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Abstract

In this paper, we consider non-convex multi-block
bilevel optimization (MBBO) problems, which
involvem≫ 1 lower level problems and have im-
portant applications in machine learning. Design-
ing a stochastic gradient and controlling its vari-
ance is more intricate due to the hierarchical sam-
pling of blocks and data and the unique challenge
of estimating hyper-gradient. We aim to achieve
three nice properties for our algorithm: (a) match-
ing the state-of-the-art complexity of standard BO
problems with a single block; (b) achieving par-
allel speedup by sampling I blocks and sampling
B samples for each sampled block per-iteration;
(c) avoiding the computation of the inverse of a
high-dimensional Hessian matrix estimator. How-
ever, it is non-trivial to achieve all of these by
observing that existing works only achieve one or
two of these properties. To address the involved
challenges for achieving (a, b, c), we propose two
stochastic algorithms by using advanced block-
wise variance-reduction techniques for tracking
the Hessian matrices (for low-dimensional prob-
lems) or the Hessian-vector products (for high-
dimensional problems), and prove an iteration
complexity of O(mϵ−3I(I<m)

I
√
I

+mϵ−3

I
√
B
) for finding

an ϵ-stationary point under appropriate conditions.
We also conduct experiments to verify the effec-
tiveness of the proposed algorithms comparing
with existing MBBO algorithms.
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1. Introduction
This paper considers solving the following generalized
bilevel optimization problem with multi-block structure:

min
x∈Rdx

F (x) =
1

m

m∑
i=1

fi(x,yi(x))︸ ︷︷ ︸
Fi(x)

,

yi(x) = arg min
yi∈Rdy,i

gi(x,yi), i = 1, . . . ,m.

(1)

where fi, gi are continuously differentiable functions in
expectation forms and gi(x,yi) is strongly convex with
respect to yi. To be specific, fi, gi are defined as
fi(x,yi(x)) := Eξ∼Pi

[fi(x,yi(x); ξ)] and gi(x,yi) =
Eζ∼Qi

[gi(x,yi; ζ)]. The number of blocks m is considered
to be greatly larger than 1. We refer to the above problem as
multi-block bilevel optimization (MBBO). When m = 1,
the MBBO problem reduces to the standard BO problem.
The MBBO problem has found many interesting applica-
tions in machine learning and AI, e.g., multi-task composi-
tional AUC maximization (Hu et al., 2022), top-K normal-
ized discounted cumulative gain (NDCG) optimization for
learning to rank (Qiu et al., 2022), and meta-learning (Ra-
jeswaran et al., 2019). Recently, Yang (2022) uses MBBO
to formulate a family of risk functions for optimizing per-
formance at the top.

The theoretical study of MBBO was initiated by (Guo et al.,
2021). In their paper, the authors proposed a randomized
stochastic variance-reduced method (RSVRB) for solving
MBBO aiming to achieve a state-of-the-art (SOTA) iter-
ation complexity in the order of O(1/ϵ3) for finding an
ϵ-stationary solution. However, RSVRB and its analysis
suffer from several drawbacks: (i) RSVRB requires com-
puting the inverse of the Hessian matrix estimator, which is
prohibited for high-dimensional lower-level problems; (ii)
the Jacobian estimators maintained for each block could be
memory consuming and slow down the algorithm in practice
for problems with high-dimensional x; (iii) RSVRB does
not achieve a parallel speed-up when using a mini-batch
of samples to estimate the gradients, Jacobians and Hes-
sians. While these issues have been tackled for the standard
BO problems, e.g., the Hessian matrix can be estimated by
the Neumann series and there are works achieving SOTA
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complexity without maintainng Jacobian estimator (Yang
et al., 2021a; Khanduri et al., 2021), they become trickier
for MBBO problems due to extra noise caused by sampling
blocks. Although some later studies for particular MBBO
problems have achieved parallel speed-up and eschewed
computing the inverse of a Hessian estimator (Hu et al.,
2022), they do not match the SOTA complexity of O(1/ϵ3).

In this paper, we aim to achieve three nice properties for
solving MBBO problems: (a) matching the SOTA O(1/ϵ3)
complexity of standard BO problems with a single block; (b)
achieving parallel speedup by sampling multiple blocks and
multiple samples for each sampled block per-iteration; (c)
avoiding the computation of the inverse of a Hessian matrix
estimator for high-dimensional lower level problems. To the
best of our knowledge, this is the first work that enjoys all
of these three properties for solving MBBO problems. We
propose two algorithms named BSVRBv1 and BSVRBv2

for low-dimensional and high-dimensional lower-level prob-
lems, respectively. For BSVRBv1, we propose to use an
advanced blockwise stochastic variance-reduced estimator
namely MSVR (Jiang et al., 2022) to track and estimate the
Hessian matrices and the partial gradients of the lower level
problems. To further achieve (c) in BSVRBv2, we explore
the idea of converting the inverse of the Hessian matrix
multiplied by a partial gradient for each block into solving
another lower level problem using matrix-vector products.
To maintain the same iteration complexity of BSVRBv1,
we update the estimators of Hessian-vector products of all
blocks without compromising the sample complexity per-
iteration. At the end, we manage to prove the same iteration
complexity of O(mϵ−3I(I<m)

I
√
I

+ mϵ−3

I
√
B
) for both algorithms,

which reduces to the SOTA complexity O(ϵ−3/
√
B) of the

standard BO with one block.

Our contributions are summarized as following:

• We propose two efficient algorithms by using block-
wise stochastic variance reduction for solving MBBO
problems with low-dimensional and high-dimensional
lower-level problems, respectively.

• We prove the iteration complexity of the two algo-
rithms, which not only matches the SOTA complexity
of existing algorithms for solving the standard BO
but also achieves parallel speed-up of using multiple
blocks and multiple samples of sampled blocks.

• We conduct experiments on both algorithms for low-
dimensional and high-dimensional lower problems and
demonstrate the effectiveness of the proposed algo-
rithms against existing algorithms of MBBO.

2. Related Work
Stochastic Bilevel Optimization (SBO). SBO algorithms
have garnered increasing attention recently. The first non-

asymptotic convergence analysis for non-convex SBO with
strongly convex lower level problem was given by (Ghadimi
& Wang, 2018). The authors proposed a double-loop
stochastic algorithm, where the inner loop solves the lower
level problem and the outer loop solves the upper level,
and established a sample complexity of O(ϵ−6) for find-
ing an ϵ-stationary point of F (x), i.e., a point x such that
∥∇F (x)∥ ≤ ϵ in expectation. With a large mini-batch
size, (Ji et al., 2020a) improved the sample complexity to
O(ϵ−4). A single-loop two timescale algorithm (TTSA)
based on SGD was proposed in (Hong et al., 2020), but
suffers from a worse sample complexity of O(ϵ−5). By
utilizing variance-reduction method (STORM) to estimate
second-order gradients, i.e., Jacobian ∇2

xyg(x,y) and Hes-
sian ∇2

yyg(x,y), (Chen et al., 2021) proposed a single-loop
single timescale algorithm (STABLE) that enjoys a sample
complexity of O(ϵ−4) without large mini-batch. Recently,
(Khanduri et al., 2021; Yang et al., 2021a; Guo et al., 2021)
further improved the sample complexity to O(ϵ−3) by fully
utilizing variance-reduced estimator for gradients of both up-
per and lower level objectives. (Huang et al., 2021) proposed
Bregman distance-based algorithms for solving nonsmooth
BO with and without variance reduction.

One of the difficulties for solving SBO problems lies at how
to efficiently compute the Hessian inverse in the gradient es-
timation. To avoid such potentially expensive matrix inverse
operation, many existing works have employed the Neu-
mann series approximation with independent mini-batches
following (Ghadimi & Wang, 2018). Another method is to
transfer the product of the Hessian inverse and a vector to
the solution to a quadratic problem (Li et al., 2021; Dagréou
et al., 2022; Rajeswaran et al., 2019) and to solve it by
using deterministic methods (e.g., conjugate gradient) or
stochastic methods that only involve matrix-vector products.
However, these methods are tailored to single-block BO
problems, and their direct applications to MBBO may suffer
from per iteration computation inefficiency. Thus, with the
potential efficiency issue in consideration, it is trickier to
achieve faster rates for MBBO problems (Hu et al., 2022).

MBBO. Besides (Guo et al., 2021), two recent works have
considered MBBO and their applications in ML (Qiu et al.,
2022; Hu et al., 2022). In particular, Qiu et al. (2022) for-
mulated top-K NDCG optimization for learning-to-rank as
a MBBO problem with a compositional objective function,
which can be formulated as our MBBO problem. There
are many lower-level problems with each having only an
one-dimensional variable for optimization. They proposed
a stochastic algorithm (K-SONG) that uses blockwise sam-
pling and moving average estimators for tracking gradi-
ents and Hessians, and proved an iteration complexity of
O(max{ m

IBϵ4 ,
1

min{I,B}ϵ4 }). Hu et al. (2022) considered a
MBBO problem with a min-max objective which includes
our considered MBBO problem as a special case. They pro-
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Table 1. Comparison of iteration complexity and the three properties of different methods for solving MBBO and FCCO problems. We
use MMBO-v2 to refer to the second algorithm proposed in (Hu et al., 2022) for solving a MBBO problem with a min-max objective.
The iteration complexity only considers the case I < m, where m is the total number of blocks, I is the number of sampled blocks
per-iteration and B is the number of sampled data for each sampled block per-iteration. (c) is not applicable to FCCO problems.

Method Objective Iteration Complexity Satisfying (a), (b), (c)

MSVR-v2 (Jiang et al., 2022) FCCO O(mϵ−3

I
√
I

+ mϵ−3

I
√
B
) (a), (b)

MMBO-v2 (Hu et al., 2022)
MBBO

(min-max) O(max
{

m
IB ,

1
min{I,B}

}
ϵ−4) (b), (c)

K-SONG (Qiu et al., 2022) MBBO O(max
{

m
IB ,

1
min{I,B}

}
ϵ−4) (b)

RSVRB (Guo et al., 2021) MBBO O(mϵ−3) (a)
BSVRBv1 (this work) MBBO O(mϵ−3

I
√
I

+ mϵ−3

I
√
B
) (a), (b)

BSVRBv2 (this work) MBBO O(mϵ−3

I
√
I

+ mϵ−3

I
√
B
) (a), (b), (c)

posed two algorithms that use moving average estimators for
tracking gradients and Hessians or Hessian-vector products
for lower-dimensional and high-dimensional lower-level
problems, respectively, and established a similar iteration
complexity of O(max{ m

IBϵ4 ,
1

min{I,B}ϵ4 }). In their second
algorithm, they avoided computing the inverse of the Hes-
sian matrix estimator by using SGD to solve a quadratic
problem. It is notable that the iteration complexities of these
two works do not match the SOTA result for the standard
BO. As discussed before and later, achieving (a), (b) and
(c) simultaneously is not just applying variance-reduction
techniques such as SPIDER/SARAH/STORM, etc. (Fang
et al., 2018; Nguyen et al., 2017; Cutkosky & Orabona,
2019; Zhang et al., 2013), as done in (Guo et al., 2021).

Finally, we would like to point out a related work (Jiang
et al., 2022) that considered the finite-sum coupled composi-
tional optimization (FCCO) problem, which is a special case
of MBBO with the lower problems being quadratic prob-
lems with an identity Hessian matrix. They proposed multi-
block-Single-probe Variance Reduced (MSVR) estimator
for tracking the inner functional mappings in a blockwise
stochastic manner. MSVR helps achieve both the SOTA
complexity and the parallel speed-up, which is also lever-
aged in this work. However, since MBBO is more general
than FCCO and involves estimating the hyper-gradient, our
algorithmic design and analysis face a new challenge for
tracking the Hessian-vector-products, which is not present
in their work. We make a comparison between different
works for solving MBBO and FCCO problems in Table 1.

3. Preliminaries
Notations. Let ∥ · ∥ denote the ℓ2 norm of a vector or the
spectral norm of a matrix. Let ΠΩ[·] denote Euclidean pro-
jection onto a convex set Ω for a vector and Sλ[X] denotes a
projection onto the set {X ∈ Rd×d : X ⪰ λI}. The matrix
projection operation Sλ[X] can be implemented by using

singular value decomposition and thresholding the singular
values. For multi-block structured vectors, we use vector
name with subscript i to denote its i-th block. For a twice
differentiable function f : X × Y → R, let ∇xf(x, y) and
∇yf(x, y) denote its partial gradients taken with respect to
x and y respectively, and let ∇2

xyf(x, y) and ∇2
yyf(x, y)

denote the Jacobian and the Hessian matrix w.r.t y respec-
tively. We use f(·;B) to represent an unbiased stochastic
estimator of f(·) depending on a sampled mini-batch B. An
unbiased stochastic estimator using one sample ξ is said to
have bounded variance σ2 if Eξ[∥f(·; ξ) − f(·)∥2] ≤ σ2.
A mapping f : X → R is C-Lipschitz continuous if
∥f(x) − f(x′)∥ ≤ C∥x − x′∥ ∀x, x′ ∈ X . Function f
is L-smooth if its gradient ∇f(·) is L-Lipschitz continuous.
A function g : X → R is λ-strongly convex if ∀x, x′ ∈ X ,
g(x) ≥ g(x′) +∇g(x′)T (x − x′) + λ

2 ∥x − x′∥2. A point
x is called ϵ-stationary of F (·) if ∥∇F (x)∥ ≤ ϵ.

In order to understand the proposed algorithms, we first
present following proposition about the (hyper-)gradient of
F (x), which follows from the standard result in the litera-
ture of bilevel optimization (Ghadimi & Wang, 2018).

Proposition 3.1. When gi(x,yi) is strongly convex w.r.t.
yi, we have

∇F (x) = 1

m

m∑
i=1

{
∇xfi(x,yi(x))

−∇2
xygi(x,yi(x))[∇2

yygi(x,yi(x))]
−1∇yfi(x,yi(x))

}
.

There are three sources of computational costs involved in
the above gradient: (i) the sum over all m blocks; (ii) the
costs for computing the partial gradients, Jacobians and
Hessian matrices of individual blocks, which usually de-
pend on many samples; and (iii) the inverse of Hessian
matrices. The last two have been tackled in the exist-
ing literature of BO. The first cost can be alleviated by
sampling a mini-batch of blocks. However, due to the
compositional structure of the hyper-gradient, designing
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a variance-reduced stochastic gradient estimator is com-
plicated due to the existence of multiple blocks (Jiang
et al., 2022). In particular, we need to track multiple Hes-
sian matrices ∇2

yygi(x,yi(x)) or Hessian-vector products
[∇2

yygi(x,yi(x))]
−1∇yfi(x,yi(x)). To this end, we will

leverage the MSVR estimator (Jiang et al., 2022), which is
described below.

MSVR estimator. Consider multiple functional mappings
(h1(e), . . . , hm(e)), at the t-th iteration we need to estimate
their values by an estimator ht = (h1,t, . . . ,hm,t). Given
the constraint that only a few blocks of mappings hi(e) are
sampled for assessing their stochastic values, the MSVR
update is given by (Jiang et al., 2022):

hi,t+1 =



[
(1− α)hi,t + αhi(et;Bt

i)

+ γ(hi(et;Bt
i)− hi(et−1;Bt

i))︸ ︷︷ ︸
error correction

]
, i ∈ It

hi,t, o.w.
The update for the sampled I = |It| blocks have a cus-
tomized error correction term, which is inspired by previous
variance reduced estimator STORM (Cutkosky & Orabona,
2019) but has a subtle difference in setting the value of
γ. Different from the setting of STORM, i.e., γ = 1 − α,
MSVR sets γ = m−I

I(1−α) + (1 − α) to account for the ran-
domness and noise induced from block sampling. Due to
the need of tracking individual yi for each block and the
boundedness in our analysis, we extend the above MSVR
estimator with two changes: (i) adding a projection onto a
convex domain Ω for the update hi,t+1 of sampled blocks
whenever boundedness is required, (ii) the input argument
et is changed to individual input ei,t.

4. Algorithms
Due to the compositional structure in terms of yi(x) and
∇2

yygi(xt,yi(x)) in the hyper-gradient as shown in Proposi-
tion 3.1, we need to maintain and estimate variance-reduced
estimators for these variables. Below, we present two al-
gorithms for low-dimensional and high-dimensional lower-
level problems, respectively. For low-dimensional lower-
level problems, we directly estimate the Hessian matrices
and compute their inverse if needed. For high-dimensional
lower-level problems, we propose to estimate the Hessian-
vector products [∇2

yygi(x,yi(x)]
−1∇yfi(x,yi(x)).

4.1. For low-dimensional lower-level problems

We first discuss updates for estimators of the (partial) gra-
dients and the Hessian matrices as they are the major
costs per-iteration. Then we discuss the updates of x and
y = (y1, . . . ,ym), and finally compare with RSVRB.

Updates for Gradient/Hessian Estimators. We need

Algorithm 1 Blockwise Stochastic Variance-Reduced
Bilevel Method (version 1): BSVRBv1

1: Initialization: x0 = x1,y0 = y1, s1, H1, z1
2: for t = 1, 2, ..., T do
3: Sample a subset of lower problems It
4: Sample two batches Bt

i ∼ Pi, B̃t
i ∼ Qi for i ∈ It.

5: Update si,t+1 and Hi,t+1 according to (2) for i ∈ It.
6: Compute Gt, G̃t according to (3).
7: Update zt+1 = (1− βt)(zt − G̃t) +Gt

8: Update yt+1 = yt − ττtst
9: Update xt+1 = xt − ηtzt+1

10: end for
11: return (xt̃,yt̃, st̃, Ht̃, zt̃) for a randomly selected t̃

to estimate ∇ygi(xt,yi,t) for updating yi,t, to estimate
∇2

yygi(xt,yi,t) for updating xt. To this end, at each iter-
ation t, we randomly sample a subset of blocks It ⊂ [m].
For each sampled block i ∈ It, we sample a mini-batch
B̃t
i ∼ Qi for the lower-level problem, and a mini-batch

Bt
i ∼ Pi for the upper-level problem. We update the follow-

ing MSVR estimators of ∇ygi(xt,yi,t) and ∇2
yygi(xt,yi,t)

for i ∈ It and keep their other coordinates unchanged:
si,t+1 = (1− αt)si,t + αt∇ygi(xt,yi,t; B̃t

i)

+ γt(∇ygi(xt,yi,t; B̃t
i)−∇ygi(xt−1,yi,t−1; B̃t

i))

Hi,t+1 = Sλ

[
(1− ᾱt)Hi,t + ᾱt∇2

yygi(xt,yi,t; B̃t
i) (2)

+ γ̄t

(
∇2

yygi(xt,yi,t; B̃t
i)−∇2

yygi(xt−1,yi,t−1; B̃t
i)
)]
,

where γt = m−I
I(1−αt)

+(1−αt) and γ̄t = m−I
I(1−ᾱt)

+(1−ᾱt),
λ is the lower bound of the Hessian matrix (cf. Assump-
tion 5.1) and Sλ is a projection operator to ensure the eigen-
value of Hi,t+1 is lower bounded so that its inverse can be
appropriately bounded.

To compute the variance-reduced estimator of ∇F (xt) , we
compute the stochastic gradient estimations at two itera-
tions:
Gt =

1

I

∑
i∈It

[
∇xfi(xt,yi,t;Bt

i)

−∇2
xygi(xt,yi,t; B̃t

i)[Hi,t]
−1∇yfi(xt,yi,t;Bt

i)
]
,

G̃t =
1

I

∑
i∈It

[
∇xfi(xt−1,yi,t−1;Bt

i) (3)

−∇2
xygi(xt−1,yi,t−1; B̃t

i)[Hi,t−1]
−1∇yfi(xt−1,yi,t−1;Bt

i)
]
.

Then the STORM gradient estimator zt+1 of ∇F (xt) is
updated by zt+1 = (1−βt)(zt− G̃t)+Gt. Note that in the
above updates, only stochastic partial gradients, Jacobians,
and Hessians based on two mini-batches of data Bt

i and B̃t
i

for the sampled blocks i ∈ It are computed. This is in
sharp contrast with the previous SOTA variance-reduced
methods (Khanduri et al., 2021; Yang et al., 2021a) that
require three or four independent mini-batches due to the
use of the Neumann series for estimating the Hessian inverse.
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It is also notable that we use the Hessian estimator Hi,t

from the previous iteration in computing Gt to decouple its
dependence from ∇2

xygi(xt,yi,t; B̃t
i) due to using the same

mini-batch of data B̃t
i ; otherwise we need two independent

mini-batches (Wang & Yang, 2022; Hu et al., 2022).

Updates for xt+1 and yt+1. While the update for xt+1 =
xt − ηtzt+1 is simple, the update of yt+1 is trickier as there
are multiple blocks yi,t+1, i ∈ [m]. A simple approach is to
only update yi,t+1 for i ∈ It as only their gradient estima-
tors si,t+1 are updated. This is adopted by (Hu et al., 2022).
However, since we use MSVR estimators si,t+1 for deriving
a fast rate, additional error terms of MSVR estimators will
emerge and cause a blow-up on the dependence of m/I .
In particular, if we only update yi,t+1 for i ∈ It and keep
other blocks unchanged, we will have an iteration complex-
ity of T = O

(
max{mI(I<m)

I
√
I

, m1.5

I1.5
√
B
}ϵ−3

)
, which has

an additional scaling
√
m/I compared that in (Hu et al.,

2022) albeit with an improved order on ϵ−1. To avoid this
unnecessary blow up, a simple remedy will work by up-
dating all blocks of yi,t+1, i.e., yt+1 = yt − ττtst, where
st = (s1,t, . . . , sm,t), τ is a parameter and τt is scaled
stepsize. In fact, such all-block updates can be avoided by
using a lazy update strategy. Since the unsampled blocks
yi,t,yi,t−1 are not used in computing gradient/Hessian esti-
mators until i is sampled again, one may accumulate the yi,t

updates and leave it to the future. In particular, at iteration t,
we replace the full-block updates of yi,t+1 with the follow-
ing updates for sampled blocks i ∈ It at the beginning of
the iteration:

yi,t−1 = yi,t−1 − (Ki,t − 1)ττtsi,t,

yi,t = yi,t−1 − ττtsi,t,
(4)

where Ki,t denotes the number of iterations passed since
the last time i was sampled. For unsampled blocks i ̸∈ It,
no update is needed. Finally, we present the detailed steps
in Algorithms 1, to which is referred as BSVRBv1.

Comparison with RSVRB. BSVRBv1 is different from
RSVRB regarding both algorithm design and theoretical
analysis. We summarize the key differences in algorithm
design below, and leave the differences of theoretical analy-
sis to section 5. First of all, RSVRB keeps variance-reduced
estimators for all partial gradients, Jacobians and Hessians
involved in ∇F (x), while BSVRBv1 only need it for the
Hessians and partial gradients of lower-level problems. In
fact, estimators for ∇xfi,∇2

xygi,∇yfi do not need vari-
ance reduction because they all have unbiased estimator
and we keep a variance-reduced estimator zt for ∇F (x).
Secondly, in the updates of variance-reduced estimators,
RSVRB requires scaling updates for non-sampled blocks,
while BSVRBv1 requires none. Thirdly, at each iteration
RSVRB requires twice independent blocking samplings,
one for updates of partial gradient estimators and the other
for the update of STORM estimator of ∇F (x). Lastly,

RSVRB involves projection operation for the updates of
yi,t while BSVRBv1 does not. These improvements sim-
plify the algorithm without sacrificing its convergence rate.

4.2. For high-dimensional lower-level problems

One limitation of BSVRBv1 is that computing the inverse
of the Hessian estimator Hi,t is not suitable for high-
dimensional lower-level problems. To address this issue,
we propose our second method BSVRBv2. The main idea
is to treat [∇2

yygi(x,yi)]
−1∇yfi(x,yi) as the solution to

a quadratic function minimization problem. As a result,
[∇2

yygi(x,yi)]
−1∇yfi(x,yi) can be approximated in a sim-

ilar way as yi in Algorithm 1. This strategy has been studied
for solving BO problems in recent works (Hu et al., 2022;
Dagréou et al., 2022; Li et al., 2021). However, none of them
directly applies to variance reduction methods for MBBO,
which incurs additional challenge to be discussed shortly.

Let us define m quadratic problems and their solutions:

ϕi(v,x,yi) :=
1

2
vT∇2

yygi(x,yi)v − vT∇yfi(x,yi)

vi(x,yi) := argminv∈Rdy ϕi(v,x,yi). (5)
It is not difficult to show that vi(x,yi) is equal to
[∇2

yygi(x,yi)]
−1∇yfi(x,yi). Since vi(xt,yi,t) can be

viewed as solution to another layer of lower-level prob-
lem, we conduct similar updates for vi,t to that for yi,t.
Define a stochastic estimator ∇vϕi(v,x,yi;Bi, B̃i) :=

∇2
yygi(x,yi; B̃i)v −∇yfi(x,yi;Bi). Then an MSVR esti-

mator ui,t+1 for gradient ∇vϕi(vi,t,xt,yi,t) is given by

ui,t+1 = (1− ᾱt)ui,t + ᾱt∇vϕi(vi,t,xt,yi,t;Bt
i , B̃t

i)

+ γ̄t
[
∇vϕi(vi,t,xt,yi,t;Bt

i , B̃t
i) (6)

−∇vϕi(vi,t−1,xt,yi,t−1;Bt
i , B̃t

i)
]
, i ∈ It,

and then an update vi,t+1 = [vi,t − τ̄tui,t] for the sampled
blocks can be conducted. Then we compute STORM gradi-
ent estimator of ∇F (xt) using the following two stochastic
gradient estimations:

Gt =
1

I

∑
i∈It

[
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)vi,t

]
,

G̃t =
1

I

∑
i∈It

[
∇xfi(xt−1,yi,t−1;Bt

i) (7)

−∇2
xygi(xt−1,yi,t−1; B̃t

i)vi,t−1

]
.

Updates for xt+1, yt+1 and vt+1. The updates of xt+1 and
yt+1 will be conducted similarly as before. However, the
update for vt+1 is more subtle. First, the stochastic estima-
tor ∇vϕi(vi,t,xt,yi,t;Bi, B̃i) = ∇2

yygi(xt,yi,t; B̃i)vi,t −
∇yfi(xt,yi,t;Bi) has no bounded variance unless vi,t is
bounded. To this end, we derive an upper bound V =

Cfy

λ
so that vi(x,yi) ∈ V = {vi : ∥vi∥22 ≤ V 2} under the
Assumption 5.1, 5.2 and 5.3 (cf. Appendix B.2). Then the
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Algorithm 2 Block-wise Stochastic Variance-Reduced
Bilevel Method (version 2): BSVRBv2

1: Initialization: x0 = x1,y0 = y1,v0 = v1, s1,u1, z1
2: for t = 1, 2, ..., T do
3: Sample a subset of lower problems It
4: Sample two batches Bt

i ∼ Pi, B̃t
i ∼ Qi for i ∈ It.

5: Update si,t+1 and ui,t+1 according to (2), (6).
6: Compute Gt, G̃t according to (7).
7: zt+1 = (1− βt)(zt − G̃t) +Gt

8: Update yt+1 = yt − ττtst
9: Update vt+1 = ΠVm [vt − τ̄tut]

10: Update xt+1 = xt − ηtzt+1

11: end for
12: return (xt̃,yt̃,vt̃, st̃,ut̃, zt̃) for a randomly selected t̃

update of vi,t+1 is modified as vi,t+1 = ΠV [vi,t − τ̄tui,t].
A similar approach has been used in (Hu et al., 2022). Sec-
ond, similar to the problem of updating yi,t+1 only for
i ∈ It in BSVRBv1, updating vi,t+1 only for i ∈ It in
BSVRBv2 will lead to worse scaling factor in iteration com-
plexity. To avoid this, we update all blocks of vi,t+1 using
its MSVR gradient estimators ui,t+1. With these changes,
we present detailed steps in Algorithm 2 for BSVRBv2. Fi-
nally, we remark that (i) the sample complexity per-iteration
of BSVRBv2 is the same as BSVRBv1, i.e., only two mini-
batches Bt

i and B̃t
i are required for each sampled block; (ii)

similar to (4), the updates of non-sampled blocks vi,t+1 can
be delayed until they are sampled again due to that their
corresponding gradient estimators do not change and they
are not used for computing the gradient estimator zt+1 until
their corresponding blocks are sampled again.

5. Convergence Analysis of BSVRB
In this section we provide the convergence analysis of the
proposed algorithms and highlight how it is different from
the analysis of RSVRB. First of all, we make the following
assumptions regarding problem (1).

Assumption 5.1. For any x, gi(x, ·) is Lg-smooth and λ-
strongly convex, i.e., LgI ⪰ ∇2

yygi(x,yi) ⪰ λI .

Assumption 5.2. Assume the following conditions hold

• ∇xfi(x,yi; ξ) is Lfx-Lipschitz continuous,
∇yfi(x,yi; ξ) is Lfy-Lipschitz continuous,
∇ygi(x,yi; ζ) is Lgy-Lipschitz continuous,
∇2

xygi(x,yi; ζ) is Lgxy-Lipschitz continuous,
∇2

yygi(x,yi; ζ) is Lgyy-Lipschitz continuous, all with
respect to (x,yi).

• ∥∇xfi(x,yi)∥2 ≤ C2
fx, ∥∇yfi(x,yi)∥2 ≤ C2

fy .
• All stochastic estimators ∇xfi(x,yi; ξ),
∇yfi(x,yi; ξ), ∇ygi(x,yi; ζ), ∇2

xygi(x,yi; ζ),
∇2

yygi(x,yi; ζ) have bounded variance σ2.

Assumption 5.3. ∥∇2
yygi(x,yi, ζ)∥2 ⪯ C̃2

gyyI .

Assumption 5.1 is made in many existing works for
SBO (Chen et al., 2021; Ghadimi & Wang, 2018; Hong
et al., 2020; Ji et al., 2020a). Assumption 5.2 ii) iii) are
also standard in the literature (Ji et al., 2020b; Ghadimi
& Wang, 2018; Hong et al., 2020). To employ variance
reduction technique, Lipchitz continuity of stochastic gra-
dients, i.e., Assumption 5.2 i), is required (Yang et al.,
2021b; Cutkosky & Orabona, 2019). Note that the assump-
tion ∇ygi(x,yi; ζ) is Lgy-Lipschitz continuous implies that
∥∇2

xygi(x,yi)∥2 ≤ C2
gxy and ∥∇2

yygi(x,yi)∥2 ≤ C2
gyy

with Cgxy = Cgyy = Lgy. Assumption 5.3 is only re-
quired by BSVRBv2 to ensure the Lipschitz continuity of
∇vϕi(vi,x,yi, ξ, ζ). It is notable that an even stronger
assumption C̃2

gyyI ⪰ ∇2
yyg(x,y; ζ) ⪰ λI is made in

(Ghadimi & Wang, 2018; Hong et al., 2020; Yang et al.,
2021b) due to the use of the Neumann series (cf. the proof
of Lemma 3.2 in (Ghadimi & Wang, 2018), Assumption
1&2 in (Yang et al., 2021b)).

Comparing to the assumptions made for RSVRB,
BSVRB no longer requires the boundedness of
yi(x) and the expectation of the stochastic gradients
norms ∇xfi(x,yi; ξ), ∇yfi(x,yi; ξ), ∇ygi(x,yi; ζ),
∇2

xygi(x,yi; ζ), ∇2
yygi(x,yi; ζ). The latter boundedness

requirements in RSVRB come from the error bound
analysis of the randomized coordinate STORM estimators,
which uses (0, . . . ,m∇ygi(xt,yi,t; ζt), . . . , 0) as an
unbiased estimator of ∇yg(xt,yt). It is also the reason for
not having parallel speed-up of using multiple samples for
each block (Wang & Yang, 2022).

Next, we present our main result about the convergence of
BSVRBv1 and BSVRBv2 unified in the following theorem.

Theorem 5.4. Under Assumptions 5.1, 5.2 and 5.3 (for
BSVRBv2), with |Bt

i | = |B̃t
i | = B, τ ≤ 2

3Lg
, αt = O(Bϵ2),

ᾱt, βt = O(( I(I<m)
I + 1

B )−1ϵ2), τt, τ̄t = O(
√

I
m ( I(I<m)

I +

1
B )−1/2ϵ), ηt = O( I

m ( I(I<m)
I + 1

B )−1/2ϵ), and by using a
large mini-batch size of O(1/ϵ) at the initial iteration, both

Algorithm 1 and 2 give E
[
1
T

∑T
t=1 ∥∇F (xt)∥2

]
≤ ϵ2 with

an iteration complexity T = O(mϵ−3I(I<m)

I
√
I

+ mϵ−3

I
√
B
).

Remark: The achieved iteration complexity (i) matches
the SOTA results for standard BO problems with only one
block when I = m = 1 (Khanduri et al., 2021; Yang
et al., 2021a; Guo et al., 2021); (ii) has a parallel speed-
up by using multiple blocks I and multiple samples in the
mini-batches Bt

i and B̃t
i . It is worth mentioning that the

above theorem requires using a large batch size at the initial
iteration. This is mainly because that we use fixed small
parameters for αt, ᾱt, βt, ηt for simplicity of exposition and
for proving faster convergence under a Polyak-Łojasiewicz
(PL) condition in next section, for which we do not require
the large batch size at the initial iteration. We can also
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Algorithm 3 RE-BSVRB
1: Initialize the set of variables Θ0 = {x0 = x1,y0 =

y1,v0 = v1, s1, H1,u1, z1}
2: Define parameters {Ξk}Kk=1 according to Theorem 6.1
3: for k = 1, . . . ,K do
4: Θk = BSVRB(Θk−1,Ξk)
5: end for
6: Return: xK

use decreasing parameters as in previous works to remove
the large batch size at the initial iteration for finding an
ϵ-stationary point.

6. Faster Convergence for Gradient-Dominant
Functions

In this section, we use a standard restarting trick to improve
the convergence of BSVRB under the gradient dominant
condition (aka. Polyak-Łojasiewicz (PL) condition), i.e.,

µ(F (x)−min
x′

F (x′)) ≤ ∥∇F (x)∥2.

The procedure is described in Algorithm 3 and its conver-
gence is stated below.
Theorem 6.1. Suppose Assumptions 5.1, 5.2 and 5.3 (for
RE-BSVRBv2) hold and the PL condition holds. Set appro-
priate initial parameters Ξ1 = (β1, α1, ᾱ1, τ̄1, τ1, η1, T1).
Define proper constant ϵ1 = O( 1µ (

I(I<m)
I + 1

B ))

and ϵk = ϵ1/2
k−1. For k ≥ 2, set parameter

Ξk such that βk, αk, ᾱk = O(µϵk(
I(I<m)

I + 1
B )−1),

τ̄k, τk, ηk = O(
I
√
µϵk
m ( I(I<m)

I + 1
B )−1/2) and Tk =

O(max
{

1
µηk

, 1
τk
, 1
αk

}
) (for RE-BSVRBv1), or Tk =

O(max
{

1
µηk

, 1
βk
, 1
τk
, 1
τ̄k

}
) (for RE-BSVRBv2), then after

K = O(log(ϵ1/ϵ)) stages, the output of RE-BSVRB satis-
fies E[F (xK)−minx F (x)] ≤ ϵ.

Remark: For both RE-BSVRBv1 and RE-BSVRBv2, it fol-
lows from Theorem 6.1 that the total sample complexity
is
∑K

k=1 Tk = O( m
Iµ3/2ϵ1/2

( I(I<m)
I + 1

B )1/2 + m
Iµϵ ). If

µ ≥ ϵ, the dependence on µ and ϵ matches the optimal rate
of O( 1

µϵ ) to minimize a strongly convex problem, which
is a stronger condition than PL condition. In the existing
works, RE-RSVRB (Guo et al., 2021) has a similar result.
Other than that, to get E[∥x− x∗∥2] ≤ ϵ, STABLE (Chen
et al., 2021) takes a complexity of O( m

µ4ϵ ), TTSA (Hong

et al., 2020) takes Õ( m
µ3ϵ3/2

), and BSA (Ghadimi & Wang,
2018) takes O( m

µ5ϵ2 ), all under the strong convexity.

7. Experiments
7.1. Hyper-parameter Optimization

In this subsection, we consider solving MBBO with high-
dimensional lower-level problems. In particular, we con-

sider a hyper-parameter optimization problem for classifi-
cation with imbalanced data and noisy labels. For handling
data imbalance, we assign the j-th training data ζj a weight
σ(pj) ∈ (0, 1), where σ(·) is a sigmoid function, and pj
is a decision variable which will be learned by a bilevel
optimization. In order to tackle noisy labels in the train-
ing data, we consider using a robust loss function given
by Lτ (w;x, y) := log

(
1 + exp

(
−y(wTx+ w0)/τ

))
,

where x ∈ Rd is input feature, y ∈ {1,−1} denotes its
label, τ > 0 is a temperature parameter. This loss function
has been shown to be robust to label noise by tuning the τ
in (Zhu et al., 2023). In our experiment, instead of tuning τ ,
we consider multiple values of them and learn a model that
is robust for different temperature values. In particular, for
each temperature value τi, we learn a model wi(p) follow-
ing the weighted empirical risk minimization using the i-th
loss Li(w;x, y) = Lτi(w;x, y).

As a result, a MBBO problem is imposed as:

min
p∈Rn

F (p) :=
1

m

∑m

i=1
Eξj∼Dval

[Li(wi(p); ξj)]

wi(p) = arg min
w∈Rd

Eζj∼Dtr
[σ(pj)Li(w; ζj)] +

λ

2
∥w∥2,

for all i = 1, . . . ,m,

where Dtr contains n training data points and Dval is a
validation set, Eζj∼Dtr

denotes an average of data from the
given set.

In the first experiment on hyper-parameter optimization, we
aim to compare BSVRB and RSVRB, compare BSVRBv2

with BSVRBv1 for high-dimensional lower-level problems,
and to verify the parallel speedup of both BSVRBv1 and
BSVRBv2 with respect to block sampling size I and the
batch size B of samples.

Data. We use two binary classification datasets, UCI Adult
benchmark dataset a8a (Platt, 1999) and web page classifi-
cation dataset w8a (Dua & Graff, 2017). a8a and w8a have
a feature dimensionality of 123 and 300 respectively, and
contain 22696 and 49749 training samples. For both a8a
and w8a, we follow 80%/20% training/validation split.

Setup. We set the number of loss functions to be 100 using
randomly generated {τi}mi=1 in the range of [1, 11). For
methods comparison, we sample 10 blocks at each iteration
and set the sample batch size to be 32. The regularization
parameter λ is chosen from {0.00001, 0.0001, 0.001, 0.01}.
For all methods, we tune the upper-level problem learning
rate ηt from {0.001, 0.01, 0.1} and the lower-level problem
learning rates τt, τ̄t from {0.01, 0.1, 0.5, 1, 5, 10}. Parame-
ters αt = ᾱt and γt = γ̄t in MSVR estimator are tuned from
{0.5, 0.9, 1, 10, 100} and {0.001, 0.01, 0.1, 1, 10, 100} re-
spectively. In RSVRB, the STORM parameter β is chosen
from {0.1, 0.5, 0.9, 1}. We runs 4 trails for each setting
and plot the average curves. This experiment is performed

7
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on a computing node with Intel Xeon 8352Y (Ice Lake)
processor and 64GB memory.

Results. We plot the curves of validation loss for BSVRB
and RSVRB in Figure 2. For both datasets, all methods
perform similarly in terms of epochs. However, in terms
of running time, both BSVRBv1 and BSVRBv2 have bet-
ter performance than RSVRB. For dataset w8a, that has
a higher lower-level problem dimension 300, BSVRBv2

shows its greater advantage against BSVRBv1 and RSVRB.
This is consistent with our theory that BSVRBv2 is more
suitable for high-dimensional lower-level problems. Note
that one of the major issues that slows down RSVRB is
maintaining the Jacobian estimators, e.g. a matrix of size
100 ∗ 300 ∗ 39799 for w8a, which is avoided by BSVRBv1

and BSVRBv2. In Figure 3, we compare the loss curves
of BSVRBv1 and BSVRBv2 with different values of I (#
of sampled blocks) and B (# of sampled data per sampled
block) on a8a. It shows that the convergence speed increases
as I and B increases, which verifies the parallel speedup of
our algorithms.

Classification with Imbalanced Data with Noisy Labels.
To further demonstrate the benefit of our multi-block bilevel
optimization formulation for classification with imbalanced
data and noisy labels, we artificially construct an imbalanced
a8a data with varied label noise. We remove 70% of the
positive samples in training data to produce an imbalanced
version. Moreover, we add noise by flipping the labels of
the remaining training data with a certain probability, i.e.,
the noise level from 0 to 0.4.

We compare three methods, i) logistic regression with the
standard logistic loss as the baseline, ii) BSVRBv1 for solv-
ing the bilevel formulation with only one lower level prob-
lem (m = 1 and using the standard logistic loss), and iii)
our method for solving multi-block bilevel formulation with
m = 100 blocks corresponding to 100 settings of the scaling
factor τi in the logistic loss. Since these methods optimize
different objectives, we use the accuracy on a separate test-
ing data as the performance measure for comparison. For
our method, we have multiple models learned with different
loss functions. We select the best model on the validation
data and measure its accuracy on testing data. In terms of
parameter tuning, for logistic regression we tune the step
size in the range {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. For
BSVRBv1 we follow the same parameter tuning strategy
described in the previous experiment. For each setting, we
repeat the experiment 3 times by changing the random seeds.
We present the results in Figure 1 as a bar graph. We defer
the numeric results to Appendix E. As we can see from the
results, our multi-block bilevel optimization formulation
of hyper-parameter optimization has superior performance,
especially with high noise level.

Figure 1. Comparison of testing accuracy of models learned by
regular logistic regression, BSVRBv1 with m = 1 lower-level
problem, and BSVRBv1 with m = 100 lower-level problems on a
corrupted dataset a8a with various noise levels.

7.2. Top-K NDCG Optimization

In this experiment, we consider the top-K NDCG optimiza-
tion proposed in (Qiu et al., 2022), and reformulate it into
an equivalent MBBO problem. Let q ∈ Q denote a query,
Sq = {(xq

i , y
q
i )}

Nq

i=1 denote a set of items and their rele-
vance scores w.r.t to q, S denote the set of relevant query-
item pairs, and hq(·, ·) denote the predictive model for query
q. Then the MBBO formulation of this problem is:

min
1

|S|
∑

(q,xq
i )∈S

ψ(hq(x
q
i ;w)− λq(w))fq,i(g(w;xq

i )),

where λq(w) = argmin
λ

K + ε

Nq
λ+

τ2
2
λ2

+
1

Nq

∑
xi∈Sq

τ1 ln(1 + exp((hq(xi;w)− λ)/τ1)),

g(w;xq
i ) = argmin

g

1

2
(g − g(w;xq

i ,Sq))
2,∀(q,xq

i ) ∈ S,

where fq,i(g) = 1
ZK

q

1−2y
q
i

log2(Nqg+1) , g(w;xq
i ,Sq) =

1
|Sq|

∑
x′∈Sq

ℓ(hq(x
′;w) − hq(x

q
i ;w)), ℓ(·) = (· + c)2+

with a margin parameter c, ψ(·) is sigmoid function, and
ZK
q is the top-K DCG score of the perfect ranking. We refer

the readers to (Qiu et al., 2022) for more detailed description
of the problem which is omitted due to limite of space.

We follow the exactly same experimental settings as (Qiu
et al., 2022). Specifically, we adopt two movie recommen-
dation datasets, i.e., MovieLens20M (Harper & Konstan,
2015) and Netflix Prize dataset (Bennett et al., 2007), em-
ploy the same evaluation protocols, model architectures,
and hyper-parameters for training. For our method, we
tune α, ᾱ and γ, γ̄ in the ranges of {0.7, 0.8, 0.9} and
{0.001, 0.005, 0.01, 0.1, 1, 10}, respectively. Details of
data and experimental setups are presented in Appendix A.1.

Since all lower-level problems have one-dimensional vari-
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Figure 2. Comparison of convergence curves of different methods
in terms of validation loss on datasets a8a and w8a.

Figure 3. Comparison of convergence curves of BSVRB algo-
rithms with different values of I and and B on a8a.
able for optimization, we only compare RE-BSVRBv1 with
K-SONG and other methods reported in (Qiu et al., 2022).
We plot the convergence curves for optimizing top-10
NDCG on two datasets in Figure 4, and note that our
RE-BSVRBv1 converges faster than other methods. We also
provide NDCG@10 scores on the test data for all methods
in Table 2 and more results in Table 3 in Appendix A.1. We
observe that our method is better for top-K NDCG optimiza-
tion than other methods. Specifically, our method improves
upon K-SONG by 5.24% and 6.49% on NDCG@10 for
Movielens data and Netflix data, respectively.

The code for reproducing the experimental results in
this section is available at https://github.com/
Optimization-AI/ICML2023_BSVRB.

8. Conclusions
In this paper, we have proposed novel stochastic algorithms
for solving MBBO problems. We have established the state-
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Figure 4. Comparison of convergence of different methods in terms
of validation NDCG@5 on two movie recommendation datasets.

Table 2. The test NDCG@10 scores on two movie recommenda-
tion datasets averaged over 5 trials. More results for other metrics
are in Table 3 in Appendix A.1

METHOD MOVIELENS NETFLIX

RANKNET 0.0538±0.0011 0.0362±0.0002
LISTNET 0.0660±0.0003 0.0532±0.0002
LISTMLE 0.0588±0.0001 0.0376±0.0003
LAMBDARANK 0.0697±0.0001 0.0531±0.0002
APPROXNDCG 0.0735±0.0005 0.0434±0.0005
NEURALNDCG 0.0692±0.0003 0.0554±0.0002
SONG 0.0748±0.0002 0.0571±0.0002
K-SONG 0.0747±0.0002 0.0573±0.0003
RE-BSVRBV1 0.0749±0.0003 0.0585±0.0004

of-the-art complexity with a parallel speed-up. Our exper-
iments on both algorithms for low-dimensional and high-
dimensional lower problems demonstrate the effectiveness
of our algorithms against existing algorithms of MBBO.
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Table 3. The full results test NDCG on two movie recommendation datasets. We report the average NDCG@k (k ∈ [10, 20, 50]) and
standard deviation over 5 runs with different random seeds.

METHOD
MOVIELENS20M NETFLIX PRIZE DATASET

NDCG@10 NDCG@20 NDCG@50 NDCG@10 NDCG@20 NDCG@50

RANKNET 0.0538±0.0011 0.0744±0.0013 0.1086±0.0013 0.0362±0.0002 0.0489±0.0003 0.0730±0.0003
LISTNET 0.0660±0.0003 0.0875±0.0004 0.1227±0.0003 0.0532±0.0002 0.0700±0.0002 0.0992±0.0002
LISTMLE 0.0588±0.0001 0.0799±0.0001 0.1137±0.0001 0.0376±0.0003 0.0508±0.0004 0.0753±0.0001
LAMBDARANK 0.0697±0.0001 0.0913±0.0002 0.1259±0.0001 0.0531±0.0002 0.0693±0.0002 0.0976±0.0003
APPROXNDCG 0.0735±0.0005 0.0938±0.0003 0.1284±0.0002 0.0434±0.0005 0.0592±0.0009 0.0873±0.0012
NEURALNDCG 0.0692±0.0003 0.0901±0.0003 0.1232±0.0007 0.0554±0.0002 0.0718±0.0003 0.1003±0.0002
SONG 0.0748±0.0002 0.0969±0.0002 0.1326±0.0001 0.0571±0.0002 0.0749±0.0002 0.1050±0.0003
K-SONG 0.0747±0.0002 0.0973±0.0003 0.1340±0.0001 0.0573±0.0003 0.0743±0.0003 0.1042±0.0001
RE-BSVRBV1 0.0749±0.0003 0.0963±0.0002 0.1314±0.0003 0.0585±0.0004 0.0760±0.0003 0.1061±0.0002

A. Top-K NDCG Optimization
A.1. Details of data and experimental setups

Data. We use two large-scale movie recommendation datasets: MovieLens20M (Harper & Konstan, 2015) and Netflix Prize
dataset (Bennett et al., 2007). Both datasets contain large numbers of users and movies, which are represented with integer
IDs. All users have rated several movies, with ratings range from 1 to 5. To create training/validation/test sets, we use the
most recent rated item of each user for testing, the second recent item for validation, and the remaining items for training,
which is widely-used in the literature (He et al., 2018; Wang et al., 2020). When evaluating models, we need to collect
irrelevant (unrated) items and rank them with the relevant (rated) item to compute NDCG metrics. During training, inspired
by Wang et al. (2019a), we randomly sample 1000 unrated items to save time. When testing, however, we adopt the all
ranking protocol (Wang et al., 2019b; He et al., 2020) — all unrated items are used for evaluation.

Setup. We choose NeuMF (He et al., 2017) as the backbone network, which is commonly used in recommendation tasks.
For all methods, models are first pre-trained by our initial warm-up method for 100 epochs with the learning rate 0.001 and
a batch size of 256. Then the last layer is randomly re-initialized and the network is fine-tuned by different methods. At the
fine-tuning stage, the initial learning rate and weight decay are set to 0.0004 and 1e-7, respectively. We train the models for
120 epochs with the learning rate multiplied by 0.25 at 60 epochs. The hyper-parameters of all methods are individually
tuned for fair comparison, e.g., we tune α∗ and γ∗ for our method in ranges of {0.7, 0.8, 0.9} and {0.001, 0.005, 0.01},
respectively.

B. Convergence Analysis of BSVRB
In this section, we present the convergence analysis of BSVRB. We let yt = (y1,t, . . . ,ym,t), vt = (v1,t, . . . ,vm,t),
ut = (u1,t, . . . ,um,t), st = (s1,t, . . . , sm,t), Ht = (H1,t, . . . ,Hm,t), y(x) = (y1(x), . . . ,ym(x)), v(x,y) =
(v1(x,y1), . . . ,vm(x,ym)).

For simplicity, we define the following notations.

δz,t := ∥zt+1 −∆t∥2, δy,t :=

m∑
i=1

∥yi,t − yi(xt)∥2, δv,t :=

m∑
i=1

∥vi,t − v(xt,yi,t)∥2,

δs,t :=

m∑
i=1

∥si,t −∇ygi(xt−1,yi,t−1)∥2, δ̃s,t :=

m∑
i=1

∥si,t −∇ygi(xt,yi,t)∥2,

δu,t :=

m∑
i=1

∥ui,t −∇vϕi(vi,t−1,xt−1,yi,t−1)∥2, δ̃u,t :=

m∑
i=1

∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2,

δH,t :=

m∑
i=1

∥Hi,t −∇2
yygi(xt−1,yi,t−1)∥2, δ̃H,t :=

m∑
i=1

∥Hi,t −∇2
yygi(xt,yi,t)∥2.
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Note that under Assumption 5.1, 5.2, 5.3, we have
δ̃H,t ≤ 2δH,t + 2L2

gyy(m∥xt − xt−1∥2 + ∥yt − yt−1∥2)

δ̃s,t ≤ 2δs,t + 2L2
gy(m∥xt − xt−1∥2 + ∥yt − yt−1∥2)

δ̃u,t ≤ 2δu,t + 2L2
ϕv(∥vt − vt−1∥2 +m∥xt − xt−1∥2 + ∥yt − yt−1∥2)

(8)

We initialize x0 = x1, y0 = y1 and v0 = v1, so that we have
T∑

t=1

∥xt − xt−1∥2 ≤
T∑

t=1

∥xt+1 − xt∥2,
T∑

t=1

∥yt − yt−1∥2 ≤
T∑

t=1

∥yt+1 − yt∥2,

T∑
t=1

∥vt − vt−1∥2 ≤
T∑

t=1

∥vt+1 − vt∥2.

(9)

We first present some standard results from non-convex optimization and bilevel optimization literature.

Lemma B.1 (Lemma 2.2 in (Ghadimi & Wang, 2018)). F (x) is LF -smooth and yi(x) is Ly-Lipschitz continuous for all
i = 1, . . . ,m, where Ly and LF are appropriate constants.

Lemma B.2. Let xt+1 = xt − ηtzt+1. Under Assumptions 5.1, 5.2, with ηtLF ≤ 1/2, we have

F (xt+1) ≤ F (xt) +
ηt
2
∥∇F (xt)− zt+1∥2 −

ηt
2
∥∇F (xt)∥2 −

ηt
4
∥zt+1∥2.

Lemma B.3 (Lemma 6 in (Guo et al., 2021)). Let yt+1 = yt − τtτst with τ ≤ 2/(3Lg), we have

∥yt+1 − y(xt+1)∥2 ≤ (1− τtτλ

4
)∥yt − y(xt)∥2 +

8τtτ

λ
∥∇yg(xt,yt)− st∥2

+
8L2

yγ
2

τtτλ
∥xt+1 − xt∥2 −

2τ

τt
(1 +

τtτλ

4
)(

1

2τ
− 3Lg

4
)∥yt − yt+1∥2.

Lemma B.4. Let Ω be a convex set. Suppose mapping hi(ei; ξ) is L-Lipschitz, hi(e) = Eξ[hi(ei; ξ)], hi(e) ∈ Ω and
Eξ[∥hi(ei)− hi(ei; ξ)∥2] ≤ σ2 for all i = 1, . . . ,m. Consider the MSVR update:

hi,t+1 =


ΠΩ

[
(1− α)hi,t + αhi(ei,t;Bt

i)

+γ(hi(ei,t;Bt
i)− hi(ei,t−1;Bt

i))

]
, i ∈ It

hi,t, o.w.

(10)

Denote δh,t :=
∑m

i=1 ∥hi,t − hi(ei,t−1)∥2. By setting γ = m−I
I(1−α) + (1 − α), for α ≤ 1

2 , with batch sizes I = |It| and
B = |Bt

i |, we have

E [δh,t+1] ≤ (1− Iα

m
)E [δh,t] +

2Iα2σ2

B

+
8m2L2

I
E

[
m∑
i=1

∥ei,t−1 − ei,t∥2
] (11)

With Ω = Rd the above lemma is Lemma 1 in (Jiang et al., 2022). We refer the detailed proof to Appendix D.2

B.1. Convergence Analysis of BSVRBv1

We first present a formal statement of Theorem 5.4 for BSVRBv1.

Theorem B.5. Under Assumptions 5.1 and 5.2, with τ ≤ 2
3Lg

, γ̄t = m−I
I(1−ᾱt)

+ (1 − ᾱt), γt = m−I
I(1−αt)

+ (1 − αt),

αt ≤ min
{

1
2 ,

Bϵ2

12C10

}
, βt ≤ min{I,B}ϵ2

12C10
, ᾱt ≤ min

{
1
2 ,

ϵ2

12C10
( I(I<m)

I + 1
B )−1

}
, τt ≤

√
C8

12C10

√
Iϵ√
m
( I(I<m)

I + 1
B )−1/2,

ηt ≤ min
{

1
2LF

,
√
C11

Iϵ
m ( I(I<m)

I + 1
B )−1/2

}
, where C10, C11 are constants specified in the proof, and by using a large

mini-batch size of O(1/ϵ) at the initial iteration for computing z1, s1, H1 and computing an accurate solution y1 such that

δy,1 ≤ O(1), Algorithm 1 gives E
[
1
T

∑m
i=1 ∥∇F (xt)∥2

]
≤ ϵ2 with sample complexity T = O

(
mϵ−3I(I<m)

I
√
I

+ mϵ−3

I
√
B

)
.
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Define

∆t =
1

m

m∑
i=1

∇xfi(xt,yi,t)−∇2
xygi(xt,yi,t)Et[[Hi,t]

−1]∇yfi(xt,yi,t) (12)

so that Et[Gt] = ∆t, Et[G̃t] = ∆t−1.
Lemma B.6. With constants C1, C2 defined in the proof, we have

∥∆t −∇F (xt)∥2 ≤ C1δy,t + C2δ̃H,t. (13)
Lemma B.7. Consider the updates in Algorithm 1, we have

Et[∥zt+1 −∆t∥2] ≤ (1− βt)∥zt −∆t−1∥2 + 2C3∥xt − xt−1∥2 +
2C3

m
∥yt − yt−1∥2

+
2C4

m
∥Ht −Ht−1∥2 + 2β2

tC5

(
I(I < m)

I
+

1

B

) (14)

Lemma B.8. With MSVR updates for Ht+1, if ᾱt ≤ 1
2 , we have

E
[
∥Ht+1 −Ht∥2

]
≤ 2Iᾱ2

tσ
2

B
+

8Iᾱ2
t

m
E[δH,t] +

9m2L2
gyy

I
E[∥xt−1 − xt∥2] +

9mL2
gyy

I
E[∥yt−1 − yt∥2] (15)

By applying Lemma B.4 to st, Ht, we have

E [δH,t+1] ≤ (1− Iᾱt

m
)E [δH,t] +

2Iᾱ2
tσ

2

B
+

8m2L2
gyy

I
E
[
∥xt−1 − xt∥2 +

1

m
∥yt−1 − yt∥2

]
and

E [δs,t+1] ≤ (1− Iαt

m
)E [δs,t] +

2Iα2
tσ

2

B
+

8m2L2
gy

I
E
[
∥xt−1 − xt∥2 +

1

m
∥yt−1 − yt∥2

]
Take summation over t = 1, . . . , T , then we obtain

E

[
T∑

t=1

δH,t

]
≤ E

[
m

Iᾱt
δH,1 +

2mᾱtσ
2T

B
+

8m3L2
gyy

ᾱtI2

T∑
t=1

[
∥xt−1 − xt∥2 +

1

m
∥yt−1 − yt∥2

] ]
(16)

and

E

[
T∑

t=1

δs,t

]
≤ E

[
m

Iαt
δs,1 +

2mαtσ
2T

B
+

8m3L2
gy

αtI2

T∑
t=1

[
∥xt−1 − xt∥2 +

1

m
∥yt−1 − yt∥2

]]
(17)

B.1.1. PROOF OF THEOREM B.5

Proof. By Lemma B.2, we have

F (xt+1)− F (xt) ≤
ηt
2
∥zt+1 −∇F (xt)∥2 −

ηt
2
∥∇F (xt)∥2 −

ηt
4
∥zt+1∥2. (18)

The first term on the right hand side can be divided into two terms.
∥zt+1 −∇F (xt)∥2 ≤ 2 ∥zt+1 −∆t∥2 + 2 ∥∆t −∇F (xt)∥2 (19)

where we have recursion for the first term on the right hand side in Lemma B.7 and the second term is bounded by
Lemma B.6. Combining inequalities 18,19 and Lemma B.6 gives

F (xt+1)− F (xt) ≤ ηtδz,t +
ηtC1

m
δy,t +

ηtC2

m
δ̃H,t −

ηt
2
∥∇F (xt)∥2 −

ηt
4
∥zt+1∥2. (20)

Taking summation over t = 1, . . . , T yields

T∑
t=1

∥∇F (xt)∥2 ≤ 2

ηt
(F (x1)− F (x∗)) + 2

T∑
t=1

δz,t +
2C1

m

T∑
t=1

δy,t +
2C2

m

T∑
t=1

δ̃H,t −
1

2

T∑
t=1

∥zt+1∥2 (21)

We enlarge the values of constants C1 so that
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t

≤ 2

ηt
(F (x1)− F (x∗)) + 3

T∑
t=1

δz,t +
C1

m

T∑
t=1

δy,t +
C2

m

T∑
t=1

δ̃H,t −
1

2

T∑
t=1

∥zt+1∥2
(22)
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It follows from Lemma B.7 that

E

[
T∑

t=1

δz,t

]
≤ E

[
δz,1
βt

+
2C3

βt

T∑
t=1

∥xt − xt+1∥2 +
2C3

mβt

T∑
t=1

∥yt − yt+1∥2

+
2C4

mβt

T∑
t=1

∥Ht −Ht+1∥2 + 2βtC5T

(
I(I < m)

I
+

1

B

)] (23)

Combing with Lemma B.8, we have

E

[
T∑

t=1

δz,t

]
≤ E

[
δz,1
βt

+

(
2C3

βt
+

18C4mL
2
gyy

Iβt

)
T∑

t=1

∥xt − xt+1∥2 +

(
2C3

mβt
+

18L2
gyy

Iβt

)
T∑

t=1

∥yt − yt+1∥2

+ 2βtC5T

(
I(I < m)

I
+

1

B

)
+

4C4Iᾱ
2
t+1σ

2T

mβtB
+

8C4Iᾱ
2
t+1

m2βt

T∑
t=1

δH,t

] (24)

Following from Lemma B.3, we have

E

[
T∑

t=1

δy,t

]
≤ E

[
4

τtτλ
δy,1 +

32

λ2

T∑
t=1

δ̃s,t −
8

τ2t λI
(
1

2τ
− 3Lg

4
)

T∑
t=1

∥yt+1 − yt∥2

+
32mL2

y

τ2t τ
2λ2

T∑
t=1

∥xt − xt+1∥2
] (25)

Following from inequalities (25), (24) and (22), we have

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+ 6βtC5T

(
I(I < m)

I
+

1

B

)
+

12C4Iᾱ
2
t+1σ

2T

mβtB

+
C1

m

T∑
t=1

δy,t +
C2

m

T∑
t=1

δ̃H,t +
24C4Iᾱ

2
t+1

m2βt

T∑
t=1

δH,t

+

(
6C3

βt
+

54C4mL
2
gyy

Iβt

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2 +

(
6C3

mβt
+

54L2
gyy

Iβt

)
T∑

t=1

∥yt − yt+1∥2

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+
4C1

τtτλm
δy,1 + 6βtC5T

(
I(I < m)

I
+

1

B

)
+

12C4Iᾱ
2
t+1σ

2T

mβtB

+
32C1

mλ2

T∑
t=1

δ̃s,t +
C2

m

T∑
t=1

δ̃H,t +
24C4Iᾱ

2
t+1

m2βt

T∑
t=1

δH,t

+

(
6C3

βt
+

54C4mL
2
gyy

Iβt
+

32L2
yC1

τ2t τ
2λ2

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2

+

(
6C3

mβt
+

54L2
gyy

Iβt
− 8C1

τ2t λm
(
1

2τ
− 3Lg

4
)

)
T∑

t=1

∥yt − yt+1∥2

Then we replace δ̃s,t, δ̃H,t by δs,t, δH,t following inequality (8) and (9).
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E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δH,t +
1

m

T∑
t=1

δs,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+
4C1

τtτλm
δy,1 + 6βtC5T

(
I(I < m)

I
+

1

B

)
+

12C4Iᾱ
2
t+1σ

2T

mβtB
+
C6

m

T∑
t=1

δs,t

+
C7

m

T∑
t=1

δH,t +

(
6C3

βt
+

54C4mL
2
gyy

Iβt
+

32L2
yC1

τ2t τ
2λ2

+
64C1L

2
gy

λ2
+ 2C2L

2
gyy

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2

+

(
6C3

mβt
+

54L2
gyy

Iβt
− 8C1

τ2t λm
(
1

2τ
− 3Lg

4
) +

64C1L
2
gy

mλ2
+

2C2L
2
gyy

m

)
T∑

t=1

∥yt − yt+1∥2

where C6

m ≥ 64C1

mλ2 + 1
m and C7

m ≥ 2C2+1
m +

24C4Iᾱ
2
t+1

m2βt

Then we plug in
∑T

t=1 δs,t and
∑T

t=1 δH,t to the right hand side following (16) and (17),

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δH,t +
1

m

T∑
t=1

δs,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+
4C1

τtτλm
δy,1 +

C6

Iαt
δs,1 +

C7

Iᾱt
δH,1 + 6βtC5T

(
I(I < m)

I
+

1

B

)

+
12C4Iᾱ

2
t+1σ

2T

mβtB
+

2C6αtσ
2T

B
+

2C7ᾱtσ
2T

B
+

(
6C3

βt
+

54C4mL
2
gyy

Iβt
+

32L2
yC1

τ2t τ
2λ2

+
64C1L

2
gy

λ2
+ 2C2L

2
gyy

+
8m2C6L

2
gy

αtI2
+

8m2C7L
2
gyy

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2 +

(
6C3

mβt
+

54L2
gyy

Iβt

− 8C1

τ2t λm
(
1

2τ
− 3Lg

4
) +

64C1L
2
gy

mλ2
+

2C2L
2
gyy

m
+

8mC6L
2
gy

αtI2
+

8mC7L
2
gyy

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2

To ensure the coefficient of
∑T

t=1 ∥yt − yt+1∥2 is non positive, we need

τ2t = C8 min

{
Iβt
m
,
ᾱtI

2

m2
,
αtI

2

m2

}
≤ 48C1

λm
(
1

2τ
− 3Lg

4
)min

{
mβt
6C3

,
Iβt

54L2
gyy

,
mλ2

64C1L2
gy

,
m

2C2L2
gyy

,
αtI

2

8mC6L2
gy

,
ᾱtI

2

8mC7L2
gyy

}
where C8 := 48C1

λI ( 1
2τ − 3Lg

4 )min
{

1
6C3

, 1
54L2

gyy
, λ2

64C1L2
gy
, 1
2C2L2

gyy
, 1
8C6L2

gy
, 1
8C7L2

gyy

}
.

To ensure the coefficient of
∑T

t=1 ∥xt − xt+1∥2 is non positive, we need

η2t = C9 min

{
Iβt
m
,
ᾱtI

2

m2
, τ2t ,

αtI
2

m2

}
≤ min{ βt

84C3
,

Iβt
756C4mL2

gyy

,
τ2t τ

2λ2

448L2
yC1

,
λ2

896C1L2
gy

,
1

28C2L2
gyy

,
αtI

2

112m2C6L2
gy

,
ᾱtI

2

112m2C7L2
gyy

}

where C9 := min{ 1
84C3

, 1
756C4L2

gyy
, τ2λ2

448L2
yC1

, λ2

896C1L2
gy
, 1
28C2L2

gyy
, 1
112C6L2

gy
, 1
112C7L2

gyy
}

Then it follows
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E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δH,t +
1

m

T∑
t=1

δs,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+
4C1

τtτλm
δy,1 +

C6

Iαt
δs,1 +

C7

Iᾱt
δH,1

+ 6βtC5T

(
I(I < m)

I
+

1

B

)
+

12C4Iᾱ
2
t+1σ

2T

mβtB
+

2C6αtσ
2T

B
+

2C7ᾱtσ
2T

B

]

≤ E

[
2∆

ηt
+ C10

(
1

βt
δz,1 +

1

Iαt
δs,1 +

1

τtI
δy,1 +

1

Iᾱt
δH,1 +

ᾱtT

B
+
αtT

B
+ βtT

(
I(I < m)

I
+

1

B

)
+
Iᾱ2

t+1T

mβtB

)]
where C10 := max

{
3, 4C1

τλ , C6, C7, 6C5, 12C4σ
2, 2C6σ

2, 2C7σ
2
}

.

Set αt ≤ Bϵ2

12C10
, ᾱt, βt ≤ ϵ2

12C10( I(I<m)
I + 1

B )
, so that

C10

(
ᾱt

B
+
αt

B
+ βt

(
I(I < m)

I
+

1

B

)
+
Iᾱ2

t+1

mβtB

)
= (

ϵ2

12B
+

Iϵ2

12mB
)

(
I(I < m)

I
+

1

B

)−1

+
ϵ2

12
+
ϵ2

12
≤ ϵ2

3

As a result, we have

τ2t ≤ C8 min

{
Iβt
m
,
ᾱtI

2

m2
,
αtI

2

m2

}
=

C8

12C10
min

{
I2ϵ2

m2

(
I(I < m)

I
+

1

B

)−1

,
I2Bϵ2

m2

}

=
C8

12C10

I2ϵ2

m2

(
I(I < m)

I
+

1

B

)−1

and

η2t ≤ C9 min

{
Iβt
m
,
ᾱtI

2

m2
, τ2t ,

αtI
2

m2

}
= C11 min

{
Iϵ2

m

(
I(I < m)

I
+

1

B

)−1

,
I2ϵ2

m2

(
I(I < m)

I
+

1

B

)−1

,
I2Bϵ2

m2

}

= C11
I2ϵ2

m2

(
I(I < m)

I
+

1

B

)−1

where C11 = C8

12C10
.

Thus, with T = cT ϵ
−3 := 6∆

√
C11

m
I

(
I(I<m)√

I
+ 1√

B

)
≥ 6∆

√
C11

m
I

(
I(I<m)

I + 1
B

)1/2
ϵ−3, we have

2∆

ηtT
= 2∆

√
C11

m

I

(
I(I < m)

I
+

1

B

)1/2

ϵ−1 1

T
≤ ϵ2

3

Note that C10

T E
[

1
βt
δz,1 +

1
τtI
δy,1 +

1
αtI

δs,1 +
1

ᾱtI
δH,1

]
≤ ϵ2

3 can be achieved by processing all lower problems at the

beginning and finding good initial solutions δz,1, δs,1, δH,1 = O(ϵ), with complexity O(ϵ−1), and δy,1 = O(1) with
complexity O(1). Denote the iteration number for initialization as T0 = O(ϵ−1). Then the total iteration complexity is
O
(

mϵ−3I(I<m)

I
√
I

+ mϵ−3

I
√
B

)
.

B.2. Convergence Analysis of BSVRBv2

We first present the formal statement of Theorem 5.4 for BSVRBv2.
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Theorem B.9. Under Assumptions 5.1, 5.2 and 5.3, with τ ≤ 2/(3Lg), γ̄t = m−I
I(1−ᾱt)

+ (1− ᾱt), γt = m−I
I(1−αt)

+ (1−αt),

τt ≤
√

C′
8 min{1,Cτ̄}

18C′
9

I
m ( I(I<m)

I + 1
B )−1/2ϵ, βt ≤ 1

18C′
9
( I(I<m)

I + 1
B )−1ϵ2, ᾱt ≤ min

{
1
2 ,

1
18C′

9
( I(I<m)

I + 1
B )−1ϵ2

}
,

αt ≤ min
{

1
2 ,

B
18C′

9
ϵ2
}

, τ̄t ≤ min

{
λ

8L2
ϕv
, λ2 ,

1
λ ,

1

2
√

C′
6

,
√
Cτ̄ I
m

√
ᾱt

}
, ηt ≤ min

{
1

2LF
,

√
C′

11I

m ( I(I<m)
I + 1

B )−1/2ϵ

}
,

where C ′
8, C

′
9, Cτ̄ , C

′
11 are constants specified in the proof, and by using a large mini-batch size of O(1/ϵ) at the ini-

tial iteration for computing z1, s1,u1 and computing an accurate solution y1,v1 such that δy,1 ≤ O(m), Algorithm 1 gives

E
[
1
T

∑m
i=1 ∥∇F (xt)∥2

]
≤ ϵ2 with sample complexity T = O

(
mϵ−3I(I<m)

I
√
I

+ mϵ−3

I
√
B

)
.

First, we note that the bounded variance of ∇vϕi(v,x,yi;Bi) can be derived as

EBt
i
[∥∇vϕi(vi,t,xt,yi,t;Bt

i , B̃t
i)−∇vϕi(vi,t,xt,yi,t)∥2]

= EBt
i ,B̃t

i
[∥∇2

yygi(xt,yi,t; B̃t
i)vi,t −∇yfi(xt,yi,t;Bt

i)−∇2
yygi(xt,yi,t)v

t
i +∇yfi(xt,yi,t)∥2]

≤ EBt
i ,B̃t

i
[2∥∇2

yygi(xt,yi,t; B̃t
i)vi,t −∇2

yygi(xt,yi,t)vi,t∥2 + 2∥∇yfi(xt,yi,t)−∇yfi(xt,yi,t;Bt
i)∥2]

≤ 2σ2

B
∥vi,t∥2 +

2σ2

B
≤ (1 + V2)

2σ2

B
.

Moreover, to achieve the variance-reduced estimation error bound, we need the stochastic gradient ∇vϕi(vi,x,yi; ξ, ζ)
to be Lϕv-Lipschitz with some constant Lϕv. The value of Lϕv can be derived as following. Assume that (vi,x,yi) and
(v′

i,x
′,y′

i) are parameters from some iterations in algorithm 1, then under Assumptions 5.2 and 5.3 we have
∥∇vϕi(vi,x,yi; ξ, ζ)−∇vϕi(v

′
i,x

′,y′
i; ξ, ζ)∥2

≤ 4∥∇2
yygi(x,yi; ζ)vi,t −∇2

yygi(x
′,y′

i; ζ)vi,t∥2 + 4∥∇2
yygi(x

′,y′
i; ζ)vi,t −∇2

yygi(x
′,y′

i; ζ)v
′
i,t∥

+ 2∥∇yfi(x,yi; ξ)−∇yfi(x
′,y′

i; ξ)∥2

≤ (4L2
gyyV2 + 2L2

fy)(∥x− x′∥2 + ∥yi − y′
i∥2) + 4C̃2

gyy∥vi,t − v′
i,t∥2

≤ L2
ϕv(∥vi,t − v′

i,t∥2 + ∥x− x′∥2 + ∥yi − y′
i∥2)

where Lϕv := max{4L2
gyyV2 + 2L2

fy, 4C̃
2
gyy}.

Lemma B.10 ((Ghadimi & Wang, 2018)(Lemma 2.2)). For all i = 1, . . . ,m, vi(x,yi) is Lv-Lipschitz continuous with
Lv =

LfyCgyy+CfyLgyy

λ2 .

Define

∆t :=
1

m

m∑
i=1

∇xfi(xt,yi,t)−∇2
xygi(xt,yi,t)vi,t (26)

Note that Et[Gt] = ∆t, Et[G̃t] = ∆t−1. Then we have the following two lemmas.

Lemma B.11. For all t > 0, we have

∥∆t −∇F (xt)∥2 ≤ C ′
1

m
δy,t +

C ′
2

m
δv,t (27)

Lemma B.12. For all t > 0, we have

Et[∥zt+1 −∆t∥2] ≤ (1− βt)∥zt −∆t−1∥2 + 2C ′
3∥xt − xt−1∥2 +

2C ′
3

m
∥yt − yt−1∥2

+
2C ′

4

m
∥vt − vt−1∥2 + 2β2

tC
′
5

(
I(I < m)

I
+

1

B

) (28)

Following from Lemma B.3, with update yi,t+1 = yi,t − τtτsi,t for all i = 1, . . . ,m, with τ ≤ 2/(3Lg), we have

E[δy,t+1] ≤ (1− τtτλ

4
)E[δy,t] +

8τtτ

λ
E[δ̃s,t]−

2τ

τt
(
1

2τ
− 3Lg

4
)E[∥yt+1 − yt∥2] +

8mL2
y

τtτλ
E[∥xt − xt+1∥2] (29)

Lemma B.13. Consider the update vi,t+1 = ΠV [vi,t − τ̄tui,t] for all i = 1, . . . ,m, with τ̄t ≤ min
{

λ
8L2

ϕv
, λ2 ,

1
λ

}
, we have

E[δv,t+1] ≤ (1− λτ̄t
4

)E[δv,t] + 10λτ̄tE[δ̃u,t] +
5mL2

v

λτ̄t
E[∥xt − xt+1∥2] +

5L2
v

λτ̄t
E[∥yt − yt+1∥2] (30)
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By applying Lemma B.4 to st,ut, we have

E [δs,t+1] ≤ (1− Iαt

m
)E [δs,t] +

2Iα2
tσ

2

B
+

8m2L2
gy

I
E
[
∥xt+1 − xt∥2 +

1

m
∥yt+1 − yt∥2

]
and

E [δu,t+1] ≤ (1− Iᾱt

m
)E [δu,t] +

2Iᾱ2
tσ

2

B
+

8m2L2
ϕv

I
E
[
∥xt+1 − xt∥2 +

1

m
∥yt+1 − yt∥2 +

1

m
∥vt+1 − vt∥2

]
which implies

E

[
T∑

t=1

δs,t

]
≤ E

[
m

Iαt
δs,1 +

2mαtσ
2T

B
+

8m3L2
gy

αtI2

T∑
t=1

(
∥xt+1 − xt∥2 +

1

m
∥yt+1 − yt∥2

)]
(31)

and

E

[
T∑

t=1

δu,t

]
≤ E

[
m

Iᾱt
δu,1 +

2mᾱtσ
2T

B
+

8m3L2
ϕv

ᾱtI2

T∑
t=1

(
1

m
∥vt+1 − vt∥2 + ∥xt+1 − xt∥2 +

1

m
∥yt+1 − yt∥2

)]
(32)

B.2.1. PROOF OF THEOREM B.9

Proof. By Lemma B.2, we have

F (xt+1)− F (xt) ≤
ηt
2
∥zt+1 −∇F (xt)∥2 −

ηt
2
∥∇F (xt)∥2 −

ηt
4
∥zt+1∥2. (33)

The first term on the right hand side can be divided into two terms.
∥zt+1 −∇F (xt)∥2 ≤ 2 ∥zt+1 −∆t∥2 + 2 ∥∆t −∇F (xt)∥2 (34)

where we have recursion for the first term on the right hand side in Lemma B.12 and the second term is bounded by
Lemma B.11. Combining inequalities 33,34 and Lemma B.11 gives

F (xt+1)− F (xt) ≤ ηtδz,t +
ηtC

′
1

m
δy,t +

ηtC
′
2

m
δv,t −

ηt
2
∥∇F (xt)∥2 −

ηt
4
∥zt+1∥2. (35)

Taking summation over t = 1, . . . , T yields

T∑
t=1

∥∇F (xt)∥2 ≤ 2

ηt
(F (x1)− F (x∗)) + 2

T∑
t=1

δz,t +
2C ′

1

m

T∑
t=1

δy,t +
2C ′

2

m

T∑
t=1

δv,t −
1

2

T∑
t=1

∥zt+1∥2 (36)

We enlarge the values of constants C ′
1, C

′
2 so that

T∑
t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t

≤ 2

ηt
(F (x1)− F (x∗)) + 3

T∑
t=1

δz,t +
C ′

1

m

T∑
t=1

δy,t +
C ′

2

m

T∑
t=1

δv,t −
1

2

T∑
t=1

∥zt+1∥2
(37)

Following from inequality (29) and Lemma B.13 we have

E

[
T∑

t=1

δy,t

]
≤ E

[
4

τtτλ
δy,1 +

32

λ2

T∑
t=1

δ̃s,t −
8

τ2t λ
(
1

2τ
− 3Lg

4
)

T∑
t=1

∥yt+1 − yt∥2 +
32mL2

y

τ2t τ
2λ2

T∑
t=1

∥xt+1 − xt∥2
]

(38)

E

[
m∑
i=1

δv,t

]
≤ E

[
4

λτ̄t
E[δv,1] + 40

T∑
t=1

δ̃u,t +
20L2

v

λ2τ̄2t

T∑
t=1

∥xt+1 − xt∥2 +
20mL2

v

λ2τ̄2t

T∑
t=1

∥yt+1 − yt∥2
]

(39)
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It follows from Lemma B.12 that

E

[
T∑

t=1

δz,t

]
≤ E

[
δz,1
βt

+
2C ′

3

βt

T∑
t=1

∥xt − xt+1∥2 +
2C ′

3

mβt

T∑
t=1

∥yt − yt+1∥2

+
2C ′

4

mβt

T∑
t=1

∥vt − vt+1∥2 + 2βtC
′
5T

(
I(I < m)

I
+

1

B

)] (40)

Note that

∥vt − vt+1∥2 ≤
m∑
i=1

τ̄2t ∥ui,t∥2

=

m∑
i=1

τ̄2t ∥ui,t −∇vϕi(vi,t,xt,yi,t) +∇vϕi(vi,t,xt,yi,t)∥2

≤
m∑
i=1

2τ̄2t ∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2 + 2τ̄2t ∥∇vϕi(vi,t,xt,yi,t)−∇vϕi(vi(xt,yi,t),xt,yi,t)∥2

≤
m∑
i=1

2τ̄2t ∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2 + 2τ̄2t L
2
ϕv∥vi,t − vi(xt,yi,t)∥2

= 2τ̄2t δ̃u,t + 2τ̄2t L
2
ϕvδv,t

(41)

Taking summation over all iterations and expectation, and combining with inequality (39) yields

E

[
T∑

t=1

∥vt − vt+1∥2
]

≤ E

[
2τ̄2t

T∑
t=1

δ̃u,t + 2τ̄2t L
2
ϕv

T∑
t=1

δv,t

]

≤ E

[ (
2τ̄2t + 80L2

ϕv τ̄
2
t

) T∑
t=1

δ̃u,t +
8L2

ϕv τ̄t

λ
δv,1 +

40mL2
ϕvL

2
v

λ2

T∑
t=1

∥xt − xt+1∥2 +
40L2

vL
2
ϕv

λ2

T∑
t=1

∥yt − yt+1∥2
]

(a)

≤ E

[ (
4τ̄2t + 160L2

ϕv τ̄
2
t

) T∑
t=1

δu,t +
8L2

ϕv τ̄t

λ
δv,1 + (4τ̄2t L

2
ϕv + 160L4

ϕv τ̄
2
t )

T∑
t=1

∥vt+1 − vt∥2

+

(
40mL2

ϕvL
2
v

λ2
+ 4mτ̄2t L

2
ϕv + 160mL4

ϕv τ̄
2
t

)
T∑

t=1

∥xt − xt+1∥2

+

(
40L2

vL
2
ϕv

λ2
+ 4τ̄2t L

2
ϕv + 160L4

ϕv τ̄
2
t

)
T∑

t=1

∥yt − yt+1∥2
]

(b)

≤ E

[
C ′

6τ̄
2
t

T∑
t=1

δu,t +
8L2

ϕv τ̄t

λ
δv,1 + C ′

6τ̄
2
t

T∑
t=1

∥vt+1 − vt∥2 +

(
40mL2

ϕvL
2
v

λ2
+mC ′

6τ̄
2
t

)
T∑

t=1

∥xt − xt+1∥2

+

(
40L2

vL
2
ϕv

λ2
+ C ′

6τ̄
2
t

)
T∑

t=1

∥yt − yt+1∥2
]

where inequality (a) follows from inequality (8) and (9), and in (b) we denote C ′
6 = (4 + 160L2

ϕv)max{1, L2
ϕv}.
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Combining with inequality (32), we have

E

[
T∑

t=1

∥vt − vt+1∥2
]

≤ E

[
mC ′

6τ̄
2
t

Iᾱt
δu,1 +

8L2
ϕv τ̄t

λ
δv,1 +

2C ′
6τ̄

2
t mᾱtσ

2T

B
+

(
C ′

6τ̄
2
t +

8C ′
6τ̄

2
t m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥vt+1 − vt∥2

+

(
40mL2

ϕvL
2
v

λ2
+mC ′

6τ̄
2
t +

8C ′
6τ̄

2
t m

3L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2

+

(
40L2

vL
2
ϕv

λ2
+ C ′

6τ̄
2
t +

8C ′
6τ̄

2
t m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2
]

Setting τ̄2t ≤ min{ 1
4C′

6
, Cτ̄

I2

m2 ᾱt} where Cτ̄ := 1
32C′

6L
2
ϕv

, i.e.
8C′

6m
2L2

ϕv τ̄
2
t

ᾱtI2 ≤ 1
4 and C ′

6τ̄
2 ≤ 1

4 , we have

E

[
T∑

t=1

∥vt − vt+1∥2
]
≤ E

[
2mC ′

6τ̄
2
t

Iᾱt
δu,1 +

16L2
ϕv τ̄t

λ
δv,1 +

4C ′
6τ̄

2
t mᾱtσ

2T

B

+

(
80mL2

ϕvL
2
v

λ2
+ 2mC ′

6τ̄
2
t +

16C ′
6τ̄

2
t m

3L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2

+

(
80L2

vL
2
ϕv

λ2
+ 2C ′

6τ̄
2
t +

16C ′
6τ̄

2
t m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2
] (42)

Combining inequalities (37), (40), (38), (39), we obtain

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+ 6βtC
′
5T

(
I(I < m)

I
+

1

B

)
+

4C ′
1

mτtτλ
δy,1 +

4C ′
2

mλτ̄t
δv,1

+

(
6C ′

3

βt
+

32C ′
1L

2
y

τ2t τ
2λ2

+
20C ′

2L
2
v

λ2τ̄2t

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2

+

(
6C ′

3

mβt
− 8C ′

1

mτ2t λ
(
1

2τ
− 3Lg

4
) +

20C ′
2L

2
v

mλ2τ̄2t

) T∑
t=1

∥yt − yt+1∥2

+
6C ′

4

mβt

T∑
t=1

∥vt − vt+1∥2 +
32C ′

1

mλ2

T∑
t=1

δ̃s,t +
40C ′

2

m

T∑
t=1

δ̃u,t

]
(a)

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+ 6βtC
′
5T

(
I(I < m)

I
+

1

B

)
+

4C ′
1

mτtτλ
δy,1 +

4C ′
2

mλτ̄t
δv,1

+

(
6C ′

3

βt
+

32C ′
1L

2
y

τ2t τ
2λ2

+
20C ′

2L
2
v

λ2τ̄2t
+

64C ′
1L

2
gy

λ2
+ 80C ′

2L
2
ϕv

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2

+

(
6C ′

3

mβt
− 8C ′

1

mτ2t λ
(
1

2τ
− 3Lg

4
) +

20C ′
2L

2
v

mλ2τ̄2t
+

64C ′
1L

2
gy

mλ2
+

80C ′
2L

2
gyy

m

)
T∑

t=1

∥yt − yt+1∥2

+

(
6C ′

4

mβt
+

80C ′
2L

2
gyy

m

)
T∑

t=1

∥vt − vt+1∥2 +
64C ′

1

mλ2

T∑
t=1

δs,t +
80C ′

2

m

T∑
t=1

δu,t

(43)

where (a) uses inequality (8) and (9).
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Enlarge the value of constant C ′
2 so that C ′

2 ≥ max
{

64C′
1

λ2 + 1, 80C ′
2 + 1

}
.

Combining with inequalities (31), (32), we have

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t +
1

m

T∑
t=1

δs,t +
1

m

T∑
t=1

δu,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+ 6βtC
′
5T

(
I(I < m)

I
+

1

B

)
+

4C ′
1

mτtτλ
δy,1 +

4C ′
2

mλτ̄t
δv,1 +

64C ′
1

λ2Iαt
δs,1 +

80C ′
2

Iᾱt
δu,1

+
128C ′

1αtσ
2T

λ2B
+

160C ′
2ᾱtσ

2T

B
+

(
6C ′

3

βt
+

32C ′
1L

2
y

τ2t τ
2λ2

+
20C ′

2L
2
v

λ2τ̄2t
+

64C ′
1L

2
gy

λ2
+ 80C ′

2L
2
ϕv

+
512m2L2

gy

λ2αtI2
+

640C ′
2m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2 +

(
6C ′

3

mβt
− 8C ′

1

mτ2t λ
(
1

2τ
− 3Lg

4
)

+
20C ′

2L
2
v

mλ2τ̄2t
+

64C ′
1L

2
gy

mλ2
+

80C ′
2L

2
gyy

m
+

512mL2
gy

λ2αtI2
+

640C ′
2mL

2
ϕv

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2

+

(
6C ′

4

mβt
+

80C ′
2L

2
gyy

m
+

640C ′
2mL

2
ϕv

ᾱtI2

)
T∑

t=1

∥vt − vt+1∥2
]

(44)
Combining with inequality (42), we have

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t +
1

m

T∑
t=1

δs,t +
1

m

T∑
t=1

δu,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+ 6βtC
′
5T

(
I(I < m)

I
+

1

B

)
+

4C ′
1

mτtτλ
δy,1 +

4C ′
2

mλτ̄t
δv,1 +

64C ′
1

λ2Iαt
δs,1 +

80C ′
2

Iᾱt
δu,1

+
128C ′

1αtσ
2T

λ2B
+

160C ′
2ᾱtσ

2T

B
+

(
6C ′

3

βt
+

32C ′
1L

2
y

τ2t τ
2λ2

+
20C ′

2L
2
v

λ2τ̄2t
+

64C ′
1L

2
gy

λ2
+ 80C ′

2L
2
ϕv

+
512m2L2

gy

λ2αtI2
+

640C ′
2m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2 +

(
6C ′

3

mβt
− 8C ′

1

mτ2t λ
(
1

2τ
− 3Lg

4
)

+
20C ′

2L
2
v

mλ2τ̄2t
+

64C ′
1L

2
gy

mλ2
+

80C ′
2L

2
gyy

m
+

512mL2
gy

λ2αtI2
+

640C ′
2mL

2
ϕv

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2

+

(
6C ′

4

mβt
+

80C ′
2L

2
gyy

m
+

640C ′
2mL

2
ϕv

ᾱtI2

)[
2mC ′

6τ̄
2
t

Iᾱt
δu,1 +

16L2
ϕv τ̄t

λ
δv,1 +

4C ′
6τ̄

2
t mᾱtσ

2T

B

+

(
80mL2

ϕvL
2
v

λ2
+ 2mC ′

6τ̄
2
t +

16C ′
6τ̄

2
t m

3L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2

+

(
80L2

vL
2
ϕv

λ2
+ 2C ′

6τ̄
2
t +

16C ′
6τ̄

2
t m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2
]]

(45)

Recall that τ̄2t ≤ min{ 1
4C′

6
, Cτ̄

I2

m2 ᾱt}, i.e. 2C ′
6τ̄

2
t +

16C′
6τ̄

2
t m

2L2
ϕv

ᾱtI2 ≤ 1, and let

C ′
7 = max

{
18C ′

4, 240C
′
2L

2
gyy, 1920C

′
2L

2
ϕv

}(80L2
vL

2
ϕv

λ2
+ 1

)
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then

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t +
1

m

T∑
t=1

δs,t +
1

m

T∑
t=1

δu,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) +

3δz,1
βt

+ 6βtC
′
5T

(
I(I < m)

I
+

1

B

)
+

4C ′
1

mτtτλ
δy,1 +

4C ′
2

mλτ̄t
δv,1 +

64C ′
1

λ2Iαt
δs,1

+
80C ′

2

Iᾱt
δu,1 +

128C ′
1αtσ

2T

λ2B
+

160C ′
2ᾱtσ

2T

B
+

(
6C ′

3

βt
+

32C ′
1L

2
y

τ2t τ
2λ2

+
20C ′

2L
2
v

λ2τ̄2t
+

64C ′
1L

2
gy

λ2
+ 80C ′

2L
2
ϕv

+
512m2L2

gy

λ2αtI2
+

640C ′
2m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2 +

(
6C ′

3

mβt
− 8C ′

1

mτ2t λ
(
1

2τ
− 3Lg

4
)

+
20C ′

2L
2
v

mλ2τ̄2t
+

64C ′
1L

2
gy

mλ2
+

80C ′
2L

2
gyy

m
+

512mL2
gy

λ2αtI2
+

640C ′
2mL

2
ϕv

ᾱtI2

)
T∑

t=1

∥yt − yt+1∥2

+ C ′
7

(
1

mβt
+

1

m
+

m

ᾱtI2

)(
2mC ′

6τ̄
2
t

Iᾱt
δu,1 +

16L2
ϕv τ̄t

λ
δv,1 +

4C ′
6τ̄

2
t mᾱtσ

2T

B

)

+ C ′
7

(
1

βt
+ 1 +

m2

ᾱtI2

) T∑
t=1

∥xt − xt+1∥2 + C ′
7

(
1

mβt
+

1

m
+

m

ᾱtI2

) T∑
t=1

∥yt − yt+1∥2
]]

(46)

To ensure the coefficient of
∑T

t=1 ∥yt+1 − yt∥2, we set

τ2t = C ′
8 min

{
βt, τ̄

2
t ,
I2αt

m2
,
I2ᾱt

m2

}
≤ 8C ′

1

9mλ
(
1

2τ
− 3Lg

4
)min

{
mβt
6C ′

3

,
mλ2τ̄2t
20C ′

2L
2
v

,
mλ2

64C ′
1L

2
gy

,
m

80C ′
2L

2
gyy

,
λ2αtI

2

512mL2
gy

,
ᾱtI

2

640C ′
2mL

2
ϕv

,
mβt
C ′

7

,
m

C ′
7

,
ᾱtI

2

mC ′
7

}
where C ′

8 =
8C′

1

9λ ( 1
2τ − 3Lg

4 )min
{

1
6C′

3
, λ2

20C′
2L

2
v
, λ2

64C′
1L

2
gy
, 1
80C′

2L
2
gyy

, λ2

512L2
gy
, 1
640C′

2L
2
ϕv
, 1
C′

7

}
. Let

C ′
9 = 11max

{
3, 6C ′

5,
4C ′

1

τλ
,
4C ′

2

λ
,
64C ′

1

λ2
, 80C ′

2,
128C ′

1σ
2

λ2
, 160C ′

2σ
2, 2C ′

7C
′
6,

16C ′
7L

2
ϕv

λ
, 4C ′

7C
′
6σ

2

}
It follows

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t +
1

m

T∑
t=1

δs,t +
1

m

T∑
t=1

δu,t

]

≤ E

[
2

ηt
(F (x1)− F (x∗)) + C ′

9

(
δz,1
βt

+
δy,1
mτt

+

(
1

mτ̄t
+

τ̄t
mβt

+
τ̄t
m

+
mτ̄t
ᾱtI2

)
δv,1

+
δs,1
Iαt

+

(
1

Iᾱt
+

τ̄2t
Iᾱtβt

+
τ̄2t
Iᾱt

+
m2τ̄2t
Iᾱ2

t I
2

)
δu,1

+ βtT

(
I(I < m)

I
+

1

B

)
+
αtT

B
+
ᾱtT

B
+
τ̄2t ᾱtT

βtB
+
τ̄2t ᾱtT

B
+
m2τ̄2t T

BI2

)

+

(
6C ′

3

βt
+

32C ′
1L

2
y

τ2t τ
2λ2

+
20C ′

2L
2
v

λ2τ̄2t
+

64C ′
1L

2
gy

λ2
+ 80C ′

2L
2
ϕv

+
512m2L2

gy

λ2αtI2
+

640C ′
2m

2L2
ϕv

ᾱtI2

)
T∑

t=1

∥xt − xt+1∥2 −
1

2

T∑
t=1

∥zt+1∥2

+ C ′
7

(
1

βt
+ 1 +

m2

ᾱtI2

) T∑
t=1

∥xt − xt+1∥2
]]

(47)
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Setting βt, ᾱt ≤ ϵ2

18C′
9(

I(I<m)
I + 1

B )
, αt ≤ B

18C′
9
ϵ2, τ̄2t ≤ Cτ̄ I

2

m2 ᾱt, we have

C ′
9

(
βt

(
I(I < m)

I
+

1

B

)
+
αt

B
+
ᾱt

B
+
τ̄2t ᾱt

βtB
+
τ̄2t ᾱt

B
+
m2τ̄2t
BI2

)
≤ ϵ2

3
(48)

and

τ2t ≤ C ′
8 min

{
βt, τ̄

2
t ,
I2αt

m2
,
I2ᾱt

m2
,

}

=
C ′

8

18C ′
9

min

 ϵ2

I(I<m)
I + 1

B

,
Cτ̄I

2ϵ2

m2
(

I(I<m)
I + 1

B
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ϵ2,
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(
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I + 1

B

)ϵ2,


=
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8

18C ′
9

I2 min {1, Cτ̄}

m2
(

I(I<m)
I + 1

B

)ϵ2
(49)

To ensure the coefficient of
∑T

t=1 ∥xt − xt+1∥2 is non-positive, we set

η2t ≤ C ′
11

I2ϵ2

m2

(
I(I < m)

I
+

1

B

)−1

≤ C ′
10 min

{
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2
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2
t ,
αtI

2

m2
,
ᾱtI

2
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}
≤ 1

20
min

{
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2λ2

32C ′
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2
y

,
λ2τ̄2t

20C ′
2L

2
v

,
λ2

64C ′
1L

2
gy

,
1

80C ′
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2
ϕv

,
λ2αtI

2

512m2L2
gy

,
ᾱtI

2

640C ′
2m

2L2
ϕv

,
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C ′

7

,
1

C ′
7

,
ᾱtI

2

m2C ′
7

} (50)

where C ′
10 = 1

20 min
{

1
6C′

3
, τ2λ2

32C′
1L

2
y
, λ2

20C′
2L

2
v
, λ2

64C′
1L

2
gy
, 1
80C′

2L
2
ϕv
, λ2

512L2
gy
, 1
640C′

2L
2
ϕv
, 1
C′

7
, 1
C′

7
, 1
C′

7

}
, and C ′

11 =

C ′
10 min

{
1

18C′
9
,
C′

8 min{1,Cτ̄}
18C′

9
, Cτ̄

18C′
9

}
Thus, with T = cT ϵ

−3 := 6∆ m√
C′

11I

(
I(I<m)√

I
+ 1√

B

)
ϵ−3 ≥ 6∆ m√

C′
11I

(
I(I<m)

I + 1
B

)1/2
ϵ−3, we have

2∆

ηtT
= 2∆

m√
C ′

11I
√
min{I,B}

ϵ−1 1

T
=
ϵ2

3
(51)

C′
9

T

[
δz,1
βt

+
δy,1

mτt
+
(

1
mτ̄t

+ τ̄t
mβt

+ τ̄t
m + mτ̄t

ᾱtI2

)
δv,1 +

δs,1
Iαt

+
(

1
Iᾱt

+
τ̄2
t

Iᾱtβt
+

τ̄2
t

Iᾱt
+

m2τ̄2
t

ᾱ2
t I

3

)
δu,1

]
≤ ϵ2

3 can be achieved by

processing all lower problems at the beginning and finding good initial solutions δz,1, δs,1, δu,1 with accuracy O(ϵ) with
complexity O(ϵ−1), and δy,1, δv,1 with accuracy O(1) with complexity O(1). Denote the iteration number for initialization

as T0. Then the total iteration complexity is O
(

mϵ−3I(I<m)

I
√
I

+ mϵ−3

I
√
B

)
.

C. Convergence Analysis of RE-BSVRB
C.1. Convergence Analysis of RE-BSVRBv1

We present the formal statement of Theorem 6.1 for RE-BSVRBv1.

Theorem C.1. Suppose Assumptions 5.1 and 5.2 hold and the PL condition holds. Set α1 = ᾱ1 = β1 ≤ 1
2 , τ1 =

√
C8Iα1

m ,

η1 = min

{
1

2LF
,
√

C9I2α1

m2

}
, T1 = O

(
max

{
m
µη1

, m
µβ1

(
I(I<m)

I + 1
B

)−1

, m
µτ1

(
I(I<m)

I + 1
B

)−1
})

. Define a constant

ϵ1 = 7C10(β1+α1+ᾱ1)
µ

(
I(I<m)

I + 1
B

)
and ϵk = ϵ1/2

k−1. For k ≥ 2, setting βk = αk = ᾱk ≤ µϵk
21C10

(
I(I<m)

I + 1
B

)−1

,

τk =
√
C8αkI
m , ηk =

√
C9

√
min

{
τ2k ,

αkI2

m2

}
, Tk = O

(
max

{
1

µηk
, 1
βk
, 1
τk

})
, where and C1 ∼ C11 are as used in

Theorem B.5, then after K = O(log(ϵ1/ϵ)) stages, the output of RE-BSVRBv1 satisfies E[F (xK)− F (x∗)] ≤ ϵ.
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Proof. Following from the proof of Theorem B.5, we have

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δH,t +
1

m

T∑
t=1

δs,t

]

≤ E

[
2∆

ηt
+ C10

(
δz,1
βt+1

+
δs,1
Iαt

+
δy,1
τtm

+
δH,1

Iᾱt
+
ᾱtT

B
+
αtT

B
+ βt+1T

(
I(I < m)

I
+

1

B

)
+

Iᾱ2
t+1T

mβt+1B

)]
(a)

≤ E

[
2∆

ηt
+ C10

(
δz,1
βt+1

+
δs,1
mαt

+
δy,1
τtm

+
δH,1

mᾱt
+ (ᾱt + αt + βt+1)T

(
I(I < m)

I
+

1

B

))]
(52)

where in (a) we redefine the constant C10 = m
I C10 and use the setting ᾱt = βt+1.

From Theorem B.5, we know that it is required that α0, ᾱ0, β0 ≤ 1
2 , τ0 =

√
C8

√
min

{
Iβ0

m , I
2ᾱ0

m2 ,
I2α0

m2

}
, η0 =

min

{
1

2LF
,
√
C9

√
min

{
Iβ0

m , I
2ᾱ0

m2 ,
I2α0

m2

}}
.

Without loss of generality, let us set α0 = ᾱ0 = β0 and assume that ϵ0 = 2∆ > 7C10(β0+α0+ᾱ0)
µ

(
I(I<m)

I + 1
B

)
.

The case that 2∆ ≤ 7C10(β0+α0+ᾱ0)
µ

(
I(I<m)

I + 1
B

)
can be simply covered by our proof. Then denotes

ϵ1 = 7C10(β0+α0+ᾱ0)
µ

(
I(I<m)

I + 1
B

)
, and ϵk = ϵ1/2

k−1.

In the first epoch (k = 1), we have initialization such that F (x1) − F (x∗) ≤ ∆. In the following, we let
the last subscript denote the epoch index. Setting η1 = η0, β1 = β0, α1 = α0, ᾱ1 = ᾱ0, τ1 = τ0, and

T1 = max

{
7∆
µη1

, 7mC10

µβ1

(
I(I<m)

I + 1
B

)−1

(δz,0 + δs,0 + δw,0),
7C10m
µτ1

(
I(I<m)

I + 1
B

)−1

δy,0

}
. We bound the error of

the first stage’s output as follows,

E
[
∥∇F (x1)∥2 + δz,1 +

1

m
δy,1 +

1

m
δs,1 +

1

m
δH,1

]
≤ 2∆

η1T1
+
C10

T1

(
1

β1
δz,0 +

1

τ1m
δy,0 +

1

α1m
δs,0 +

1

ᾱ1m
δw,0

)
+ C10(β1 + α1 + ᾱ1)

(
I(I < m)

I
+

1

B

)
≤ µϵ1

(53)

where the first inequality uses (52) and the fact that the output of each epoch is randomly sampled from all iterations, and
the last line uses the choice of η1, β1, α1, ᾱ1, τ1, T1, ϵ1. If follows that

E[F (x1)−F(x∗)] ≤ 1

2µ
E[∥∇F (x1)∥2] ≤

ϵ1
2
. (54)

Starting from the second stage, we will prove by induction. Suppose we are at k-th stage. Assuming that the output of (k−1)-
the stage satisfies that E[F (xk−1) − F (x∗)] ≤ ϵk−1 and E

[
δz,k−1 +

δy,k−1

m +
δs,k−1

m +
δw,k−1

m

]
≤ µϵk−1, and setting

βk = αk = ᾱk ≤ µϵk
21C10

(
I(I<m)

I + 1
B

)−1

, τ2k = C8
αkI

2

m2 , η2k = C9 min
{
τ2k ,

αkI
2

m2

}
, Tk = max

{
28
µηk

, 7C10

βk
, 7C10

τk

}
, we

have

E
[
∥∇F (xk)∥2 + δz,k +

1

m
δy,k +

1

m
δs,k +

1

m
δw,k

]
≤ E

[
2(F (xk−1)− F (x∗))

ηkTk
+
C10

Tk

(
1

βk
δz,k−1 +

1

τkm
δy,k−1 +

1

αkm
δs,k−1 +

1

ᾱkm
δw,k−1

)

+ C10(βk + αk + ᾱk)

(
I(I < m)

I
+

1

B

)]

≤ E

[
2ϵk−1

ηkTk
+
C10µϵk−1

Tk

(
1

βk
+

1

τk
+

1

αk
+

1

ᾱk

)
+ C10(βk + αk + ᾱk)

(
I(I < m)

I
+

1

B

)]
≤ µϵk

(55)
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It follows that

E[F (xk)− F (x∗)] ≤ 1

2µ
E[∥∇F (xk)∥2] ≤

ϵk
2
. (56)

Thus, after K = 1 + log2(ϵ1/ϵ) ≤ log2(ϵ0/ϵ) stages, E[F (xk)− F (x∗)] ≤ ϵ.

C.2. Convergence Analysis of RE-BSVRBv2

We present the formal statement of Thoerem 6.1 for RE-BSVRBv2.

Theorem C.2. Suppose Assumptions 5.1 and 5.2 hold and the PL condition holds. Set β1 =

α1 = ᾱ1 ≤ 1
2 , τ̄1 = min

{
λ

8L2
ϕv
, λ2 ,

1
λ ,

√
Cτ̄ Iᾱ

1/2
1

m

}
, τ1 =

√
C ′

8

√
min

{
τ̄21 ,

I2α1

m2

}
, η1 =

min

{
1

2Lf
,
√
C ′

10 min
{√

mτ1,
√
mτ̄1,

√
α1I
m

}}
, T1 = O

(
max

{
1

µη1
, min{I,B}

µβ2
1

, I
2 min{I,B}
µτ3

1m
3

})
. Define a constant

ϵ1 =
7C′

9(β1+α1+ᾱ1)
µmin{I,B} and ϵk = ϵ1/2

k−1. For k ≥ 2, setting βk = αk = ᾱk ≤ µϵk min{I,B}
21C′

9
, τ̄2k = Cτ̄ I

2

m2 ᾱk,

τk =
√
C ′

8

√
min

{
τ̄2k ,

I2αk

m2

}
, ηk =

√
C ′

10

√
min

{
mτ2k ,mτ̄

2
k ,

αkI2

m2

}
, Tk = O

(
max

{
1

µηk
, 1
βk
, 1
τkm

, 1
τ̄km

})
, where

and C ′
1 ∼ C ′

11 are as used in Theorem B.9, then after K = O(log(ϵ1/ϵ)) stages, the output of RE-BSVRBv2 satisfies
E[F (xK)− F (x∗)] ≤ ϵ.

Proof. Following from the proof of Theorem B.9, we have

E

[
T∑

t=1

∥∇F (xt)∥2 +
T∑

t=1

δz,t +
1

m

T∑
t=1

δy,t +
1

m

T∑
t=1

δv,t +
1

m

T∑
t=1

δs,t +
1

m

T∑
t=1

δu,t

]

≤ E

[
2∆

η0
+ C ′

9

[
δz,1
β0

+
δy,1
mτ0

+

(
1

mτ̄0
+

τ̄0
mβ0

+
τ̄0
m

+
mτ̄0
ᾱ0I2

)
δv,1 +

δs,1
Iα0

+

(
1

Iᾱ0
+

τ̄20
Iᾱ0β0

+
τ̄20
Iᾱ0

+
m2τ̄20
Iᾱ2

0I
2

)
δu,1

+ T

(
βt

min{I,B}
+
α0

B
+
ᾱ0

B
+
τ̄20 ᾱ0

β0B
+
τ̄20 ᾱ0

B
+
m2τ̄20
BI2

)]]
(a)

≤ E

[
2∆

η0
+ C ′

9

[
1

β0
δz,1 +

1

mτ0
δy,1 +

1

mα0
δs,1 +

1

mᾱ0
δu,1 +

1

mτ̄0
δv,1 +

(β0 + α0 + ᾱ0)T

min{I,B}

]]
(57)

where in (a) we enlarge the constant C ′
9 and use the setting ᾱ0 = β0 and τ̄20 = Cτ̄ I

2

m2 ᾱ0.

From Theorem B.9, we know that it is required that β0, α0, ᾱ0 ≤ 1
2 , τ̄0 = min

{
λ

8L2
ϕv
, λ2 ,

1
λ ,

1

2
√

C′
6

,
√
Cτ̄ Iᾱ

1/2
0

m

}
, τ0 =√

C ′
8

√
min

{
β0, τ̄20 ,

I2α0

m2 ,
I2ᾱ0

m2 ,
}

, η0 = min

{
1

2Lf
,
√
C ′

10

√
min

{
β0, τ20 , τ̄

2
0 ,

α0I2

m2 ,
ᾱ0I2

m2

}}
.

Without loss of generality, set β0 = α0 = ᾱ0 and let us assume that ϵ0 = 2∆ >
7C′

9(β0+α0+ᾱ0)
µ

(
I(I<m)

I + 1
B

)
.

The case that 2∆ ≤ 7C′
9(β0+α0+ᾱ0)

µ

(
I(I<m)

I + 1
B

)
can be simply covered by our proof. Then denotes

ϵ1 =
7C′

9(β0+α0+ᾱ0)
µ

(
I(I<m)

I + 1
B

)
, and ϵk = ϵ1/2

k−1.

In the first epoch (k = 1), we have initialization such that F (x1)− F (x∗) ≤ ∆. In the following, we let the last subscript
denote the epoch index. Setting η1 = η0, β1 = β0, α1 = α0, ᾱ1 = ᾱ0, τ1 = τ0, τ̄1 = τ̄0, and

T1 = max

{
7∆

µη1
,max

{
7

µβ1
(δz,0 + δs,0 + δu,0),

7I2C ′
8

µτ1m
δy,0,

7I2Cτ̄

µτ̄1m
δv,0

}(
I(I < m)

I
+

1

B

)−1
}
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We bound the error of the first stage’s output as follows,

E
[
∥∇F (x1)∥2 + δz,1 +

1

m
δy,1 +

1

m
δv,1 +

1

m
δs,1 +

1

m
δu,1

]
≤ 2∆

η1T1
+
C ′

9

T1

(
1

β1
δz,0 +

1

τ1m
δy,0 +

1

τ1m
δv,0 +

1

α1m
δs,0 +

1

ᾱ1m
δu,0

)
+
C ′

9(β1 + α1 + ᾱ1)

min{I,B}
≤ µϵ1

(58)

where the first inequality uses (57) and the fact that the output of each epoch is randomly sampled from all iterations, and
the last line uses the choice of η1, β1, α1, ᾱ1, τ1, τ̄1, T1, ϵ1. If follows that

E[F (x1)−F(x∗)] ≤ 1

2µ
E[∥∇F (x1)∥2] ≤

ϵ1
2
. (59)

Starting from the second stage, we will prove by induction. Suppose we are at k-th stage. Assuming that the output
of (k − 1)-the stage satisfies that E[F (xk−1) − F (x∗)] ≤ ϵk−1 and E

[
δz,k−1 +

δy,k−1

m +
δv,k−1

m +
δs,k−1

m +
δu,k−1

m

]
≤

µϵk−1, and setting βk = αk = ᾱk ≤ µϵk
21C′

9

(
I(I<m)

I + 1
B

)−1

, τ̄2k = Cτ̄ I
2

m2 ᾱk, τ2k = C ′
8 min

{
βk, τ̄

2
k ,

I2αk

m2 ,
I2ᾱk

m2 ,
}

,

ηk = C ′
10 min

{
βk, τ

2
k , τ̄

2
k ,

αkI
2

m2 ,
ᾱkI

2

m2

}
, Tk = max

{
28
µηk

,
7C′

9

βk
,
7C′

9

τk
,
7C′

9

τ̄k

}
, we have

E
[
∥∇F (xk)∥2 + δz,k +

1

m
δy,k +

1

m
δv,k +

1

m
δs,k +

1

m
δu,k

]
≤ E

[
2(F (xk−1)− F (x∗))

ηkTk
+
C ′

9

Tk

(
1

βk
δz,k−1 +

1

τkm
δy,k−1 +

1

τkm
δv,k−1 +

1

αkm
δs,k−1 +

1

ᾱkm
δu,k−1

)

+
C ′

9(βk + αk + ᾱk)

min{I,B}

]

≤ E

[
2ϵk−1

ηkTk
+
C ′

9µϵk−1

Tk

(
1

βk
+

1

τk
+

1

τ̄k
+

1

αk
+

1

ᾱk

)
+
C ′

9(βk + αk + ᾱk)

min{I,B}

]
≤ µϵk

(60)

It follows that

E[F (xk)− F (x∗)] ≤ 1

2µ
E[∥∇F (xk)∥2] ≤

ϵk
2
. (61)

Thus, after K = 1 + log2(ϵ1/ϵ) ≤ log2(ϵ0/ϵ) stages, E[F (xk)− F (x∗)] ≤ ϵ.

D. Proof of Lemmas
D.1. Proof of Lemma B.2

Proof. Due the smoothness of F , we can prove that under ηtLF ≤ 1/2

F (xt+1) ≤ F (xt) +∇F (xt)
⊤(xt+1 − xt) +

LF

2
∥xt+1 − xt∥2

= F (xt)− ηt∇F (xt)
⊤zt+1 +

LF η
2
t

2
∥zt+1∥2

= F (xt) +
ηt
2
∥∇F (xt)− zt+1∥2 −

ηt
2
∥∇F (xt)∥2 + (

LF η
2
t

2
− ηt

2
)∥zt+1∥2

≤ F (xt) +
ηt
2
∥∇F (xt)− zt+1∥2 −

ηt
2
∥∇F (xt)∥2 −

ηt
4
∥zt+1∥2
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D.2. Proof of Lemma B.4

Proof. Consider the updates

hi,t+1 =

{
ΠΩ [(1− α)hi,t + αhi(ei,t;Bt

i) + γ[hi(ei,t;Bt
i − hi(ei,t−1;Bt

i)]] if i ∈ It

hi,t o.w.
Define

h̃i,t = ΠΩ

[
(1− α)hi,t + αhi(ei,t;Bt

i) + γ[hi(ei,t;Bt
i − hi(ei,t−1;Bt

i)]
]

h̄i,t = (1− α)hi,t + αhi(ei,t;Bt
i) + γ[hi(ei,t;Bt

i − hi(ei,t−1;Bt
i)]

We have
Et

[
∥hi,t+1 − hi(ei,t)∥2

]
= EItEBt

i

[
∥hi,t+1 − hi(ei,t)∥2

]
=

I

m
EBt

i

[
∥h̃i,t − hi(ei,t)∥2

]
+

(
1− I

m

)
∥hi,t − hi(ei,t)∥2

=
I

m
EBt

i

[
∥h̃i,t − hi(ei,t)∥2

]
+

(
1− I

m

)
∥hi,t − hi(ei,t−1) + hi(ei,t−1)− hi(ei,t)∥2

=
I

m
EBt

i

[
∥h̃i,t − hi(ei,t)∥2

]
+

(
1− I

m

)
∥hi,t − hi(ei,t−1)∥2 +

(
1− I

m

)
∥hi(ei,t−1)− hi(ei,t)∥2

+ 2

(
1− I

m

)〈
hi,t − hi(ei,t−1), hi(ei,t−1)− hi(ei,t)

〉
︸ ︷︷ ︸

a⃝

(62)

It follows from the non-expansive property of projection that

EBt
i

[
∥h̃i,t − hi(ei,t)∥2

]
≤ EBt

i

[
∥h̄i,t − hi(ei,t)∥2

]
= EBt

i

[∥∥∥(1− α)hi,t + αhi(ei,t;Bt
i) + γ[hi(ei,t;Bt

i − hi(ei,t−1;Bt
i)]− hi(ei,t)

∥∥∥2]
= EBt

i

[∥∥∥(1− α)[hi,t − hi(ei,t−1)] + (1− α)[hi(ei,t−1)− hi(ei,t)]

+ α[hi(ei,t;Bt
i)− hi(ei,t)] + γ[hi(ei,t;Bt

i − hi(ei,t−1;Bt
i)]
∥∥∥2]

(a)
= EBt

i

[∥∥∥(1− α)[hi,t − hi(ei,t−1)] + (1− α)[hi(ei,t−1)− hi(ei,t)]

+ γ[hi(ei,t;Bt
i)− hi(ei,t−1;Bt

i)]
∥∥∥2]+ α2EBt

i

[∥∥∥hi(ei,t;Bt
i)− hi(ei,t)

∥∥∥2]
+ 2γαEBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

(b)
= (1− α)2

∥∥∥hi,t − hi(ei,t−1)
∥∥∥2

+ EBt
i

[∥∥∥(1− α)[hi(ei,t−1)− hi(ei,t)] + γ[hi(ei,t;Bt
i)− hi(ei,t−1;Bt

i)]
∥∥∥2]

+ 2(1− α)(1− α− γ)
〈
hi,t − hi(ei,t−1), hi(ei,t−1)− hi(ei,t)

〉
︸ ︷︷ ︸

b⃝

+
α2σ2

B
+ 2γαEBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

(63)

where (a) follows from EBt
i
[hi(ei,t;Bt

i)− hi(ei,t)] = 0, (b) follows from EBt
i
[hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i)] = hi(ei,t)−

hi(ei,t−1).
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Combining inequalities (62) and (63) gives
Et

[
∥hi,t+1 − hi(ei,t)∥2

]
=

(
1− I

m
+

(1− α)2I

m

)∥∥∥hi,t − hi(ei,t−1)
∥∥∥2

+
I

m
EBt

i

[∥∥∥(1− α)[hi(ei,t−1)− hi(ei,t)] + γ[hi(ei,t;Bt
i)− hi(ei,t−1;Bt

i)]
∥∥∥2]

+
I

m
b⃝+

α2Iσ2

Bm
+

(
1− I

m

)∥∥∥hi(ei,t−1)− hi(ei,t)
∥∥∥2 + a⃝

+
2γαI

m
EBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

(a)
=

(
1− I

m
+

(1− α)2I

m

)∥∥∥hi,t − hi(ei,t−1)
∥∥∥2

+
I

m
EBt

i

[∥∥∥(1− α)[hi(ei,t−1)− hi(ei,t)] + γ[hi(ei,t;Bt
i)− hi(ei,t−1;Bt

i)]
∥∥∥2]

+
α2Iσ2

Bm
+

(
1− I

m

)∥∥∥hi(ei,t−1)− hi(ei,t)
∥∥∥2

+
2γαI

m
EBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

=

(
1− I

m
+

(1− α)2I

m

)∥∥∥hi,t − hi(ei,t−1)
∥∥∥2 + (1− α)2I

m

∥∥∥hi(ei,t−1)− hi(ei,t)
∥∥∥2

+
γ2I

m
EBt

i

[∥∥∥hi(ei,t;Bt
i)− hi(ei,t−1;Bt

i)
∥∥∥2]− 2(1− α)γI

m

∥∥∥hi(ei,t−1)− hi(ei,t)
∥∥∥2

+
α2Iσ2

Bm
+

(
1− I

m

)∥∥∥hi(ei,t−1)− hi(ei,t)
∥∥∥2

+
2γαI

m
EBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

(b)
=

(
1− αI

m

)∥∥∥hi,t − hi(ei,t−1)
∥∥∥2 + 4mL2

I
∥ei,t−1 − ei,t∥2 +

α2Iσ2

Bm

+
2γαI

m
EBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

(c)
=

(
1− αI

m

)∥∥∥hi,t − hi(ei,t−1)
∥∥∥2 + 8mL2

I
∥ei,t−1 − ei,t∥2 +

2α2Iσ2

Bm

(64)

where (a) is due to a⃝+ I
m

b⃝ = 0, which follows from the setting γ = m−αI
(1−α)I , (b) is due to 1− I

m + (1−α)2I
m ≤ 2(1−α)γI

m

and γ ≤ 2m
I , which follows from α ≤ 1

2 , (c) is due to
2γαI

m
EBt

i

[
⟨hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i), hi(ei,t;Bt

i)− hi(ei,t)⟩
]

≤ I

m
EBt

i

[
γ2∥hi(ei,t;Bt

i)− hi(ei,t−1;Bt
i)∥2 + α2∥hi(ei,t;Bt

i)− hi(ei,t)∥2
]

≤ 4mL2

I
∥ei,t−1 − ei,t∥2 +

α2Iσ2

mB

Then by taking expectation over all randomness and summing over i = 1, . . . ,m, we obtain

E

[
m∑
i=1

∥hi,t+1 − hi(ei,t)∥2
]

≤
(
1− αI

m

)
E
[ m∑

i=1

∥hi,t − hi(ei,t−1)∥2
]
+

8mL2

I
E
[ m∑

i=1

∥ei,t−1 − ei,t∥2
]
+

2α2Iσ2

B

(65)
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D.3. Proof of Lemma B.6

Proof.
∥∆t −∇F (xt)∥2

=

∥∥∥∥∥ 1

m

m∑
i=1

∇xfi(xt,yi,t)−∇2
xygi(xt,yi,t)Et[[Hi,t]

−1]∇yfi(xt,yi,t)

− 1

m

m∑
i=1

∇xfi(xt,yi(xt))−∇2
xygi(xt,yi(xt))[∇2

yygi(xt,yi(xt))]
−1∇yfi(xt,yi(xt))

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

2 ∥∇xfi(xt,yi,t)−∇xfi(xt,yi(xt))∥2

+ 6
∥∥∇2

xygi(xt,yi,t)[Et[[Hi,t]
−1]− [∇2

yygi(xt,yi(xt))]
−1]∇yfi(xt,yi,t)

∥∥2
+ 6

∥∥[∇2
xygi(xt,yi,t)−∇2

xygi(xt,yi(xt))][∇2
yygi(xt,yi(xt))]

−1∇yfi(xt,yi,t)
∥∥2

+ 6
∥∥∇2

xygi(xt,yi(xt))[∇2
yygi(xt,yi(xt))]

−1[∇yfi(xt,yi,t)−∇yfi(xt,yi(xt))]
∥∥2

≤ 1

m

m∑
i=1

(
2L2

fx +
L2
gxyC

2
fy

λ2
+

6C2
gxyL

2
fy

λ2

)
∥yi,t − yi(xt)∥2 + 6C2

gxyC
2
fy∥Et[[Hi,t]

−1]− [∇2
yygi(xt,yi(xt))]

−1∥2

(a)

≤ 1

m

m∑
i=1

C1∥yi,t − yi(xt)∥2 + C2∥Hi,t −∇2
yygi(xt,yi,t))∥2

(66)

where C1 :=
(
2L2

fx +
L2

gxyC
2
fy

λ2 +
6C2

gxyL
2
fy

λ2 +
12C2

gxyC
2
fyL

2
gyy

λ4

)
, C2 :=

12C2
gxyC

2
fy

λ4 , and (a) uses the fact that [Hi,t]
−1

is irrelevant to the randomness at iteration t, which means [Hi,t]
−1 = Et[[Hi,t]

−1], and the Lipschitz continuity of
∇2

yygi(x,yi).

D.4. Proof of Lemma B.7

Proof.
Et[∥zt+1 −∆t∥2]

= Et

[∥∥∥(1− βt)(zt −∆t−1) + (1− βt)(∆t−1 − G̃t) +Gt −∆t

∥∥∥2]
= (1− βt)

2∥zt −∆t−1∥2 + 2(1− βt)
2Et

[
∥∆t−1 − G̃t +Gt −∆t∥2

]
+ 2β2

tEt

[
∥Gt −∆t∥2

]
(a)

≤ (1− βt)
2∥zt −∆t−1∥2 + 2(1− βt)

2Et

[
∥Gt − G̃t∥2

]
+ 2β2

tEt

[
∥Gt −∆t∥2

]
(67)
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where (a) use the standard inequality E[∥a− E[a]∥2] ≤ E[∥a∥2], and Et[Gt] = ∆t, Et[G̃t] = ∆t−1. We further bound the
last two terms as following

Et

[
∥Gt −∆t∥2

]
≤ Et

[∥∥∥∥∥1I ∑
i∈It

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)[Hi,t]
−1∇yfi(xt,yi,t;Bt

i)
)

− 1

m

m∑
i=1

(
∇xfi(xt,yi,t)−∇2

xygi(xt,yi,t)[Hi,t]
−1∇yfi(xt,yi,t)

) ∥∥∥∥∥
2]

≤ Et

[
2

∥∥∥∥∥1I ∑
i∈It

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)[Hi,t]
−1∇yfi(xt,yi,t;Bt

i)
)

− 1

m

m∑
i=1

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)[Hi,t]
−1∇yfi(xt,yi,t;Bt

i)
)∥∥∥∥∥

2

+ 2

∥∥∥∥∥ 1

m

m∑
i=1

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)[Hi,t]
−1∇yfi(xt,yi,t;Bt

i)
)

− 1

m

m∑
i=1

(
∇xfi(xt,yi,t)−∇2

xygi(xt,yi,t)[Hi,t]
−1∇yfi(xt,yi,t)

) ∥∥∥∥∥
2]

≤
8(2C2

fx +
2C2

gxyC
2
fy

λ2 )

I
+

4σ2

B
+

8(
C2

gxy+C2
fy

λ2 )σ2

B
=: C5

(
I(I < m)

I
+

1

B

)
,

(68)

where C5 = max{8(2C2
fx +

2C2
gxyC

2
fy

λ2 ), 4σ2 + 8(
C2

gxy+C2
fy

λ2 )σ2}, and

Et

[
∥Gt − G̃t∥2

]
= Et

[∥∥∥∥∥1I ∑
i∈It

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)[Hi,t]
−1∇yfi(xt,yi,t;Bt

i)
)

−
(
∇xfi(xt−1,yi,t−1;Bt

i)−∇2
xygi(xt−1,yi,t−1; B̃t

i)[Hi,t−1]
−1∇yfi(xt−1,yi,t−1;Bt

i)
)∥∥∥∥∥

2]

≤ 1

m

m∑
i=1

(2L2
fx +

6L2
gxyC

2
fy

λ2
+

6C2
gxyL

2
fy

λ2
)(∥xt − xt−1∥2 + ∥yi,t − yi,t−1∥2) +

6C2
gxyC

2
fy

λ4
∥Hi,t −Hi,t−1∥2

=: C3∥xt − xt−1∥2 +
C3

m
∥yt − yt−1∥2 +

C4

m
∥Ht −Ht−1∥2.

(69)

Then we have
Et[∥zt+1 −∆t∥2]

≤ (1− βt)
2∥zt −∆t−1∥2 + 2(1− βt)

2

(
C3∥xt − xt−1∥2 +

C3

m
∥yt − yt−1∥2 +

C4

m
∥vt − vt−1∥2

)
+ 2β2

tC5

(
I(I < m)

I
+

1

B

)
≤ (1− βt)∥zt −∆t−1∥2 + 2C3∥xt − xt−1∥2 +

2C3

m
∥yt − yt−1∥2 +

2C4

m
∥Ht −Ht−1∥2 + 2β2

tC5

(
I(I < m)

I
+

1

B

)
(70)
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D.5. Proof of Lemma B.8

Proof. By Lemma6 in (Jiang et al., 2022), we have, for ᾱt+1 ≤ 1/2,

∥Ht+1 −Ht∥2 ≤
2Iᾱ2

t+1σ
2

B
+

4Iᾱ2
t+1

m
E

[
m∑
i=1

∥Hi,t −∇2
yygi(xt,yi,t)∥2

]

+
9m2L2

gyy

I
E[m∥xt+1 − xt∥2 + ∥yt+1 − yt∥2]

(71)

D.6. Proof of Lemma B.11

∥∆t −∇F (xt)∥2

=

∥∥∥∥∥ 1

m

m∑
i=1

(
∇xfi(xt,yi,t)−∇2

xygi(xt,yi,t)vi,t

)
− 1

m

m∑
i=1

(
∇xfi(xt,yi(xt))−∇2

xygi(xt,yi(xt))vi(xt)
) ∥∥∥∥∥

2

≤ 1

m

m∑
i=1

(2L2
fx +

4L2
gxyC

2
fy

λ2
)∥yi,t − yi(xt)∥2 + 4C2

gxy∥vi,t − vi(xt)∥2

≤ 1

m

m∑
i=1

(2L2
fx +

4L2
gxyC

2
fy

λ2
)∥yi,t − yi(xt)∥2 + 8C2

gxy∥vi,t − vi(xt,yi,t)∥2 + 8C2
gxyL

2
v∥yi,t − yi(xt)∥2

=:
C ′

1

m
∥yt − y(xt)∥2 +

C ′
2

m
∥vt − v(xt,yt)∥2

(72)

D.7. Proof of Lemma B.12

Proof.
Et[∥zt+1 −∆t∥2]

= Et

[∥∥∥(1− βt)(zt −∆t−1) + (1− βt)(∆t−1 − G̃t) +Gt −∆t

∥∥∥2]
= (1− βt)

2∥zt −∆t−1∥2 + 2(1− βt)
2Et

[
∥∆t−1 − G̃t +Gt −∆t∥2

]
+ 2β2

tEt

[
∥Gt −∆t∥2

]
(a)

≤ (1− βt)
2∥zt −∆t−1∥2 + 2(1− βt)

2Et

[
∥Gt − G̃t∥2

]
+ 2β2

tEt

[
∥Gt −∆t∥2

]
(73)

where (a) use the standard inequality E[∥a− E[a]∥2] ≤ E[∥a∥2], and Et[Gt] = ∆t, Et[G̃t] = ∆t−1. We further bound the
last two terms as following

Et

[
∥Gt −∆t∥2

]
≤ Et

[∥∥∥∥∥1I ∑
i∈It

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)vi,t

)
− 1

m

m∑
i=1

(
∇xfi(xt,yi,t)−∇2

xygi(xt,yi,t)vi,t

) ∥∥∥∥∥
2]

≤ Et

[
2

∥∥∥∥∥1I ∑
i∈It

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)vi,t

)

− 1

m

m∑
i=1

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)vi,t

)∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

m

m∑
i=1

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)vi,t

)
− 1

m

m∑
i=1

(
∇xfi(xt,yi,t)−∇2

xygi(xt,yi,t)vi,t

) ∥∥∥∥∥
2]

≤
8(2C2

fx + 2C2
gxyV2)

I
+

4σ2

B
+

4σ2V2

B
≤ C ′

5

(
I(I < m)

I
+

1

B

)
,

(74)
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where C ′
5 = max{8(2C2

fx + 2C2
gxyV2, 4σ2 + 4σ2V2)}, and

Et

[
∥Gt − G̃t∥2

]
= Et

[∥∥∥∥∥1I ∑
i∈It

(
∇xfi(xt,yi,t;Bt

i)−∇2
xygi(xt,yi,t; B̃t

i)vi,t

)

−
(
∇xfi(xt−1,yi,t−1;Bt

i)−∇2
xygi(xt−1,yi,t−1; B̃t

i)vi,t−1

)∥∥∥∥∥
2]

≤ 1

m

m∑
i=1

(2L2
fx +

4L2
gxyC

2
fy

λ2
)(∥xt − xt−1∥2 + ∥yi,t − yi,t−1∥2) + 4C2

gxy∥vi,t − vi,t−1∥2

=: C ′
3∥xt − xt−1∥2 +

C ′
3

m
∥yt − yt−1∥2 +

C ′
4

m
∥vt − vt−1∥2.

(75)

Then we have
Et[∥zt+1 −∆t∥2]

≤ (1− βt)
2∥zt −∆t−1∥2 + 2(1− βt)

2

(
C ′

3∥xt − xt−1∥2 +
C ′

3

m
∥yt − yt−1∥2 +

C ′
4

m
∥vt − vt−1∥2

)
+ 2β2

tC
′
5

(
I(I < m)

I
+

1

B

)
≤ (1− βt)∥zt −∆t−1∥2 + 2C ′

3∥xt − xt−1∥2 +
2C ′

3

m
∥yt − yt−1∥2 +

2C ′
4

m
∥vt − vt−1∥2 + 2β2

tC
′
5

(
I(I < m)

I
+

1

B

)
(76)

D.8. Proof of Lemma B.13

Proof. Consider updates vi,t+1 = ΠV [vi,t − τ̄tui,t]. Note that vi(xt,yi,t) = ΠV [vi(xt,yi,t) −
τ̄t∇vϕi(vi(xt,yi,t),xt,yi,t)]

E[∥vi,t+1 − vi(xt,yi,t)∥2]
= E

[
∥ΠV [vi,t − τ̄tui,t]−ΠV [vi(xt,yi,t)− τ̄t∇vϕi(vi(xt,yi,t),xt,yi,t)]∥2

]
≤ E

[
∥vi,t − τ̄tui,t − vi(xt,yi,t) + τ̄t∇vϕi(vi(xt,yi,t),xt,yi,t)∥2

]
≤ E

[
∥vi,t − vi(xt,yi,t)− τ̄tui,t + τ̄t∇vϕi(vi,t,xt,yi,t)− τ̄t∇vϕi(vi,t,xt,yi,t) + τ̄t∇vϕi(vi(xt,yi,t),xt,yi,t)∥2

]
≤ E

[
∥vi,t − vi(xt,yi,t)∥2 + ∥ − τ̄tui,t + τ̄t∇vϕi(vi,t,xt,yi,t)− τ̄t∇vϕi(vi,t,xt,yi,t) + τ̄t∇vϕi(vi(xt,yi,t),xt,yi,t)∥2

+ ⟨vi,t − vi(xt,yi,t),−τ̄t∇vϕi(vi,t,xt,yi,t) + τ̄t∇vϕi(vi(xt,yi,t),xt,yi,t)⟩
+ ⟨vi,t − vi(xt,yi,t),−τ̄tui,t + τ̄t∇vϕi(vi,t,xt,yi,t)⟩

]
(a)

≤ E
[
∥vi,t − vi(xt,yi,t)∥2 + 2τ̄2t L

2
ϕv∥vi,t − vi(xt,yi,t)∥2 − λτ̄t∥vi,t − vi(xt,yi,t)∥2

+ 2τ̄2t ∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2 + ⟨vi,t − vi(xt,yi,t),−τ̄tui,t + τ̄t∇vϕi(vi,t,xt,yi,t)⟩
]

(b)

≤ E
[
∥vi,t − vi(xt,yi,t)∥2 + 2τ̄2t L

2
ϕv∥vi,t − vi(xt,yi,t)∥2 −

3λτ̄t
4

∥vi,t − vi(xt,yi,t)∥2

+ 2τ̄2t ∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2 + 4λτ̄t∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2
]

(c)

≤ E
[
(1− λτ̄t

2
)∥vi,t − vi(xt,yi,t)∥2 + 5λτ̄t∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2

]
(77)

33



Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization

where (a) uses the λ-strong convexity of ϕi, (b) uses
⟨vi,t − vi(xt,yi,t), τ̄tui,t − τ̄t∇vϕi(vi,t,xt,yi,t)⟩

= ⟨
√
λτ̄t
2

(vi,t − vi(xt,yi,t)), 2
√
λτ̄t(ui,t −∇vϕi(vi,t,xt,yi,t))⟩

≤ λτ̄t
4

∥vi,t − vi(xt,yi,t)∥2 + 4λτ̄t∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2

(78)

and (c) uses the assumption τ̄t ≤ min
{

λ
8L2

ϕv
, λ2

}
,

Then
E[∥vi,t+1 − vi(xt+1,yi,t+1)∥2]

≤ (1 +
λτ̄t
4

)E[∥vi,t+1 − vi(xt,yi,t)∥2] + (1 +
4

λτ̄t
)E[∥vi(xt,yi,t)− vi(xt+1,yi,t+1)∥2]

≤ (1− λτ̄t
4

)E∥vi,t − vi(xt,yi,t)∥2] + 10λτ̄tE[∥ui,t −∇vϕi(vi,t,xt,yi,t)∥2]

+
5

λτ̄t
E[∥vi(xt,yi,t)− vi(xt+1,yi,t+1)∥2]

(79)

where we use the assumption τ̄t ≤ 1
λ . Take summation over all blocks i = 1, . . . ,m, we have

E[δv,t+1] ≤ (1− λτt
4

)E[δv,t] + 10λτ̄tE[δ̃u,t] +
5L2

v

λτt
E[∥xt − xt+1∥2] +

5L2
v

λτt
E[∥yt − yt+1∥2] (80)

E. Numeric Results of Hyper-parameter Optimization Experiment

Table 4. Testing accuracies and standard deviation over 3 runs with different random seeds from logistic regression, BSVRBv1 with m = 1
lower-level problem, and BSVRBv1 with m = 100 lower-level problems on various noise level of dataset a8a. Noise level represents the
proportion of training sample labels that are flipped. 70% of the positive samples are removed from training data except for noise level 0∗,
which means no label noise and no data imbalance.

Noise Level Logistic Regression BSVRBv1(m = 1) BSVRBv1(m = 100)
0* 0.8528 ± 0.0005 0.8526± 0.0002 0.8509± 0.0011
0 0.8442 ± 0.0009 0.8426 ± 0.0016 0.8477 ± 0.0013

0.1 0.8285± 0.0034 0.8303 ± 0.0100 0.8400± 0.0025
0.2 0.8250±0.0066 0.8185±0.0090 0.8388 ± 0.0024
0.3 0.7929±0.0081 0.8118 ± 0.0047 0.8239 ± 0.0015
0.4 0.7715±0.0025 0.7749 ± 0.0079 0.8051± 0.0013
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