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ABSTRACT

A central challenge in image-based Model-Based Reinforcement Learning
(MBRL) is to learn representations that distill task-essential information
from irrelevant details. While promising, approaches that learn representa-
tions by reconstructing input images often waste capacity on spatially large
but task-irrelevant visual information, such as backgrounds. Decoder-free
methods address this issue by leveraging data augmentation (DA) to en-
force robust representations, but the reliance on such external regularizers
to prevent collapse severely limits their versatility. To address this, we pro-
pose R2-Dreamer, an MBRL framework that introduces a self-supervised
objective acting as an internal regularizer, thus preventing collapse without
resorting to DA. The core of our method is a feature redundancy reduction
objective inspired by Barlow Twins, which can be easily integrated into
existing frameworks. In evaluations on the standard continuous control
benchmark, DMC Vision, R2-Dreamer achieves performance competitive
with strong baselines, including the leading decoder-based agent Dream-
erV3 and its decoder-free counterpart that relies on DA. Furthermore, its
effectiveness is highlighted on a challenging benchmark with tiny but task-
relevant objects (DMC-Subtle), where our approach demonstrates substan-
tial gains over all baselines. These results show that R2-Dreamer provides
a versatile, high-performance framework for decoder-free MBRL by incor-
porating an effective internal regularizer.

1 INTRODUCTION

Learning effective latent representations is a cornerstone of world models in MBRL, yet
this poses a significant challenge: representations must capture task-essential information
without overfitting to irrelevant visual details. While architectures like the Recurrent State-
Space Model (RSSM) have achieved remarkable success (Hafner et al], 2025), a fundamental
question remains open: What is the optimal objective function for learning the
representation itself? Many leading methods (Micheli et all, 2023; Zhang et al), 2023;
Micheli et al), 2024; Hafner et al), 2025) rely on a pixel-wise reconstruction loss. This reliance
creates a critical issue: the learning signal is dominated by spatially large but task-irrelevant
parts of the observation, such as the background. Consequently, the model is incentivized to
meticulously reconstruct these details, wasting representational capacity and computational
resources at the expense of ignoring small but task-critical objects.

To address the limitations of pixel-wise reconstruction, decoder-free methods learn repre-
sentations via, self-supervised losses (Deng et al), 2022; Okada & Taniguchi, 2022; Burchi &
Timofte, 2025). To prevent the representation collapse common in such approaches, they
depend critically on Data Augmentation (DA) as an_external regularizer. This reliance on
DA is a significant bottleneck for general agents (Laskin et al), 2020; Ma et all, 202§), as
the choice of transformation is task-dependent: random shifting can discard crucial small
objects, while color jittering can be detrimental when color itself is a key feature.

In this work, we focus on the representation learning objective within the powerful RSSM
framework and propose R2-Dreamer that breaks the dependency on decoders and DA. To
isolate the impact of the learning objective itself, we build upon the well-established Dreamer
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architecture. We introduce an internal regularizer inspired by Barlow Twins (Zbontar et all,
2021)), which directly penalizes feature redundancy between image embeddings and latent
states, providing a versatile and robust baseline capable of achieving competitive perfor-
mance without external regularizers.

Our main contributions are:

e A new representation learning paradigm for RSSM-based decoder-free MBRL that
replaces hand-engineered DA with an internal redundancy reduction objective.

o Competitive performance on standard benchmarks and superior performance on
our new, challenging DMC-Subtle benchmark, highlighting the effectiveness of a
decoder-free, DA-free approach.

e The release of our unified PyTorch codebase, including implementations of our
method and baselines built on DreamerV3, along with the DMC-Subtle benchmark
to facilitate future research.

2 RELATED WORK

Our work is positioned at the intersection of MBRL and Self-Supervised Learning (SSL).
We contextualize our approach by reviewing representation learning strategies in MBRL
and how they address the challenge of regularization.

2.1 REPRESENTATION LEARNING IN WORLD MODELS

Decoder-Based World Models A dominant paradigm in MBRL, popularized by the
Dreamer series (Hafner et al|, 2025), learns representations by reconstructing observations
from a latent state. While successful, this reconstruction-based objective often forces the
model to waste capacity on task-irrelevant details, such as backgrounds, motivating a shift
towards decoder-free methods.

Decoder-Free World Models and the Reliance on DA To address the limitations
of reconstruction, recent decoder-free methods learn representations through auxiliary ob-
jectives that do not involve pixel-wise reconstruction, such as predicting future rewards or
learning via contrastive losses. However, despite the diversity in their learning signals, these
prominent._examples ([Ye_et_al), 2021; Deng et all, 2022; Hansen et all, 2022; 2024; Wang
et al), 2024; Burchi & Timoftd, 2025) all critically rely on DA—typically random shifts—as
an external regularizer to prevent representation collapse. This fundamental dependency on
hand-engineered augmentations limits their versatility, a key bottleneck we address. While
other internal regularization methods exist (Shu et al|, 2020; Nguyen et al), 2021)), our work
is the first to demonstrate that a single, information-theoretic principle of redundancy re-
duction is sufficient for stable and effective representation learning in RSSM-based models
without any DA.

2.2 FROM INVARIANCE TO INFORMATION-BASED REGULARIZATION

DA-Driven Invariance Most self-supervised methods, including those used in existing
decoder-free agents, are invariance-based. They rely on DA to create positive pairs (e.g.,
augmented views of the same image) and train the model to produce similar representations
for them, as seen in _contrastive (Chen et all, 2020; He et al), 2020; Caron et ali, 2020) and
non-contrastive (Grill et al), 2020; Chen & He, 2021) learning. In this paradigm, DA is
essential to prevent collapse to trivial solutions.

DA-Free Internal Regularization Our work adopts a_different_approach from the
information-based SSL literature (Zbontar et all, 2021; Bardes et al|, 2022), which focuses
on reducing feature redundancy. While these methods still use DA in their original com-
puter vision context, we adapt this principle as a complete replacement for DA in the RL
domain. By applying the redundancy reduction objective between the image encoder’s out-
put and the RSSM’s latent state, we introduce an internal reqularizer sufficient to prevent
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representation collapse, thereby allowing us to build a more versatile and robust learning
framework without task-specific augmentations.

3 METHOD

Our method, R2-Dreamer, redesigns the representation learning mechanism of the powerful
DreamerV3 (Hafner et all, 2025) framework to be decoder-free and DA-free. We achieve
this by replacing its reconstruction-based objective with a_self-superyised objective based
on redundancy reduction, inspired by Barlow Twins (Zbontar et all, 2021)). To isolate the
impact of our proposed learning objective, other components of the world model and the
actor-critic objectives are kept identical to the original DreamerV3 implementation. This
single change demonstrates notable improvements in computational efficiency and robust-
ness. This section first details the latent dynamics model, introduces our new world model
learning objective, and reviews the actor-critic learning process.
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Figure 1: Comparison of representation learning mechanisms in world models. (a) R2-
Dreamer learns representations without a decoder or DA. It uses an internal redundancy
reduction objective (Lpt) that aligns the latent state s; (via a projector) with the embed-
ding of the observation z;. (b) Dreamer relies on a decoder to learn representations by
reconstructing the observation (#;) from the latent state s;, guided by a reconstruction loss
(LRecon). (c) DreamerPro removes the decoder but depends on DA. It enforces consis-
tency between augmented views of the observation (aug(x:)) using a spatial loss (Lswav)
and a temporal loss (Lremp) that leverages an Exponential Moving Average (EMA) of the
encoder weights.

3.1 LATENT DYNAMICS MODEL

Following DreamerV3, we use the RSSM (Hafner et al), 2019) with a composite latent state
st = (hg, z¢), where h; is a deterministic state and z; is a stochastic state. The model is
trained on sequences of observations ¢, actions a;, rewards r;, and continuation flags c;.
The key difference in our architecture is the complete removal of the image decoder
and the addition of a small projector head. The components of our model are:

Image Encoder: er = folxy)

Sequence Model: hi = fo(si—1,ai-1)

Dynamics Predictor: 2 ~ D2 | )

Representation Model: z; ~ gg(2: | by, er) (1)
Reward Predictor: Pt~ pp(Te | 8t)

Continue Predictor: ¢ ~ (e | st)

Projector: ke = fo(st)

The projector is a linear head that maps the RSSM’s latent state into the same feature space
as the image embedding e;. Unlike DreamerV3, which uses an image decoder &; ~ pg(Z: | s¢)
for representation learning, our model is trained with the objective described next.
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3.2 WORLD MODEL LEARNING

Our core contribution is a new learning objective for the world model that replaces the
reconstruction loss of DreamerV3. As theoretically motivated in Appendix [A|, this new
objective is a tractable surrogate for an extended Sequential Information Bottleneck (SIB)
objective. We now detail the practical implementation of this objective, adhering to the
original loss components from DreamerV3 where applicable.

DreamerV3 Objective The world model in DreamerV3 is trained by optimizing four
distinct objectives: prediction, reconstruction, and two KL-divergence terms for regularizing
the latent dynamics. The overall loss, shown in Eq. equation P, is a weighted sum of these
components.

‘CDreamerV3(¢) = Eq¢ Z (Epred (t) + Erecon (t) + denﬁdyn(t) + Brepﬁrep (t)) (2)

t

The prediction and reconstruction losses are negative log-likelihoods. The_dynamics and
representation losses are regularized using KL balancing (Hafner et all, 2022) and free
bits (Kingma et al), 2016). Each component is defined as:

Lored(t) = —logpg(r¢|s:) — log pg(ct|st)

Lrecon(t) = —log pe(w¢]st)
Layn(t) = max (1, KL[sg(qe (2|, er)) [| pp(2e|hi)])
Lyep(t) = max (1, KL{gy (2 |he, er) || sg(po (2| he))])

where sg denotes the stop-gradient operator.

R2-Dreamer Objective We remove the reconstruction term Lyecon and replace it with
our proposed loss, L. The other components, including the KL balancing scheme and
loss coefficients (Bayn = 1, Brep = 0.1), are adopted from DreamerV3:

Eworld ((b) = Eq¢ Z (ﬁpred (t) + BBT‘CBT (t) + 6dyn£dyn(t) + ﬂrep‘crep (t)) (4)

t

This formulation isolates the contribution of our method to the new representation learning
signal provided by Lpr.

Representation Learning via Redundancy Reduction (L) We adopt the Barlow
Twins objective as our redundancy-reduction mechanism. Compared to other methods like
VICReg (Bardes et al), 2022), it is chosen for its minimal implementation footprint and
fewer hyperparameters, which reduces tuning effort. The objective is defined as:

Ler() =Y (1-(Cou) +a D (CH% (5)
i i#]

Invariance Term Redundancy Term

where C; is the cross-correlation matrix at time ¢, computed between the projector output
k; and the image embedding e;. The indices ¢ and j refer to the feature dimensions. This
loss is governed by a single hyperparameter, o, which weights the redundancy reduction
term. Instead of creating artificial views via DA, we form a natural pair of views from the
model’s internal signals: the image embedding e; and the projected latent state k;. See the
pseudocode in Appendix [F| for a practical implementation.

3.3 AcTOR-CRITIC LEARNING

To ensure our performance gains are attributable to the world model’s representation quality,
the actor-critic learning process remains unchanged from DreamerV3. The policy (actor) g
and value function (critic) V,, are trained on imagined trajectories generated by the learned
world model.
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The critic is trained to predict the distribution of A-returns, a robust estimate of future
rewards. The critic’s loss is the maximum likelihood of predicting these returns:

H

ﬁcritic('lp) = _Ep¢,wa lz Ingib(R?‘St)

t=1

(6)

where the A-return R} is computed recursively as R} = r; + ¢, (1 — M) Vi (5441) + AR ),
with discount v and continuation flag c;.

The actor is trained to maximize these returns using the REINFORCE gradient estimator,
incorporating entropy regularization with a fixed scale 1 and robust return normalization:

o (o (B2 = Vilse)
Lactor(0) = —Ep, x, ; sg “max(1,8) log mg(at|st) + nH[me(at|st)] (7)
where S is a dynamically scaled normalizer based on the percentile of returns, ensuring
stable learning across diverse environments.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the core claims of our work:
that R2-Dreamer learns high-quality representations in a decoder-free and DA-free manner,
leading to a framework that is not only computationally efficient but also highly performant.
Our evaluation is structured to answer the following key questions:

1. How does R2-Dreamer perform against leading decoder-based and decoder-free
agents on standard continuous control benchmarks? (Sec. §.9)

2. How does our internal regularization handle challenging scenarios where task-
relevant information is subtle and easily missed by competing methods? (Sec. §.3)

3. How does the learned representation qualitatively differ from baselines in focusing
on task-relevant information? (Sec.r@)

4. What is the direct impact of our proposed redundancy reduction objective compared
to other design choices, particularly DA? (Sec. {.5)

5. What_are the computational benefits of its decoder-free and DA-free design?
(Sec. @T)

All experiments are conducted with five random seeds with 10 evaluation episodes.

4.1 EXPERIMENTAL SETUP

Baselines We compare R2-Dreamer against a carefully selected set of competitive base-
lines to cover the main paradigms of image-based RL:

o R2-Dreamer (ours): Implemented on top of our PyTorch-based DreamerV3 re-
production. This unified codebase is used for all decoder-free variants to ensure
that performance differences are directly attributable to the representation learn-
ing objective.

o DreamerV3 (Hafner et all, 2025): A leading and highly competitive decoder-
based world model. To provide the strongest and most credible baseline, we use the
author’s official JAX implementation as our primary point of comparison.

e Dreamer-InfoNCE: A contrastive learning baseline using the InfoNCE
loss (van den Oord et alf, 2019) to investigate performance in the absence of DA,
implemented on our DreamerV3 reproduction.

o DreamerPro (Deng et all, 2022): A leading decoder-free method that relies on
DA, specifically random image shifts, to prevent representation collapse. Since
the original implementation is based on DreamerV2, we re-implemented its core
mechanism on our DreamerV3 reproduction to ensure a fair comparison. This re-
implementation also improved its performance.
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¢ DrQ-v2 (|Yarats et al], l202]J): A strong and widely-used model-free method that
heavily leverages DA, also using random image shifts as its core augmentation tech-
nique.

Environments We evaluate our m on two benchmark suites. First, we use the
standard DMC Vision ([Tassa et al,, EOlg) for continuous control from pixels. Second, to
specifically probe the weaknesses of methods reliant on reconstruction or DA, we introduce
DMC-Subtle, a new benchmark where task-critical objects’ sizes are significantly reduced.
For example, Figure P illustrates the Reacher task, where the target is scaled down to
one-third of its original size. This benchmark demands a higher level of representational
precision. Detailed modifications for all tasks are provided in Appendix B

) — e

Target = Target =—»

Figure 2: An example from the DMC-Subtle benchmark. Left: standard Reacher. Right:
modified version with a significantly smaller target.

4.2 PERFORMANCE ON STANDARD BENCHMARKS

We first evaluate R2-Dreamer on 20 standard DMC tasks. As shown in Figure H, our method
consistently outperforms all decoder-based, decoder-free, and model-free baselines. This re-
sult indicates that our internal redundancy-reduction objective is a powerful learning signal,
capable of achieving superior performance without a decoder or an external regularizer like
DA. Detailed per-task curves are in Appendixha.

Task mean Task median

R2-Dreamer

- Dreamer
= Dreamer-InfoNCE
- DreamerPro
= DrQ-v2
0 T 0 T
0K 500K M 0K 500K M
Env steps Env steps

Figure 3: Mean and standard deviation of performance over 20 DMC tasks. R2-Dreamer
achieves performance competitive with the baselines without requiring a decoder or DA.

4.3 ROBUSTNESS IN CHALLENGING ENVIRONMENTS

We now highlight the benefits of our approach on the DMC-Subtle benchmark, a challeng-
ing testbed designed to penalize methods that either overfit to irrelevant backgrounds or
discard small, critical objects. We hypothesize that our redundancy reduction objective
is particularly well-suited for these precision-demanding tasks. By not being driven by a
reconstruction signal dominated by task-irrelevant backgrounds and avoiding the potential
distortion of critical features from DA, our method should learn more focused representa-
tions. The results in Figure dconﬁrm this hypothesis, showing a substantial performance
gap over all baselines and demonstrating that R2-Dreamer can effectively isolate and attend
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to task-critical information, a crucial capability for real-world applications where salient cues
may be sparse. We further analyze the learned representations to understand the source of
this robustness.

120Boall In Cup Catch Subtle Cartpole Swingup Subtle1000 Finger Turn Subtle Point Mass Subtle

Return

o
0K 500K i 0K 500K M 0K 500K M 0K 500K M

Reacher Subtle Task mean Task median

—— R2-Dreamer
—— Dreamer

—— Dreamer-InfoNCE
—— DreamerPro
—— DrQ-v2

0K 500K ™M 0K SUbK ™M 0K 500K M
Env steps Env steps Env steps

Figure 4: Performance on five challenging DMC-Subtle tasks. R2-Dreamer outperforms all
baselines, demonstrating its robustness to subtle but critical visual information.

4.4 ANALYSIS OF LATENT REPRESENTATIONS

i i i/isualize the policy’s focus using an occlusion-based saliency method (Eireydanus et al],
2018

) to assess how well the learned representations capture task-relevant information. For
this analysis on the DMC-Subtle Reacher task, we compute saliency maps on the first
frame of each episode to isolate the spatial focus from temporal dynamics. The results in
Figurecé reveal a clear distinction: the saliency map for R2-Dreamer is sharply focused on
the target, indicating its policy is grounded in task-critical visual evidence. In contrast,
baselines exhibit more diffuse saliency, suggesting a less precise understanding of the task.
This finding provides strong qualitative evidence that our redundancy-reduction objective
encourages learning compact and relevant representations.

R2-Dreamer Dreamer Dreamer-InfoNCE DreamerPro

<«Target

Figure 5: Policy saliency maps on the DMC-Subtle Reacher task. For clarity, the target
location is marked with a yellow dot. The two rows show results from two different envi-
ronment seeds, which are identical across all methods.
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4.5 ABLATION STUDIES

To isolate the core contributions of our work, we conduct a targeted ablation study on the
effectiveness of our redundancy reduction objective against DA as the primary regularization
strategy. We compare five variants: R2-Dreamer (our complete method), R2-Dreamer
w/ DA (adding random shift augmentation), DreamerPro (a leading DA-reliant baseline),
DreamerPro w/o DA (to measure its dependency on augmentation), and Dreamer w/o
Decoder (a baseline without any auxiliary representation objective).

First, the results on 20 standard DMC tasks, shown in Figure B, demonstrate that our
internal redundancy reduction objective provides sufficient regularization. Adding DA to
R2-Dreamer yields only marginal gains, while the performance of DreamerPro collapses
without it, confirming itg critical dependency on the external regularizer. Detailed per-task
results are in Appendix E

Task mean Task median

R2-Dreamer
R2-Dreamer + DA
DreamerPro

DreamerPro (no DA)
Dreamer (no recon. loss)

0 - "
oK 500K M 0K 500K M
Env steps Env steps

Figure 6: Ablation results on 20 DMC tasks. Our internal redundancy reduction objective
proves more effective and robust than reliance on external DA.

Second, on the precision-demanding DMC-Subtle benchmark, DA proves detrimental. As
shown in FigureIE, adding DA significantly degrades our method’s performance. This high-
lights a key risk of external regularizers: while generally applicable, they can distort subtle,
task-critical information. Our DA-free, internal mechanism provides a more robust solution
in such cases, reinforcing its effectiveness as a principled regularizer for RSSM.

Ball In Cup Catch Subtle Cartpole Swingup Subtle Finger Turn Subtle Point Mass Subtle
1000 o
1000 4 800 800
800 1
800 1
c 600 - 6004 600
S 6004
Q 400 4 400 4
£ 4004 400 4
200 4 200 200 4 200
0 T 0 T 0 T 0 T
0K 500K M 0K 500K M 0K 500K im oK 500K M
Reacher Subtle Task mean Task median
1000 -
800 800
800 4
g 600 4 600 600 1 —— R2-Dreamer
S 400 00 100 —— R2-Dreamer + DA
200 4 200 4 200 4
0 T 0 T [ T
0K 500K M 0K 500K M 0K 500K M
Env steps Env steps Env steps

Figure 7: Comparison of R2-Dreamer with and without DA on the DMC-Subtle benchmark.
The results highlight that DA can be detrimental in tasks requiring high precision, as it may
distort subtle but critical information, underscoring the importance of a DA-free approach
for such environments.
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4.6 COMPUTATIONAL EFFICIENCY

A core advantage of our decoder-free design is its computational efficiency. To ensure a fair
comparison, we measure the wall-clock training time of our method against baselines imple-
mented on our unified DreamerV3 reproduction. As shown in Table [If, R2-Dreamer achieves
a 1.59x speedup over our DreamerV3 reproduction by eliminating the computationally ex-
pensive image generation process. Furthermore, it demonstrates a 2.36x speedup compared
to DreamerPro, which involves processing different augmented views of the input and sub-
sequent relatively complex logic. We also include the training time of the original, highly
optimized DreamerV3 JAX implementation. These results highlight that R2-Dreamer offers
a more practical and scalable solution.

Table 1: Computational efficiency comparison on the DMC Walker Walk task. Wall-clock
time is measured for 1 million environment steps on a single NVIDIA GeForce RTX 3080
Ti GPU.

Method Training Time (hours)
R2-Dreamer 4.4

Dreamer 7.0
DreamerPro 10.4

Dreamer (Author’s JAX impl.) 6.6

5 CONCLUSION

We demonstrated that a principled internal regularization objective can supplant the need
for image reconstruction in MBRL. Our framework, R2-Dreamer, learns representations
focused on salient features without decoders or task-specific DA.

The strength of this approach is most evident on our challenging DMC-Subtle benchmark,
where R2-Dreamer substantially outperforms leading decoder-based and DA-reliant agents
by isolating minuscule, critical objects. On standard benchmarks, it matches the perfor-
mance of DreamerV3 while accelerating training by 59%.

A potential limitation lies in texture-rich environments. Future work could explore hybrid
models incorporating generative objectives to capture such detail. Furthermore, rigorously
testing out-of-distribution robustness is a critical step towards assessing the potential of
such DA-free agents for real-world deployment.

By shifting the focus from visual fidelity to informational efficiency, our work provides
a scalable foundation for building agents where augmentation design is non-trivial. This
study opens a new inquiry into internal regularization as a principled path toward more
general and capable learning agents.

Reproducibility Statement We will provide our unified PyTorch codebase for R2-
Dreamer and all decoder-free baselines, including our novel DMC-Subtle benchmark, to
ensure reproducibility as a supplementary zip file. For DreamerV3 and DrQ-v2, we refer
to the authors’ publicly available repositories: https://github.com/danijar/dreamerv3
and https://github.com/facebookresearch/drqv2. The core methodology and archi-
tecture are detailed in Sec. B, with a theoretical motivation in App. E The experjmental
setup, including environment details and baseline configurations, is described in Sec. ﬁand
App. B. All hyperparameters andﬁa pseudocode implementation of our core loss function

are provided in App. [H and App. [H.
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A CONNECTING REDUNDANCY REDUCTION TO THE SEQUENTIAL
INFORMATION BOTTLENECK

Our World Model’s loss function optimjzes a variational bound on an extended Sequential In-
formation Bottleneck (SIB) objective ([Tishby et all, 2000). Building on DreamerV1 (Hafner
et all, 2020), our formulation incorporates a spatial compression term that encourages dis-
entanglement by minimizing the Total Correlation (TC) (Watanabe, 1960) of the latent
states. The full objective is defined as:

T
max 1(s1.7; (or.r, rir, crr) | avr) — BI(sursivr | anr) — ’YZTC(Zt) (8)
t=1

Fidelity Temporal Compression

Spatial Compression
where s1.7 is the latent state sequence, (o1.7,71.7,c1.7) are the observation, reward, and
continuation sequences, and aj.r is the action sequence. Following (Alemi et al), 2017),
iy denotes the underlying data-generating index for the observation. The objective of com-
pressing s1.r with respect to i1.7 is to discard predictable information from the past, thereby
encouraging the latent state to capture only novel information. Below, we derive tractable
variational bounds for each term and demonstrate how our proposed loss function optimizes
them.

Lower Bound on Fidelity The fidelity term ensures that the latent state si.7 retains
predictive information about observation, reward, and continuation. As this term is in-
tractable, we maximize a variational lower bound. The derivation begins with the chain
rule for mutual information. For simplicity, considering only observations o1.7:
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The first inequality holds as information cannot increase with a subset of variables, and the
second follows from the data processing inequality (e; = enc(o;)). The final approximation
drops the conditioning on history, a common simplification assuming s; is a sufficient statistic
of the past (Hafner et al), 2019). A similar derivation, omitting the data processing inequality
step, can be applied to rewards and continuation signals. This yields the final surrogate
objective for the fidelity term:

I(s1:7; (o1, i, crr) [ arr) 20) I(siser) + 3 I(siire) + Y I(siier)  (10)

t=1 t=1 t=1

Upper Bound on Temporal Compression Following prior work (Hafner et ali, 2020),
the temporal compression term is upper-bounded by the KL divergence between the poste-
rior and prior dynamics:
T
I(si.r; 017 | anr) < Z]Eq [DKL<(](5t|3t717at7170t) Hp(5t|3t717at71))} (11)

t=1

Unification via Barlow Twins Crucially, the SIB objective’s fidelity and spatial com-
pression terms can be jointly optimized by a single surrogate loss based on the Barlow Twins
objective (Eq. equation E This loss is applied to the image embedding e; and the projected
state k¢, and consists of two components:
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¢ Invariance: The loss penalizes the deviation of the diagonal elements of the cross-
correlation matrix from 1. This encourages the projected state k; to predict the
image embedding e;, a surrogate for maximizing the fidelity term I(s;;e;).

¢ Redundancy Reduction: The loss penalizes the off-diagonal elements of the
cross-correlation matrix. This encourages the dimensions of k; to be uncorrelated.
Since k; is a linear projection of the state (h, 2¢), i.e., k¢ = Why; 2¢], this pressure
to decorrelate k; directly incentivizes the model to learn a factorized representa-
tion. This, in turn, aligns the optimization to minimize the Total Correlation, thus
satisfying the spatial compression objective.

This unified objective provides a practical and theoretically motivated mechanism for rep-
resentation learning. While the SIB framework (Eq, equation §) uses theoretical coefficients
B and ~, our practical loss function (Eq. equation E) implements thes ion S
as a collection of weighted surrogate losses, including the KL balancing(Hafner et all, EOQ%)

B DETAILED DESCRIPTIONS OF DMC-SUBTLE TASKS

This section details all five tasks in the DMC-Subtle benchmark introduced in Section 4.3.
Figure E compares the standard version of each task with our modified version, where
task-critical objects have been intentionally scaled down to just a few pixels. The specific
modifications are as follows:

e Ball in Cup Catch: The agent must swing a tethered ball into a cup. The ball
size and string width are reduced to 1/12 of the original.

e Cartpole Swingup: The agent must swing up and balance a pole on a cart. The
pole width is reduced to 1/20 of the original.

e Finger Turn: The agent must spin a two-link finger to touch a target. The target
size is reduced to 1/2 of the original.

e Point Mass: The agent must move a point mass to a target. The goal is removed
as it is always at the center, and the point mass size is reduced to 1/6 of the original.

¢ Reacher: The agent must guide a two-link arm to reach a target. The target size

is reduced to 1/3 of the original.
Point mass
\
=
Ball = Pole =

Point mass
= V
=4
Pole =

Figure 8: DMC-Subtle benchmark. Top: original versions of the five tasks (left to right: Ball
in Cup Catch, Cartpole Swingup, Finger Turn, Point Mass, Reacher). Bottom: modified
versions with downscaled task-critical objects in the same order.

o
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g
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C DETAILED RESULTS ON DEEPMIND CONTROL SUITE

This section provides the individual learning curves for all 20 tasks in the DMC benchmark,

corresponding to the aggregated results shown in Figure

Acrobot Swingup

Ball In Cup Catch

Cartpole Balance

in the main text.
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Figure 9: Per-task learning curves for all 20 DMC tasks, comparing our method against the
baselines.
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D DETAILED RESULTS ON ABLATION STUDIES

This section provides the individual learning curves for
corresponding to the aggregated results shown in Figure

1 20 tasks in our ablation study,
in the main text.
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Figure 10: Per-task learning curves for the ablation study across all 20 DMC tasks.
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E  TRAINING DETAILS AND HYPERPARAMETERS

Table E summarizes the primary hyperparameters used in this study. These settings are
primarily based on those of DreamerV3, with minimal modifications related to the proposed
representation learning objective.

Table 2: Main hyperparameters. Our settings are identical to DreamerV3, with key changes
to the representation learning loss.

Name Symbol Value
General

Replay capacity — 5 x 106
Batch size B 16

Batch length T 64
Activation — RMSNorm + SiLLU
Learning rate — 4%x107°
Gradient clipping — AGC(0.3)
Optimizer — LaProp(e = 10720)
‘World Model

BT loss scale BT 0.05
Redundancy loss scale « 5x 1074
Dynamics loss scale Bdyn 1
Representation loss scale  Brep 0.1

Latent unimix — 1%

Free nats — 1
Actor-Critic

Imagination horizon H 15
Discount horizon 1/(1—7) 333
Return lambda A 0.95

Critic loss scale Byal 1

Critic replay loss scale Brepval 0.3

Critic EMA regularizer — 1

Critic EMA decay — 0.98

Actor loss scale Bpol 1

Actor entropy regularizer 7 3x 1074
Actor unimix — 1%

Actor RetNorm scale S Per(R,95) — Per(R, 5)
Actor RetNorm limit L 1

Actor RetNorm decay

0.99
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F PSEUDOCODE FOR REPRESENTATION LOSS

Algorithm ﬂ provides a PyTorch-style pseudocode for the core representation learning ob-
jective.

Algorithm 1 R2-Dreamer Representation Loss (PyTorch-style Pseudocode)

HOH HHHH

#

k

#
k
e

alpha: weight on the off-diagonal terms

B: batch size, T: time steps, D: feature dimension

h: deterministic state from sequence model, [B, T, H_dim]

z: stochastic state from representation model, [B, T, Z_dim]
e: embeddings from image encoder, [B, T, E_dim]

projector:

linear layer to project concatenated state to embedding space

Project features from dynamics model
state = torch.cat([h, z], dim=-1)
= projector(state) # [B, T, D]

Reshape for loss computation
= k.reshape(B * T, D)
= e.detach().reshape(B * T, D) # Stop gradient to encoder

# Normalize features along the batch dimension
norm = (k - k.mean(dim=0)) / (k.std(dim=0) + 1le-5)

k_
e_

norm = (e

- e.mean(dim=0)) / (e.std(dim=0) + 1le-5)

# Cross-correlation matrix
= (k_norm.T @ e_norm) / (B * T) # [D, DJ

C

# Invariance loss
invariance_loss = ((torch.diagonal(C) - 1)**2).sum()

# Redundancy reduction loss

off_diag = C.clone()
off_diag.fill_diagonal_(0)
redundancy_loss = (off_diag#**2).sum()

# Total loss

loss = invariance_loss + alpha * redundancy_loss

G THE USE OoF LARGE LANGUAGE MODEL

We utilized large language models to improve the grammar and readability of this
manuscript.
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