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ABSTRACT
Knowledge Graph (KG) exploration helpsWeb users understand the

contents of a large and unfamiliar KG and extract relevant insights.

The task has recently been formulated as a Quadratic Group Steiner

Tree Problem (QGSTP) to search for a semantically cohesive sub-

graph connecting entities that match query keywords. However, on

large graphs, existing algorithms for this NP-hard problem cannot

meet the performance need. In this paper, we propose a novel ap-

proximation algorithm for QGSTP called HB. It finds and merges an

optimal set of paths according to a Hop-Biased objective function,

which not only leads to a guaranteed approximation ratio but is

also decomposable by paths to enable efficient dynamic program-

ming based search. Accompanied by a set of pruning heuristics,

HB outperformed the state of the art by 1–2 orders of magnitude,

empirically reducing the average time for answering a query on a

million-scale graph from about one minute to one second.

1 INTRODUCTION
The Quadratic Group Steiner Tree Problem (QGSTP) [25, 26], an

emerging combinatorial optimization problem on graphs, is a gener-

alization of the famous Group Steiner Tree Problem (GSTP). Given

a graph 𝐺 and a query Q consisting of 𝑔 groups (i.e., 𝑔 subsets

of vertices), an optimum answer is a min-cost Quadratic Group

Steiner Tree (QGST) which is a sub-tree of𝐺 covering all the groups,

i.e., containing at least one vertex from each group. The cost of a

QGST linearly combines the sum of weights of its vertices—same as

the vertex-weighted GSTP [16], and, the sum of quadratic weights
of its vertex pairs—newly introduced to the cost function by [25].

Applications. An important Web application of QGSTP is re-

lated to knowledge graph (KG) which represents typed relations

as edges between entities as vertices [12]. KG exploration [19, 20]

is a trending task that helps non-expert Web users comprehend,

analyze, and retrieve large and complex KGs, for which keyword

query provides a convenient method [24–26]. A user submits a

keyword query where each keyword will be matched with a group

of vertices as the input of QGSTP. Based on a predefined vertex

weighting function characterizing the inverse salience of an entity

and a predefined quadratic (i.e., vertex-pair) weighting function

characterizing the semantic distance between a pair of entities, a

min-cost QGST representing the most salient connection between

the query keywords will be found and presented to the user.

Compared with the conventional GSTP, formulating a QGSTP

in this scenario helps capture the “semantic cohesiveness” of an

answer [4] by minimizing the sum of quadratic weights representing
the pairwise semantic distances between its constituent entities. For
example, Figure 1 illustrates a KG and two QGSTs𝑇1,𝑇2 for a query

with two groups. 𝑇2 connects the two groups with a set of salient

but disparate entities including companies, countries, and a mode of

government. It appears semantically disjointed and less meaningful

as a whole. By contrast, all the entities in𝑇1 are closely relatedmusic

Relapse
Records

RED
Distribution

Sony Music
Entertainment

Cogumelo
Records

Federalism Brazil

United States
country

government type

countrygovernment
type

distributing
company

distributing company
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company
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genre
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distributor
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founded by
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Any Man in America

record label

The Lost Tapes of Cogumelo
record label

Figure 1: An example knowledge graph taken from DB-
pedia, containing two QGSTs 𝑇1 and 𝑇2 for the query
{{Cogumelo Records}, {Sony Music Entertainment}}.

companies. Such “homogeneous entities” [5] form a semantically

cohesive and more meaningful connection which has been proved

favourable to users [25]. Solving QGSTP has the potential to find𝑇1,

as opposed to 𝑇2 found undesirably by solving GSTP.

Motivation. Despite its usefulness for Web applications, QGSTP

is NP-hard. For this problem, the only exponential-time exact algo-

rithm is B
3
F (Branch-and-Bound Best-First) [26], and the polynomial-

time approximation algorithm having the currently best approx-

imation ratio is QO (Quality-Oriented) [25]. However, neither of

them could scale to graphs containing merely more than tens of

thousands of vertices. A more practical algorithm is EO (Efficiency-

Oriented) [25]. This polynomial-time approximation algorithm,

having a guaranteed approximation ratio of (𝑔 − 1)2𝑛 where 𝑛 is

the number of vertices and 𝑔 is the number of groups, has the capac-

ity to answer a query over a million-scale graph in about one minute.
Still, such performance cannot meet the needs of KG exploration

and other real-time applications that require fast response time [19],

e.g., answering a query over a million-scale graph in one second.
Our research question is how to design an algorithm that outper-

forms EO and meets the above performance need and, meantime,

has a guaranteed approximation ratio that at least matches EO.

Our Work. To solve QGSTP and other GSTP-like problems, a

common approximation scheme adopted in the literature [24, 25,

27, 30] is to find and merge a set of paths starting from a common

root vertex and ending at vertices from different groups [11, 13],

called a relevant path set (RPS). Concrete algorithms differ in how

to estimate the quality of a RPS, referred to as its hcost in this

paper, which is typically designed in such a way that the ratio of

the cost of the QGST constructed by merging the paths in a small-

hcost RPS to the cost of an optimum QGST is bounded, and, such

a small-hcost RPS can be found in polynomial time.

In this paper, we also adopt this scheme but propose a novel

hop-biased hcost function that prioritizes RPS consisting of small-

hop paths, and we prove that it guarantees the same approximation

ratio as EO. More importantly, a distinguishing feature of our hcost
function is that it is decomposable by paths, thus enabling our design
of a dynamic programming based path search algorithm called HB

1
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(a) Graph

qw A B C D F J M P
A 0 0.50 0.40 0.50 0.20 0.20 0.35 0.10
B 0.50 0 0.20 0.20 0.30 0.40 0.10 0.10
C 0.40 0.20 0 0.25 0.50 0.45 0.10 0.20
D 0.50 0.20 0.25 0 0.30 0.40 0.15 0.15
F 0.20 0.30 0.50 0.30 0 0.10 0.35 0.35
J 0.20 0.40 0.45 0.40 0.10 0 0.40 0.40
M 0.35 0.10 0.10 0.15 0.35 0.40 0 0.20
P 0.10 0.10 0.20 0.15 0.35 0.40 0.20 0

w
A 0.40
B 0.30
C 0.20
D 0.30
F 0.10
J 0.20
M 0.10
P 0.40

(b) Weighting Functions

𝑇𝐹
min (cost=2.31)

A PF

J D

𝑇𝑀
min (cost=0.93)

P BM

C

ℙ𝐹
min (hcost=8.07)

A JF

A P DF

F

A PF

ℙ𝑀
min (hcost=4.20)

P BM

P CM

M

(c) Two RPSes and Two QGSTs

Figure 2: Running example with 𝐺 in (a), w and qw in (b), Q = {{𝐹,𝑀}, {𝐶, 𝐽 }, {𝐵, 𝐷}}, 𝛼 = 0.3, and an optimum answer 𝑇min
𝑀

in (c).

(Hop-Biased) for finding a locally min-hcost RPS to be merged.

We prove that HB’s time complexity significantly improves on

EO by a factor of 𝑔𝑛, and we show that it empirically used less

than one second to answer a query over a million-scale graph,

thereby meeting the needs of real-time applications including KG

exploration. This satisfying performance is also partially attributed

to a set of heuristics we develop for pruning the search space.

Paper Structure. We formulate QGSTP and RPS in Section 2,

detail the HB algorithm in Section 3 and the heuristics in Section 4,

and report experimental results in Section 5. We discuss related

work in Section 6 before we conclude the paper in Section 7.

2 PRELIMINARIES
2.1 Problem Formulation
QGSTP is defined on an undirected

1 graph 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 is

a set of vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges. For simplicity, we

will write 𝑛 = |𝑉 | and𝑚 = |𝐸 | throughout the paper.
A vertex weighting function w : 𝑉 ↦→ R0+ assigns each vertex

a weight, and a quadratic weighting function qw : 𝑉 × 𝑉 ↦→ R0+
assigns each pair of vertices a quadratic weight. Following [25], qw is
expected to be a pseudometric satisfying that for any 𝑢, 𝑣,𝑤 ∈ 𝑉 :
qw(𝑣, 𝑣) = 0 , qw(𝑢, 𝑣) = qw(𝑣,𝑢) , qw(𝑢,𝑤) ≤ qw(𝑢, 𝑣) + qw(𝑣,𝑤) . (1)

Our experiments will use off-the-shelf implementations of w and qw
which are orthogonal to our research contribution.

A query consists of 𝑔 groups of vertices Q =
{
𝐾1, 𝐾2, . . . , 𝐾𝑔

}
in which each 𝐾𝑖 ⊆ 𝑉 . A Quadratic Group Steiner Tree (QGST)

𝑇 = ⟨𝑉𝑇 , 𝐸𝑇 ⟩ is a connected and structurally minimal subgraph

(i.e., subtree) of 𝐺 such that 𝑉𝑇 ∩ 𝐾𝑖 ≠ ∅ for each 𝐾𝑖 ∈ Q.
The cost of a QGST is defined as a linear combination:

cost(𝑇 ) = 𝛼 · costw (𝑇 ) + 𝛽 · costqw (𝑇 ) , where (2)

costw (𝑇 ) =
∑︁
𝑣∈𝑉𝑇

w(𝑣) ,

costqw (𝑇 ) =
∑︁

𝑣𝑖 ,𝑣𝑗 ∈𝑉𝑇
𝑖< 𝑗

qw(𝑣𝑖 , 𝑣 𝑗 ) ,
(3)

and 𝛼 and 𝛽 = 1 − 𝛼 are non-negative parameters for controlling

the relative importance of weight and quadratic weight.

1
QGSTP was originally defined on a directed graph but the edges in a path or tree

were allowed to be oriented in different directions [25], i.e., essentially undirected.

Given𝐺 andQ, solving QGSTP is to find a min-cost QGST as an

optimum answer. It has been proved that QGSTP is NP-hard [25].

Running Example. As illustrated in Figure 2, given the query

Q = {{𝐹,𝑀}, {𝐶, 𝐽 }, {𝐵, 𝐷}}, the QGST 𝑇min

𝑀
with cost = 0.93 is

an optimum answer, while 𝑇min

𝐹
has a larger cost of 2.31.

2.2 Basics: Relevant Path Set (RPS)
The following basic facts about RPS will be used in our algorithm.

RPS. A RPS is a set of paths P𝑟 =
{
𝑝1, 𝑝2, . . . , 𝑝𝑔

}
where each

𝑝𝑖 ∈ P𝑟 is an 𝑟 -𝐾𝑖 path starting from a given root vertex 𝑟 and

ending at a vertex in a group 𝐾𝑖 . We refer to it as an 𝑟 -RPS.

GenAns. From P𝑟 we can construct a QGST as follows. Assum-

ing 𝑉𝑝 and 𝐸𝑝 denote the set of vertices and the set of edges in

a path 𝑝 , respectively, we merge the paths in P𝑟 into a subgraph

𝐺 ′ =

〈 ⋃
𝑝∈P𝑟

𝑉𝑝 ,
⋃
𝑝∈P𝑟

𝐸𝑝

〉
, whose structurally minimal sub-tree is a

QGST. We refer to this construction process as 𝑇 = GenAns(P𝑟 ).
GenRPS.We can also transform a QGST 𝑇 = ⟨𝑉𝑇 , 𝐸𝑇 ⟩ into an

𝑟 -RPS P𝑟 for any given root vertex 𝑟 ∈ 𝑉𝑇 . Specifically, for each
group 𝐾𝑖 , since 𝑉𝑇 ∩ 𝐾𝑖 ≠ ∅, we choose from 𝑇 the path between 𝑟

and any vertex 𝑣 ∈ 𝑉𝑇 ∩𝐾𝑖 as an 𝑟 -𝐾𝑖 path 𝑝𝑖 ∈ P𝑟 . We refer to this

transformation process as P𝑟 = GenRPS(𝑇, 𝑟 ).

Lemma 1. When 𝑔 > 1, for any QGST 𝑇 = ⟨𝑉𝑇 , 𝐸𝑇 ⟩, root vertex
𝑟 ∈ 𝑉𝑇 , and RPS P𝑟 = GenRPS(𝑇, 𝑟 ), every vertex 𝑣 ∈ 𝑉𝑇 \{𝑟 } appears
in at most 𝑔 − 1 paths in P𝑟 .

Proof. We prove by contradiction. Assume a vertex 𝑣 ∈ 𝑉𝑇 \{𝑟 }
appears in all the 𝑔 paths in P𝑟 . For each 𝑟 -𝐾𝑖 path in P𝑟 between 𝑟
and 𝑣𝑖 ∈ 𝐾𝑖 , consider its sub-path between 𝑣 and 𝑣𝑖 . All such 𝑔 sub-

paths constitute a 𝑣-RPS fromwhichwe can construct a QGST that is

a proper subgraph of𝑇 , contradicting𝑇 ’s structural minimality. □

vnum. Let vnum be the total number of vertices in P𝑟 , where we
count the root vertex only once as it appears in every path in P𝑟 :

vnum(P𝑟 ) = 1 +
∑︁
𝑝∈P𝑟

��𝑉𝑝 \ {𝑟 }�� . (4)

Running Example. In Figure 2, Pmin

𝐹
and Pmin

𝑀
are two RPSes,

each containing three paths. 𝑇min

𝐹
and 𝑇min

𝑀
are two QGSTs con-

structed from Pmin

𝐹
andPmin

𝑀
, respectively, i.e.,𝑇min

𝐹
= GenAns(Pmin

𝐹
)

2
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and 𝑇min

𝑀
= GenAns(Pmin

𝑀
). We also see Pmin

𝐹
= GenRPS(𝑇min

𝐹
, 𝐹 ),

Pmin

𝑀
= GenRPS(𝑇min

𝑀
, 𝑀), vnum(Pmin

𝐹
) = 6, and vnum(Pmin

𝑀
) = 5.

3 HOP-BIASED (HB) ALGORITHM
We introduce the main idea of our HB algorithm in Section 3.1,

where the key is a new hcost function for estimating the quality

of a RPS. We detail the algorithm in Section 3.2, analyze its approx-

imation ratio in Section 3.3, and its time complexity in Section 3.4.

3.1 Main Idea
Finding a min-cost QGST requires exponential time. A common

approximation scheme for solving such a problem [24, 25, 27, 30] is

to search for an optimal RPS in polynomial time and then employ

GenAns to merge the paths in this RPS to construct a QGST. The

cost of the obtained QGST relies on how an optimal RPS is defined.
Below we define the hcost of a RPS, which is proved to bound

the cost of the QGST constructed from this RPS. This property

is important to the proof of approximation ratio of our algorithm

in Section 3.2, which efficiently searches for a (locally) min-hcost
RPS to be merged into a small-cost QGST.

hcost of RPS. According to Eqs. (2)(3), a small-sized QGST is

likely to have a small cost. Such a QGST is constructed from a RPS

consisting of small-hop paths and hence having a small vnum value.

Therefore, we include vnum in the definition of hcost of a RPS:

hcost(P𝑟 ) = 𝛼 · hcostw (P𝑟 ) + 𝛽 · hcostqw (P𝑟 ) , where (5)

hcostw (P𝑟 ) = vnum(P𝑟 ) ©­«w(𝑟 ) +
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

w(𝑣)ª®¬ ,
hcostqw (P𝑟 ) = vnum(P𝑟 )

∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

qw(𝑟, 𝑣) .
(6)

Lemma 2. For any RPS P𝑟 and the QGST 𝑇 = GenAns(P𝑟 ),
cost(𝑇 ) ≤ hcost(P𝑟 ) . (7)

Proof. We separately prove about w and qw.

costw (𝑇 ) =
∑︁
𝑣∈𝑉𝑇

w(𝑣) [Eq. (3)]

≤ w(𝑟 ) +
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

w(𝑣) [GenAns]

≤ vnum(P𝑟 ) ©­«w(𝑟 ) +
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

w(𝑣)ª®¬
= hcostw (P𝑟 ) . [Eq. (6)]

(8)

costqw (𝑇 ) =
∑︁

𝑣𝑖 ,𝑣𝑗 ∈𝑉𝑇
𝑖< 𝑗

qw(𝑣𝑖 , 𝑣 𝑗 ) [Eq. (3)]

≤
∑︁

𝑣𝑖 ,𝑣𝑗 ∈𝑉𝑇
𝑖< 𝑗

qw(𝑣𝑖 , 𝑟 ) + qw(𝑟, 𝑣 𝑗 ) [Eq. (1)]

= ( |𝑉𝑇 | − 1)
∑︁
𝑣∈𝑉𝑇

qw(𝑟, 𝑣)

≤ vnum(P𝑟 )
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

qw(𝑟, 𝑣) [GenAns]

= hcostqw (P𝑟 ) . [Eq. (6)]

(9)

cost(𝑇 ) = 𝛼 · costw (𝑇 ) + 𝛽 · costqw (𝑇 ) [Eq. (2)]

≤ 𝛼 · hcostw (P𝑟 ) + 𝛽 · hcostqw (P𝑟 ) [Eqs. (8)(9)]

= hcost(P𝑟 ) . [Eq. (5)]

(10)

□

Min-hcost RPS. Since the hcost of a RPS bounds the cost
of the QGST constructed from it, we aim at finding a min-hcost
RPS. For efficiency considerations, instead of finding a globally

min-hcost RPS, our algorithm will search for a locally min-hcost
RPS by restricting its root vertex to be within the smallest group

𝐾𝑖min
∈ Q. More formally, let Pmin

𝑟 denote the min-hcost 𝑟 -RPS:

Pmin

𝑟 = argmin

P𝑟

hcost(P𝑟 ) . (11)

Our algorithm will construct a QGST from the following RPS:

P# = argmin

Pmin

𝑟

hcost(Pmin

𝑟 ) s.t. 𝑟 ∈ 𝐾𝑖min
= argmin

𝐾𝑖 ∈Q
|𝐾𝑖 | . (12)

Running Example. In Figure 2, assuming 𝐾𝑖min
= {𝐹,𝑀}, for

hcost(Pmin

𝐹
) = 8.07 and hcost(Pmin

𝑀
) = 4.20, Indeed we observe

cost(𝑇min

𝐹
) ≤ hcost(Pmin

𝐹
) and cost(𝑇min

𝑀
) ≤ hcost(Pmin

𝑀
). We

haveP# = Pmin

𝑀
, and the algorithmwill return𝑇min

𝑀
= GenAns(Pmin

𝑀
).

3.2 Algorithm
Following Eq. (12), the core of our HB algorithm is to search for Pmin

𝑟

for each root vertex 𝑟 ∈ 𝐾𝑖min
. For better understanding our bottom-

up search process, below we firstly explain its principle in a top-

down manner. We only describe the computation of hcost(Pmin

𝑟 )
since by keeping track of the choices made during the computation

we can easily reconstruct Pmin

𝑟 .

Principle. For convenience, we introduce a new function hcost′

to rewrite hcost(P𝑟 ) defined in Eqs. (5)(6):

hcost(P𝑟 ) = vnum(P𝑟 ) · hcost′ (P𝑟 ) , where (13)

hcost′ (P𝑟 ) = 𝛼 · w(𝑟 ) +
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

𝛼 · w(𝑣) + 𝛽 · qw(𝑟, 𝑣) . (14)

With this form, and with 𝑏𝑖, 𝑗 denoting the minimum hcost′ of
any partial 𝑟 -RPS that covers the first 𝑖 groups (i.e., 𝐾1, . . . , 𝐾𝑖 )

with vnum = 𝑗 , we enumerate all possible values of 𝑗 to com-

pute hcost(Pmin

𝑟 ):
hcost(Pmin

𝑟 ) = min

1≤ 𝑗≤𝑔 (𝑛−1)+1
𝑗 · 𝑏𝑔,𝑗 , (15)

where 𝑗 is bounded by 𝑔(𝑛 − 1) + 1 because each of the 𝑔 paths in a

RPS has at most 𝑛 − 1 vertices other than the root vertex.

To compute the above𝑏𝑔,𝑗 , or, more generally,𝑏𝑖, 𝑗 , we decompose

hcost′ by paths. Specifically, by slightly abusing the notation, we

define the hcost′ of a path:

hcost′ (𝑝) =
∑︁

𝑣∈𝑉𝑝\{𝑟 }
𝛼 · w(𝑣) + 𝛽 · qw(𝑟, 𝑣) , (16)

based on which we rewrite hcost′ (P𝑟 ) defined in Eq. (14):

hcost′ (P𝑟 ) = 𝛼 · w(𝑟 ) +
∑︁
𝑝∈P𝑟

hcost′ (𝑝) .
(17)

With this form, and with 𝑐𝑖,𝑘 denoting the minimum hcost′ of any
𝑟 -𝐾𝑖 path that has exactly 𝑘 edges, we recursively compute 𝑏𝑖, 𝑗 :

𝑏𝑖, 𝑗 = min

0≤𝑘≤min{ 𝑗−1, 𝑛−1}
𝑏𝑖−1, 𝑗−𝑘 + 𝑐𝑖,𝑘 , (18)
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Algorithm 1: Hop-Biased (HB) Algorithm

Input :Graph 𝐺 = ⟨𝑉 , 𝐸⟩, Query Q = {𝐾1, 𝐾2, . . . , 𝐾𝑔}
Output :QGST 𝑇 #

1 P# ← null

2 𝑇 # ← null

3 𝐾𝑖min
← argmin

𝐾𝑖 ∈Q
|𝐾𝑖 |

4 foreach 𝑟 ∈ 𝐾𝑖min
do

5 Pmin

𝑟 ← null

6 𝑑0,𝑟 ← 0 // Eq.(20)

7 foreach 𝑣 ∈ 𝑉 \ {𝑟 } do
8 𝑑0,𝑣 ←∞
9 for 𝑘 = 1 to 𝑛 − 1 do
10 foreach 𝑣 ∈ 𝑉 do
11 𝑑𝑘,𝑣 ← min

𝑢∈𝑁 (𝑣)
𝑑𝑘−1,𝑢 + 𝛼 · w(𝑣) + 𝛽 · qw(𝑟, 𝑣)

12 for 𝑖 = 1 to 𝑔 do // Eq.(19)
13 for 𝑘 = 0 to 𝑛 − 1 do
14 𝑐𝑖,𝑘 = min

𝑣∈𝐾𝑖

𝑑𝑘,𝑣

15 𝑏0,1 = 𝛼 · w(𝑟 ) // Eq.(18)

16 for 𝑗 = 2 to 𝑔(𝑛 − 1) + 1 do
17 𝑏0, 𝑗 ←∞
18 for 𝑖 = 1 to 𝑔 do
19 for 𝑗 = 1 to 𝑔(𝑛 − 1) + 1 do
20 𝑏𝑖, 𝑗 ← min

0≤𝑘≤min{ 𝑗−1, 𝑛−1}
𝑏𝑖−1, 𝑗−𝑘 + 𝑐𝑖,𝑘

21 for 𝑗 = 1 to 𝑔(𝑛 − 1) + 1 do // Eq.(15)
22 if Pmin

𝑟 = null or 𝑗 · 𝑏𝑔,𝑗 < hcost(Pmin

𝑟 ) then
23 Pmin

𝑟 ← Reconstruct(𝑏𝑔,𝑗 )
24 if P# = null or hcost(Pmin

𝑟 ) < hcost(P#) then
25 P# ← Pmin

𝑟 // Eq.(12)

26 𝑇min

𝑟 ← GenAns(Pmin

𝑟 )
27 if 𝑇 # = null or cost(𝑇min

𝑟 ) < cost(𝑇 #) then
28 𝑇 # ← 𝑇min

𝑟

29 return 𝑇 #

where 𝑘 is bounded by 𝑛 − 1 because a path has at most 𝑛 − 1 edges.
To compute the above 𝑐𝑖,𝑘 , with 𝑑𝑘,𝑣 denoting the minimum

hcost′ of any 𝑘-hop path between 𝑟 and 𝑣 , we have

𝑐𝑖,𝑘 = min

𝑣∈𝐾𝑖

𝑑𝑘,𝑣 . (19)

Finally, we recursively compute 𝑑𝑘,𝑣 :

𝑑𝑘,𝑣 = min

𝑢∈𝑁 (𝑣)
𝑑𝑘−1,𝑢 + 𝛼 · w(𝑣) + 𝛽 · qw(𝑟, 𝑣) , (20)

where 𝑁 (𝑣) denotes the set of 𝑣 ’s neighbors in the graph.

Pseudocode. Algorithm 1 presents the pseudocode of our HB

algorithm, which implements the above top-down process of find-

ing P# in a bottom-up manner using dynamic programming. Specif-

ically, for each root vertex 𝑟 in the smallest group 𝐾𝑖min
(lines 3–

4), we successively compute all 𝑑𝑘,𝑣 values according to Eq. (20)

(lines 6–11), all 𝑐𝑖,𝑘 values according to Eq. (19) (lines 12–14), and

all 𝑏𝑖, 𝑗 values according to Eq. (18) (lines 15–20), based on which we

compute hcost(Pmin

𝑟 ) according to Eq. (15) and reconstruct Pmin

𝑟

(lines 5, 21–23) with the help of some trivial auxiliary arrays for

keeping track of the choices made during the computation. Finally,

we obtain a locally min-hcost RPS P# according to Eq. (12) (lines 1,
24–25), and return a correspondingly constructed QGST𝑇 #

(lines 2,

26–29). Here the pseudocode slightly differs from our description

in Section 3.1: instead of constructing a single QGST from P#, we
actually construct and compare |𝐾𝑖min

| QGSTs, one for each root

vertex 𝑟 ∈ 𝐾𝑖min
, to achieve a potentially smaller cost (lines 26–28).

Running Example. In Figure 2, assuming 𝐾𝑖min
= {𝐹,𝑀}, when

𝑟 = 𝐹 , the algorithm finds Pmin

𝑟 = Pmin

𝐹
and constructs𝑇min

𝑟 = 𝑇min

𝐹
.

Then when 𝑟 = 𝑀 , Pmin

𝑟 = Pmin

𝑀
is found to have a smaller hcost

than Pmin

𝐹
, and𝑇min

𝑟 = 𝑇min

𝑀
has a smaller cost than𝑇min

𝐹
, so finally

P# = Pmin

𝑀
, and 𝑇 # = 𝑇min

𝑀
is returned.

3.3 Approximation Ratio
Theorem 1 shows that our HB algorithm has a guaranteed approxi-

mation ratio that matches the state-of-the-art EO algorithm [25].

Theorem 1. HB has an approximation ratio of (𝑔 − 1)2𝑛.

Proof. Let 𝑇 ∗ = ⟨𝑉𝑇 ∗ , 𝐸𝑇 ∗ ⟩ be an optimum answer to QGSTP.

When𝑔 = 1,𝑇 ∗ contains a single vertex. It is straightforward that
𝑇 #

also contains a single vertex and satisfies cost(𝑇 #) = cost(𝑇 ∗).
When 𝑔 > 1, let 𝑟 ∈ 𝑉𝑇 ∗ ∩ 𝐾𝑖min

and P𝑟 = GenRPS(𝑇 ∗, 𝑟 ), then

hcostw (P𝑟 ) = vnum(P𝑟 ) ©­«w(𝑟 ) +
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

w(𝑣)ª®¬ [Eq. (6)]

≤ (𝑔 − 1) |𝑉𝑇 ∗ |
©­«w(𝑟 ) + (𝑔 − 1)

∑︁
𝑣∈𝑉𝑇 ∗\{𝑟 }

w(𝑣)ª®¬ [Lemma 1]

≤ (𝑔 − 1)2 |𝑉𝑇 ∗ |
∑︁
𝑣∈𝑉𝑇 ∗

w(𝑣)

= (𝑔 − 1)2 |𝑉𝑇 ∗ |costw (𝑇 ∗) , [Eq. (3)]

(21)

hcostqw (P𝑟 ) = vnum(P𝑟 )
∑︁
𝑝∈P𝑟

∑︁
𝑣∈𝑉𝑝\{𝑟 }

qw(𝑟, 𝑣) [Eq. (6)]

≤ (𝑔 − 1) |𝑉𝑇 ∗ | (𝑔 − 1)
∑︁
𝑣∈𝑉𝑇 ∗

qw(𝑟, 𝑣) [Lemma 1]

≤ (𝑔 − 1)2 |𝑉𝑇 ∗ |
∑︁

𝑣𝑖 ,𝑣𝑗 ∈𝑉𝑇 ∗
𝑖< 𝑗

qw(𝑣𝑖 , 𝑣 𝑗 )

= (𝑔 − 1)2 |𝑉𝑇 ∗ |costqw (𝑇 ∗) , [Eq. (3)]

(22)

hcost(P𝑟 ) = 𝛼 · hcostw (P𝑟 ) + 𝛽 · hcostqw (P𝑟 ) [Eq. (5)]

≤ 𝛼 · (𝑔 − 1)2 |𝑉𝑇 ∗ |costw (𝑇 ∗) [Eq. (21)]

+ 𝛽 · (𝑔 − 1)2 |𝑉𝑇 ∗ |costqw (𝑇 ∗) [Eq. (22)]

≤ (𝑔 − 1)2𝑛 · (𝛼 · costw (𝑇 ∗) + 𝛽 · costqw (𝑇 ∗))
= (𝑔 − 1)2𝑛 · cost(𝑇 ∗) . [Eq. (2)]

(23)

This P𝑟 is in the search space of the algorithm. Therefore,

cost(𝑇 #) ≤ cost(GenAns(P#))
≤ hcost(P#) [Lemma 2]

≤ hcost(Pmin

𝑟 )
≤ hcost(P𝑟 )
≤ (𝑔 − 1)2𝑛 · cost(𝑇 ∗) . [Eq. (23)]

(24)

□
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Note that (𝑔 − 1)2𝑛 represents the worst case in theory, and 𝑛 is

actually |𝑉𝑇 ∗ |. In practical applications of QGSTP such as KG explo-

ration, |𝑉𝑇 ∗ | and 𝑔 are usually very small. As shown in Section 5.4,

the approximation ratio is empirically below 2.18 on real KGs.

3.4 Time Complexity
The time complexity of each outermost loop of our HB algorithm

(lines 5–28)mainly consists of𝑂 (𝑛(𝑛+𝑚)) for computing all𝑑𝑘,𝑣 val-

ues (lines 6–11), 𝑂 (𝑔𝑛2) for computing all 𝑐𝑖,𝑘 values (lines 12–14),

𝑂 (𝑔2𝑛2) for computing all 𝑏𝑖, 𝑗 values (lines 15–20), 𝑂 (𝑔2𝑛2) for re-
constructing all Pmin

𝑟 (lines 21–23), and𝑂 (𝑔𝑛) for constructing𝑇min

𝑟

(line 26). The total time complexity of the algorithm is𝑂 (𝑛2𝑚+𝑔2𝑛3).
Compared with the time complexity 𝑂 (𝑔𝑛3𝑚 + 𝑔3𝑛4) of the state-
of-the-art EO algorithm [25], we improve it by a factor of 𝑔𝑛.

Note that𝑂 (𝑛2𝑚+𝑔2𝑛3) represents the worst case in theory, and

𝑛 is actually |𝐾𝑖min
| or caps the number of hops of an 𝑟 -𝐾𝑖 path in

a RPS. In practical applications of QGSTP such as KG exploration,

these numbers as well as 𝑔 are usually very small. By further incor-

porating the heuristics in Section 4 for pruning the search space,

as shown in Section 5.2, the average runtime is empirically below

0.84 second on real KGs containing millions of vertices and edges.

4 PRUNING HEURISTICS
In this section, we present three heuristics for pruning the search

space of our HB algorithm. Despite not changing the worst-case

time complexity of the algorithm, as shown in Section 5.5, empiri-

cally they considerably improve the efficiency of the algorithm.

4.1 Pruning Roots (PR)
In Algorithm 1, each vertex 𝑟 ∈ 𝐾𝑖min

is considered as the root vertex

of a RPS (line 4). Our first pruning heuristic is to, at the beginning

of each outermost loop of the algorithm, inexpensively compute a

lower bound L(𝑟 ) for hcost(Pmin

𝑟 ) and, if L(𝑟 ) ≥ hcost(P#), we
will safely skip the current loop since it will not update P# (line 24).

To compute L(𝑟 ), we calculate the minimum vnum of an 𝑟 -RPS:

ℎ𝑟 = 1 +
𝑔∑︁
𝑖=1

ℎ𝑟,𝑖 , (25)

where ℎ𝑟,𝑖 denotes the smallest number of hops between 𝑟 and 𝐾𝑖 ,

which is efficiently computed by looking up a hub labeling index [1].
The look-up time is in 𝑂 (𝑛2) and is practically close to Θ( |𝐾𝑖 |), or
even shorter if using a dynamic version of the index [24]. With ℎ𝑟 ,

we introduce two implementations of L(𝑟 ).
Our first implementation of L(𝑟 ), denoted by L (1) (𝑟 ), is

L (1) (𝑟 ) = ℎ𝑟

(
𝛼 · w(𝑟 ) +

𝑔∑︁
𝑖=1

L (1)
𝑖
(𝑟 )

)
, where

L (1)
𝑖
(𝑟 ) = min

𝑝∈P𝑟,𝑖
hcost′ (𝑝) ,

(26)

in which P𝑟,𝑖 denotes the set of all 𝑟 -𝐾𝑖 paths. Comparing this

equation with Eqs. (13)(17), we verify that L (1) (𝑟 ) ≤ hcost(Pmin

𝑟 ).
We computeL (1)

𝑖
(𝑟 ) by exploiting the definition of hcost′ (𝑝) in

Eq. (16) which resembles the length of a path in an edge-weighted

graph. Accordingly, L (1)
𝑖
(𝑟 ) resembles the distance between 𝑟

and 𝐾𝑖 , and is computed by Dijkstra’s algorithm in 𝑂 (𝑚 + 𝑛 log𝑛)

time. We will prune the search space of Dijkstra’s algorithm in

Section 4.2.

Our second implementation of L(𝑟 ), denoted by L (2) (𝑟 ), is

L (2) (𝑟 ) = ℎ𝑟

(
𝛼 · w(𝑟 ) +

𝑔∑︁
𝑖=1

L (2)
𝑖
(𝑟 )

)
, where

L (2)
𝑖
(𝑟 ) = min

𝑝∈P𝑟,𝑖
𝛼 ·

∑︁
𝑣∈𝑉𝑝\{𝑟 }

w(𝑣) + 𝛽 · 1
2

∑︁
(𝑢,𝑣) ∈𝐸𝑃

qw(𝑢, 𝑣) .
(27)

According to the triangle inequality given in Eq. (1),

1

2

∑︁
(𝑢,𝑣) ∈𝐸𝑃

qw(𝑢, 𝑣) ≤ 1

2

∑︁
(𝑢,𝑣) ∈𝐸𝑃

qw(𝑢, 𝑟 ) + qw(𝑟, 𝑣) ≤
∑︁

𝑣∈𝑉𝑝\{𝑟 }
qw(𝑟, 𝑣) ,

(28)

so with the definition of hcost′ (𝑝) in Eq. (16), we verify that

L (2)
𝑖
(𝑟 ) ≤ min

𝑝∈P𝑟,𝑖
hcost′ (𝑝) = L (1)

𝑖
(𝑟 ) , (29)

which indicates that L (2) (𝑟 ) is a looser lower bound than L (1) (𝑟 ).
We computeL (2)

𝑖
(𝑟 ) by exploiting its definition in Eq. (27) which

resembles the distance between 𝑟 and𝐾𝑖 in a graph with both vertex

weights and edge weights, which again is efficiently computed by

looking up a (dynamic) hub labeling index in 𝑂 (𝑛2) time.

We add L (1) (𝑟 ) and L (2) (𝑟 ) to Algorithm 1 as follows. At the

beginning of each outermost loop (line 4), we compute L (2) (𝑟 )
as it is computationally less expensive than L (1) (𝑟 ). If L (2) (𝑟 ) ≥
hcost(P#), wewill skip the current loop, or elsewe computeL (1) (𝑟 ),
and will skip the current loop if L (1) (𝑟 ) ≥ hcost(P#).

4.2 Pruning Paths (PP)
In Section 4.1, the computation of L (1) relies on Dijkstra’s algo-

rithm. Our second pruning heuristic is to maintain, during the exe-

cution of Dijkstra’s algorithm, an upper bound U(𝑟 ) for all uncom-

puted L (1)
𝑖
(𝑟 ). If exceeded, it would ensure L (1) (𝑟 ) ≥ hcost(P#)

so that we could prune the remaining search space of Dijkstra’s al-

gorithm and safely skip the current outermost loop of Algorithm 1.

Specifically, following the properties of Dijkstra’s algorithm,

L (1)
𝑖
(𝑟 ) is computed when visiting any vertex in 𝐾𝑖 for the first

time. With 𝑈 = {1, 2, . . . , 𝑔} and 𝑆 denoting all 𝑖 ∈ 𝑈 such that

L (1)
𝑖
(𝑟 ) has been computed, based on the definition of L (1) (𝑟 ) in

Eq. (26), L (1) (𝑟 ) < hcost(P#) would imply that for each 𝑖 ∈ 𝑈 \ 𝑆 :

L (1)
𝑖
(𝑟 ) < hcost(P#)

ℎ𝑟
− 𝛼 · w(𝑟 ) −

∑︁
𝑗∈𝑆
L (1)
𝑗
(𝑟 ) −

∑︁
𝑗∈𝑈 \(𝑆∪{𝑖 })

L (1)
𝑗
(𝑟 )

≤ hcost(P#)
ℎ𝑟

− 𝛼 · w(𝑟 ) −
∑︁
𝑗∈𝑆
L (1)
𝑗
(𝑟 ) −

∑︁
𝑗∈𝑈 \(𝑆∪{𝑖 })

L (2)
𝑗
(𝑟 )

≤ hcost(P#)
ℎ𝑟

− 𝛼 · w(𝑟 ) −
∑︁
𝑗∈𝑆
L (1)
𝑗
(𝑟 ) − ©­«

∑︁
𝑗∈𝑈 \𝑆

L (2)
𝑗
(𝑟 ) − max

𝑗∈𝑈 \𝑆
L (2)
𝑗
(𝑟 )ª®¬ .

(30)

The last line is independent of 𝑖 and we let it be U(𝑟 ). We main-

tainU(𝑟 ) during the execution of Dijkstra’s algorithm and, if the

hcost′ of the current path exceedsU(𝑟 ), following the monotonic-

ity of Dijkstra’s algorithm, every uncomputedL (1)
𝑖
(𝑟 ) (i.e., 𝑖 ∈ 𝑈 \𝑆)

will also exceedU(𝑟 ), thus preventing L (1) (𝑟 ) < hcost(P#).
We computeU(𝑟 ) in𝑂 (𝑔) time, given thatℎ𝑟 ,L (1)𝑗 (𝑟 ), andL

(2)
𝑗
(𝑟 )

have been computed in Section 4.1.
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Table 1: Graphs and Queries

Graph 𝑛 𝑚 #queries 𝑔

MND 43,750 128,402 39 1–4

CYC 120,657 425,643 50 1–6

LMDB 1,326,987 2,873,140 200 1–10

YAGO 2,215,203 5,428,229 32 2–6

DBP 5,707,071 18,591,110 330 2–6

LUBM-10U 207,631 811,556 400 2–16

LUBM-50U 1,083,833 4,243,017 400 2–16

LUBM-250U 5,426,913 22,281,357 400 2–16

LUBM-2U 38,384 154,039 50 4

DBP-50K 50,000 180,369 183 2–6

4.3 Principled Initialization (PI)
The pruning heuristics presented in Section 4.1 and Section 4.2 both

rely on the current P#. Our third pruning heuristic is to inexpen-

sively initialize P# to have a small hcost to improve the possibility

of applying the above two pruning heuristics.

Specifically, for each root vertex 𝑟 ∈ 𝐾𝑖min
, we find a min-vnum

RPS (i.e., vnum = ℎ𝑟 ) where each ℎ𝑟,𝑖 -hop 𝑟 -𝐾𝑖 path has the smallest

hcost′. Recall that the definition of hcost′ (𝑝) in Eq. (16) resembles

the length of a path in an edge-weighted graph. Therefore, the

above 𝑔 paths in a RPS are found by performing BFS-like search in

𝑂 (𝑛+𝑚+𝑔) time. Among these |𝐾𝑖min
| RPSes, we choose the one hav-

ing the smallest hcost to initialize P# and use its correspondingly

constructed QGST to initialize 𝑇 #
in Algorithm 1 (lines 1–2).

5 EXPERIMENTS
We evaluated the efficiency, scalability, and effectiveness of our HB

algorithm. Following the experimental design in the literature [25,

26], we evaluated in the context of applying QGSTP to keyword-

based KG exploration. All the algorithms in the experiments were

implemented in Java and executed on an Intel Xeon E5-2643 v4

CPU (3.40GHz) with 180GB memory available for Java programs.

Our code and data are available on Anonymous GitHub.
2

5.1 Experimental Setup
The following setup was used in all the experiments.

Weighting Functions w and qw. Following [25], we weighted
each vertex by inverting its normalized PageRank score, and we

defined the quadratic weight of each pair of vertices (i.e., entities) as

the angular distance between their ten-dimensional KG embedding

vectors precomputed by RDF2Vec [23].

Settings of 𝛼 . Following [25], we used 𝛼 ∈ {0.1, 0.5, 0.9}.
Baselines.We compared with EO [25], a state-of-the-art approx-

imation algorithm for QGSTP. We did not compare with B
3
F [26]

or QO [25] because they were only of theoretical interest and could

not scale to more than tens of thousands of vertices in practice.

5.2 Experiment 1: Efficiency
This experiment evaluated the runtime of HB in real settings.

2
https://anonymous.4open.science/r/QGSTP-HB-EFCC

Table 2: Mean Runtime per Query (in Seconds) and Propor-
tion of Timeout Queries

Graph Algorithm 𝛼 = 0.1 𝛼 = 0.5 𝛼 = 0.9

MND

HB 0.02 (0.00%) 0.01 (0.00%) 0.02 (0.00%)

EO 0.29 (0.00%) 0.26 (0.00%) 0.36 (0.00%)

CYC

HB 0.10 (0.00%) 0.09 (0.00%) 0.07 (0.00%)

EO 3.19 (0.00%) 3.38 (0.00%) 4.12 (0.00%)

LMDB

HB 0.13 (0.00%) 0.08 (0.00%) 0.07 (0.00%)

EO 8.83 (0.00%) 7.37 (0.00%) 9.81 (0.00%)

YAGO

HB 0.16 (0.00%) 0.12 (0.00%) 0.41 (0.00%)

EO 12.46 (0.00%) 18.06 (0.00%) 55.81 (3.13%)

DBP

HB 0.84 (0.00%) 0.54 (0.00%) 0.65 (0.00%)

EO 50.94 (3.33%) 57.73 (5.45%) 113.74 (37.88%)

Graphs. We used all the real KGs used in the literature [25, 26]:

two small-scale graphs Mondial
3
(MND) and OpenCyc

4
(CYC), two

medium-scale graphs LinkedMDB
5
(LMDB) and YAGO

6
, and a

large-scale graph DBpedia
7
(DBP). Their sizes are shown in Table 1.

Queries. Firstly we followed [25] to collect keyword queries.

Specifically, for MND, we reused the keyword queries from [6]. For

CYC, we generated 50 keyword queries containing 1–6 keywords

randomly sampled from the KG. For LMDB, we randomly sampled

200 natural language questions from [22] and removed stop words

and punctuation marks. For YAGO, we reused the keyword queries

from [29]. For DBP, we reused the keyword queries from [9] and

excluded those containing a single keyword.

Then we converted each keyword query to a query in the for-

mulation of QGSTP by mapping each keyword to a group of ver-

tices (i.e., entities) whose name (i.e., rdfs:label) contained that

keyword. Queries containing empty groups were removed. Some

statistics about the remaining queries are shown in Table 1.

Metrics.We ran each algorithm for each query on each graph

and reported its runtime. To avoid unacceptably long runtime, we

would cancel a run when 200 seconds had passed without com-

pletion. Such timeout runs were excluded when reporting mean

runtime, which actually benefited the reported runtime of the base-

line algorithm while our HB algorithm never encountered timeout.

Results. Table 2 shows, for each algorithm, the mean runtime for

a query it used and the proportion of timeout queries it encountered.

On small-scale graphs MND and CYC, our HB algorithm answered

a query within 0.1 second on average, while the EO algorithm

used more than 3 seconds on CYC. On medium-scale graphs LMDB

and YAGO, while EO spent 7.37–55.81 seconds per query, HB still

responded within only 0.41 second. On the large-scale graph DBP,

EO suffered timeout on 3.33–37.88% of the queries, and used an

average of more than 50 seconds to answer the remaining queries;

by contrast, HB never encountered timeout and its mean runtime

was at most 0.84 second. To conclude, our HB algorithm used an

3
https://www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-RDF/mondial.rdf

4
https://master.dl.sourceforge.net/project/texai/open-cyc-rdf/1.1/open-cyc.rdf.ZIP?

viasf=1

5
https://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-latest-dump.zip

6
https://yago-knowledge.org/data/yago1/yago-1.0.0-turtle.7z

7
https://downloads.dbpedia.org/2016-10/core/mappingbased_objects_en.ttl.bz2
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Figure 3: Mean runtime per query of HB w.r.t. varying 𝑔.
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Figure 4: Mean runtime per query of HB w.r.t. varying 𝑓 .

average of less than one second to answer a query over a million-

scale graph, and was empirically 1–2 orders of magnitude (15–

175x) as fast as the state-of-the-art EO algorithm. These results
demonstrated the efficiency of HB and its promising performance to
meet the needs of real-time applications.

Appendix A presents the distribution of runtime over all queries.

Our HB algorithm very rarely used more than one second for a

query, demonstrating its robust performance.

5.3 Experiment 2: Scalability
This experiment evaluated the runtime of HB w.r.t. varying input

sizes. According to the analysis in Section 3.4, the runtime of HB is

related to the order and size of a graph (i.e., 𝑛 and𝑚), the number

of groups in a query (i.e., 𝑔), and the size of a group (e.g., |𝐾𝑖min
|).

Graphs. We followed [25] to use LUBM’s KG generator
8
to gen-

erate three graphs of linearly increasing sizes: LUBM-10U, LUBM-

50U, and LUBM-250U. Their sizes are shown in Table 1.

Queries. We followed [25] to generate queries by exponen-

tially varying two parameters: the number of groups 𝑔 and the

size of each group 𝑓 . Specifically, for each combination (𝑔, 𝑓 ) ∈
{(2, 102), (4, 102), (8, 102), (16, 102)} and each (𝑔, 𝑓 ) ∈ {(4, 101),
(4, 102), (4, 103), (4, 104), (4, 105)}, we generated 50 queries consist-

ing of 𝑔 groups of 𝑓 vertices randomly sampled from the graph.

Metrics.We ran our HB algorithm for each query on each graph

and reported its runtime.

Results. Figure 3 shows the mean runtime used by HB for a

query under different 𝑔. Possibly contrary to intuition, by increas-

ing 𝑔, the runtime did not rise but drop in many settings. We at-

tributed it to our pruning heuristic PI described in Section 4.3.

Specifically, when 𝑔 was larger, the locally min-hcost RPS P# that
HB searched for was more likely to consist of min-hop paths be-

tween groups, which were exactly those found by PI to initialize P#,
so the search space of the HB algorithm would be pruned faster.

8
http://swat.cse.lehigh.edu/projects/lubm/

Table 3: Mean Empirical Approximation Ratio per Query

Graph Algorithm 𝛼 = 0.1 𝛼 = 0.5 𝛼 = 0.9

LUBM-2U

HB 1.13 ± 0.16 1.12 ± 0.17 1.06 ± 0.11

EO 1.20 ± 0.26 1.15 ± 0.18 1.08 ± 0.12

DBP-50K

HB 1.07 ± 0.15 1.07 ± 0.14 1.07 ± 0.13

EO 1.09 ± 0.19 1.09 ± 0.18 1.04 ± 0.08

Figure 4 shows the mean runtime used by HB for a query under

different 𝑓 . It was not surprising that the runtime grew by increas-

ing 𝑓 since the outermost loop of the HB algorithm was executed

𝑓 times. Thanks to pruning, the growth appeared sublinear, e.g., by

increasing 𝑓 from 10
1
to 10

5
by 4 orders of magnitude, the runtime

only grew by about 1–2 orders of magnitude.

In Figure 3 and Figure 4, by increasing 𝑛 and𝑚 from LUBM-10U

to 250U by 25x, the runtime grew by 5–91x with an average of 42x,

representing a roughly linear increase. It was much better than the

worst-case cubic time complexity in theory proved in Section 3.4.

These results demonstrated the scalability of HB w.r.t. input size.

5.4 Experiment 3: Effectiveness
This experiment evaluated the practical approximation ratio of HB.

Graphs.Measuring approximation ratio required knowing the

cost of an optimum answerwhich could be found by an exponential-

time exact algorithm for QGSTP such as B
3
F [26]. However, due to

its limited scalability, we had to follow [25] to use two small KGs

for this experiment: LUBM-2U generated by LUBM, and a subgraph

DBP-50K extracted from DBP. Their sizes are shown in Table 1.

Queries. For LUBM-2U, we generated queries in the same way

as we did in Section 5.3 under 𝑔 = 4 and 𝑓 = 10
2
. For DBP-50K, we

obtained queries in the same way as we did in Section 5.2 for DBP.

Metrics. We ran each approximation algorithm for each query

on each graph and reported its empirical approximation ratio:

empirical approximation ratio =
cost(𝑇 #)
cost(𝑇 ∗) , (31)

where cost(𝑇 #) and cost(𝑇 ∗) represented the QGSTs found by the
approximation algorithm and the exact B

3
F algorithm, respectively.

Results. Table 3 shows, for each approximation algorithm, its

mean empirical approximation ratio for a query with standard

deviation. Our HB algorithm and the EO algorithm achieved similar

and satisfying approximation ratios. HB achieved a mean empirical

approximation ratio of at most 1.13. Its largest ratio on a single

query was only 2.18. It was much better than the worst-case cubic

approximation ratio in theory proved in Section 3.3. These results
demonstrated the effectiveness of HB which matched that of EO.

5.5 Experiment 4: Ablation Study
This experiment evaluated the usefulness of our heuristics for prun-

ing the search space of HB.

Graphs, Queries, and Metrics. We reused the settings in Sec-

tion 5.2 and reported the runtime of each algorithm for each query

on each graph. Due to space limitations, we reported the results on

LMDB below and the results on other graphs in Appendix B. The

conclusions derived from different graphs were consistent.

7
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Table 4: Mean Runtime per Query (in Seconds) and Propor-
tion of Timeout Queries on LMDB

Algorithm 𝛼 = 0.1 𝛼 = 0.5 𝛼 = 0.9

HB 0.13 (0.00%) 0.08 (0.00%) 0.07 (0.00%)

HB w/o pruning 17.46 (0.01%) 17.18 (0.01%) 18.10 (0.01%)

EO w/o pruning - (100.00%) - (100.00%) - (100.00%)

HB w/o PP 0.19 (0.00%) 0.10 (0.00%) 0.09 (0.00%)

HB w/o PI 0.57 (0.00%) 0.42 (0.00%) 0.47 (0.00%)

Results. Table 4 shows, for each algorithm, the mean runtime for

a query it used and the proportion of timeout queries it encountered

on LMDB. Without pruning, the runtime of our HB algorithm rose

by 2 orders of magnitude, but still, it was much faster than the

corresponding pruning-free version of the EO algorithm which

suffered timeout on all the queries. By disabling a single pruning

heuristic PP or PI,
9
the runtime of HB also rose considerably by

at least 25% and 338%, respectively. These results demonstrated the
usefulness of our pruning heuristics, and also revealed that HB’s
performance advantage over EO was primarily sourced from our
algorithmic advancement rather than from our pruning heuristics.

6 RELATEDWORK
6.1 Quadratic Group Steiner Tree Problem
The extension from GSTP to QGSTP brings advantages as well

as new research challenges. Table 5 compares known algorithms

for QGSTP. B
3
F [26] is the only exact algorithm for computing an

optimum answer. Despite using a branch-and-bound strategy, due

to the NP hardness of QGSTP, it requires exponential time and

only works on small-scale graphs. QO [25] is an approximation

algorithm with the currently best approximation ratio but cannot

scale to large graphs. EO [25] sacrifices its approximation ratio

to reduce its search space and can work on large-scale graphs.

However, it needs about one minute to answer a query on a million-

scale graph, which is insufficient for real-time applications.

While our HB algorithm and the state-of-the-art EO algorithm

both find and merge a RPS, they differ in how the quality of a RPS

is estimated and accordingly in the search procedure. Compared

with pcost—the cost function for RPS used with EO (and QO), our

novel hcost more skillfully incorporates vnum(P𝑟 ) in such a way

that by decomposing the hcost of a RPS into the hcost′ of a set
of paths via Eqs. (13)(17), the latter is independent of vnum(P𝑟 ) as
shown in Eq. (16). By contrast, in EO, vnum(P𝑟 ) is tightly coupled

with pcost. As a result, for each root vertex 𝑟 ∈ 𝐾𝑖min
, our HB

algorithm computes each 𝑑𝑘,𝑣 and 𝑏𝑖, 𝑗 only once, whereas their

counterparts in EO have to be computed Θ(𝑔𝑛) times, each time

with a distinct possible value of vnum(P𝑟 ). This key improvement

leads to HB’s significant performance advantage over EO while

their approximation ratios are similar.

9
The pruning heuristic PR cannot be disabled alone since PP and PI rely on it.

Table 5: Known Algorithms for QGSTP

Algorithm Approximation Ratio Time Complexity

B
3
F [26] 1 Exponential time

QO [25] (𝑔 − 1)2 𝑂 (𝑔𝑛3𝑚 + 𝑔3𝑛4 )
EO [25] (𝑔 − 1)2𝑛 𝑂 (𝑔𝑛3𝑚 + 𝑔3𝑛4 )

Our HB (𝑔 − 1)2𝑛 𝑂 (𝑛2𝑚 + 𝑔2𝑛3 )

6.2 Group Steiner Tree Problem
QGSTP generalizes from GSTP, an established combinatorial opti-

mization problem on graphs having 𝑂 (log2−𝜖 𝑔) inapproximabil-

ity [8]. Exact algorithms include dynamic programming [7, 18].

Scalable algorithms [3, 24, 27] usually adopt the One-Star approxi-

mation scheme [11, 13] to find and merge a RPS, and have a guar-

anteed approximation ratio of 𝑔 − 1. Algorithms having a better

approximation ratio [2] cannot scale to large graphs.

It would be meaningless to directly apply these algorithms to

QGSTP since they could not handle quadratic weights in Eq. (2)

and hence may return arbitrarily bad results, e.g., when 𝛼 = 0.

6.3 Keyword-Based KG Exploration
QGSTP was originally proposed to formulate keyword-based KG

exploration [25, 26]. Prior to that, the task was formulated as

GSTP [3, 21, 24, 29] or its variants [10, 14, 15, 17, 28]. QGSTP incor-

porates quadratic weights to represent semantic distances between

entities in a KG, which helps find semantically cohesive answers.

Another recent extension of GSTP bounds the diameter of an

answer [30], which is orthogonal to our work on QGSTP.

7 CONCLUSION
QGSTP has showed in the literature its usefulness in formulating

keyword-based KG exploration, but was lacking efficient solutions.

Our work fills the gap with the proposed HB algorithm. Building on

a novel hop-biased hcost function for RPS which is decomposable

by paths and hence allows for a fast dynamic programming based

search procedure, HB outperforms the state-of-the-art EO algorithm

by a factor of 𝑔𝑛 in theory and by 1–2 orders of magnitude in the

experiments. With an approximation ratio comparable with EO,

HB only used an average of less than one second to answer a query

over a million-scale graph, meeting the performance need of real-

time applications. It will enable the Web community to expand the

range of potential applications of QGSTP as a generalization of the

popularly used GSTP to offer increased expressiveness and utility.

In future work, we will consider three directions. From the algo-

rithm perspective, whereas HB has exhibited a satisfying empirical

approximation ratio in the experiments, we plan to cautiously ex-

tend its search space to seek a better approximation ratio guarantee

while maintaining its current efficiency and scalability. It will help

further widen the application of QGSTP. From the problem perspec-

tive, we will analyze the inapproximability of QGSTP to explore

whether it is fundamentally harder than GSTP. It will give us more

insights into this emerging NP-hard problem. From the application

perspective, beyond KG exploration, we will investigate existing

Web applications of GSTP to identify opportunities for enhance-

ment with QGSTP and our HB algorithm.

8
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A EXTENDED RESULTS OF EXPERIMENT 1:
EFFICIENCY

Figure 5 shows, for each algorithm, the cumulative distribution of

its runtime over all queries. For a considerable proportion of the

queries, the EO algorithm responded after more than one second

on small-scale graphs MND and CYC, more than ten seconds on

medium-scale graphs LMDB and YAGO, and more than one hun-

dred seconds on the large-scale graph DBP. By contrast, our HB

algorithm very rarely used more than one second for a query. Even

on DBP, it spent two or more seconds only on 11%, 4%, and 11% of

the queries under 𝛼 = 0.1, 𝛼 = 0.5, and 𝛼 = 0.9, respectively. These
results demonstrated the robust performance of HB.
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Figure 5: Cumulative distribution of runtime over all queries.

B EXTENDED RESULTS OF EXPERIMENT 4:
ABLATION STUDY

Table 6 shows, for each algorithm, the mean runtime for a query it

used and the proportion of timeout queries it encountered on small-

scale and medium-scale graphs. Without pruning, the runtime of

our HB algorithm rose on all the three graphs, but still, it was

much faster than the corresponding pruning-free version of the

EO algorithm which suffered timeout on all the queries. On larger

graphs like YAGO and DBP, HB without pruning also suffered

timeout on most queries.

Table 7 shows, for each algorithm, the mean runtime for a query

it used and the proportion of timeout queries it encountered on

medium-scale and large-scale graphs where the search space was

relatively large and the effects of pruning could be easily observed.

By disabling a single pruning heuristic PP or PI, the runtime of HB

rose considerably by at least 13% and 49%, respectively.

These results were consistent with the conclusions in Section 5.5.

Table 6: Mean Runtime per Query (in Seconds) and Propor-
tion of Timeout Queries on MND, CYC, and LMDB

Graph Algorithm 𝛼 = 0.1 𝛼 = 0.5 𝛼 = 0.9

MND

HB 0.02 (0.00%) 0.01 (0.00%) 0.02 (0.00%)

HB w/o pruning 0.07 (0.00%) 0.06 (0.00%) 0.07 (0.00%)

EO w/o pruning - (100.00%) - (100.00%) - (100.00%)

CYC

HB 0.10 (0.00%) 0.09 (0.00%) 0.07 (0.00%)

HB w/o pruning 0.19 (0.00%) 0.19 (0.00%) 0.20 (0.00%)

EO w/o pruning - (100.00%) - (100.00%) - (100.00%)

LMDB

HB 0.13 (0.00%) 0.08 (0.00%) 0.07 (0.00%)

HB w/o pruning 17.46 (0.01%) 17.18 (0.01%) 18.10 (0.01%)

EO w/o pruning - (100.00%) - (100.00%) - (100.00%)

Table 7: Mean Runtime per Query (in Seconds) and Propor-
tion of Timeout Queries on LMDB, YAGO, and DBP

Graph Algorithm 𝛼 = 0.1 𝛼 = 0.5 𝛼 = 0.9

LMDB

HB 0.13 (0.00%) 0.08 (0.00%) 0.07 (0.00%)

HB w/o PP 0.19 (0.00%) 0.10 (0.00%) 0.09 (0.00%)

HB w/o PI 0.57 (0.00%) 0.42 (0.00%) 0.47 (0.00%)

YAGO

HB 0.16 (0.00%) 0.12 (0.00%) 0.41 (0.00%)

HB w/o PP 0.18 (0.00%) 0.15 (0.00%) 1.22 (0.00%)

HB w/o PI 0.24 (0.00%) 0.33 (0.00%) 4.61 (0.00%)

DBP

HB 0.84 (0.00%) 0.54 (0.00%) 0.65 (0.00%)

HB w/o PP 1.27 (0.00%) 0.94 (0.00%) 1.55 (0.00%)

HB w/o PI 1.25 (0.00%) 1.16 (0.00%) 5.52 (0.00%)
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