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ABSTRACT

Multimodal Large Language Models (MLLMs) have been widely applied in
speech and music. This tendency has led to a focus on audio tokenization for
Large Models (LMs). Unlike semantic-only text tokens, audio tokens must both
capture global semantic content and preserve fine-grained acoustic details. More-
over, they provide a discrete method for speech and music that can be effectively
integrated into MLLMs. Many studies have shown that LMs modeling seman-
tic information makes training simpler and more efficient. However, existing re-
search is unsuitable in the definitions of semantic tokens and acoustic tokens. In
addition, the evaluation of different codecs typically concentrates on specific do-
mains or tasks, such as reconstruction or Automatic Speech Recognition (ASR)
task, which prevents fair and comprehensive comparisons. To address these prob-
lems, this paper provides suitable definitions for semantic and acoustic tokens
and introduces a systematic evaluation framework. This framework allows for
a comprehensive assessment of codecs’ capabilities which evaluate across four
dimensions: audio reconstruction metric, codebook index (ID) stability, decoder-
only transformer perplexity, and performance on downstream probe tasks. Our
results show the correctness of the provided suitable definitions and the correla-
tion among reconstruction metrics, codebook ID stability, downstream probe tasks
and perplexity.

1 INTRODUCTION

Discrete audio tokens have received attention for their potential to bridge the domains of text
and audio, playing an important role in the development of Multimodal Large Language Models
(MLLMs) (Liu et al., 2023; Team, 2025). The process of generating discrete token is compress-
ing the original waveform into a finite set of vectors. However, MLLMs focus more on semantic
in the text domain, but need to focus on both semantic and acoustic in the audio domain, result-
ing in a modality gap between text and audio. Recent studies have shown that semantics is more
effective for Large Language Models (LLMs) modeling because semantic tokens fixed patterns in
the same semantic informations so that the fixed patterns are easier to be modeled by downstream
tasks (Défossez et al., 2024; Liu et al., 2024; Yuan et al., 2025; Wang et al., 2024). Semantic to-
kens are often obtained through the quantization hidden states from Self-supervised Learning (SSL)
models. Acoustic tokens are often obtained by training the neural audio codec (Codecs) in an end-to-
end manner with the goal of high-fidelity reconstruction. These tokens focus more on the absolute
distance between audio sampling points. This absolute distance definitely contains semantic, but
this part of the semantic is difficult to be modeled in downstream tasks and is more suitable for
reconstruction (Borsos et al., 2023b; Zeghidour et al., 2021).

The core task of LLMs is to predict next token in a sequence. This mechanism requires that its input
must be a series of discrete tokens. Therefore, researchers always adopt the discrete quantization
methods (Mentzer et al., 2023; Yang et al., 2023). These methods aim to approximate a large, con-
tinuous vector space with a finite, discrete set of representative vectors, mapping high-dimensional
continuous hidden states in a finite codebook. Therefore, the signal can be translated effectively into
token sequences that LLMs can understand and generate. These discrete methods function as a clus-
tering process to generate codebook indices. Whether these indices represent semantics or acoustics
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Figure 1: AudioCodecBench data distribution overview.

depends on the continuous hidden states. Although the audio token research is increasing, there is
still no comprehensive framework to evaluate and compare the performance of different token types.

To address these shortcomings, this paper introduces a systematic, multi-dimensional benchmark
for codec evaluation. This benchmark comprehensively assesses codec capabilities across four key
experiments: Reconstruction, to assess audio reconstruction fidelity; ID Sensitivity, to evaluate
codebook ID stability under noisy additions; Perplexity, to measure the performance of different
token types on Large Models (LMs) modeling; Probe, to evaluate downstream task performance.
The distribution of datasets is illustrated in Figure 1. We hope that this benchmark will offer a more
comprehensive comparison of various audio tokenization methods. Our contributions include the
following:

• We provide suitable definitions of semantic and acoustic features. And base on their combi-
nation further define fused features. We hope that the proposed definition can guide future
training methods for multimodal alignment.

• We have open-sourced a comprehensive audio codec benchmark. This benchmark includes
reconstruction metrics, id sensitivity metrics, perplexity metrics and probe metrics. We
evaluate mainstream codecs across the speech, music and sound domains.

• We explore the correlation between various task metrics and perplexity, thereby identifying
which metrics are most helpful for LM modeling.

2 RELATED WORK

2.1 AUDIO REPRESENTATION

SpeechTokenizer (Zhang et al., 2024) distinguishes between “Semantic token” and “Acoustic to-
ken”. Semantic token originates from SSL models like BEST-RQ (Chiu et al., 2022), HuBERT (Hsu
et al., 2021), Wav2Vec2 (Baevski et al., 2020) and WavLM (Chen et al., 2022). These models typi-
cally employ BERT-like structures and MLM loss to capture global contextual information, and it is
often assume that semantics can be equated with performance on the Automatic Speech Recognition
(ASR) task. However, we think that semantics is not only contained by ASR related information.
In contrast, acoustic tokens are generated by codecs like EnCodec (Défossez et al., 2022), Sound-
Stream and DAC (Kumar et al., 2024) employ VQ-VAE driven by reconstruction loss to achieve
high-fidelity reconstruction. This concept of audio representation provides a foundation for system-
atically analyzing the information types of discrete tokens.

To leverage the strengths of both token types, subsequent research explores different paradigms.
SemantiCodec (Liu et al., 2024) and XY-Tokenizer (Gong et al., 2025) employs a dual-encoder
architecture to decouple acoustic and semantic tokens. In contrast, models like XCodec (Ye et al.,
2024) directly concatenate the two token types at the feature level. Meanwhile, SpeechTokenizer
and Mimi (Défossez et al., 2024) introduce a “semantic distillation” approach. It uses an SSL model
to guide the encoder of codec so that its discrete tokens carry both acoustic and semantic content in
the first codebook. With the development of these different representation methods, establishing a
fair and comprehensive evaluation becomes a significant challenge.
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Figure 2: The proposed AudioCodecBench framework. Users provide pre-trained codec and obtain
token-level outputs through encoding and quantization. Different types of tokens are input into
different evaluation task components for multi-dimensional task evaluation.

2.2 AUDIO TOKENIZATION FOR MLLM MODELING

Based on semantic and acoustic tokens, MLLMs explore different strategies to integrate audio (Xu
et al., 2025; Du et al., 2025; Zhang et al., 2023; Xie & Wu, 2024; Sugiura et al., 2025). The goal
is to compress audio into discrete tokens so that models can handle these tokens using predict next
token loss. Semantic tokens are more compact and closer to text distributions, making it easier
for MLLMs to model and align across modalities. By contrast, models like VALL-E (Wang et al.,
2023) rely on acoustic tokens; this token type achieves high fidelity in audio reconstruction, presents
significant modeling challenges in generative tasks. To address the challenge, some studies like Au-
dioLM (Borsos et al., 2023a) employ fusion token that balance semantic and acoustic. More recent
studies show that semantic-only approaches bring advantages for MLLMs. By relying on semantic
tokens, some models such as Qwen2.5-Omni (Xu et al., 2025), CosyVoice 3 (Du et al., 2025) and
LLAMA-OMNI (Fang et al., 2025) achieve strong performance in both understanding and gen-
erative tasks. These diverse studies demonstrate that semantic tokens offer significant advantages
in compression, semantic alignment, and cross-modal modeling, bridging audio and the reasoning
capabilities of text-based models.

2.3 SSL AND CODEC BENCHMARK

Evaluation of discrete audio representations presents a diverse challenge. SSL benchmarks like
SUPERB (wen Yang et al., 2021) and MARBLE (Yuan et al., 2023) evaluate representation perfor-
mance on downstream tasks in the domains of speech and music information retrieval, respectively.
HEAR (Turian et al., 2022) further extends the downstream tasks to multiple domains of speech, en-
vironment sounds and music. Similar to HEAR, ARCH (La Quatra et al., 2024) introduces diverse
datasets and offers a more extensible cross-domain evaluation framework than HEAR. However, a
common limitation of these benchmarks is that they focus on downstream tasks, ignoring other eval-
uation aspects such as audio reconstruction and LM perplexity. Other methods of evaluation aspects
like Code Drift (O’Reilly et al., 2025) evaluates the stability of multi-round reconstruction, while
Codec-SUPERB (Wu et al., 2024) evaluates reconstruction fidelity. DASB (Mousavi et al., 2024)
systematically probes discrete tokens in speech tasks.

To consolidate these diverse evaluation methods, researchers develop comprehensive toolkit like
VERSA (Shi et al., 2025), and compile survey (Mousavi et al., 2025) to integrate existing methods
within a unified framework. However, these evaluation methods typically evaluate the performance
of discrete tokens from diverse tasks. As a result, they don’t define the different information types
of semantic and acoustic, and the relationship between the different types and tasks remains unex-
plored. Therefore, there is an urgent need to bridge this gap.
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Table 1: Relevant parameters of the audio codecs and SSL models.

Model Sample
Rate #Codebooks Codebook

Size #Params Bitrate
(kbps)

Token
Rate

DAC 24kHz 8 1024 74.7M 6kbps 75
EnCodec 24kHz 8 1024 14.9M 6kbps 75

WavTokenizer 24kHz 1 4096 103M 0.48kbps 40
SpeechTokenizer 16kHz 8 1024 80.9M 4kbps 50

Mimi 24kHz 8 2048 39.4M 1.1kbps 12.5
XCodec 16kHz 8 1024 123M 4kbps 50

YuE 16kHz 8 1024 123M 4kbps 50
SemantiCodec 16kHz 2 8192 507M 2.6kbps 100

HuBERT 16kHz - - 94.4M - 50
Qwen2Audio 16kHz - - 636M - 25

This paper first establishes a suitable definition of “semantic” that must be strictly described by
text. Based on this, this paper further defines three different information types and compares the
performance of discrete tokens of these information types under different tasks. Through compre-
hensive experimental analysis, we explore these information types, providing insights to support the
design of more effective audio representations.

3 EVALUATION FRAMEWORK

3.1 OVERALL ARCHITECTURE

In the reconstruction task, we process an original audio signal through the encoder, quantizer, and
decoder pipeline to reconstruct waveform, and use metrics like Perceptual Evaluation of Speech
Quality (PESQ) (Rix et al., 2001), Short-Time Objective Intelligibility (STOI) (Taal et al., 2010),
Speaker Similarity (Spk-Sim), Virtual Speech Quality Objective Listener (ViSQOL) (Hines et al.,
2012) and Mel Spectrogram Distance in DAC (Kumar et al., 2024) to evaluate the codec’s recon-
struction performance; while using Word Error Rate (WER) and Character Error Rate (CER) to
evaluate semantic preservation in acoustic details. Spk-Sim is computed by extracting speaker em-
beddings from the ground-truth and reconstructed audio using a pre-trained speaker verification
model (Ravanelli et al., 2021), and then calculating the mean cosine similarity between the embed-
dings averaged over all evaluation samples. The codec with higher metric scores is considered to
have tokenization more focused on accurate audio reconstruction. We did not use a fixed bitrate
when evaluating the codec’s performance, as we consider this approach inappropriate. The
reason for this choice is described in detail in Section 4.1, “Reconstruction”. The evaluation metrics
of this experiment are all objective metrics.

The ID sensitivity experiment consists of two subtasks, as shown in the upper right section of the
downstream model in Figure 2. The first task is multi-round reconstruction, we use the output
of the (n)th round as the input for the (n + 1)th round. The second task is the temporal shift
stability experiment. We simulate signal phase shift by introducing millisecond-level time shifts
into the original audio, and reconstruct this shifted audio. We define ID sensitivity as the stability
of discrete tokens under noisy additions. For both subtasks, we calculate the unchanged rate of IDs
in the same codebook after the process to evaluate the representation’s robustness. Higher stability
indicates lower ID sensitivity, and conversely, lower stability indicates higher ID sensitivity.

For the perplexity (PPL) experiment, we extract the sequence of discrete IDs from the codec, then
train a small LM using the Cross-Entropy loss to predict next audio-only tokens. As shown in the
lower left section of the downstream model in Figure 2. We use the PPL of this LM as the evaluation
metric. A lower PPL indicates that the LM is more confident in this prediction, this pattern is more
stable, and the semantics are richer.

In the downstream probe model, we design two structures to evaluate the generalization of discrete
tokens through various downstream tasks. As shown in the lower right section of the downstream
model in Figure 2. The first is a lightweight network composed of SE-Blocks (Hu et al., 2019)
and depthwise separable convolutions (Chollet, 2017). This network compresses both the temporal
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Table 2: The tasks, datasets and evaluation metrics for the downstream probe.The following text
will use abbreviations to replace the full names of various tasks, datasets, and evaluation metrics.
Dataset-related GiantSteps Key: GS, Emomusic: EMO, MTG MoodTheme: MTGMT, VocalSet:
VST, NSynth: NS, MagnaTagATun: MTT, MTG Top50: MTGT, MTG Instrument: MTGI, Com-
mon Voice: CV, VocalSound: VSD. Metric-related ROC-AUC & PR-AUC: RA.

Audio Type Task Dataset Metric

Music

Genre Classification(GC) GTZAN (Tzanetakis & Cook, 2002) Accuracy
Key Detection(KD) GiantSteps Key (Knees et al., 2015) Accuracy

Emotion Detection(ED)
Emomusic (Soleymani et al., 2013) R2

Valence & R2
Arousal

MTG MoodTheme (Bogdanov et al., 2019) ROC-AUC & PR-AUC/AP
Vocal Technique Detection(VTD) VocalSet (Wilkins et al., 2018) Accuracy

Pitch Classification(PC) NSynth (Engel et al., 2017) Accuracy

Music Tagging(MT)
MagnaTagATun (Law et al., 2009) ROC-AUC & PR-AUC/AP

MTG Top50 (Bogdanov et al., 2019) ROC-AUC & PR-AUC/AP

Instrument Classification(IC)
NSynth (Engel et al., 2017) Accuracy

MTG Instrument (Bogdanov et al., 2019) ROC-AUC & PR-AUC/AP
Singer Identification(SI) VocalSet (Wilkins et al., 2018) Accuracy

Speech Automatic Speech Recognition(ASR) Common Voice (Ardila et al., 2020) WER,CER
Emotion Detection(ED) MELD (Poria et al., 2019) Accuracy

Sound Vocal Sound Classification(VSC) VocalSound (Gong et al., 2022) Accuracy
Environmental Sound Classification(ESC) ESC-50 (Piczak, 2015) Accuracy

and feature dimensions of the embedding after quantization and then makes predictions using task-
specific heads. For the ASR task, we design a different approach to measure the alignment between
the representation and text. The extracted discrete IDs are fed through an embedding layer into a
Conformer network (Gulati et al., 2020), and the model is trained end-to-end using the Connectionist
Temporal Classification (CTC) loss (Graves et al., 2006).

3.2 AUDIO FEATURE TYPES

We review existing definitions of audio representations (acoustic and semantic), but find these def-
initions fail to cover the current diverse features. Therefore, we propose that a semantic feature
must be strictly describable by text. On this basis, we divide audio features into three categories.

1) Acoustic feature: The discrete feature absolutely cannot be described by text. These features
originate from codecs optimized for reconstruction and represent the quantized encoding of acoustic
details.

2) Semantic feature: The discrete feature must be strictly defined by text. They aim to capture
abstract information from audio.

3) Semantic-Acoustic fused feature: The discrete feature can be partially described by text. It is
fused with both strictly text-describable semantics and absolutely text-indescribable acoustic
information.

For the same audio clip of “Hello”, different tokenizations provide different representations. An
acoustic feature stream encodes text-indescribable details such as background noise, vocal fold vi-
bration, or room reverberation, etc. A semantic feature stream instead produces tokens that corre-
spond directly to the text-describable content, capturing the word “Hello” itself and the emotion of
the speaker, among others. A semantic-acoustic fused feature like the voice of a specific speaker,
simultaneously contains both the strictly text-describable information “Hello” and absolutely text-
indescribable acoustic information like unique acoustic signature and so on.

4 EXPERIMENTS AND ANALYSIS

We evaluate the performance of eight codecs and two SSL models. Table 1 provides a summary of
these models, detailing the key technical specifications such as sample rate and token rate. We use
the first 8 codebooks to evaluate the performance of the multi-codebook codecs.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: The percentage of the same IDs in each codebook of the codecs after multi-round recon-
struction, cb stands for codebook.

Table 3: Reconstruction result of difference codecs in LibriTTS test-other and GTZAN test datasets.

Codec PESQ↑ Spk-Sim↑ WERGT ↓ WERREC↓ CERGT ↓ CERREC↓ STOI↑ ViSQOL↑ Mel distance↓
LibriTTS test-other / GTZAN test

DAC 3.69 / 2.66 0.965 / - 0.155 / - 0.202 / - 0.09 / - 0.125 / - 0.94 / 0.86 4.51 / 4.40 0.21 / 0.73
EnCodec 3.21 / 2.27 0.919 / - 0.155 / - 0.198 / - 0.09 / - 0.114 / - 0.93 / 0.85 4.37 / 4.25 0.31 / 0.78
Mimi 2.77 / - 0.928 / - 0.155 / - 0.287 / - 0.09 / - 0.173 / - 0.88 / - 3.84 / - 0.38 / -
SemantiCodec 2.64 / 1.32 0.907 / - 0.155 / - 0.318 / - 0.09 / - 0.195 / - 0.86 / 0.60 4.04 / 4.19 0.32 / 0.98
WavTokenizer 2.17 / 1.14 0.743 / - 0.155 / - 0.494 / - 0.09 / - 0.325 / - 0.83 / 0.49 3.43 / 3.84 0.68 / 1.15
SpeechTokenizer 2.97 / - 0.924 / - 0.155 / - 0.216 / - 0.09 / - 0.120 / - 0.89 / - 4.22 / - 0.25 / -
XCodec 3.23 / 1.85 0.942 / - 0.155 / - 0.185 / - 0.09 / - 0.106 / - 0.91 / 0.76 4.34 / 4.35 0.24 / 0.91
YuE 3.17 / 1.84 0.938 / - 0.155 / - 0.195 / - 0.09 / - 0.113 / - 0.90 / 0.75 4.33 / 4.35 0.25 / 0.90

4.1 RECONSTRUCTION

We conduct reconstruction experiment on the LibriTTS test-other (Zen et al., 2019) and GTZAN
test for speech and music reconstruction evaluation, respectively. In Table 3, the results are rounded
to the required precision for each metric. Since Mimi and SpeechTokenizer are not trained on music
datasets, they are not evaluated on music dataset experiments. We find that many codecs are usually
evaluated at a fixed bitrate. This allows a fair comparison of audio quality when only compression
efficiency is considered. However, we think this method is not fully reasonable. For LMs modeling
tasks, the key is whether a codec can produce stable and predictable token sequences. As long as
the token sequences generated by the codec have a fixed pattern with same semantic information
so that this pattern can be effectively learned by LMs, the codec can be considered to have good
performance in the context of LMs modeling. Therefore, relying only on a fixed bitrate to evaluate
a codec’s quality fully reflect its performance in LMs modeling tasks.

On the speech dataset, acoustic codecs such as DAC and EnCodec achieve the highest reconstruction
fidelity. Codecs that integrate semantics like XCodec and YuE demonstrate the suboptimal perfor-
mance, while WavTokenizer performs the worst. The result suggests that semantics may affect the
reconstruction of acoustic details. Although WavTokenizer’s discrete tokens are acoustic, its recon-
struction quality is weak. In order to balance compression bitrate and reconstruction quality, small
codebook size and few codebooks limit the variety of combinations for the discrete tokens,
which weakens the ability of these tokens to capture acoustic details.

Most reconstruction metrics are lower on the music dataset compared to the speech dataset. This
is because music contains more intricate harmonic structures and richer dynamic variations than
speech. Therefore, music is more difficult to model and reconstruct with high-fidelity. Notably, the
performance of WavTokenizer and SemantiCodec decreases significantly. This result further high-
lights the limitations of small codebook size and the single or dual-codebook quantization strategies.
Small codebook size and few codebooks limit the possibility of token combinations to represent
the acoustic details of music, thus reducing reconstruction fidelity. In particular, WavTokenizer
exhibits poor modeling capabilities for music, resulting in a decrease in subjective listening quality
after reconstruction.
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Figure 4: The proportion of identical IDs in each codebook of the codecs after time shift processing
and reconstruction.

Table 4: PPL results of different codecs in Emilia-EN and Jamendo datasets, cb stands for codebook.

Codec ppl↓ cb1 ppl cb2 ppl cb3 ppl cb4 ppl cb5 ppl cb6 ppl cb7 ppl cb8 ppl
Emilia-EN / Jamendo

DAC 247 / 194 21 / 29 147 / 123 218 / 152 315 / 213 396 / 271 483 / 353 570 / 413 628 / 474
EnCodec 76 / 141 15 / 18 33 / 63 59 / 111 89 / 170 111 / 226 138 / 287 159 / 337 173 / 376
WavTokenizer 105 / 38 105 / 38 - / - - / - - / - - / - - / - - / - - / -
XCodec 30 / 48 10 / 20 13 / 20 20 / 32 31 / 51 42 / 65 51 / 75 62 / 87 71 / 100
YuE 29 / 46 9 / 18 16 / 29 20 / 30 29 / 48 39 / 60 51 / 75 55 / 83 54 / 76
SpeechTokenizer 14 / - 2 / - 6 / - 12 / - 18 / - 22 / - 25 / - 29 / - 31 / -
Mimi 127 / - 9 / - 58 / - 148 / - 185 / - 229 / - 257 / - 279 / - 299 / -
SemantiCodec 8 / 16 1 / 1 82 / 272 - / - - / - - / - - / - - / - - / -

4.2 ID SENSITIVITY

We evaluate ID sensitivity through multi-round (n = 10) reconstruction and time shift task. We
remove all operations that could introduce padding-related errors, ensuring that the sequences from
each experimental round are strictly aligned along the time axis. The results are shown in Figure 3.
Detailed results for different codecs are shown in Appendix C. After multi-round reconstruction,
the codebook IDs of all codecs shift compared to the first round. Codecs focusing on acoustic re-
construction show higher ID stability (lower slope of the decrease rate of the same ID). The result
indicates that they can accurately reconstruct the signal, including some possible noise. In contrast,
codecs that integrate semantics exhibit lower ID stability (higher slope). The result shows that these
codecs are less sensitive to fitting noise during reconstruction and focus more on ensuring seman-
tic. Although EnCodec generates tokens that are mainly acoustic, its multi-round reconstruction
performance is similar to the codecs integrating semantics.

Inspired by Code Drift (O’Reilly et al., 2025), we select 2ms as the experimental setting for time
shift task, the results are shown in Figure 4. Detailed results for different codecs are shown in Ap-
pendix D. The result demonstrates that the token sequences of acoustic codecs are sensitive to tem-
poral changes, as they focus on reconstruction and attempt to encode all acoustic details, including
slight timing shifts. And codecs that integrate semantics focus more on stable content features, thus
demonstrating greater robustness to slight timing shifts. Codecs that integrate semantics outper-
form the acoustic codecs on the same ID ratio metric, which indicates that semantic-dominant
tokens are more robust to slight timing shifts.

4.3 PERPLEXITY

We train a 100M LM using Qwen2 architecture (Chu et al., 2024) from scratch to evaluate the
modeling efficiency of codecs via validation set perplexity (PPL). For multi-codebook codecs, we
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Table 5: The results of probe tasks by the codecs across different music datasets.

Task GC ED MT IC KD VTD PC SI
Dataset GTZAN EMO MTGMT MTT MTGT NS MTGI GS VST NS VST
Metrics Acc↑ R2

A↑ R2
V↑ AP↑ RA↑ AP↑ RA↑ AP↑ RA↑ Acc↑ AP↑ RA↑ Acc↑ Acc↑ Acc↑ Acc↑

DAC 0.58 0.47 0.06 0.08 0.65 0.20 0.79 0.14 0.69 0.60 0.11 0.64 0.09 0.38 0.47 0.42
EnCodec 0.57 0.47 0.07 0.06 0.64 0.18 0.76 0.14 0.70 0.54 0.10 0.62 0.10 0.30 0.55 0.30
WavTokenizer 0.42 0.46 0.07 0.06 0.63 0.17 0.74 0.14 0.70 0.54 0.11 0.64 0.09 0.29 0.44 0.13
SemantiCodec 0.70 0.51 0.32 0.10 0.72 0.32 0.88 0.23 0.80 0.66 0.15 0.72 0.34 0.45 0.76 0.34
XCodec 0.66 0.55 0.14 0.10 0.71 0.32 0.87 0.22 0.78 0.64 0.16 0.71 0.46 0.57 0.91 0.54
YuE 0.67 0.57 0.16 0.10 0.71 0.32 0.87 0.19 0.76 0.62 0.13 0.70 0.45 0.59 0.90 0.52

Table 6: The results of probe tasks by the codecs and SSL models across different speech datasets.

Task ASR VSC ESC ED
Dataset CV VSD ESC-50 MELD
Metrics WER↓ CER↓ Acc↑ Acc↑ Acc↑
DAC 0.53 0.23 0.54 0.33 0.48
EnCodec 0.50 0.21 0.57 0.28 0.48
WavTokenizer 0.58 0.29 0.52 0.14 0.48
SemantiCodec 0.49 0.20 0.72 0.62 0.48
Mimi 0.44 0.17 0.83 0.34 0.48
SpeechTokenizer 0.47 0.19 0.78 0.67 0.50
XCodec 0.47 0.19 0.73 0.64 0.49
YuE 0.47 0.19 0.78 0.64 0.52
HuBERT - - 0.88 0.53 0.50
Qwen2Audio - - 0.95 0.98 0.59

apply a parallel evaluation (Yang et al., 2025) to compute PPL for each codebook. To ensure a
fair comparison, the PPL values are normalized, and the final PPL is calculated using a mean loss.
Because PPL scores are directly influenced by the codebook size; larger codebooks typically result
in higher PPL. Therefore, we normalize all values to a reference codebook size of 1024. The formula
is as follows:

PPL =
exp(LCE)

Scb/1024

where LCE is the average cross-entropy loss calculated over the entire token sequence, and Scb
denotes the codec codebook size. During training, the batch size per device is 10. The audio
is cliped to 15 seconds. We adopt the AdamW optimizer (betas = 0.8/0.99, eps = 1e − 5,
weight decay = 0.01) at a base learning rate of 1e − 4. The schedule uses LambdaLR with a
cosine decay: the warm-up steps is 50, linearly increasing the rate from 0 to 1e − 4. Afterward, it
follows a cosine decay, reaching a final rate of about 0.99× 1e− 4. The training runs for 100k steps
on 8 NVIDIA A6000 GPUs using the Emilia-EN (He et al., 2024) and Jamendo datasets. Table 4
presents the results, rounded to the nearest integer. Since Mimi and SpeechTokenizer are not trained
on music datasets, they are not evaluated on music dataset experiments.

On the speech dataset, codecs that integrate semantics achieve better results than acoustic codecs.
This result demonstrates that semantic tokens are easier for LMs to model. Analysis of the multi-
codebook codecs’ results shows that earlier codebooks have lower PPL. Although EnCodec mainly
generates acoustic tokens, it achieves unexpectedly low PPL. Mimi uses a semantic teacher to guide
its first quantizer, but it fails to achieve the performance of other codecs that integrate semantics.
The exact reasons behind these unusual results are still unknown and need further exploration.

The PPL is higher on the music dataset compared to the speech dataset, the finding that is consistent
with human intuition. This is because music involves multiple instruments and complex temporal
structures. These factors create a larger variety of possible token combinations, making their distri-
bution much sparser than in speech. However, the PPL values for DAC and WavTokenizer on the
music dataset are unexpectedly lower than on the speech dataset. We speculate that this is because
DAC and WavTokenizer were trained on the Jamendo dataset but not on the Emilia-EN dataset, so
their PPL results are different from other codecs.
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4.4 PROBE

In the downstream probe tasks, to ensure fair results, we train four probe types under identical com-
putational resources. All probes used the AdamW optimizer (Loshchilov & Hutter, 2019) with a base
learning rate of 1e−4 (betas = 0.8/0.99, eps = 1e−5, weight decay = 0.01). We employ a cosine
learning rate scheduler with a 200 step warm-up. For task-specific setups, the ASR probe utilizes a
three-layer Conformer, employs CTC loss with greedy decoding, and uses Speech2Text (Ott et al.,
2019; Wang et al., 2020) as the text tokenizer. The Multilabel, Multiclass, and Regression probes
utilized BCEWithLogitsLoss, CrossEntropyLoss, and MSE loss, respectively. Tasks, datasets, and
evaluation metrics are shown in Table 2. Detailed introductions are shown in Appendix F.

The results of the music probe task are shown in Table 5. The visualized result is shown in Figure
22 in Appendix E. In the ED task, SemantiCodec’s performance on Valence prediction is the best.
Arousal is more strongly associated with acoustic features, while Valence is more strongly
associated with semantic content (Asgari et al., 2014). This is consistent with our results. Tasks
such as MT, GC and KD involve high-level musical structures, SemantiCodec shows advantages in
these tasks. Meanwhile, XCodec and SemantiCodec also achieved better performance in IC and
PC tasks, which closely related to symbolic music information. These tasks share the common
feature that their labels (e.g., “Pop”, “A major”) can be strictly described by text or symbols, with
a correspondence between musical content and labels. We refer to these tasks as semantic-driven
tasks. Therefore, in these tasks, semantic codecs show better performance than acoustic codecs.
These results also validate our definition of “semantic”, proving that introducing semantics can
effectively capture high-level, symbolizable information in music.

The results of the speech and sound probe tasks are shown in Table 6. The visualized result is shown
in Figure 21 in Appendix E. The SSL models achieve the best performance. Codecs that integrate
semantics demonstrate the suboptimal performance. Acoustic codecs perform the worst. WavTok-
enizer achieves the lowest performance. In the ASR task, codecs that explicitly introduce semantics
generally achieve better WER/CER scores than acoustic codecs. In the VSC task, codecs that inte-
grate semantics show outstanding performance. It further suggests that timbre information may
be effectively retained and utilized in representations that contain both semantics and acous-
tics. In the ED task, the performance of different codecs is relatively balanced. This suggests that
the emotion-related features required for this specific task can be fully fitted by codecs.

In order to explore the impact of various metrics on LM modeling, we calculate the Pearson corre-
lation coefficients between various task metrics and PPL. We aim to reveal which metrics or audio
features are more beneficial for LM modeling. The results are shown in Appendix B, Table 7.

5 CONCLUSION

This paper presents a comprehensive, fair and highly reusable evaluation framework for codecs. We
first redefine “acoustic” and “semantic” features: semantic features must be strictly described by
text. Based on this classification, our benchmark systematically evaluates the performance of differ-
ent discrete tokens across multiple tasks, and breaking the limitation of measuring semantics through
ASR performance. Experimental results not only show the potential applications of various repre-
sentations in MLLMs but also point to a new research direction: training better audio-semantic
models by aligning text modality. We are committed to providing an open and fair benchmark and
hope to attract researchers to participate, jointly advancing the field of audio representation learning.

6 REPRODUCIBILITY STATEMENT

We provide the complete codebase and the processed dataset download links in the supplementary
materials, including all pretrained weights and dataset processing scripts used in the experiments.
We also supply corresponding documentation in both Chinese and English, detailing how to initialize
new codecs and run the evaluation tasks. Our experimental setup ensures high reproducibility, and
the code is highly extensible.
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A THE USE OF LARGE MANGUAGE MODEL (LLMS)

A large language model (e.g., ChatGPT) is used only for language polishing, including grammar,
spelling, and style adjustments. The research topic, methodology, experiments, analysis, and sub-
stantive writing are entirely carried out by the authors. The authors take full responsibility for the
entire content of the paper.

B PEARSON CORRELATION COEFFICIENT

PPL is positively correlated with CTC probe task metrics and very weak correlated with recon-
structed WER/CER metrics, which demonstrates that tokens rich in semantic content are easier for
LMs to model. However, it shows a negative correlation with objective acoustic reconstruction met-
rics, indicating that overfitting acoustic details may increase the difficulty of LM modeling. The ID
sensitivity metrics show a positive correlation with PPL, which indicates that introducing semantics
can bring more stable ID patterns, thereby benefiting the modeling of LMs.

Table 7: Pearson correlation coefficient between PPL and metrics from various evaluation tasks.

Task Dataset Type Metric r

Reconstruction Speech

WERREC 0.06
CERREC 0.1

PESQ -0.35
Spk-Sim -0.05

STOI -0.35
VISQOL -0.06

Mel distance -0.07

ID sensitivity Speech MRC 0.52
OS 0.44

Probe

Speech

WERCTC 0.37
CERCTC 0.36
VSCACC 0.55
ESCACC 0.67
EDACC 0.47

Music

GCACC 0.2
EDR2

A(EMO) 0.5
EDR2

V(EMO) 0.65
EDAP (MTGMT ) 0.43
EDRA(MTGMT ) 0.58

MTAP (MTT ) 0.59
MTRA(MTT ) 0.49

MTAP (MTGT ) 0.68
MTRA(MTGT ) 0.73

ICACC(NS) 0.39
ICAP (MTGI) 0.65
ICRA(MTGI) 0.71

KDACC 0.62
VTDACC 0.41
PCACC 0.56
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C MULTI-ROUND RECONSTRUCTION RESULTS OF DIFFERENT CODECS

Figure 5: Multi-round Reconstruction results of DAC.

Figure 6: Multi-round Reconstruction results of EnCodec.

Figure 7: Multi-round Reconstruction results of Mimi.
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Figure 8: Multi-round Reconstruction results of SemantiCodec.

Figure 9: Multi-round Reconstruction results of SpeechTokenizer.

Figure 10: Multi-round Reconstruction results of XCodec.
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Figure 11: Multi-round Reconstruction results of WavTokenizer.

Figure 12: Multi-round Reconstruction results of YuE.
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D AUDIO TIME SHIFT RESULTS OF DIFFERENT CODECS

Figure 13: Audio Time Shift results of DAC.

Figure 14: Audio Time Shift results of EnCodec.

Figure 15: Audio Time Shift results of Mimi.
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Figure 16: Audio Time Shift results of SemantiCodec.

Figure 17: Audio Time Shift results of SpeechTokenizer.

Figure 18: Audio Time Shift results of XCodec.
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Figure 19: Audio Time Shift results of WavTokenizer.

Figure 20: Audio Time Shift results of YuE.
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E VISUALIZATION OF MUSIC, SPEECH AND SOUND PROBE TASK RESULTS

Figure 21: Visualization for the speech and sound probe tasks.

Figure 22: Visualization for the music probe tasks.
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F INTRODUCTION TO DOWNSTREAM PROBE TASKS AND RELATED DATASETS

We integrate a comprehensive dataset consisting of 17 sub-datasets from 12 audio collections
(mostly derived from the MARBLE benchmark), covering major audio categories of speech, en-
vironmental sound, and music. Based on this dataset, we conduct 11 different types of probe tasks
to examine the performance of different codec representations across different audio information
dimensions, such as emotion, linguistic content, acoustic scene, and speaker identity.

Genre Classification (GC): This task aims to classify music audio into predefined genres (e.g.,
rock, pop, classical). We use the GTZAN dataset and adopt Accuracy (Acc) as the performance
metric. Additionally, we utilize MTG-Genre, a subset of MTG-Jamendo. Considering its longer
track durations, we take the first 150 seconds of each track, segment them into 10-second clips,
and stack them to serve as the input for the codec. This approach balances computational resources
with the evaluation requirements. We use the Area Under the ROC Curve (ROC-AUC) and Average
Precision (AP) to evaluate the representation’s ability to encode genre information.

Key Detection (KD): The goal of key detection is to predict the musical key of a piece of music,
which is defined by its pitch center and mode (e.g., C major, a minor). We use the GiantSteps Key
dataset, a collection of electronic dance music containing 24 major and minor keys. We consider
the musical key as a global feature of the audio, processing it by stacking 10-second segments as
the codec’s input. We then use Acc as the evaluation metric to assess the model’s ability to capture
information about the musical structure.

Emotion Detection (ED): This task focuses on identifying the emotional state or dimension con-
veyed by the audio (e.g., happiness, sadness, anger). We integrate several datasets for this purpose:
for the Valence and Arousal labels provided by the EmoMusic dataset, we employ a regression
model for prediction and use the R2 metric for evaluation. This helps assess the semantic informa-
tion (high Valence) and acoustic information (high Arousal) embedded in the codec features. For
the MTG MoodTheme dataset, which is a multi-label classification task with 59 emotion categories,
we use ROC-AUC to evaluate the representation’s ability to encode complex musical emotion in-
formation. Finally, using the MELD conversational speech dataset, we test the codec’s capability to
distinguish among seven basic emotions in a realistic context, which is evaluated with Acc.

Vocal Technique Detection (VTD): This task aims to identify specific vocal techniques used by
singers in musical compositions. It is a relatively uncommon, fine-grained identification task that
focuses on the performance-level details. The main publicly available dataset is VocalSet, which
contains recordings of 17 different vocal techniques performed by 20 professional singers, with
each audio segment representing one technique category. We use Acc as the metric to evaluate the
codec’s ability to distinguish these subtle acoustic features.

Pitch Classification (PC): This task aims to classify the main pitch content of a musical audio clip,
with the range corresponding to MIDI note numbers 0 to 127 on the chromatic scale. We use the
NSynth dataset, which consists of a large number of 4-second monophonic recordings. Due to its
monophonic nature, this task can be viewed as a 128-class fine-grained pitch classification prob-
lem. It is designed to evaluate the accuracy of the codec’s representation of fundamental frequency
information, with performance assessed using Acc.

Music Tagging (MT): This is a comprehensive evaluation task in the music domain that requires the
model to assign multiple descriptive tags to music clips. These tags may cover various types, such
as genre, instrument, and mood. We use the MagnaTagATune and MTG Top50 datasets. Following
the MARBLE processing principles, we focus on our evaluation the model’s ability to predict the
Top 50 most frequent tags within these datasets. Given its multi-label nature, the final performance
is measured by the ROC-AUC and the PR-AUC/AP. These metrics are used to evaluate the overall
capability of the features in representing musical information.

Instrument Classification (IC): This task aims to identify one or more musical instruments present
in an audio recording. In the MARBLE classification system, this is considered an Acoustic-Level
task, and its results evaluate the codec’s ability to represent fundamental acoustic features. For eval-
uation, we use the NSynth dataset, which contains 11 single-instrument categories and is evaluated
using Acc. We also use the MTG Instrument dataset, a multi-label collection with 41 labels, which
is evaluated using ROC-AUC and PR-AUC/AP.
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Automatic Speech Recognition (ASR): This task focuses on transforming speech signals from
audio recordings into textual content. We use the Common Voice dataset, which contains approxi-
mately 26119 hours of recordings, including a variety of demographic metadata such as age, gender,
and accent. Among these, about 17127 hours of validated data cover 104 languages, with each
language providing the necessary training, development, and test sets required to build a speech
recognition model. Word Error Rate (WER) and Character Error Rate (CER) are used as the evalu-
ation metrics.

Singer Identification (SI): This task aims to identify the singer’s identity from a short music record-
ing. For this task, we use the VocalSet dataset, a collection containing audio from 20 different
singers. We follow the MARBLE-recommended dataset partition (training:validation:test = 12:8:5),
and ensure that all singer categories are evenly distributed. Finally, Acc is used to evaluate the
codec’s ability to distinguish individual vocal features.

Vocals Sound Classification (VSC): This task aims to classify various non-linguistic sounds made
by humans. We use the VocalSound dataset, which contains six common non-speech human sounds:
laughter, sighs, coughs, throat clearing, sneezes, and sniffs. Since the audio clips in the dataset have
non-uniform lengths, we pad all audio to a uniform length before inputting them into the codec. The
evaluation for this task is conducted using Acc.

Environmental Sound Classification (ESC): This task focuses on identifying sounds from the
environment. We use the ESC-50 dataset, which is a labeled collection of 2000 environmental audio
recordings consisting of 5-second-long recordings divided into 50 semantic categories. Since the
original dataset does not provide an official standard split, we use a 9:1 ratio to self-partition it into
a training set and a test set, with Acc as the metric for the evaluation of this dataset.
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