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ABSTRACT

Multimodal patient representation learning aims to integrate information from
multiple modalities and generate comprehensive patient representations for subse-
quent clinical predictive tasks. However, many existing approaches either presup-
pose the availability of all modalities and labels for each patient or only deal with
missing modalities. In reality, patient data often comes with both missing modal-
ities and labels for various reasons (i.e., the missing modality and label issue).
Moreover, multimodal models might over-rely on certain modalities, causing sub-
optimal performance when these modalities are absent (i.e., the modality collapse
issue). To address these issues, we introduce MUSE: a mutual-consistent graph
contrastive learning method. MUSE uses a flexible bipartite graph to represent
the patient-modality relationship, which can adapt to various missing modality
patterns. To tackle the modality collapse issue, MUSE learns to focus on modality-
general and label-decisive features via a mutual-consistent contrastive learning
loss. Notably, the unsupervised component of the contrastive objective only re-
quires self-supervision signals, thereby broadening the training scope to incorpo-
rate patients with missing labels. We evaluate MUSE on three publicly available
datasets: MIMIC-IV, eICU, and ADNI. Results show that MUSE outperforms all
baselines, and MUSE+ further elevates the absolute improvement to ∼4% by ex-
tending the training scope to patients with absent labels.

1 INTRODUCTION

Patient data spans a wide range of modalities, including images (Johnson et al., 2019; Jack et al.,
2008), text (Johnson et al., 2023), physiological signals (Jing et al., 2018; Kemp et al., 2000), and
demographics (Pollard et al., 2018; Kahn, 1994). Physicians often jointly consider information from
several modalities to make informed decisions about a patient’s diagnosis, treatment, and ongoing
care. For instance, tracking the progression of Alzheimer’s Disease requires diverse data such as
clinical scores, genetic profiles, neuroimaging scans, and biomarker readings (Khachaturian, 1985;
Veitch et al., 2019). Multimodal patient representation learning aims to integrate information from
these diverse modalities and generate comprehensive patient representation for downstream clinical
predictive tasks like disease progression, mortality prediction, and readmission prediction (Kline
et al., 2022).

Conventional multimodal learning typically presumes that all modalities are available for every
patient (Ramachandram & Taylor, 2017; Xu et al., 2023). However, in reality, patient data might
be missing certain modalities. For example, some Alzheimer’s patients may not have genetic or
neuroimaging data due to accessibility issues or cost concerns (Schott & Bartlett, 2012). Further,
fragmented clinical records are common among patients switching healthcare providers. In such
cases, conventional multimodal approaches often disregard these incomplete data, which largely
reduces the number of training samples and narrows their application to only patients with complete
modalities. To address this, multimodal learning with missing modalities (Ma et al., 2021; Chen &
Zhang, 2020; Zhang et al., 2022) is proposed. Among them, modality imputation (Tran et al., 2017;
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Figure 1: Existing multimodal learning works either presume the availability of all modalities for
each patient or only deal with missing modalities. However, in reality, patient data usually comes
with missing modalities and labels due to variations in clinical practice, linkage issues, legal and
privacy concerns, or data corruption.

Shang et al., 2017) approaches leverage generative models to reconstruct the absent modalities using
available ones, while direct prediction (Tsai et al., 2019; Kim et al., 2021) approaches use specialized
network designs to perform the downstream task in the presence of missing modalities.

However, besides modalities, patient data can also miss label information. Alzheimer’s patients,
for example, might not have the disease progression label due to inconsistent follow-ups or patient
dropout (Schott & Bartlett, 2012). We term this new problem as multimodal learning with missing
modalities and labels. Fig. 1 provides a comparison among these three settings. To solve this
problem, we identify the following challenges:

• Missing Modalities and Labels. Modality imputation approaches often rely on strong assump-
tions about data distribution and fail to fully use inter-patient relationships. On the other hand,
direct prediction approaches either oversimplify the patient-modality relationship or suffer from
scalability issues when adapting to varied modality absence patterns (You et al., 2020). Further-
more, these methods only deal with the missing modality issue and usually require supervision
signals from labels. As a result, existing methods cannot leverage the information from the pa-
tients without labels.

• Modality Collapse. Multimodal models tend to over-rely on a subset of modalities during model
training and ignore potentially valuable information from other modalities (Javaloy et al., 2022).
As a result, existing models often do not generalize well to samples missing those key modalities.

To overcome these challenges, we introduce MUSE, a mutual-consistent graph contrastive learning
framework. In essence, MUSE incorporates the following components:

• Bipartite Patient-Modality Graph for Relationship Modeling. To address the challenge of
missing modalities, we construct a bipartite graph of two distinct node sets: patients and modali-
ties. The modality features serve as links between patient and modality nodes. This dynamic graph
structure supports patients with diverse modalities and facilitates efficient information transfer be-
tween modalities and patients.

• Mutual-Consistent Contrastive Loss for Representation Learning. Addressing the modality
collapse problem and the challenge of missing labels, we introduce a mutual-consistent contrastive
loss. The unsupervised contrastive objective encourages similar representations for the same pa-
tient with different modalities, thereby learning modality-agnostic features. Meanwhile, the super-
vised contrastive objective further emphasizes the similarities among patients with the same label,
thus learning label-decisive features. Notably, the unsupervised contrastive objective is trained
with edge dropout augmentation and can seamlessly extend the training scope to patients with
missing labels.

To assess the effectiveness of MUSE, we conduct experiments on three publicly available patient
datasets: MIMIC-IV (Johnson et al., 2023), eICU (Pollard et al., 2018), and ADNI (Jack et al.,
2008). Our findings show that MUSE outperforms all baselines when trained solely on patients
with labels. Furthermore, MUSE+ enhances the absolute AUC-ROC score improvement by ∼4%
by expanding the training to include patients without labels. We also conduct detailed analyses and
ablation studies to investigate the factors contributing to the performance gain achieved by MUSE.

2



Published as a conference paper at ICLR 2024

𝐿!"#$%

𝐿&$%
𝑚! 𝑚" 𝑚# 𝑦

𝑝! ✔ NA ✔ NA

𝑝" ✔ ✔ NA 1

𝑝# NA NA ✔ 1

𝑝$ NA ✔ ✔ 0

Modalities Labels

Pa
tie

nt
s

𝑝!%

𝑚!
%

𝑝"% 𝑝#%

𝑚"
% 𝑚#

%

𝑝$%

𝑝!

𝑚!

𝑝" 𝑝#

𝑚" 𝑚#

𝑝$

❌
❌

❌

Construct

Construct

𝐳! 𝐳" 𝐳# 𝐳$
GNN

𝐳!% 𝐳"% 𝐳#% 𝐳$%GNN

Augmented with Edge Dropout ❌

MLP 𝐿!"

𝑚

𝑝 Pa(ent Node

Modality Node

𝐿&'()*

𝐿+)*

𝐿!"

Unsupervised
Mutual-Consistent
Contrastive Loss

Supervised
Mutual-Consistent
Contrastive Loss

Classification Loss

Legend

Si
am

es
e

Same
Label

Same
Patient

Bipartite Patient-Modality Graph 𝒢

Augmented Graph 𝒢′

Patient Node Representations 𝐙

Augmented Representations 𝐙′

Figure 2: MUSE models the patient-modality relationship as a bipartite graph G, where patients and
modalities constitute two separate node sets, and modality features act as edges. An augmented ver-
sion G′ is then derived via edge dropout, signifying the same patients but with variations in modality
inputs. The two graphs are encoded with a Siamese GNN to get the patient node representations. The
unsupervised contrastive objective aims to maintain consistent patient representations across varied
modalities, thereby learning modality-agnostic features. Meanwhile, the supervised contrastive ob-
jective promotes similarities between patients with identical labels, thereby learning label-decisive
features. Note that during inference time, the augmentation branch is omitted.

2 PRELIMINARIES

Multimodal patient representation learning jointly models the interaction among multimodal obser-
vations for a patient, and learns comprehensive representations for downstream clinical predictive
tasks. Formally, we use X(p) = (x

(p)
1 ,x

(p)
2 , . . . ,x

(p)
M ) to denote the multimodal observation data

(e.g., medical images, clinical reports, and biosignals) for the patient p, where M is the number of
modalities. And we use y(p) to denote the label for the predictive tasks (e.g., hospital readmission,
patient mortality, and disease diagnosis).

Conventional multimodal learning typically trains a multimodal model fΘ(·) with parameter Θ by
minimizing a loss function L(·) on a training set of N patients Dtr = {(x(p)

1 , . . . ,x
(p)
M ,y(p))}Np=1,

as in Eq. 1,

argmin
Θ

EDtr [L(fΘ(x
(p)
1 , . . . ,x

(p)
M ),y(p))], (1)

with the assumption that a complete set of modalities and labels is accessible to all patients. How-
ever, in real-world settings, patients can miss both modalities and labels due to various reasons.
Formally, we represent the missingness in modalities as M ∈ {0, 1}N×M , where A[p,m] = 1 if
the patient p has the modality m. And we use L ∈ {0, 1}N to denote the missingness in labels,
where L[p] = 1 if the label is available for the patient p. This paper then investigates: How can we
effectively learn representations for patients with missing modalities and labels?

3 THE MUSE APPROACH

MUSE is driven by the following insights to learn multimodal representations for patients with miss-
ing data:

Insight 1: To handle patients with different modalities, the model must be flexible enough to ac-
commodate different missing patterns and effective enough to model the patient-modal relationship.
Inspired by recent works that utilize graphs to model the cross-data relationships (You et al., 2020;
Chen & Zhang, 2020; Zhang et al., 2022), we represent the multimodal patient dataset as an undi-
rected bipartite patient-modality graph G. This graph represents patients and modalities as two types
of nodes. An edge is drawn between a patient and a modality node if the patient possesses data for
that modality. The feature of the modality functions as the edge’s attribute. The flexibility of graph
structure allows us to effectively and efficiently model the patient-modal relationship.
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Insight 2: Intuitively, to address the modality collapse issue, the model needs to focus on features
that are general across modalities and decisive for labeling. In this way, the model can still infer the
label from modality-agnostic features learned from existing modalities, even if certain modalities
are missing. Based on this intuition, we design a mutual-consistent contrastive loss. Specifically,
we first obtain an augmented version of the bipartite graph G via edge dropout, denoted as G′.
The unsupervised contrastive goal is to align the same patient nodes in G and G′. Meanwhile,
a supervised contrastive loss is applied to enhance similarities between patients sharing the same
label. Collectively, these objectives encourage the model to learn modal-agnostic and label-decisive
features, thereby enhancing its generalizability. Moreover, the unsupervised contrastive loss only
requires self-supervision signals, broadening the training scope to patients with missing labels.

Fig. 2 illustrates the MUSE framework. We will next describe the two modules in detail and introduce
the training and inference strategy.

3.1 MULTIMODAL DATA AS A BIPARTITE GRAPH

Multimodal learning with graphs has attracted much attention recently due to their flexibility in
modeling the interactions among modalities and samples (Ektefaie et al., 2023). However, existing
approaches either only construct a graph for each modality (Zhang et al., 2022), which ignores
cross-modal relationship, or build a hypergraph whose complexity increase as the combination of
modalities (Chen & Zhang, 2020), which suffers from the scalable issue. In contrast, MUSE utilizes
a bipartite patient-modality graph to maintain a good balance between effectiveness and scalability.

Bipartite Patient-Modality Graph Construction. MUSE transforms the multimodal patient fea-
tures {X(p)}Np=1 and modality missingness matrix M to an undirected bipartite patient-modality
graph G = (V, E). Here, the node set V = VP ∪ VM consists of patient nodes VP = {u1, . . . , uN}
and modality nodes VM = {v1, . . . , vM}. The edge set E is determined using the modality missing-
ness matrix M as the adjacency matrix. Specifically, an edge eupvm is drawn if the patient p has the
data for modality m.

To initialize edge embeddings, we utilize the associated modality features. Specifically, for the edge
eupvm , we initialize its embedding by encoding the raw data x(p)

m of modality m pertaining to patient
p, as in Eq. 2,

e(0)
upvm = Encoderm(x(p)

m ), (2)

where Encoderm(·) is the backbone feature encoder for modality m, and e
(0)
upvm ∈ Rd is the

encoded modality embedding with dimension d. For node embeddings, we initialize modality
nodes as one-hot encodings of dimension M , i.e., h(0)

vm = OneHot(m). Patient nodes, on the other
hand, are initialized with constant one vectors with the same dimension, i.e., h(0)

up = 1.

Message Passing over the Bipartite Graph. Given the constructed bipartite graph, we utilize a
multi-layer Graph Neural Network (GNN) to integrate information from both modalities and pa-
tients, and learn consolidated patient representations, as in Eq. 3,

Z = GNN(G), (3)

where Z ∈ RN×d is the learned patient representations. Essentially, GNN propagates messages in
the graph, where each node aggregates information from its neighboring nodes. Due to the multihop
aggregation capability, GNNs can model long-term relations among modalities and patients. Specif-
ically, in the l-th propagation layer, node hi aggregates information from its neighboring nodes N (i)
via the connecting edges, as in Eq. 4,

h
(l)
i = Aggregate(l)

(
h
(l−1)
i ,

{
Message(l)(h(l−1)

j ,h
(l−1)
i , e

(l−1)
ji | ∀j ∈ N (i))

})
, (4)

where Message(l) extracts message information from the source node representation h
(l−1)
j , the

target node representation h
(l−1)
i , and the edge representation e

(l−1)
ji . Meanwhile, Aggregate(l)

compiles the neighboring messages via mean, sum, max, or other pooling operators.
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3.2 MUTUAL-CONSISTENT CONTRASTIVE LEARNING

Multimodal features can be broadly categorized into two dichotomies: label-decisive versus non-
label-decisive, and modality-agnostic versus modality-dependent (Xue et al., 2023). However, prior
research on absent modalities does not differentiate between these features (You et al., 2020). As a
result, a predictive model might over-rely on modality-dependent features, and yield compromised
performance when the corresponding modalities are absent. For a model to consistently perform
well across varying modalities, it is crucial to separate modality-agnostic and modality-dependent
label-decisive features and focus on the modality-agnostic ones.

Based on this intuition, we introduce a simple yet effective mutual-consistent contrastive loss.
Specifically, we first obtain an augmented version of the bipartite graph G, through random edge
dropout, which is denoted as G′. This essentially mirrors the original set of patients but showcases
different modality missing patterns. Subsequently, we pass the augmented graph G′ through
the same GNN encoder, yielding Z′ = GNN(G′), where Z′ ∈ RN×d is the augmented patient
representations. Building on this, MUSE introduces three loss objectives.

Mutual-Consistent Contrastive Loss. Patient nodes from graphs G and G represent the same set
of patients but with different modalities as inputs. Naturally, we want to encourage the similarities
between nodes from the same patient in different graphs to extract modality-agnostic features. To
do this, MUSE deploys an unsupervised contrastive loss, as in Eq. 5,

LUnsup(Z,Z
′) = −

N∑
p=1

log
es(zp,z

′
p)/τ∑N

q=1 e
s(zp,z′q)/τ

, (5)

where zp and z′p are the nodes from the same patient in graph G and G′, respectively, and s(·, ·) is the
cosine similarity function with τ as a temperature hyperparameter. Notably, this loss function does
not require label information to supervise the training. Thus, it can seamlessly incorporate patients
with absent labels and extend the training scope.

While extracting modality-agnostic features is crucial, it is not the sole consideration. Patient data
often encompass abundant auxiliary information irrelevant to the downstream task, such as admin-
istrative details. Thus, it is imperative to prioritize label-decisive features as well. In light of this,
MUSE encourages patient nodes with the same label to predict each other. The corresponding loss is
denoted as LSup(Z,Y,L), which is shown in Eq. 6,

−
N∑

p=1

N∑
q=1

1(L[p]L[q] = 1)1(yp = yq) log
es(zp,zq)/τ∑N

r=1 1(L[r] = 1)1(yp ̸= yr)es(zp,zr)/τ
, (6)

where 1(·) is the indicator function. Here, 1(L[p]L[q] = 1) and 1(L[r] = 1) only select patients
with label information. And zp and zq denote patients with matching labels, whereas zp and zr
signify patients with distinct labels.

Classification Loss. To further optimize for downstream tasks, we incorporate a supervised cross-
entropy loss. Specifically, we first obtain the predicted label through a non-linear network, as Ŷ =
MLP(Z), where MLP(·) is a multi-layer perceptron. Subsequently, we optimize the supervised
classification loss, as LCE(Ŷ,Y) =

∑N
p=1 1(L[p] = 1)CE(ŷp,yp), where 1(L[p] = 1) selects

patients with labels, and CE(·, ·) is the cross-entropy loss between predicted label ŷp and true label
yp for patient p.

3.3 TRAINING AND INFERENCE

To train MUSE, for each batch, we transform the batch data to a bipartite graph. Then, we employ an
edge dropout of 0.15 probability to derive the augmented graph. Next, we input both the original and
the augmented graph through the Siamese GNN. We leverage in-batch negatives for the contrastive
losses in Eq. 5 and Eq. 6. Notably, similarity calculations are performed only once between each
pair and are stored for reuse. The trio of loss objectives are added together to obtain the final loss.
To infer MUSE, we only feed the original graph through the GNN and obtain the predicted label via
the MLP classifier. The pseudocode of MUSE is available in Appx. A. More implementation details
can be found in Sec. 4.1 and Appx. C.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We compare MUSE to three categories of baselines. (1) The first category is modality
imputation methods, including CM-AE (Ngiam et al., 2011) and SMIL (Ma et al., 2021). (2) The
second category is direct prediction approaches, including MT (Ma et al., 2022). (3) The last
category is graph-based methods, including GRAPE (You et al., 2020), HGMF (Chen & Zhang,
2020), and M3Care (Zhang et al., 2022). Note that these methods depend on a supervision signal
from task labels, and consequently, they only utilize labeled patients during training. To ensure a fair
comparison, we implement our method in two distinct settings. When trained solely with labeled
patients, it is referred to as MUSE; and when trained with both labeled and unlabeled patients, it is
designated as MUSE+. More details can be found in appendix B.

Implementations. MUSE uses the GraphSage (Hamilton et al., 2017) with edge attributes version
in You et al. (2020) as the GNN. The edge dropout rate is set to 15%. We split the dataset into 70%,
10%, 20% training, validation, and test sets. We train all models for 100 epochs on the training set,
and select the best model by monitoring the performance on the validation set. The final results are
reported on the test set. For each metric, we report the average scores and standard deviation by
performing bootstrapping (i.e., sampling with replacement) 1000 times. Additionally, we conduct
independent two-sample t-tests to assess whether MUSE achieves a significant improvement over
the baseline methods. More implementation details are provided in Appx. C. The code of MUSE is
publicly available 1.

4.2 RESULTS ON ICU DATA.

Datasets. We evaluate MUSE on two real-world ICU datasets. MIMIC-IV (Johnson et al., 2023)
covers 431K visits for 180K patients admitted to the ICU in the Beth Israel Deaconess Medical
Center. We use demographics (age, gender, and ethnicity), diagnosis, procedure, medication, lab
values, and clinical notes as input modalities. eICU (Pollard et al., 2018) covers 431K visits for 180K
patients admitted to the ICU in the Beth Israel Deaconess Medical Center. We use demographics,
diagnosis, procedure, medication, lab values, and vital signals as input modalities.

Tasks & Metrics. We focus on two common clinical predictive tasks. Readmission prediction aims
to predict whether a patient will be readmitted within the next 15 days following current discharge.
Mortality prediction predicts whether a patient will pass away upon discharge in the eICU setting,
or within 90 days after discharge in the MIMIC-IV setting. Both tasks are binary classifications. To
evaluate the performance of the models, we calculate the Area Under the Precision-Recall Curve
(AUC-PR) and the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) scores.

Backbone Encoders. For demographic (age, gender, ethnicity) and sequential medical coding data
(diagnosis, procedure, and medication), we use the Transformer (Vaswani et al., 2017) architecture
as the backbone encoder. For times series data (lab values and vital signals), we use the Recurrent
Neural Network (RNN). For text data (clinical notes), we use the TinyBERT (Jiao et al., 2019)
encoder. We add a project layer to map the modality embeddings to the same latent space.

More details on datasets, statistics, tasks, metrics, and backbone encoders can be found in Appx. D.

Results. Table 1 presents the mortality and readmission prediction results on the MIMIC-IV and
eICU datasets. Firstly, we observe that modality imputation methods CM-AE (Ngiam et al., 2011)
and SMIL (Ma et al., 2021) perform the worst. This is reasonable as they rely on strong assumptions
to learn the mapping from a lower-dimensional latent space to the higher-dimensional original input
space. Direct prediction-based method, MT (Ma et al., 2022), offers slightly improved results by
utilizing a specialized Transformer (Vaswani et al., 2017) architecture to model relationships among
various modalities. However, it overlooks the valuable relation information among different patients.
Next, graph-based approaches achieve the best performance among all baselines. These approaches
model both inter- and intra-relationships between patients and modalities via GNNs. Within this
category, HGMF (Chen & Zhang, 2020) performs the worst, likely due to its complex network de-
sign that might be challenging to optimize and prone to overfitting. Conversely, GRAPE (You et al.,

1https://github.com/zzachw/MUSE
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Table 1: Results on the MIMIC-IV and eICU datasets. A dagger (†) indicates the standard deviation
is greater than 0.02. An asterisk (*) indicates that MUSE achieves a significant improvement over
the best baseline method, with a p-value smaller than 0.05. MUSE achieves the best performance
across all baselines, and MUSE+ can further improve the performance by incorporating patients with
missing labels into the unsupervised contrastive loss.

Method
MIMIC-IV eICU

Mortality Readmission Mortality Readmission
AUC-ROC AUC-PRC AUC-ROC AUC-PRC AUC-ROC AUC-PRC AUC-ROC AUC-PRC

CM-AE 0.8530† 0.4351† 0.6817† 0.4324† 0.8624 0.3902 0.7462† 0.4338†
SMIL 0.8607 0.4438 0.6894† 0.4368† 0.8711 0.4066 0.7506 0.4447
MT 0.8739 0.4452 0.6901 0.4375 0.8882 0.4109 0.7635 0.4500
GRAPE 0.8837 0.4584† 0.7085 0.4551 0.8903 0.4137 0.7663 0.4501
HGMF 0.8710 0.4433 0.7005† 0.4421 0.8878 0.4104 0.7604 0.4496†
M3Care 0.8896† 0.4603† 0.7067 0.4532 0.8964 0.4155 0.7598† 0.4430

MUSE 0.9004* 0.4735* 0.7152†* 0.4670†* 0.9017* 0.4216* 0.7709* 0.4631*
MUSE+ 0.9201* 0.4883* 0.7351* 0.4985* 0.9332* 0.4387* 0.8003* 0.4844*

2020) and M3Care (Zhang et al., 2022) employ simpler graph designs and achieve better perfor-
mance. Lastly, we observe that both MUSE and MUSE+ outperform all other baselines. Specifically,
MUSE, trained on the same patient set as other baselines, achieves ∼2% absolute improvement in
AUC-ROC score. Further amplifying this lead, MUSE+ elevates the improvement to ∼4% by incor-
porating additional patients with missing labels into the unsupervised contrastive loss.

4.3 RESULTS ON ALZHEIMER’S DISEASE DATA.

Datasets. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2008) database
provides longitudinal neuroimaging data, cognitive test scores, biomarker profiles, and genetic in-
formation for over 2K Alzheimer’s disease, mild cognitive impairment, and normal. We use the
processed data from the Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE)
challenge (Marinescu et al., 2019). This challenge offers pre-processed features for 1737 patients
spanning 12741 visits. Specifically, we utilize features from magnetic resonance imaging (MRI),
positron emission tomography (PET), and diffusion tensor imaging (DTI).

Tasks & Metrics. The TADPOLE challenge involves classifying patient visits into three categories:
normal control, mild cognitive impairment, and Alzheimer’s disease. We adopt the official metrics:
the balanced accuracy score and the one-vs-one macro AUC-ROC score.

Backbone Encoders. Given that the TADPOLE challenge supplies extracted features for each
modality – like the volumes, thicknesses, and surface areas of region-of-interest (ROI) in MRI scans,
or the mean, axial, and radial diffusivity in DTI ROIs – we implement a multi-layer perceptron
equipped with ReLU activation and batch normalization as the backbone encoder.

More details on datasets, statistics, tasks, metrics, and backbone encoders can be found in Appx. E.

Table 2: Alzheimer’s disease
progression prediction results on
the ADNI dataset. The dagger
(†) and asterisk (*) have the same
meanings as Tab. 1.

Method AUC-ROC Accuracy
CM-AE 0.8722† 0.7305†
SMIL 0.8761† 0.7338†
MT 0.8935 0.7604
GRAPE 0.9031† 0.7820†
HGMF 0.8845† 0.7463†
M3Care 0.9101 0.7822†

MUSE 0.9158†* 0.7973†*
MUSE+ 0.9309* 0.8291*

Results. Table 2 showcases the outcomes for predicting
Alzheimer’s disease progression using the ADNI dataset. We
note that the standard deviations of the results are considerably
larger than those in the ICU setting, with many having stan-
dard deviations > 0.02 (highlighted by the dagger †). This could
likely be attributed to the smaller size of the dataset, resulting
in a more volatile training process. However, the overall perfor-
mance trend is similar to the ICU settings. The imputation-based
methods, CM-AE (Ngiam et al., 2011) and SMIL (Ma et al.,
2021), achieve the worst performance. Prediction-based method
MT (Ma et al., 2022) achieves some improvement, while graph-
based methods GRAPE (You et al., 2020) and M3Care (Zhang
et al., 2022) achieve the best performance among all baselines.
Particularly, we observe that HGMF (Chen & Zhang, 2020)’s
performance further deteriorates on smaller dataset. Lastly,
MUSE and MUSE+ give the best performance among all models,
achieving ∼3% absolute improvements.
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Figure 3: Experiment with different modality and label missing ratios.

4.4 ANALYSIS OF DIFFERENT DATA MISSING RATES.

Next, we analyze the impact of the data missing rate. Specifically, we randomly mask out modal-
ities with probabilities {0.1, 0.2, 0.3, 0.5, 0.7}, and labels with probabilities {0, 0.1, 0.2, 0.3,
0.4}. We compare MUSE with the two top-performing baselines: GRAPE (You et al., 2020) and
M3Care (Zhang et al., 2022) for the mortality prediction task on the MIMIC-IV dataset. The results
are shown in Fig. 3. Results highlight that MUSE and MUSE+ consistently outperform the two base-
lines across all configurations. Moreover, we observe that as the missing ratio increases, the gap
between MUSE+ and other baselines also increases. This demonstrates MUSE+’s robustness against
missing data by incorporating complementary information from patients with missing labels.

4.5 ANALYSIS OF THE LEARNED REPRESENTATIONS.
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Figure 4: Cosine similarity of the repre-
sentations from the same patients with
different modalities.

Further, we study the quantitative evidence behind
MUSE’s success. Specifically, we measure the cosine sim-
ilarity between representations from the same patient us-
ing the original modalities and those with 30% randomly
masked modalities. Fig. 4 show the results calculated on
the test set of the MIMIC-IV dataset for mortality pre-
diction. We observe that the modality imputation-based
methods (CM-AE (Ngiam et al., 2011) and SMIL (Ma
et al., 2021)), as well as the direct prediction-based
method (MT (Ma et al., 2022)) have much lower cosine
similarities compared to the graph-based methods. This
explains their performance drop as the patient representa-
tions vary a lot once certain modalities are missing. In
contrast, MUSE and MUSE+ achieve the highest cosine
similarity score among all baselines and also the best pre-
diction performance. These findings reaffirm our hypothesis regarding the efficacy of learning
modality-agnostic representations.

4.6 ABLATION STUDY.

This section analyzes the performance lift brought by different components of MUSE. Specifically,
A1 replaces edge dropout with feature dropout; A2 removes the mutual-consistent contrastive loss
and only uses the cross-entropy loss; A3 removes the supervised contrastive loss; and A4 removes
the unsupervised contrastive loss. The results can be found in Tab. 3. We observe that A1 suffers
from the most significant performance drop, indicating that simple feature dropout cannot simulate
the missing modality scenario. A2-4 remove different contrastive objectives, and all suffer from
certain levels of performance drop. Specifically, A2 can be seen as special version of GRAPE (You
et al., 2020) with additional input augmentation. It does not explicitly capture the modal-agnostic
features and thus deleterious the most. A3 and A4 perform similarly, indicating that supervised and
unsupervised mutual-consistent contrastive loss contributes differently to the overall objectives. This
matches our intuition that the unsupervised contrastive loss forces the model to learn modal-agnostic
features while the supervised version forces the model to learn label-decisive features.
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Table 3: Ablation study on the influence of each individual component. The dagger (†) and asterisk
(*) have the same meanings as Tab. 1.

ID Method MIMIC-IV eICU ADNI
Mortality Readmission Mortality Readmission AD Progression

A1 MUSE w/o Edge Dropout 0.8830 0.6911† 0.8655 0.7593 0.8811
A2 MUSE w/o Contrastive Loss 0.8846 0.7055 0.8895 0.7611† 0.9040
A3 MUSE w/o Supervised Contrastive Loss 0.8934 0.7088† 0.8916 0.7699 0.9086
A4 MUSE w/o Unsupervised Contrastive Loss 0.8901 0.7103 0.8911 0.7706 0.9003

- MUSE 0.9004* 0.7152†* 0.9017* 0.7709 0.9158†*
- MUSE+ 0.9201* 0.7351* 0.9332* 0.8003* 0.9309*

4.7 RUNTIME ANALYSIS.
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Figure 5: Prediction performance
v.s. training time comparison on the
MIMIC-IV mortality prediction task.

This section compares the prediction performance ver-
sus training time relationship for all methods. We report
the per-epoch training time and AUC-ROC score for the
MIMIC-IV mortality prediction task on a single NVIDIA
A100 GPU. The results can be found in Fig. 5. MUSE
achieves the best prediction performance with relatively
small computation loads. MUSE+ further improves the pre-
diction results with reasonable computation overhead (due
to the incorporation of patients with missing label). This
demonstrates that the design of MUSE keeps a good balance
between effectiveness and efficiency. Furthermore, the sim-
ple definition of mutual-consistent contrastive loss allows
re-using computations across various loss functions. These
factors make MUSE a lightweight yet powerful framework.

5 RELATED WORK

Multimodal Learning with Missing Modalities. Conventional multimodal approaches typically
assume the availability of all modalities (Ramachandram & Taylor, 2017), which may not be satis-
fied in real-world scenarios. To address this, multimodal learning with missing modalities is pro-
posed. CM-AE (Ngiam et al., 2011) leverages a cross-modality auto-encoder to recover the missed
modalities based on existing ones. SMIL (Ma et al., 2021) further incorporates Bayesian meta-
learning technique. However, these imputation-based methods tend to make strong assumptions
about data distribution and may introduce additional noise. Furthermore, when imputing a miss-
ing modality for a certain patient, they fail to make full use of this modality from other patients.
In contrast, MT (Ma et al., 2022) uses a late-fusion Transformer layer to model the interaction
among modalities. MulT (Tsai et al., 2019) uses a pairwise Transformer layer to fuse the modal-
ity embeddings. And ViLT (Kim et al., 2021) and UMSE (Lee et al., 2023) directly enable the
interaction among raw inputs from different modalities. These models can directly perform down-
stream tasks with the existence of missing modality due to specific network design. More recently,
graph-based approaches have been proposed. GRAPE (You et al., 2020) utilizes a similar bipartite
graph as MUSE, but it does not enforce the similarity of the same patient with different modalities.
HGMF (Chen & Zhang, 2020) uses a heterogeneous graph to model different modality missing
patterns. M3Care (Zhang et al., 2022) learns patient similarity for each modality. However, these
methods either oversimplify the relationship, or utilize an overcomplex network that suffers from
training and over-fitting issues. Furthermore, they require labels as supervisions and fail to utilize
patients with missing labels in the training process.

6 CONCLUSION

Existing multimodal clinical predictive models either assume complete modality availability for
each patient or only deal with missing modalities. In reality, both modalities and labels can be
absent. To address this, we propose MUSE, which builds a patient-modality bipartite graph and
learns to extract modality-agnostic and label-decisive feature via mutual-consistent graph contrastive
learning. Evaluations of MUSE on three medical datasets reveal its superiority over baseline methods.
Furthermore, we supplement our results with comprehensive qualitative analyses.
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A PSEUDOCODE OF MUSE

Algorithm 1: Training and Inference for MUSE.
1: // Training

Require: Training dataset Dtr, modalities missingness matrix M, label missingness matrix L
2: for each epoch do
3: for each batch do
4: Sample batch data from Dtr

5: Transform batch data to bipartite graph G
6: Initialize graph embeddings by Eq. 2
7: Obtain augmented graph G′ via edge dropout
8: Feed both graphs through Siamese GNN by Eq. 3
9: Compute mutual-consistent contrastive loss by Eq. 5, 6

10: Obtain the predicted label via MLP and calculate the cross-entropy loss
11: Update model parameters with the weighted sum of all losses
12: end for
13: end for
14: // Inference
Require: Testing dataset Dte, modalities missingness matrix M
15: for each batch do
16: Sample batch data from Dte

17: Transform batch data to bipartite graph G
18: Initialize graph embeddings by Eq. 2
19: Feed graph G through GNN by Eq. 3
20: Obtain the predicted label via MLP
21: end for

B ADDITIONAL DETAILS ON BASELINES

We compare MUSE with the following baselines:

• CM-AE (Ngiam et al., 2011) leverages a cross-modality auto-encoder to recover the missed
modalities. Specifically, we first sample a subset of patients with complete modalities. Then,
we train CM-AE to reconstruct the masked-out modality. Next, we use the trained CM-AE model
to impute missing modalities for all patients. Finally, we perform the downstream tasks on the
imputed dataset.

• SMIL (Ma et al., 2021) further incorporates Bayesian meta-learning techniques to perturb the la-
tent feature space so that embeddings with missing modalities can approximate the ones with com-
plete modalities. Specifically, it approximates missing modality with a weighted sum of modality
priors learned from the modality-complete dataset together with a feature regularizer.

• MT (Ma et al., 2022) utilizes a Transformer layer to fuse the embeddings from different modal-
ities. Specifically, we use the late-interaction version where the Transformer fuses the learned
modality embeddings from modality-specific encoders.

• GRAPE (You et al., 2020) utilizes a similar bipartite graph as MUSE to fuse the information
across modalities and patients. We directly feed the fused patient representations from GNN to a
downstream MLP for the predictive tasks.

• HGMF (Chen & Zhang, 2020) uses a heterogeneous hypernode graph to model the patient-
modality relationship and to accommodate different modality missing patterns. Modalities from
the same patients are modeled via an intra-node encoder. And the interaction among patients is
modeled with the hypergraph.

• M3Care (Zhang et al., 2022) learns patient similarity for each modality, and then builds a per-
modality similarity graph. The cross-patients interaction is modeled via a GNN. And the modali-
ties embeddings for each patient are aggregated via a Transformer head.
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C ADDITIONAL DETAILS ON IMPLEMENTATIONS

We train all models for 100 epochs on the training set, and select the best model by monitoring the
performance on the validation set. The final results are reported on the test set. The specific metric
monitored varies depending on the task: we used the PR-AUC score for mortality and readmission
tasks and the one-vs-one macro AUC-ROC score for the Alzheimer’s disease prediction task. MUSE
uses the GraphSage (Hamilton et al., 2017) with edge attributes version in You et al. (2020) as the
GNN. Specifically, in the l-th layer propagation layer, the node hi aggregates information from its
neighbours nodes via the connecting edges, as in Eq. 7,

h
(l)
i = U(l)Concat

(
h
(l−1)
i , Mean

({
ReLU(W(l)h

(l−1)
j +O(l)e

(l−1)
ji | ∀j ∈ N (i))

}))
, (7)

where U, W, O are learnable parameters. And the edge embeddings are updated as well, as in
Eq. 8,

e
(l)
ji = P(l)Concat

(
h
(l−1)
j ,h

(l−1)
i e

(l−1)
ji

)
, (8)

where P is a learnable parameter matrix. We set the number of GNN layers to 2. And we add a MLP
classification head to each of the GNN layer. The cosine similarity temperature τ is set to 0.05. We
would like to note that we did not extensively tune the hyperparameters for the experiments. Specifi-
cally, we only tune the learning rate for both MUSE and the baseline methods while keeping the other
hyperparameters aligned to ensure a fair comparison. We implement MUSE using PyTorch Paszke
et al. (2019) 1.11 and Python 3.8. The model is trained on a CentOS Linux 7 machine with 128
AMD EPYC 7513 32-Core Processors, 512 GB memory, and eight NVIDIA RTX A6000 GPUs.
The code of MUSE will be released after acceptance.

D ADDITIONAL DETAILS ON EHR DATA

Table 4: ICU Dataset statistics.
Item MIMIC-IV eICU

#Patients 172113 120892
#Admissions 389761 158248

Mortality Positive % 0.09 0.04
Mortality Missing % 0.58 0.50

Readmission Positive % 0.25 0.15
Readmission Missing % 0.41 0.50

Age 57 62
Gender F: 0.52, M: 0.48 F: 0.46, M: 0.54
Race African American: 0.17, Asian: 0.04, Caucasian: 0.66,

Hispanic: 0.06, Native American: 0.00, Other: 0.06
African American: 0.11, Asian: 0.02, Caucasian: 0.77,
Hispanic: 0.04, Native American: 0.01, Other: 0.06

Diagnosis Missing % 0.00 0.08
Procedure Missing % 0.50 0.18

Medication Missing % 0.17 0.17
Lab Missing % 0.22 0.03

Notes Missing % 0.31 -
Vital Signal Missing % - 0.11

D.1 DATASETS

MIMIC-IV (Johnson et al., 2023). We extract the data from the patients, admissions, prescrip-
tions, diagnoses icd, procedures icd, labevents, and discharge tables. Prescriptions, diagnoses, and
procedures are recorded as medical codes. For labevents, following Sung et al. (2021), we gather
ten groups of data related to Hematocrit, Platelet, WBC, Bilirubin, pH, Bicarbonate, Creatinine,
Lactate, Potassium, and Sodium. A total of 111 lab items are included. For clinical notes, we use
the text from the discharge summary section. We select our cohorts by filtering out visits of patients
younger than 18 or older than 89 years old, and visits that last longer than 10 days. We exclude
visits where the patient ultimately passed away, as the predictions are made upon discharge.

eICU (Pollard et al., 2018). We extract data from the patient, diagnosis, treatment, medication, lab,
and apacheApsVar tables. Diagnosis, treatment, and medication are recorded as medical codes. We
select our cohorts by filtering out visits of patients younger than 18 or older than 89 years old, visits
that last longer than 10 days, and visits lasting shorter than 12 hours, as the predictions are made 12
hours after admission.
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D.2 TASKS

We focus on two common clinical predictive tasks: readmission prediction and mortality prediction.

For the MIMIC-IV dataset, the predictions are made at the time of discharge. Mortality prediction is
defined as predicting whether a patient will pass away within 90 days after discharge. Readmission
prediction aims to determine whether a patient will be readmitted within the next 15 days following
discharge. We extract the mortality label from the date of death information. For patients without
date of death information, we further check their next admission date. If their next admission date
is after 90 days, we set the mortality label to false. Otherwise, we set the mortality label as missing.
For the readmission label, we compare the current discharge date versus the next admission date. We
set the readmission label to missing for each patient’s last visit, since it is possible that the patient is
transferred to a different hospital.

In the case of the eICU dataset, the predictions are made 12 hours after admission. Mortality predic-
tion aims to predict whether a patient will pass away upon ICU discharge. Readmission prediction,
on the other hand, aims to determine whether a patient will be readmitted to ICU within the next
15 days during the same hospital stay. Both mortality and readmission labels are extracted from the
current hospital stay, and there are no missing labels. Thus, we simulate the missing label scenario
by masking out 50% labels randomly.

D.3 METRICS

We use the metric functions from the sklearn library. The AUC-ROC and AUC-PRC scores are
calculated as follows:

from sklearn import metrics

auc_roc = metrics.roc_auc_score(y_true, y_score)
precision, recall, thresholds = metrics.precision_recall_curve(

↪→ y_true, y_score)
auc_prc = metrics.auc(recall, precision)

D.4 BACKBONE ENCODERS

For demographic (age, gender, ethnicity) and sequential medical coding data (diagnosis, procedure,
and medication), we use the Transformer (Vaswani et al., 2017) architecture as the backbone en-
coder. The number of layers is 2, the embedding dimension is 128, and the number of attention
heads is 2. The event embedding look-up table is initialized with ClinicalBERT Alsentzer et al.
(2019) embeddings of the event name and then projected down to 128 dimension with a linear layer.
Patient demographics features (age, gender, and ethnicity) are separately embedded with another
embedding look-up table. The medical and patient demographics are added together to form the
overall sequence embedding. For times series data (lab values and vital signals), we use the Recur-
rent Neural Network (RNN). We set the number of layers to 2 and enable bidirectional propagation.
For text data (clinical notes), we use the TinyBERT (Jiao et al., 2019) encoder. We set the maximum
length to 256. We add a project layer to map the modality embeddings to the same latent space of
dimension 128.

E ADDITIONAL DETAILS ON AD DATA

E.1 DATASETS

ADNI (Jack et al., 2008). We use the TADPOLE D1 D2 table from the TADPOLE data chal-
lenge (Marinescu et al., 2019), which integrates data from the ADNIMERGE spreadsheet as well as
additional MRI, PET (FDG, AV45 and AV1451), DTI and CSF biomarkers. Specifically, we use the
MRI biomarker features from the UCSFFSL 02 01 16 and UCSFFSL51ALL 08 01 16 tables, the
PET ROI biomarker features from the BAIPETNMRC 09 12 16, UCBERKELEYAV45 10 17 16
and UCBERKELEYAV1451 10 17 16 tables, and ROI summary measures (e.g. mean diffusivity
MD, axial diffusivity AD) from the DTIROI 04 30 14 table.
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Table 5: AD Dataset statistics.
Item ADNI

#Patients 1572
#Admissions 5974

Label Distribution Normal Control: 0.03, Mild Cognitive Impairment:
0.46, Alzheimer’s Disease: 0.22

Label Missing % 0.08
Age 74

Gender F: 0.45, M: 0.55
Race Indian/Alaskan: 0.00, Asian: 0.02, Black: 0.04, Hawai-

ian/Other PI: 0.00, More than one: 0.01, Unknown:
0.00, White: 0.93

DTI Biomarkers Missing % 0.87
PET Biomarkers Missing % 0.65
MRI Biomarkers Missing % 0.27

E.2 TASKS

We focus on the Alzheimer’s disease progression prediction task. The goal is to classify each patient
visit into normal control, mild cognitive impairment, and Alzheimer’s disease. The label information
is extracted from the TADPOLE D1 D2 table. There are no missing labels. Thus, we simulate the
missing label scenario by randomly masking out 50% of the labels.

E.3 METRICS

We adopt the official metrics: the balanced accuracy score and the one-vs-one macro AUC-ROC
score. They are calculated as follows:

from sklearn import metrics

b_acc = metrics.balanced_accuracy_score(y_true, y_pred)
auc_roc_macro_ovo = metrics.roc_auc_score(y_true, y_score, average

↪→ ="macro", multi_class="ovo")

E.4 BACKBONE ENCODERS

Given that the TADPOLE challenge supplies extracted features for each modality, we implement a
two-layer perceptron with ReLU activation and batch normalization as the backbone encoder. The
hidden dimension is set to 128.

F ADDITIONAL EXPERIMENTS

F.1 ADDITIONAL EVALUATION ON THE MISSING NOT AT RANDOM SETTING

In this paper, we follow existing works Zhang et al. (2022); You et al. (2020) and mainly focus on the
missing completely at random setting. The modalities we consider are typically collected routinely
for ICU patients, and ideally, they should be available for each patient. Missingness in our context
is primarily attributed to administrative issues or time gaps.

Additionally, we simulate a scenario where label missingness is correlated with modality missing-
ness and the true label for the eICU mortality prediction task. The results can be found in Tab. 6.
Results show that MUSE can also adapt to this non-random missingness scenario as the correlation
could be learned in a data-driven manner.

F.2 ADDITIONAL ANALYSIS OF THE USE OF THE SUPERVISED CONTRASTIVE LOSS

We would like to note that the supervised contrastive loss and the classification loss are calculated
on two different tensors. Specifically, we add a projection layer to the patient embedding before
calculating the contrastive loss, while the classification loss is based on the original patient embed-
ding. Our intuition behind this design is that the contrastive losses encourage the model to learn both
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Table 6: Additional results on the eICU mortality prediction task under the missing not at random
setting. We simulated this setting by assigning a higher label-missing rate to deceased patients with
missing vital signals while keeping the overall label-missing rate still at 50%.

Model AUC-ROC
CM-AE 0.8140
SMIL 0.8121
MT 0.8410
GRAPE 0.8698
HGMF 0.8511
M3Care 0.8700

MUSE 0.8753
MUSE+ 0.8911

Table 7: Additional ablation study on the supervised contrastive loss in terms of the AUC-ROC
score.

ID Method MIMIC-IV eICU ADNI
Mortality Readmission Mortality Readmission AD Progression

A3 MUSE w/o Supervised Contrastive Loss 0.8934 0.7088 0.8916 0.7699 0.9086
A5 A3 w/ higher Classification Loss 0.8955 0.7002 0.8902 0.7713 0.9033

- MUSE 0.9004 0.7152 0.9017 0.7709 0.9158
- MUSE+ 0.9201 0.7351 0.9332 0.8003 0.9309

modality-agnostic and label-decisive features. In contrast, the classification loss leverages model-
specific and label-decisive features to enhance prediction performance. To empirically support this,
we provide additional ablation study on the supervised contrastive loss in terms of the AUC-ROC
score in Tab. 7. This ablation study demonstrates the contribution of the supervised contrastive loss
to the overall model performance.

F.3 ADDITIONAL METRIC OF THE DISTANCE BETWEEN PATIENT REPRESENTATIONS

In our experiment analyzing the learned representations (Sec. 4.5), we calculate the average cosine
similarity across all patients. Additionally, we include the average Euclidean distance between
representations in Tab. 8.

Table 8: Euclidean distance of the representations from the same patients with different modalities.
Model Euclidean Distance
CM-AE 0.7352
SMIL 0.6337
MT 0.5839
GRAPE 0.3001
HGMF 0.4426
M3Care 0.3286

MUSE 0.2437
MUSE+ 0.2232

G LIMITATIONS

Our paper primarily addresses the challenge of handling missing modalities and labels. However, it
is important to note that for a given task, there is no guarantee that multimodal models will consis-
tently outperform unimodal methods. Investigating the conditions under which multimodal models
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outperform unimodal ones is still an open research question and falls outside the scope of this work.
Instead, our focus is on scenarios where multimodal models have the potential to outperform uni-
modal models, but their performance is limited by the absence of certain modalities and labels.
For other applications, users should assess the necessity of employing multimodal learning before
considering the application of our proposed method to address the issue of missing modalities and
labels.

H NOTATIONS

Notation Meaning

X(p) multimodal observation data for patient p
(x

(p)
1 ,x

(p)
2 , . . . ,x

(p)
M ) M multimodal observations for patient p

p a specific patient
m a specific modality
M total number of modalities
y(p) label for patient p
fΘ(·) a multimodal model with parameter Θ
L(·) a general loss function

Dtr = {(x(p)
1 , . . . ,x

(p)
M ,y(p))}Np=1 a training set of N patients

M mortality missingness matrix
A[p,m] whether patient p has the modality m

L label missingness matrix
L[p] whether the label is available for the patient p

G = (V, E) a bipartite graph with node set V and edge set E
VP = {u1, . . . , uN} set of patient nodes
VM = {v1, . . . , vM} set of modality nodes

eupvm the edge between patient p and modality m
Encoderm(·) backbone feature encoder for modality m

e
(0)
upvm initialized edge embedding

h
(0)
vm = OneHot(m) initialized modality node embedding

h
(0)
up = 1 initialized patient node embedding

GNN(·) a graph neural network
Z the learned patient representations

h
(l)
i ,h

(l−1)
i embeddings for node i at layer l / l − 1

h
(l−1)
j embedding for node j at leyer l − 1

e
(l−1)
ji embedding for edge eji between nodes j and i at layer l − 1
N (i) neighboring nodes of i

Message(l) message extractor at layer l
Aggregate(l) message aggregator at layer l

G′ an augmented version of graph G through edge dropout
Z′ the augmented patient representations

LUnsup(Z,Z
′) unsupervised mutual-consistent contrastive loss

s(·, ·) cosine similarity function
τ temperature hyperparameter

LSup(Z,Y,L) supervised mutual-consistent contrastive loss
1(·) indicator function

1(L[p]L[q] = 1) select patient p and q with labels
1(L[r] = 1) select patient r with label

Ŷ predicted labels
MLP(·) a multi-layer perceptron

LCE(Ŷ,Y) the classification loss
CE(·, ·) the cross-entropy loss
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