study, corresponding to the aggregated results shown in Figure 6 in the main text.

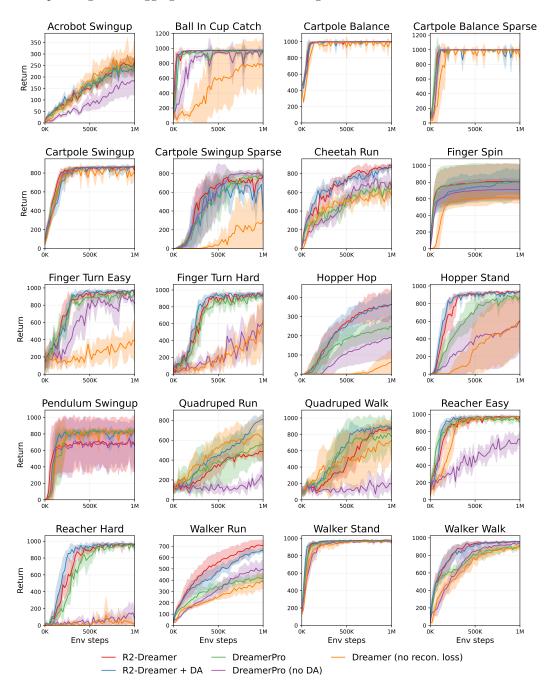


Figure 10: Per-task learning curves for the ablation study across all 20 DMC tasks.

E TRAINING DETAILS AND HYPERPARAMETERS

Table 2 summarizes the primary hyperparameters used in this study. These settings are primarily based on those of DreamerV3, with minimal modifications related to the proposed representation learning objective.

Table 2: Main hyperparameters. Our settings are identical to DreamerV3, with key changes to the representation learning loss.

Name	Symbol	Value
General		
Replay capacity	_	5×10^{6}
Batch size	B	16
Batch length	T	64
Activation		RMSNorm + SiLU
Learning rate		4×10^{-5}
Gradient clipping		AGC(0.3)
Optimizer	_	$\text{LaProp}(\epsilon = 10^{-20})$
World Model		
BT loss scale	β_{BT}	0.05
Redundancy loss scale	α	5×10^{-4}
Dynamics loss scale	β_{dyn}	1
Representation loss scale	$eta_{ m rep}$	0.1
Latent unimix		1%
Free nats	_	1
Actor-Critic		
Imagination horizon	Н	15
Discount horizon	$1/(1-\gamma)$	333
Return lambda	λ	0.95
Critic loss scale	$eta_{ m val}$	1
Critic replay loss scale	$\beta_{ m repval}$	0.3
Critic EMA regularizer	_	1
Critic EMA decay	_	0.98
Actor loss scale	$eta_{ m pol}$	1
Actor entropy regularizer	η	3×10^{-4}
Actor unimix	_	1%
Actor RetNorm scale	S	Per(R, 95) - Per(R, 5)
Actor RetNorm limit	L	1
Actor RetNorm decay	_	0.99

F PSEUDOCODE FOR REPRESENTATION LOSS

Algorithm 1 provides a PyTorch-style pseudocode for the core representation learning objective.

Algorithm 1 R2-Dreamer Representation Loss (PyTorch-style Pseudocode)

```
924
      # alpha: weight on the off-diagonal terms
925
      # B: batch size, T: time steps, D: feature dimension
926
      # h: deterministic state from sequence model, [B, T, H_dim]
927
      # z: stochastic state from representation model, [B, T, Z_dim]
928
      # e: embeddings from image encoder, [B, T, E_dim]
929
      # projector: linear layer to project concatenated state to embedding space
930
      # Project features from dynamics model
931
      state = torch.cat([h, z], dim=-1)
932
      k = projector(state) # [B, T, D]
933
934
      # Reshape for loss computation
      k = k.reshape(B * T, D)
935
      e = e.detach().reshape(B * T, D) # Stop gradient to encoder
936
937
      # Normalize features along the batch dimension
938
      k_{norm} = (k - k.mean(dim=0)) / (k.std(dim=0) + 1e-5)
      e_{norm} = (e - e.mean(dim=0)) / (e.std(dim=0) + 1e-5)
939
940
      # Cross-correlation matrix
941
      C = (k_norm.T @ e_norm) / (B * T) # [D, D]
942
943
      # Invariance loss
944
      invariance_loss = ((torch.diagonal(C) - 1)**2).sum()
945
      # Redundancy reduction loss
946
      off_diag = C.clone()
947
      off_diag.fill_diagonal_(0)
948
      redundancy_loss = (off_diag**2).sum()
949
      # Total loss
950
      loss = invariance_loss + alpha * redundancy_loss
951
```

G The Use of Large Language Model

We utilized large language models to improve the grammar and readability of this manuscript.