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Abstract

Deep Reinforcement Learning (RL) has shown remarkable
success in robotics with complex and heterogeneous dynam-
ics. However, its vulnerability to unknown disturbances and
adversarial attacks remains a significant challenge. In this pa-
per, we propose a robust policy training framework that in-
tegrates model-based control principles with adversarial RL
training to improve robustness without the need for exter-
nal black-box adversaries. Our approach introduces a novel
Hamilton-Jacobi reachability-guided disturbance for adver-
sarial RL training, where we use interpretable worst-case or
near-worst-case disturbances as adversaries against the ro-
bust policy. We evaluated its effectiveness across three dis-
tinct tasks: a reach-avoid game in both simulation and real-
world settings, and a highly dynamic quadrotor stabilization
task in simulation. We validate that our learned critic network
is consistent with the ground-truth HJ value function, while
the policy network shows comparable performance with other
learning-based methods.

Introduction
Deep Reinforcement Learning has emerged as a powerful
tool in robotics, particularly within highly dynamic environ-
ments(Lyu and Chen 2020; Zhang et al. 2024; Cheng et al.
2024; Wang et al. 2023). However, its trained policies may
fail when the simulation to real-world gap is large due to
modeling errors and unknown disturbances (Xu et al. 2022;
Huang et al. 2023). Consequently, developing a Robust RL
(RRL) policy is crucial to prevent catastrophic policy fail-
ures during deployment(Molchanov et al. 2019).

To address the issues of model mismatches and unfore-
seen disturbances, recent advances in RRL focus on max-
imizing worst-case performance across various uncertain-
ties. One widely recognized approach within RRL is Ro-
bust Adversarial Reinforcement Learning (RARL) (Pinto
et al. 2017) which mitigates environmental mismatches by
treating them as adversarial perturbations. RARL concep-
tualizes the problem as a two-player zero-sum game, in
which the protagonist aims to develop a robust policy across
different environments, while the adversary introduces the
perturbation policy to challenge the protagonist. However,
such learning-based adversarial agents often lack theoretical
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Figure 1: HJARL computes the HJ value functions offline
and uses them to generate adversarial disturbances during
the online training. The trained robust policy is then de-
ployed to handle various disturbances.

interpretability and may generate implausible disturbances
(Brunke et al. 2022). In this paper, we aim to develop a
robust adversarial RL framework that enables more inter-
pretable and verifiable solutions for adversary and protago-
nist policies by leveraging robust control theory, which also
achieves comparable performances with state-of-the-art un-
der various disturbances.

Hamilton-Jacobi (HJ) reachability analysis is a robust op-
timal control method grounded in game theory. It treats dis-
turbances as adversaries and provides robust minimax opti-
mal policies for both agents, regardless of linear or nonlinear
dynamics (Chen and Tomlin 2018). HJ reachability solves
a differential game using the Hamilton-Jacobi-Isaacs (HJI)
equation. The HJ value function has proven to be the viscos-
ity solution to this HJI equation and can be used to calcu-
late optimal controls and disturbances for opposing parties
(Fisac et al. 2015). As a model-based approach, HJ reacha-
bility offers physically interpretable protagonist actions and
adversarial disturbances. Its robustness is demonstrated by
the guaranteed outcomes when initial states lie within a spe-
cific region of the value function. However, due to compu-
tational limitations, accurate solutions to the HJ reachability
become intractable if the state space is higher than six di-
mensions (6D) (Bui et al. 2022). To mitigate this curse of
dimensionality issue, we utilize the nominal dynamics for
the HJ computation to circumvent the full high-dimensional



dynamics and focus on low-dimensional tractable solutions
instead of using learning-based approximation tools.

In this paper, we propose a novel method HJARL, short
for Hamilton-Jacobi-guided Adversarial RL training as
shown in Fig.1. Our method differs from other learning-
based robust adversarial RL methods, opting to generate ad-
versarial disturbances through HJ reachability directly in-
stead of learning adversarial policy networks. By leverag-
ing nominal dynamical systems, we compute solvable HJ
value functions offline in stage 1. This enables the gen-
eration of worst-case or near-worst-case disturbances dur-
ing online training (stage 2), thus improving policy robust-
ness. To smooth the learning process, we utilize the Boltz-
mann distribution to gradually increase the strength of the
adversary to avoid overly strong adversaries in the initial
training phase. The model-based nature of HJ reachability
guarantees that the generated adversarial actions stay within
a physically feasible bound. HJARL obtains a critic net-
work that aligns with the HJ value function, providing an
approximation to the HJ guaranteed reachable region, and
achieves comparable task performances with other learning-
based methods. It also requires less parameter tuning and
achieves faster convergence than training adversarial policy
networks. Our contributions are as follows:

1. Propose a novel method to obtain robust control poli-
cies that integrates the adversarial RL framework with
HJ reachability using nominal dynamical systems.

2. Demonstrate the robustness and the consistency to the
HJ reachability analysis on the low-dimensional dynam-
ical system and achieve comparable task performances
against other baseline methods on the high-dimensional
dynamical system.

3. Validate our robust control policy in a real-world one vs.
one reach-avoid game using TurtleBot3 robots.

Related Work
Robust Adversarial RL. Motivated by H∞ control, pio-
neering works by (Morimoto and Doya 2005; Pinto et al.
2017; Oikarinen et al. 2021) introduced the concept of
RARL which trains robust control policies against learned
adversarial disturbances within the game theory framework.
They formulate zero-sum Markov games as a Markov De-
cision Process (MDP)(Perolat et al. 2015; Puterman 1990),
and generally learn a universal function approximator to ap-
proximate adversarial policies. A range of works have been
proposed to address the limitations of the RARL frame-
work. Pan et al. proposed a risk-averse RARL algorithm
with a risk-averse protagonist and risk-seeking adversary to
account for the probability of catastrophic events. Zhang,
Hu, and Basar demonstrated that RARL cannot guarantee
training stability or convergence, even in linear quadratic
cases. Reddi et al. proposed an entropy-regularization-based
RARL method to simplify the saddle point optimization of
the original algorithm. To address the problem that employ-
ing a single adversarial network could lead to biased adver-
sary generation, Vinitsky et al. advocated the use of multi-
ple adversarial networks along with a performance ranking
system to ensure more effective training of robust policies.

Rather than formulating adversarial training as a zero-sum
game, Huang et al. models RRL training as a Stackelberg
game, where the adversarial agent is adaptively regularized
to improve the stability of the training. Although these meth-
ods have shown promising results under the RL framework,
they lack a physically interpretable analysis of the adversary,
and the trade-off between training convergence and robust-
ness still remains challenging.

Hamilton-Jacobi Reachability. H∞-control theory was
first proposed for the design of the worst-case disturbance
controller considering the linear dynamical system in the
frequency domain (Zames 1981; Francis 1987; Aliyu 2011).
Then, Doyle et al.; van der Schaft; van der Schaft extended
the H∞-control theory to nonlinear dynamical systems in
the state-space domain, and this resulting minimax opti-
mization problem naturally connects to game theory and dif-
ferential game (Başar and Olsder 1998; Başar and Bernhard
2008). HJ reachability analysis is a model-based robust op-
timal control method under the framework of differential
games (Chen and Tomlin 2018). (Gong and Herbert 2024;
Yang and Bhounsule 2024; Wang, Borquez, and Bansal
2024) provide robust control frameworks grounded in the HJ
value function and the corresponding Backward Reachable
Tubes (BRT). Due to the curse of dimensionality, numerical
solutions to HJ reachability are limited to 6D problems us-
ing the latest toolbox (Bui et al. 2022). To circumvent this
constraint, Chen, Herbert, and Tomlin introduced a dimen-
sionality reduction technique. In addition to these numeri-
cal computation methods, researchers have used neural net-
works to approximate the HJ value function. Kai-Chieh et al.
utilized a time-discounted Safety Bellman Equation with ad-
versarial disturbances and built a new scheme to provide cer-
tified safe actions (Fisac et al. 2019; Hsu, Nguyen, and Fisac
2023). Somil et al. proposed the DeepReach method that
uses sinusoidal networks as a partial differential equation
solver to approximate the HJ value function after long offline
training (Bansal and Tomlin 2021). Although these learning-
based approximations can be used for higher-dimensional
problems, their correctness and accuracy are hard to verify.

Unlike previous work on adversarial training, HJARL
provides a physically theoretical bound for the disturbance,
generating the worst or near-worst adversarial disturbances
incrementally during training. This approach also provides
an interpretable viewpoint on the robustness of the learned
critic network compared to previous methods while achiev-
ing comparable task performances.

Preliminaries
Hamilton-Jacobi Reachability Analysis
HJ reachability analysis constitutes a model-based approach
to robust optimal control. The following ordinary differen-
tial equations govern the nominal dynamical system:

ẋ = f(x, u, d), x(0) = x0 (1)

where x ∈ Rn is the state we use for the HJ value func-
tion computation, f represents the nominal dynamical sys-
tem, which may either encompass the complete dynamics or
only the partial dynamics relevant to the states of interest,



particularly in cases where computational intractability is a
concern, u ∈ U is the control input, d ∈ D is the disturbance
to the system, and x0 is the initial state. The sets U and D
are the sets of measurable functions.

HJ reachability analysis resides at the intersection of opti-
mal control and differential games, enabling adversarial par-
ties in a minimax game to achieve their optimal control ob-
jectives respectively (Chen and Tomlin 2018). In our setting,
we refer to the disturbance of the control system as the ad-
versary in a general differential game. The goal of the con-
trol input is to push the system to the target set R. The target
set R can then be defined by an implicit surface function
l(x) : Rn → R such that R = {x ∈ Rn | l(x) ≤ 0} using
the level set method. Similarly, the avoid setA that stands for
the constraints can also be formulated by the function g(x) :
Rn → R such that A = {x ∈ Rn | g(x) > 0}. Given these
expressions, let the value function VHJ : Rn× [−T, 0]→ R
be the viscosity solution to the HJI partial differential equa-
tion within time [−T, 0] (Crandall and Lions 1983):

max{min

{
∂VHJ

∂t
+H (x, p) , l(x)− VHJ(x, t)

}
,

g(x)− VHJ(x, t)} = 0, t ∈ [−T, 0]
(2)

where the optimal Hamiltonian H is calculated as:

H(x, p) = min
u∈U

max
d∈D

pT f(x, u, d)

where p = ∂VHJ

∂x . If the avoid set A does not exist, the g(x)
can be set to negative infinite. With the solved value function
VHJ , one can construct the BRT where the value of the state
is negative. Starting from the BRT, the agent will reach the
target set under optimal control regardless of the disturbance
within the time interval.

Since there are no general analytical solutions for Eq.(2)
mostly, one must rely on numerical solutions. These meth-
ods hinge on discretizing the state space and employing
dynamic programming iterations. Consequently, computa-
tional and spatial complexity grows exponentially with the
expansion of state quantities. Numerical computation tools
like the OptimizedDP (Bui et al. 2022) leverage contempo-
rary computational capabilities to effectively tackle Eq. (2)
with grid resolutions of reasonable quality, extending to six
dimensions.

If we take the time interval T → ∞, we will obtain con-
trol policies that are independent of the time t. Then, the
optimal control and the worst disturbance can be calculated
as (Huang et al. 2011):

u∗(x) = argmin
u∈U

max
d∈D

p(x)⊤f(x, u, d)

d∗(x) = argmax
d∈D

p(x)⊤f (x, u∗, d)
(3)

In this way, as for the nominal dynamics Eq.(1), given the
pre-computed value function and the agent’s current state,
the optimal adversarial control working as the worst distur-
bance to the protagonist is obtained by Eq. (3).

Robust Adversarial RL
The adversarial RL aims to learn a policy that maximizes the
expected rewards under the worst disturbances. The objec-

tive function under the disturbance is as follows :

max
θ

min
ϕ

E

[
T∑

t=0

γtr (st, ut, dt) | πθ, πϕ

]
(4)

where πθ is the goal robust policy parameterized by θ,
ut ∼ πθ(st) is the action sampled from the policy given
the discrete state st at the time step t, πϕ is the learnable
adversary policy parameterized by ϕ, and dt ∼ πϕ(st) is the
disturbance sampled from this adversarial policy.

Methodology
Problem Formulation
Markov Decision Process. We consider a MDP defined by
the 6-tuple (S,A, P, r, γ, µ0), where S is the set of states,
and A is the set of actions, which can be continuous or dis-
crete. The function P : S × A → ∆(S) represents the tran-
sition probability, where ∆(S) denotes the distribution over
the state space S. The reward function is defined as r : S ×
A → R, γ ∈ [0, 1) is the discount factor and µ0 : S → R+

represents the initial state distribution. The objective in RL
is to find a policy πθ : S × A → R, parameterized by θ,
that maximizes the expected return Eτ∼πθ

[R(τ)], where the
return R(τ) is defined as:R(τ) :=

∑T−1
t=0 γtr(st, at), and τ

denotes the trajectories sampled using the policy πθ.

HJ Reachability-Guided Adversarial Training
HJARL adds adversarial disturbances generated by the
HJ value function VHJ directly to the agent’s actions.
To ensure the generalization of the learned robust pol-
icy, VHJ is calculated through a sequence of increas-
ing upper bounds of disturbance. We denote nominal dy-
namical systems as [f1, . . . , f i, . . . , fN ] where the up-
per bound of the disturbances increases uniformly. These
nominal dynamical systems then construct a list of
Hamiltonians [H1(x, p1), . . . ,Hi(x, pi), . . . ,HN (x, pN )],
and finally obtain a HJ value function buffer: V =
[V 1

HJ , . . . , V
i
HJ , . . . , V

N
HJ ]. The upper bound of the distur-

bance is selected based on physically feasible significance
and keeps the same order of magnitude as the allowed con-
trol input. Given the certain value function V i

HJ , the current
action of the protagonist ut, and the current state of the agent
st, we can compute the disturbance dt from the correspond-
ing deterministic disturbance-generated policy di based on
the f i:

dt = di(st|V i
HJ) = argmax

(
∂V i

HJ

∂x

)⊤
∣∣∣∣∣
x=xt

f i (xt, ut, dt)

(5)
where xt is the nominal state which is the same or a part of
the full state st at the time step t.

HJARL aims to learn a policy that maximizes the ex-
pected rewards in the presence of disturbances generated by
Eq.(5). The resulting optimization problem under these dis-
turbances is formulated as follows:

max
πθ

Ei∼B(1,N)

[
T∑

t=0

γtr (st, ut, dt) | πθ, di
]

(6)



Algorithm 1: HJ Reachability Guided Adversarial Training

1: Value Function Generation with HJ Reachability
2: Initialize the value function buffer V , the number of the

disturbance levels N , the nominal dynamical system f ;
3: for i = 1, . . . ,N do
4: solve for V i

HJ based on f i according to Eq.(2);
5: collect the value function V ← V ∪ V i

HJ ;
end for

6: Adversarial RL Training
7: Initialize θ; Environment E
8: while not converged do
9: τtraj = {}

10: for rollout j = 1, . . . ,M do
11: sample i ∼ B(1, N), construct di based on

V i
HJ ;

12: τj ← run policy πθ and di until termination;
13: collect trajectory: τtraj ← τtraj ∪ τj ;

end for
14: Update πθ ← PPO (Schulman et al. 2017)(τtraj, πθ)

end while

where πθ is the task policy parameterized by θ, ut ∼ πθ(st)
is the action sampled from the policy. The Boltzmann distri-
bution i ∼ B(1, N) is used to obtain a smooth curriculum
learning process by sampling a value function V i

HJ from the
HJ value function buffer V for each episode.

Algorithm 1 outlines the HJARL in detail. In the first stage
(line 1 to line 5), the algorithm precomputes value functions
that account for varying levels of disturbances in the envi-
ronment. Specifically, we define the disturbance levels and
calculate the corresponding value function Vi for the nomi-
nal dynamical system f . The calculation is performed with
the OptimizedDP numerical toolbox (Bui et al. 2022). Upon
completion of these computations, the resulting value func-
tions are aggregated into a value function buffer V . In the
second stage (line 6 to the end), we perform online adver-
sarial RL training, intending to train a policy πθ that can
effectively handle disturbances characterized by the value
functions generated in the first stage. During each rollout,
we sample a value function V i

HJ from the value function
buffer V at the beginning of each trajectory τj ; the corre-
sponding disturbances di are generated based on the sam-
pled value function V i

HJ and are applied throughout the tra-
jectory. After collecting M trajectories, we choose Proximal
Policy Optimization (PPO) (Schulman et al. 2017) to update
our policy. This iterative update process continues until the
policy converges.

Numerical Simulations
We evaluated HJARL in two simulated tasks: a one-vs-
one reach-avoid game and quadrotor stabilization. The for-
mer involves a joint 4D dynamical system, which the Opti-
mizedDP (Bui et al. 2022) can solve in the full state space
with sufficient precision for the robust policy. The latter task
involves a 12D quadrotor system that is computationally in-
tractable for numerical HJ reachability solvers, where we
focus on task-specific states to maintain computational ac-

curacy. We demonstrate the consistency of the robust policy
obtained from HJARL by comparing it with the HJ value
function in the reach-avoid game, and it delivers a compa-
rable performance to other robust adversarial RL baseline
methods.

One vs. One Reach-Avoid Game
In the one vs. one reach-avoid game, the defender aims to
capture the attacker while the attacker seeks to arrive at
the destination without being captured. We follow a simi-
lar game pattern using the single integrator (SIG) dynamics
to (Hu, Bui, and Chen 2023) but without obstacles. The SIG
dynamics are as follows:

ẋA(t) = vAu(t), xA(0) = xA0

ẋD(t) = vDd(t), xD(0) = xD0
(7)

where xA and xD are the 2D states that represent the posi-
tions of the attacker and the defender respectively, xA0 and
xD0 are their initial positions, vA and vD are the constant
speed of the attacker and the defender, in this game, we set
vA = 1.0 and vD = 1.5 respectively, u(t) and d(t) are the
control inputs of the attacker and the defender respectively
at the time t. The target set R11 and the avoid set A11 for
this one vs. one reach-avoid game are defined as follows:

R11 = {xA ∈ T } ∩ {∥xA − xD∥2 > r}
A11 = {∥xA − xD∥2 ≤ r}

(8)

where T is the destination to the attacker, and r is the cap-
ture radius of the defender. Given these two sets and the dy-
namics defined in Eq.(7), we can solve Eq. 2 and obtain a
4D BRT RA11

∞(R11, A11). The attacker will win if the ini-
tial joint state (xA0, xD0) lies within the RA11

∞(R11, A11)
using the optimal control (Chen, Zhou, and Tomlin 2014):

u∗ (xA, xD, t) = −vA
pa (xA, xD,−t)
∥pa (xA, xD,−t)∥2

(9)

where pa = ∂VHJ

∂xA
is the partial derivative of the one vs. one

HJ value function to the attacker. When the initial joint state
(xA0, xD0) lies out of the RA11

∞(R11, A11), the defender
will guarantee to capture the attacker following the optimal
control(Chen, Zhou, and Tomlin 2014):

d∗ (xA, xD, t) = vD
pd (xA, xD,−t)
∥pd (xA, xD,−t)∥2

(10)

where pd = ∂VHJ

∂xD
is the partial derivative of the one vs. one

HJ value function to the defender.
HJARL considers the optimal attacker policy from

Eq.(10) as an adversarial disturbance and aims to obtain a
robust policy for the defender. In the adversary generation
phase, we set the attacker and defender with the same con-
trol input range, N = 1. To avoid the problem that the gra-
dient of the one vs. one HJ value function is almost zero
when the attacker lies outside of RA11

∞(R11, A11) causing
the attacker not to move, we also compute a one vs. zero
HJ value function where only one attacker is in the game
so that the attacker will continue moving to the destination



when it lies outside of the RA11
∞(R11, A11). Then, in the

adversarial RL training stage, we collect a total of 107 steps
to train the defender policy. The reward function consists
of three components: a bonus of 200 is awarded if the de-
fender captures the attacker; a penalty of 200 is applied if
the attacker reaches the destination; and the relative distance
between the two is subtracted as an additional penalty. As
for RARL(Pinto et al. 2017), and RAP(Vinitsky et al. 2020),
the control policy of the attacker is represented by adversar-
ial neural networks. Finally, we compare the learned robust
controllers trained through HJARL with RARL(Pinto et al.
2017) and RAP(Vinitsky et al. 2020).

Figure 2: Trained critic networks heatmaps and the zero-
levelRA11

∞(R11, A11) (purple dash lines) with SIG dynam-
ics. The first and the second rows show the values of the
defender’s initial positions at [0.5, 0.0] and [−0.5,−0.5] re-
spectively (magenta stars).

Consistency to the HJ Value Function. As illustrated
in Fig.2, HJARL demonstrates the strong consistency with
the HJ value function through highly overlapping regions.
Given that PPO is an actor-critic algorithm, we generate
the heatmaps using the trained critic network in HJARL
alongside the zero-levelRA11

∞(R11, A11) obtained from the
HJ value function with two initial defender positions. In
particular, regions with low values on the heat maps cor-
respond closely to the regions enclosed by the zero-level
RA11

∞(R11, A11). When the attacker lies outside the zero-
level RA11

∞(R11, A11), the defender is guaranteed to cap-
ture the attacker under the optimal HJ control, regardless of
the attacker’s control policy. Hence, with this consistency,
the trained critic network of HJARL can be used as an ap-
proximation to the HJ value function and work as a rough
guaranteed attacker-winning region. In addition, this trained
critic network can help to check the degree of convergence
of the training policy. In contrast, although RARL and RAP
also leverage Nash Equilibrium similar to the HJ reachabil-
ity analysis, the dynamic nature of their adversaries results
in an evolving MDP. This variability leads to discrepancies
in their value functions, deviating from the consistent behav-
ior exhibited by the trueRA11

∞(R11, A11).
Comparable Performances. As depicted in Fig.3,

HJARL achieves comparable performances to the RAP
method and outperforms the RARL method. We evaluated
the performance of the trained policy networks in a batch
of games. With the fixed initial defender position, we tra-
verse the initial attacker positions across the entire map uni-
formly. If the defender successfully captures the attacker, the
corresponding initial attacker’s position is marked in peach;
and if the attacker reaches the destination, its initial posi-
tion is marked in blue. The capture performances indicate
that both HJARL and RAP yield capture outcomes similar to
those predicted by HJ reachability. In contrast, RARL fails
to capture the attacker in certain areas where the defender
should prevail. In addition, the capture performances match
the heatmaps generated by the critic networks in HJARL,
further strengthening the consistency of HJARL with the op-
timal HJ reachability policy.

Figure 3: Trained policy game performances and the zero-
levelRA11

∞(R11, A11) (purple dash lines) with SIG dynam-
ics. Initial attacker positions are uniformly generated across
the map at intervals of 0.05 grid units, with the defender’s
initial position fixed. The first and the second rows show the
game results of the defender’s initial positions at [0.5, 0.0]
and [−0.5,−0.5] respectively (magenta stars).

Quadrotor Stabilization
The quadrotor is a representative example of a high-
dimensional nonlinear system. Sabatino models a quadrotor
as a 12D dynamical system (Sabatino 2015). However, due
to the curse of dimensionality, we only focus on the main
task-specific six of these dimensions, which we use to define
a 6D nominal dynamical system for HJ reachability analysis.
The nominal system is defined as follows:

ϕ̇ = p+ r
(
cosϕ sin θ

cos θ

)
+ q

(
sinϕ sin θ

cos θ

)
θ̇ = q (cosϕ)− r (sinϕ)
ψ̇ = r cosϕcos θ + q sinϕ

cos θ

ṗ =
Iy−Iz
Ix

rq + ux+dx

Ix

q̇ = Iz−Ix
Iy

pr +
uy+dy

Iy

ṙ =
Ix−Iy

Iz
pq + uz+dz

Iz

(11)



where ϕ, θ, ψ are Euler angles (roll, pitch, and yaw angles re-
spectively) in the earth frame as shown in (Sabatino 2015),
p, q, r are angular velocities (roll rate, pitch rate, and yaw
rate respectively) in the body frame, u = [ux, uy, uz] are
control input torques generated by the differences among
motors’ speeds, d = [dx, dy, dz] are disturbance torques
generated by disturbances like the wind.

External factors such as wind and the discrepancy be-
tween the true dynamics and the nominal system are mod-
eled as disturbances. We assume that these disturbances can
be applied to the quadrotor as actions. At the initial stage
of our algorithm, we increase the upper bound of the distur-
bances to twice that of the control input’s upper bound and
compute the value function V i

HJ at uniform intervals of 0.1,
resulting in N = 21 different value functions. In the second
stage, we collect a total of 107 steps to train the robust policy.
The reward function comprises four components: a penalty
proportional to the clipped action, scaled by 10−4; a penalty
based on angular velocities, scaled by 10−3; a penalty of 100
for a quadrotor crash; and a penalty proportional to the dis-
tance between the current position and the destination. All
baseline methods are trained with the same 107 steps.

Performance Analysis. The results in TABLE 1 show
that HJARL delivers strong performance across all evalua-
tion conditions, comparable to other robust adversarial RL
methods. We evaluated the performance of the algorithms
in three environments characterized by different types of
disturbances applied directly to the first two dimensions of
the control actions: random HJ disturbance, random distur-
bance, and constant disturbance. Random HJ disturbance is
generated by selecting a V i

HJ randomly from the value func-
tion buffer V; random disturbances are sampled randomly at
every step; constant disturbances remain fixed throughout
the entire episode. For each seed, we conducted 10 episodes
(with a maximum of 1000 steps per episode), totaling 30
episodes per environment. To ensure a robust evaluation, we
average the number of steps between three different seeds.
The high standard deviation is attributed to the fragility of
the quadrotor stabilization process, as it is prone to crash-
ing if the control inputs are not properly designed. HJARL
achieves comparable performance in these settings com-
pared to other learning baselines; RAP and pure PPO per-
form well in random and constant disturbance environments;
while RARL performs poorly. The inferior performance of
RARL may be due to the adversary overfitting to the training
distribution or getting stuck in local minima.

Real-World Experiments
We test HJARL in a real-world one vs. one reach-avoid game
with two TurtleBot3 Burger robots. The dynamics of the
TurtleBot3 Burger is a 3D DubinCar model (He et al. 2023).
The game is carried out in a square arena 2m × 2m with
a square destination shown in Fig. 4. We implement two
different control policies for the attacker: HJ control and
manual control. As for the HJ control, the full 6D HJ value
function with all-time slices requires approximately 120 gi-
gabytes and thus is impractical to implement. Instead, we
use a 3D HJ value function from a one vs. zero reach game

for the attacker to generate control inputs to drive the at-
tacker toward the destination. Regarding the defender policy,
we train the defender’s control over 107 steps using HJARL
where the attacker uses the HJ control.

Figure 4: The real-world one vs. one reach-avoid game with
two TurtleBot3 Burger robots.

Figure 5: Trained critic networks heatmaps and the zero-
level HJ BRT (purple dash lines) with DubinCar model. The
initial defender is at [0.7,−0.4,−0.5] with the arrow point-
ing in its direction (magenta square and arrow).

As illustrated in Fig.5, HJARL still demonstrates the con-
sistency with the HJ BRT, while baseline methods do not.
Though the learned critic network does not perfectly over-
lap with the ground truth value function, it still provides
more insights than the black-box learned value networks. As
listed in TABLE 2, HJARL achieves the best performance
in both attacker control policies. We conducted seven games
with the defender and the attacker positioned at different lo-
cations on the map. In these scenarios, the relative positions
fell outside the HJ BRT, indicating that the defender could
capture the attacker with the optimal control policy. HJARL
demonstrates superior performance with a HJ-controlled at-
tacker, achieving a capture rate of 85.7% (6/7), outperform-
ing RARL and RAP, which achieved 57.1% and 71.4%, re-
spectively. Similarly, HJARL maintains a leading position
with a manually-controlled attacker, reaching a 57.1% cap-
ture rate, compared to 28.6% for RARL and 42.9% for RAP.
These results underscore the robustness and efficiency of
HJARL in both control settings.

Conclusion
In this work, we introduce HJARL, a robust RL training
framework with interpretable disturbance generation via HJ
reachability analysis. Our approach leverages HJ value func-
tions to create an interpretable disturbance generation for a



Random HJ Random Constant
HJARL (ours) 702± 454 901± 295 677± 457

PPO (Schulman et al. 2017) 287± 430 968± 171 638± 474
RARL (Pinto et al. 2017) 253± 408 738± 433 313± 449

RAP (Vinitsky et al. 2020) 257± 411 802± 394 675± 458

Table 1: Performances of Quadrotor on Episode Length

HJ attacker Manual attacker
HJARL (ours) 6/7 (85.7%) 4/7 (57.1%)

RARL (Pinto et al. 2017) 4/7 (57.1%) 2/7 (28.6%)
RAP (Vinitsky et al. 2020) 5/7 (71.4%) 3/7 (42.9%)

Table 2: Performances of real-world experiments

robust policy training pipeline, where we evaluated across
two simulation environments and one real-world experi-
ment. We show that HJARL achieves robust performances
comparable to state-of-the-art methods while retaining an
interpretable adversary in terms of disturbance generation
and physical explanation. Despite the inherent challenges of
scaling model-based methods to high-dimensional systems
and ensuring robust guarantees, recent advances in learning-
based techniques that approximate high-dimensional HJ
reachability value functions could be employed in future
work.
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