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Abstract
Current research on adversarial attacks mainly focuses on
RGB trackers, with no existing methods for attacking RGB-T
cross-modal trackers. To fill this gap and overcome its chal-
lenges, we propose a progressive adversarial patch generation
framework and achieve cross-modal stealth. On the one hand,
we design a coarse-to-fine architecture grounded in the la-
tent space to progressively and precisely uncover the vulner-
abilities of RGB-T trackers. On the other hand, we introduce
a correlation-breaking loss that disrupts the modal coupling
within trackers, spanning from the pixel to the semantic level.
These two design elements ensure that the proposed method
can overcome the obstacles posed by cross-modal informa-
tion complementarity in implementing attacks. Furthermore,
to enhance the reliable application of the adversarial patches
in real world, we develop a point tracking-based reprojection
strategy that effectively mitigates performance degradation
caused by multi-angle distortion during imaging. Extensive
experiments demonstrate the superiority of our method. Our
code is provided at https://github.com/Xinyu-Xiang/CMS.

Introduction
Visual Object Tracking (VOT) aims to recognize and lo-
cate a tracked object in subsequent frames, starting from
its initial appearance in the first frame of a visible video.
Due to the representation limitations of the RGB modality
in harsh conditions (Liu et al. 2024), researchers prefer to
combines complementary information from RGB and ther-
mal modalities to achieves more accurate and environmen-
tally robust tracking (Zhu et al. 2023; Liu et al. 2023). Track-
ing finds extensive application in critical domains includ-
ing autonomous driving and intelligent surveillance (Zhang
et al. 2022, 2023), and addressing its security challenges
is paramount. Fortunately, adversarial attacks aid in explor-
ing potential vulnerabilities comprehensively and serve as a
critical mechanism to bolster model security, which has at-
tracted a great deal of scholarly attention.

In the past decades, numerous tracker attack techniques
have been proposed, including one-stage attack methods
and two-stage attack methods. The one-stage attack meth-
ods (Zhao et al. 2023; Lou et al. 2023; Li et al. 2021) directly
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Figure 1: The superiority of our attack model: (a) Current
attack methods for RGB-T trackers remain unexplored, and
existing attack methods targeting RGB trackers achieve a
limited attack effectiveness due to modal gap, i.e., failing to
disrupt the feature enhancement resulting from multi-modal
coupling. (b) We pioneer a coarse-to-fine attack framework
tailored for RGB-T tracking, combined with a robust physi-
cal attack strategy, demonstrating strong and versatile capa-
bilities in both digital and physical domains.

employ a network or a perturbation generation strategy to
produce adversarial examples. Although effective attack per-
formance can be achieved, it is challenging to thoroughly
examine the model vulnerabilities. Different from one-stage
attack, two-stage attack methods (Jia et al. 2021; Li et al.
2022b) can exploit more hidden model defects through the
use of coarse attacks in the initial phase and fine-tuning in
subsequent stages. Specifically, Stage I extensively identifies
potential model vulnerabilities to attain a preliminary level
of attack. Furthermore, Stage II employs a more refined at-
tack strategy to target the critical vulnerabilities of the model
accurately. Consequently, in comparison with one-stage at-
tack, the two-stage methods can more meticulously uncover
the security issues within the model.

Although existing adversarial attack methods (Yan et al.
2020; Huang et al. 2024) have demonstrated the capability
to fool trackers to some extent, there are still some chal-
lenges that need to be addressed. Firstly, as shown in Fig. 1,



current research focuses primarily on attacks against RGB
trackers, with methods for RGB-T tracking remaining unex-
plored. This gap poses a significant threat to the robustness
and security of RGB-T tracking systems in practical applica-
tions. Therefore, how to create an adversarial attack frame-
work for RGB-T trackers is the first challenge. Secondly, at-
tacking RGB-T trackers presents inherent technical difficul-
ties. On the one hand, the cross-modal trackers are capable
of compensating for the disturbed part of a single modal us-
ing modal complementary information. On the other hand,
it is challenging for adversarial perturbations to obfuscate
the correlation between the cross-modal template image and
search images. Hence, how to gradually dig and break the
modal coupling between RGB and thermal modality is the
second challenge. Moreover, the challenge of transitioning
attack methods from the digital domain to practical physi-
cal applications constrains the progress of adversarial attack
techniques. When capturing the patch in the real world, dif-
ferent shooting angles of the sensor may lead to distortion of
the patch in the photo, which will degrade the attack perfor-
mance. Despite certain pioneering explorations in physical
attacks, existing work (Ding et al. 2021) mainly focuses on
applying random transformations, which does not align with
the true physical significance. Thus, how to guarantee multi-
angle robustness in physical domain is the third challenge.

To address the aforementioned challenges, we propose
a coarse-to-fine attack framework for RGB-T trackers. To
our knowledge, our work is the first attempt to attack cross-
modal tracking methods. Firstly, we devise a coarse-to-fine
network to gradually break the coupling of two modali-
ties and progressively generate the thermal patch with at-
tack shape and the RGB patch with attack texture from the
same latent space. Specifically, the RGB patch with adver-
sarial texture is first generated via latent code, and subse-
quently, the RGB patch and the optimized latent code are
modulated by two distinct networks to produce the enhanced
RGB patch and the thermal patch with adversarial structures,
respectively. Secondly, we design two loss functions from
pixel-level to semantic-level, which are capable of interfer-
ing with image block correlation and disrupting RGB-T fea-
ture response, respectively. Finally, to mitigate the impact of
angle changes on the image appearance of adversarial sam-
ples, we propose a patch reprojection strategy based on point
tracking. This strategy leverages the consistency of key point
correspondences to dynamically adjust the patch’s position,
thus ensuring effective attack performance under multiple
imaging angles in physical domain.

The contributions of this paper are as follows:

• We propose a cross-modal feasible adversarial patch to
misguide RGB-T trackers. To the best of our knowledge,
it is the first work to evade RGB-T trackers.

• We introduce a coarse-to-fine integrated cross-modal
patch generation strategy from both architecture and loss
function, to destroy pixel-level and semantic-level modal
coupling between RGB and thermal modality.

• We design a point tracking-based patch reprojection
strategy, so that cross-modal patches can be better ex-
tended from the digital to the physical world.

• Experimental results show that cross-modal patches can
efficiently fool RGB-T trackers in standard RGB-T track-
ing datasets and real scenes.

Related Work
Visual Object Tracking
Numerous RGB tracking methods have been proposed and
achieved impressive tracking performance (Nam and Han
2016; Bhat et al. 2019; Danelljan, Gool, and Timofte 2020;
Bertinetto et al. 2016). However, the unimodal information
provision limits robustness under harsh conditions, such as
occlusion, low illumination, etc (Yi et al. 2024). To ad-
dress this concern, researchers propose the RGB-T track-
ing paradigm, which draws on the strengths of both modal-
ities to achieve robust tracking. APFNet (Xiao et al. 2022)
proposes an attribute-based progressive fusion network with
specific branches for fusing different attributes. ViPT (Zhu
et al. 2023) introduces a prompt learning paradigm to con-
vert thermal modalities into visual prompt, motivating the
RGB-based foundation model to adapt downstream RGB-
T tracking. Further, BAT (Cao et al. 2024) proposes a gen-
eral bi-directional adapter that does not preset the dominant
modality, enabling multiple modalities to cross-prompt.

Adversarial Attacks
The primary aim of adversarial attacks is to scrutinize the in-
herent vulnerabilities of deep learning models and their sus-
ceptibility to malicious exploitation. Current attack strate-
gies in the tracking domain predominantly target RGB
trackers. For instance, CSA (Yan et al. 2020) introduces a
cooling-contraction strategy that cools hotspot regions in
heatmaps where objects are detected, thereby directly con-
tracting the predicted bounding box. APYVOT (Chen et al.
2020) proposes an optimization objective function with a
dual attention mechanism to generate adversarial perturba-
tions, which disrupt the tracking by interfering with the ini-
tial frame only. However, these methods are unable to inter-
fere with the salient feature enhancement brought by RGB-
T multi-modal interactions, rendering them less effective
against RGB-T trackers. Thus, developing a specialized ad-
versarial attack algorithm for RGB-T tracking is crucial.

Methodology
Problem Formulation
In RGB-T tracking, the tracker locates object within the
search images based on a given template. Consequently, the
core of tracking can be distilled into the challenge of se-
mantic similarity learning. Furthermore, the joint participa-
tion of RGB and thermal modalities integrates complemen-
tary information and promotes more robust tracking. Specif-
ically, the RGB image provides rich texture details, while the
thermal image captures the thermal radiation information of
object, which is reflected by high intensity values. There-
fore, with respect to i) the semantic similarity measure and
ii) modal properties of RGB-T data, we design a coarse-to-
fine progressive generation framework to attack the RGB-T
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Figure 2: Overview of the proposed attack pipeline CMS, which consists of a two-stage generative framework from coarse to
fine. Moreover, a reprojection strategy based on point tracking is proposed to guarantee robust attacks in the physical domain.

trackers and achieve cross-modal stealth (CMS). The over-
all workflow of our CMS is presented in Fig. 2, which is
categorized into Stage I and Stage II.

Stage I Considering the core issue in tracking, i.e., seman-
tic similarity metric, we design an adversarial semantic op-
timization network (ASONet) that seeks an optimal adver-
sarial vector ladv through semantic-aware adversarial la-
tent optimization. This optimized ladv is utilized to generate
the first-stage RGB patch δstageIrgb . Remarkably, ASONet
is constructed using the generator from StyleGAN2 (Kar-
ras et al. 2020), which is pre-trained on real-world images,
boasting exceptional generative capabilities and a nuanced
understanding of semantic representations. Consequently,
the patch δstageIrgb encapsulates realistic adversarial seman-
tics, effectively disrupting the semantic similarity between
the template and the object in search images.

Stage II Building on the adversarial semantic disruptions
of Stage I, we introduce a coupled adversarial texture-
structure generation strategy that targets the different char-
acteristics of RGB-thermal data. This strategy aims to un-
dermine the effective information enhancement gained from
complementary feature coupling, enabling a finer attack. For
the RGB modality, which features clear textures, we focus
on embedding adversarial textures. Specifically, we feed the
first-stage RGB patch δstageIrgb into an adversarial texture en-
hancement network (ATENet) to generate δrgb, refining
the attack by layering adversarial textures onto the seman-
tic disruptions. For the thermal modality reflecting temper-
ature distribution through pixel intensity, we input the ad-
versarial vector ladv into an adversarial structure generation
network (ASGNet). ASGNet produces the thermal patch
δtir, a dynamically shaped black mask that implements the
attack through adversarial structural generation.

With the coarse-to-fine adversarial optimization of Stage I
and Stage II, the generated multi-modal adversarial patches
{δrgb, δtir} demonstrate superior attack performance in the
digital domain. However, it is important to note that during
this digital optimization process, the patches are consistently
applied in a square “ ” format across all frames. However,
the orientation and viewpoint of object in the physical world
are constantly changing, which makes the shape of patches
also vary, posing a serious challenge to the attack robustness.
Thus, an angle-robust strategy is desired in digital domain
training, with the added challenge that these angle variations
must correspond to actual physical significance, rather than
mere random transformations. To achieve the Angle-Robust
Physical Domain Guarantee, we design a point tracking-
based patch reprojection strategy that integrates the homog-
raphy transformation with keypoint tracking, acquiring ob-
ject affixed with patch under consistent angles. With this
reprojection strategy, our CMS exhibits more robust attack
performance in the physical world.

Next, we first specifically describe the semantic-aware
adversarial latent optimization in Stage I and coupled ad-
versarial texture-structure generation in Stage II, to achieve
digital domain attacks. Subsequently, we introduce the
point tracking-based reprojection strategy to facilitate robust
physical domain application.

Semantic-Aware Adversarial Latent Optimization

Previous works optimize adversarial patches directly in pixel
space, often leading to unnatural and conspicuous results.
Drawing inspiration from NatPatch (Hu et al. 2021), we op-
timize a vector in the latent space using the adversarial se-
mantic optimization network (ASONet). The latent vector
l ∈ Rd is randomly sampled from a standard normal distri-
bution. As shown in Fig. 2(a), we feed l into the ASONet,



and generate the patch δstageIrgb for Stage I, formulated as:

δstageIrgb = ASONet(l). (1)

It is worth noting that we only optimize the latent vector
l to get ladv , rather than optimizing the generator ASONet.
Leveraging the robust semantic representation capabilities
of the pre-trained StyleGAN2, the δstageIrgb generated from
ladv excellently integrates both naturalistic and adversarial
semantics. Subsequently, we paste δstageIrgb to the center of
object in the original images, formulated as:

I
(rgb,s)

δstageI
rgb

= I(rgb,s) ⊙ (1−Ms
rgb) + δstageIrgb ⊙Ms

rgb, (2)

where I(rgb,s) denotes the original RGB image in s-th
frame. Ms

rgb represents the binary mask for applying adver-
sarial patch. In the digital domain, Ms

rgb is generated based
on the annotated ground truth of bounding box Bboxgt.
In the physical domain, a physically consistent reprojec-
tion strategy based on point tracking is designed to gener-
ate Ms

rgb. Notably, the patch is added when s ≥ 2, and for

the initial frame (s = 1), we have I
(rgb,1)

δstageI
rgb

= I(rgb,1). Then,

we feed I
(rgb,s)

δstageI
rgb

and I(tir,s) to the RGB-T tracker T (·) and

predict the bounding box, formulated as:

BboxstageI
pred = T (I

(rgb,s)

δstageI
rgb

, I(tir,s)), (3)

where I(tir,s) is the s-th original thermal image, and
BboxstageI

pred is the predicted bounding box in Stage I.
To achieve attack, we shift the center of BboxstageI

pred away
from center of Bboxgt, with the following center-away loss:

LstageI
center = −∥(C(BboxstageI

pred )− C(Bboxgt))∥22, (4)

where C(·) is the center coordinate of bounding box. We
further introduce two correlated interference losses to dis-
rupt the tracker’s performance at both the pixel and semantic
levels, which are represented as follows:

LstageI
pixcorr = −∥argmax

x,y
(Corr(zrgb, x(rgb,s)))

−argmax
x,y

(Corr(zrgb, x
(rgb,s)

δstageI
rgb

))∥22,
(5)

LstageI
semcorr = −∥argmax

x,y
(R(zrgb, ztir, x(rgb,s), x(tir,s)))

−argmax
x,y

(R(zrgb, ztir, x
(rgb,s)

δstageI
rgb

, x(tir,s)))∥22.

(6)
Let m ∈ {rgb, tir} represent different modalities of

RGB and thermal, zm ∈ Rwz×hz×c is the template im-
age cropped from I(m,1), and x(m,s) ∈ Rwx×hx×c is the
search image cropped from I(m,s) (s ≥ 2). Similarly, the
adversarial search image x

(rgb,s)

δstageI
rgb

is from I
(rgb,s)

δstageI
rgb

. Corr(·)
is the correlation operator, R(·) is the feature response map
of the tracker, and (x, y) is coordinate on the correlation

or response map. Specifically, LstageI
pixcorr affects the RGB-

T tracker by increasing the disparity between maximum
correlation points of the template on clean and adversarial
search images. Since the RGB-T tracker couples the com-
plementary information of the two modalities through multi-
modal interaction, its feature response map can reflect a
clearer and more discriminative distinction between the ob-
ject and background. Therefore, we use LstageI

semcorr to disrupt
the multi-modal coupling from a semantic perspective.

Finally, the full loss function of Stage I is defined as:

LstageI = α1 ·LstageI
center+α2 ·LstageI

pixcorr+α3 ·LstageI
semcorr, (7)

where α1, α2 and α3 are the hyper-parameters for balancing
each sub-loss of Stage I.

Coupled Adversarial Texture-Structure Generation
Considering the characteristics of RGB and thermal modali-
ties, we propose a coupled adversarial texture-structure gen-
eration strategy in Stage II, to generate multi-modal patches.
As shown in Fig. 2(d), we feed δstageIrgb to the adversarial tex-
ture enhancement network (ATENet), formulated as:

δrgb = ATENet(δstageIrgb ), (8)

where δrgb is the final RGB patch with both adversarial se-
mantics and rich adversarial textures, and ATENet consists
of residual connections and a series of convolutional layer -
activation function - batch normalization.

For thermal patch, we design the adversarial structure
generation network (ASGNet), which takes a latent code
as input and uses MLPs to generate the lengths of a number
of pole vectors. Through optimizing MLPs, these varying
lengths construct the shape of the black patch. The above
process is formulated as:

δtir = ASGNet(ladv), (9)

where δtir refers to the generated thermal patch. It is worth
emphasizing that we modulate the latent ladv to generate
the adversarial shape. As presented in Fig. 2(e), we apply
the multi-modal patches {δrgb, δtir} to original images in
a center-pasted manner, and get the adversarial RGB image
I
(rgb,s)
δrgb

and thermal image I(tir,s)δtir
. They are fed to the RGB-

T tracker T (·) to predict the bounding box BboxstageII
pred .

Similarly, we employ the following center-away loss, pixel-
level correlated interference loss, and semantic-level corre-
lated interference loss:

LstageII
center = −∥(C(BboxstageI

pred )− C(Bboxgt))∥22, (10)

LstageII
pixcorr = −

∑
m

∥argmax
x,y

(Corr(zm, x(m,s)))

−argmax
x,y

(Corr(zm, x
(m,s)
δm

))∥22,
(11)

LstageII
semcorr = −∥argmax

x,y
(R(zrgb, ztir, x(rgb,s), x(tir,s)))

−argmax
x,y

(R(zrgb, ztir, x
(rgb,s)
δrgb

, x
(tir,s)
δtir

))∥22.

(12)
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In addition, to ensure that the adversarial semantics ob-
tained by the first-stage patch δstageIrgb are not excessively
disruptive, we also incorporate a realism-preserving regu-
larization, which is denoted as:

LstageII
regul = ∥δrgb − δstageIrgb ∥22. (13)

Finally, the full loss function of Stage II is defined as:

LstageII = β1 · LstageII
center + β2 · LstageII

pixcorr

+β3 · LstageII
semcorr + β4 · LstageII

regul ,
(14)

where β1, β2, β3 and β4 are employed to control the trade-
off between different losses of Stage II.

Angle-Robust Physical Domain Guarantee
Point Tracking-based Patch Reprojection Fig. 3 shows
the implementation of our reprojection strategy. Specifi-
cally, we first capture the coordinates of keypoints frame-
by-frame using the top-performing point-tracking algorithm,
TAPIR (Doersch et al. 2023). The keypoints in the first
frame, i.e., {(x1k

m , y1km )}4k=1, are manually provided to define
the initial application range of patch, while the keypoints
predicted by TPAIR in the subsequent s-th frame are de-
fined as {(xsk

m , yskm )}4k=1. Across the (s-1)-th to s-th frame,
we can solve for the homography matrix Hs−1

m based on
{(x(s−1)k

m , y
(s−1)k
m )}4k=1 and {(xsk

m , yskm )}4k=1. The binary
mask Ms−1

m is then transformed with Hs−1
m , and get Ms

m:

Ms
m = Hs−1

m Ms−1
m . (15)

Finally, according to Eq. (2), we can generate I
(m,s)
δm

, the
adversarial images with patch under various angles and con-
sistent with physical implications.

Physical Implementation After obtaining angle-robust
patches {δrgb, δtir}, we apply them to the physical world.
Specifically, as shown in Fig. 4, we use a color printer to
obtain RGB patch δrgb, and cut thermal patch δtir from alu-
minum foil, which possesses high reflectivity and reflects

(a) ViPT patch (b) BAT patch (c) APFNet patch (d) MANet patch
RGB Thermal RGB Thermal RGB Thermal RGB Thermal

Figure 5: Visualization of generated patches.

most thermal radiation emitted by the object back to its sur-
face, thereby preventing heat transfer. Next, we sequentially
paste the cropped δtir and the printed δrgb onto the object.
We then use a binocular camera to capture RGB-T videos,
which serves as the test set in the physical domain.

Experiments
Experimental Settings
Datasets and Evaluation Metrics We perform experi-
ments on RGBT234 (Li et al. 2019) and LasHeR (Li et al.
2022a) datasets, and evaluate our attack effectiveness using
the precision rate (PR) and success rate (SR), which are the
classical metrics on tracking tasks.

Victimized Trackers and Comparison Attackers We se-
lect several SOTA trackers as victims, including ViPT (Zhu
et al. 2023), BAT (Cao et al. 2024), APFNet (Xiao et al.
2022), and MANet (Long Li et al. 2019). The first two are
powerful offline trackers, while the latter two exemplify typ-
ical online trackers. We compare CMS with two representa-
tive attack methods, including CSA (Yan et al. 2020) and
TTAttack (Nakka and Salzmann 2022). Notably, CSA and
TTAttack are designed for RGB trackers, and the patches
they generate manifest as perturbations, limiting their appli-
cability in the physical world. Additionally, a patch com-
posed of random noise is also employed as a comparison.

Implementation Details For our two-stage framework,
we train Stage I for 80 epochs, and then train Stage II for
30 epochs. The hyper-parameters for balancing each sub-
loss are empirically set as α1 = 1.0, α2 = 0.1, α3 = 50.0,
β1 = 0.1, β2 = 0.1, β3 = 50.0, and β4 = 1.0. All ex-
periments are conducted on the NVIDIA TITAN RTX GPU
with PyTorch.

Comparisons on Digital Domain
We first consider adversarial attack in the digital domain,
where our CMS is trained on the RGBT234 dataset and gen-
erate the multi-modal patches {δrgb, δtir}, as illustrated in
Fig. 5. Considering that adversarial patches need to be more
natural and realistic, we utilize the StyleGAN2 which is ca-
pable of generating real cats to optimize our RGB patches.
Hence, the RGB patches carry the semantics of a “cat”. The
thermal patch consists of shape-variable black mask, reflect-
ing the characteristics of thermal imaging.

Quantitative Evaluation The quantitative comparisons
on the RGBT234 dataset are illustrated in Fig. 6(a)-(d),
which reveal significant performance degradation in state-
of-the-art trackers under our attack. For clearer comparison,
specific performance drops are provided in Table 1. Among
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(e) ViPT on LasHeR
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Figure 6: Quantitative comparison of tracking performance on the RGBT234 and LasHeR datasets. The tracking performance of
ViPT, BAT, APFNet, and MANet trackers is reported, including the original performance without attacks and the performance
under attacks. Lower tracking metrics PR and SR represent better attack. Please zoom in for a better view.

PR on RGBT234 SR on RGBT234 PR on LasHeR SR on LasHeR
Method Random CSA TTAttack Ours Random CSA TTAttack Ours Random CSA TTAttack Ours Random CSA TTAttack Ours

ViPT (CVPR2023) 0.048 0.118 0.140 0.257 0.042 0.091 0.107 0.249 0.059 0.089 0.035 0.341 0.049 0.078 0.029 0.299
BAT (AAAI2024) 0.023 0.114 0.132 0.259 0.025 0.103 0.112 0.228 0.040 0.049 0.072 0.331 0.033 0.051 0.061 0.335
APFNet (AAAI2022) -0.057 0.028 0.040 0.095 -0.043 0.016 0.051 0.099 0.026 0.002 0.034 0.109 0.018 0.001 0.024 0.082
MANet (TIP2021) 0.080 0.308 0.330 0.428 0.050 0.216 0.225 0.299 -0.006 0.000 -0.003 0.066 -0.008 -0.002 -0.006 0.051

Table 1: Quantitative comparison of tracking performance drop. A larger drop indicates more effective attack. (Bold: optimal)

all trackers, random noise only achieves a maximum reduc-
tion of 0.080 in PR and 0.050 in SR, highlighting the chal-
lenge of identifying tracker vulnerabilities. CSA and TTAt-
tack also show smaller drops than our CMS, demonstrat-
ing that RGB-based attacks are less effective against fea-
ture enhancement brought by RGB-T coupling. In contrast,
our CMS outperforms them significantly. Against the offline
tracker ViPT, CMS achieves reductions of 0.257 in PR and
0.249 in SR. Even against the online tracker that performs
parameter updates, CMS maintains superior attack, e.g., de-
creasing the PR and SR of MANet by 0.428 and 0.299. Ad-
ditionally, we calculate the Euclidean distances between re-
sponse peaks for CSA, TTAttack, and our CMS compared
to the clean map, which are 0.868, 2.071, and 4.381, demon-
strating the superior feature interference of our CMS.

Interestingly, we observe a phenomenon also noted in
MTD (Ding et al. 2021): tracking performance improves un-
der random noise compared to clean conditions, especially
for online trackers like APFNet and MANet. This may be
because random noise provides a consistent reference for lo-
calization, allowing online trackers to efficiently adjust pa-
rameters in response to appearance changes of object.

Qualitative Evaluation As shown in Fig. 7, we visualize
two groups of tracking results. While the clean trackers ex-
cel in maintaining accurate tracking, our attack induces a
rapid and substantial decline in tracking performance. The
visualizations and IoU trends confirm that attack is executed
swiftly and maintained throughout the video. This can be at-
tributed to our coarse-to-fine architecture, which mines ad-
versarial semantics, textures, and structures. Furthermore,

Metric ViPT Ours drop
PR 0.998 0.709 0.289
SR 0.835 0.613 0.222

Table 2: Quantitative comparison on the physical domain.

the correlated interference losses at both pixel and seman-
tic level effectively break the information coupling, reducing
the prominent feature responses of object area.

Generalization Evaluation
Moreover, we conduct generalization experiments on the
LasHeR dataset, with results and drops shown in Fig. 6(e)-
(h) and Table 1. Among all trackers, our CMS achieves a
reduction in PR and SR by at least 0.066 and 0.051, and
at most 0.341 and 0.335, significantly outperforming other
methods. Additionally, Qualitative results in Fig. 8 further
demonstrate its strong generalization capabilities.

Application on Physical Domain
We extend our experiments into the physical domain. We
capture training videos using an binocular camera, and apply
our reprojection strategy to train the generator and produce
adversarial patches. These patches are then tested on physi-
cal objects, with results shown in Table 2 and Fig. 9. PR and
SR are reduced by 0.289 and 0.222, respectively, while the
visualized results also illustrate that our adversarial patches
successfully interfere with the tracking, showing the deploy-
ability and reliability in real-world applications of our CMS.



(a) Tracking results on ViPT (b) Tracking results on MANet

#900 #1236 #1256 #1336 #5#1412 0 #66 #88 #138 #201

Ground truth Clean tracking Our victimized tracking

Figure 7: Qualitative comparison of tracking performance on the RGBT234 dataset. The blue and red lines represent the IoU
variation over frames of the predicted boxes under the clean trackers and the victimized trackers, respectively.

#63 #127 #221 #381 #552

Figure 8: Qualitative comparison on the LasHeR dataset.

Ablation Studies
We perform ablation studies to verify the validity of parame-
ter setting and our specific designs, conducted on RGBT234
dataset against ViPT, with results shown in Fig. 10.

Patch Size Ratios We test different patch size ratios to
assess its impact. As shown in Fig. 10(a), the attack per-
formance gradually improves as the ratio increases, which
aligns with our expectations. However, considering the fea-
sibility in the physical domain, we select a ratio of 1.6 in our
experiments, despite larger ratios yielding stronger attacks.

Two-stage Strategy A two-stage framework from coarse
to fine is designed to generate {δstageIrgb , δrgb, δtir}. As
shown in Fig. 10(b), we employ the patch of only one
stage as different ablation settings. Obviously, our two-stage
patches obtain the optimal attack performance, proving the
validity of two-stage strategy that systematically seeks ad-
versarial semantics, textures and structures.

Loss Functions Lpixcorr disrupts the image correlation at
pixel level, and Lpixcorr interferes feature responses from
semantic level. We remove them separately and obtain re-
sults shown in Fig. 10(c). The attack performance dimin-
ishes without Lpixcorr or Lsemcorr, confirming their effect
in degrading precise localization.

Reprojection Strategy To address the real challenge of
patch deformation, we design a reprojection strategy. We
validate its effectiveness by switching to center pasting and
random transformation. As shown in Fig. 10(d), our CMS
achieves the greatest drop of 0.289 and 0.222 on PR and SR,
demonstrating our robustness in the physical domain.

Figure 9: Practical application in the physical domain.
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(a) Ablation on patch size ratio
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Figure 10: Quantitative comparison of ablation studies.

Conclusion
As the first attempt, we study cross-modal patch-based at-
tack against RGB-T tracking. A coarse-to-fine strategy is
proposed to progressively disturb RGB-T trackers. We then
introduce pixel-level and semantic-level losses to interfere
with feature responses. Finally, we present a point tracking-
based reprojection strategy to enhance practical robust of
patches in the real world. Experimental results demonstrate
that our CMS can significantly degrade the performance of
RGB-T trackers in both digital and physical domains.
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