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ABSTRACT

In conventional Federated Learning approaches like FedAvg, training a global
model becomes challenging in the presence of data heterogeneity. To address this,
Personalized Federated Learning (PFL) has emerged as a leading solution, enabling
clients to train personalized models that are tailored to local data distributions.
Surprisingly, our linear probe experiments reveal that FedAvg’s feature extractor
outperforms most PFL methods on local client data. Even more intriguingly, apply-
ing a simple linear transformation to align local features from FedAvg’s extractor
with the classifier enables FedAvg to surpass most PFL methods. These findings
suggest that in data heterogeneity scenarios, FedAvg’s weaker performance is not
due to inadequate global model training but rather a mismatch between local fea-
tures and the classifier. This observation motivates us to develop a new framework
to address this mismatch problem. A straightforward solution would be to insert
the personalized linear transformation layer mentioned above between the global
feature extractor and the global classifier. However, this approach can easily overfit
the limited local training data due to the large number of personalized parameters,
and it is insufficient for handling complex datasets. In this paper, we introduce
FedPFT, which leverages personalized prompts to resolve the mismatch problem.
These prompts, along with local features, are fed into a shared self-attention-based
module, where features are transformed via the attention mechanism to align with
the global classifier. These prompts consist of minimal trainable parameters, reduc-
ing the risk of overfitting to local data. Additionally, this prompt-driven approach
offers strong flexibility, allowing for task-specific prompts to integrate additional
training objectives (e.g., contrastive learning) to further enhance performance. Our
experiments demonstrate that FedPFT outperforms state-of-the-art methods by
up to 5.07%, with additional improvements of up to 7.08% when collaborative
contrastive learning is introduced.

1 INTRODUCTION

Federated Learning (FL) enables clients to collaboratively train a global model without sharing their
raw data. A major challenge in FL is data heterogeneity, where data across clients is not independently
and identically distributed (non-IID). This issue results in degraded performance of the global model
trained in conventional FL methods such as FedAvg McMahan et al. (2017).

To address this issue, Personalized Federated Learning (PFL) has been proposed, which allows clients
to train personalized models to fit their local data distribution better. Many existing PFL methods
achieve personalization by personalizing parts of the global model. For example, FedPer Arivazhagan
et al. (2019) personalizes classifiers, FedBN Li et al. (2021b) personalizes BN layers, AlignFed
Zhu et al. (2024) personalizes feature extractors, and FedCAC Wu et al. (2023) selects parameters
susceptible to non-IID effect for personalization.

While these methods show substantial improvements over the global model, an interesting observation
emerged from our experiments: the feature extractor trained by FedAvg outperforms those in
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Table 1: Comparison of different methods. Probe Acc. refers to the accuracy achieved by retraining
the classifier with local data. Origin Acc. indicates the accuracy of the original model. Match Acc.
represents the accuracy after applying a linear transformation to the features to adapt them to the
classifier. All accuracies are obtained on the client testing data. The disparity between Origin
Acc. and Match Acc. indicates the degree of mismatch. The toy example of the models used to
calculate the three types of accuracy are in Appendix A.

CIFAR-10, α = 0.5 CIFAR-10, α = 1.0

Methods Probe Acc. Origin Acc. Match Acc. Probe Acc. Origin Acc. Match Acc.

FedAvg 72.52% 59.66% 72.60% 68.38% 60.33% 68.37%

FedPer 71.07% 68.86% 71.03% 66.51% 64.83% 66.75%
FedBN 70.15% 66.20% 70.60% 66.51% 62.97% 66.80%

FedCAC 71.56% 68.71% 71.63% 66.98% 64.90% 67.11%

FedPFT 72.59% 72.66% 72.73% 69.57% 69.25% 69.30%
FedPFT+Con 77.25% 77.06% 77.68% 74.02% 73.88% 74.75%

most PFL methods on local client data. Specifically, we conduct linear probe experiments, where
each client retrains a linear classifier (probe) behind the FL-trained feature extractor. As evident from
Table 1, the Probe Acc. of FedAvg exceeds that of the PFL methods, indicating that the features
extracted by FedAvg exhibit superior linear separability. This suggests that FedAvg should have
greater potential to outperform PFL methods, contrary to typical expectations.

Global Classifier Proxies

Local Class Features Transformed Class Features

(a) Mismatched (b) Matched

Global Feature Extractor

Personalized Linear Transformation Layers of Clients 1 and 2

Client 1

Client 2

Figure 1: A toy example illustrating the mismatch
in FedAvg and how a linear transform addresses it.
(a) The local features from two clients have well-
clustered structures, but due to the effects of non-
IID data, their features mismatch with the global
classifier proxies. (b) By applying personalized
transformations to the local features of each client,
the features are aligned with the global classifier.

These findings motivate us to investigate why Fe-
dAvg underperforms compared to PFL methods.
To unveil this puzzle, we introduce a linear layer
between the global feature extractor and global
classifier on each client. This layer is retrained
with local data to align the features with the clas-
sifier. The Match Acc. in Table 1 shows that
applying a simple linear transformation to local
features significantly improves accuracy over
the original model (Origin Acc.). This reveals
that there is a mismatch between local features
and the global classifier in FedAvg. Interest-
ingly, the Match Acc. of FedAvg even exceeds
the Origin Acc. of current PFL methods, indicat-
ing that this mismatch between local features
and the classifier is a key reason for FedAvg’s
suboptimal performance. A toy example illus-
trating the mismatch can be seen in Figure 1.

Our experiments with PFL methods in Table 1
(rows 4-6) reveal that these methods indirectly
reduce the degree of mismatch, leading to im-
proved Origin Acc. However, there is still a
notable gap between their Origin Acc. and Match Acc. (up to 4.4%), indicating that the mismatch
issue persists. This mismatch not only undermines the model’s accuracy during inference but also
disrupts the synergy between the feature extractor and classifier during training, ultimately degrad-
ing overall performance. These findings suggest that the mismatch problem is a pervasive yet
unresolved challenge in FL.

To address the mismatch problem during training, we introduce a novel PFL method, FedPFT. While
inserting a personalized linear layer between the shared feature extractor and shared classifier is a
straightforward approach, it can easily overfit the limited local training data due to the large number
of personalized parameters, and it is insufficient for handling complex datasets (as demonstrated in
Appendix F). To overcome these limitations, we draw inspiration from prompt technology Jia et al.
(2022), which uses prompts to guide model behavior. FedPFT incorporates personalized prompts with
minimal trainable parameters and a shared self-attention-based feature transformation module (FTM).
Both the prompts and local features are fed into the FTM, where features are transformed via the
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attention mechanism. In each round, FedPFT first trains the prompts to align local features with the
global classifier. Subsequently, training the model parameters based on this alignment enhances the
synergy between the feature extractor and classifier. The results in Table 1 demonstrate that FedPFT
not only resolves the mismatch problem but also improves the quality of the feature extractor.

Another advantage of our designed prompt-driven FTM is its strong flexibility across different tasks.
It can leverage task-specific prompts to incorporate various tasks beneficial for client collaboration,
such as contrastive learning Wang et al. (2023), feature alignment Zhou et al. (2024); Xu et al. (2023),
etc. Taking contrastive learning as an example, as shown in Table 1, FedPFT+Con further improves
model performance by introducing collaborative contrastive learning through prompts.

Our main contributions can be summarized as follows:

• We identify that the global model’s inadequate performance in non-IID scenarios is primarily
due to the mismatch between local features and the classifier. We show that the reason
personalizing some parameters improves performance is that it indirectly alleviates this
issue. This insight offers a new perspective for future PFL approaches to better address the
non-IID problem.

• We propose a new PFL framework that incorporates a prompt-driven feature transformation
module to align local features with the global classifier. This approach not only resolves the
mismatch problem but also provides flexibility for incorporating various collaborative tasks
to further enhance PFL performance.

• Our experiments on multiple datasets and non-IID scenarios (including both label shift and
feature shift) demonstrate the superiority of FedPFT, outperforming state-of-the-art methods
by up to 5.07%. When further incorporating contrastive learning tasks, this improvement
can reach up to 7.08%.

2 RELATED WORK

PFL is an effective approach to address the challenges of non-IID data in FL. There is a surge of
methodologies within PFL, with parameter decoupling methods gaining significant attention due to
their simplicity and effectiveness. For a more detailed summary of other categories of PFL methods,
please refer to Appendix B.

Parameter decoupling methods aim to decouple a subset of parameters from the global model
for personalization. Approaches such as FedPer Arivazhagan et al. (2019), FedRep Collins et al.
(2021), and GPFL Zhang et al. (2023) focus on personalizing the classifier. In contrast, methods like
LG-FedAvg Liang et al. (2020) and AlignFed Zhu et al. (2024) advocate for the personalization of
the feature extractor. Additionally, FedBN Li et al. (2021b) and MTFL Mills et al. (2021) propose
personalizing batch normalization (BN) layers within the feature extractor. Techniques employing
deep reinforcement learning Sun et al. (2021) or hypernetworks Ma et al. (2022) have been used
to determine which specific layers to personalize. The recent FedCAC Wu et al. (2023) method
advances this by introducing a metric for parameter-wise selection.

These decoupling methods indirectly help alleviate the mismatch issue within the global model by
allowing local parameter adjustments. For instance, personalized classifiers involve local adjustments
to the classifier to better match the local features extracted by the global feature extractor. However,
these methods do not completely resolve the mismatch issue during training. Moreover, personalizing
parameters often reduces the extent of client information exchange, which can diminish the overall
quality of the feature extractor, thereby limiting the potential benefits of PFL.

3 METHODOLOGY

3.1 OVERVIEW OF FEDPFT

As illustrated in Figure 2(a), the core of FedPFT is the introduction of a prompt-driven feature
transformation module (FTM) τi between the feature extractor ϕi and the downstream task heads.
This module transforms local features during training to match downstream tasks. As shown in
Figure 2(b), prompts p and image features f are fed into the FTM, where self-attention operations
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Figure 2: Overview of FedPFT. (a) The training process of each client i in one communication round.
(b) The feature transformation module in FedPFT.

transform f to f ′, which is then used for downstream tasks. FedPFT leverages classification prompts
pκ,i to transform f to align with the classifier hκ,i.

Each training round of each client i in FedPFT include five key steps:

1. Client downloads the global models, including feature extractor ϕ, FTM τ , and classifier hκ.
2. Client freezes the global feature extractor ϕ and updates τi and prompts pκ,i using the

cross-entropy loss LCE to align local features with the frozen global classifier hκ.
3. Based on the alignment between the features and the classifier, the client freezes the prompts

pκ,i and updates ϕi, τi, hκ,i with LCE to learn client local knowledge.
4. Client uploads {ϕi, τi, hκ,i} to the server while retaining {pκ,i} locally.
5. The server aggregates the models uploaded by the clients.

3.2 PROBLEM FORMULATION

In PFL, N clients train their personalized models wi, i ∈ [N ] under the coordination of a server,
aiming for each wi to perform well on client data distribution Di. This objective can be formalized as
min{wi}i∈[N]

1
N

∑N
i=1 Li(wi;Di), where Li represents the loss function of the i-th client.

In this paper, our goal is to enhance personalized models by addressing the mismatch problem
between local features and the classifier in the global model. Thus, the training objective of FedPFT
can be formulated as:

min
ϕ,τ,hκ

min
{pκ,i}i∈[N]

Ei{Li(ϕ, τ, hκ, pκ,i; di) := Edi
[LCE(ϕ, τ, hκ, pκ,i; di)]}, (1)

where ϕ and hκ represent the global feature extractor and global classifier, respectively. τ is the
newly introduced global feature transformation module. This module, along with the personalized
classification prompt pκ,i, transforms local features to align with the global classifier. LCE denotes
the cross-entropy loss for classification tasks. di represents the local data of the client.

3.3 FEATURE TRANSFORMATION MODULE

In FedPFT, we introduce a global feature transformation module (FTM) τ , along with a set of
personalized prompts pκ,i for each client i, to align the features extracted by the global feature
extractor ϕ with the global classifier hκ.

Formally, given a sample xj ∈ di, extracted by the feature extractor ϕ, the obtained feature is
fj ∈ Rm, where m is the feature dimension. A collection of n prompts is denoted as p = {pk ∈
Rm|k ∈ N, 1 ≤ k ≤ n}. The operation of the FTM is formulated as

[f ′
j , p

′] = τ([fj , p]), (2)
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where [·, ·] signifies stacking and concatenation along the sequence length dimension, yielding
[f ′

j , p
′] ∈ R(1+n)×m. The f ′

j represents the transformed feature. An example of the FTM is
illustrated in Figure 2(b). In FedPFT, we denote nκ as the number of prompts contained in pκ,i.

The FTM essentially customizes local features for downstream tasks, offering strong flexibility. It
can introduce tasks beneficial for client collaboration by employing various task-specific prompts p.
We illustrate this in the Section 3.6.

3.4 CLASSIFICATION TASK WITH PERSONALIZED PROMPTS

To address the mismatch between local features and the global classifier, FedPFT employs a set of
personalized prompts pκ,i as inputs to the FTM, transforming each client i’s local features to align
with the global classifier. Specifically, the classification loss in each client i is defined as:

LCE(ϕ, τ, pκ,i, hκ;x, y) = − log

C∑
c=1

yc log(oi,c),where x, y ∼ di. (3)

C is the number of classes, and oi = Softmax(hκ ◦ τ([ϕ(x), pκ,i])) represents the predicted prob-
abilities, with oi,c being the ones of class c. Details on coordinating the training of the model and
prompts to achieve feature and classifier alignment are discussed in Section 3.5.

3.5 ALTERNATING TRAINING STRATEGY

To effectively resolve the mismatch problem and coordinate the training of different modules in
FedPFT, we propose an alternating training strategy, which partitions each local training round into
two phases: the feature transformation phase and the model training phase.

Feature transformation phase. In this phase, the training objective is:

min
pκ,i,τi

LCE(τi, pκ,i;ϕi, hκ, di), (4)

which aims at training the classification prompts pκ,i and τi with the frozen global feature extractor ϕ
and global classifier hκ to align local features with the classifier.

Model training phase. Following the above phase, the goal of this phase is to train the model
parameters based on the aligned features and classifier to learn the local knowledge of each client.
The training objective is

min
ϕi,τi,hκ,i

LCE(ϕi, τi, hκ,i; pκ,i, di). (5)

Let R represent the total number of local epochs in one training round. We divide it into Rf epochs
for the feature transformation phase and Ra epochs for the model training phase, where Rf+Ra = R.
It is crucial that Rf is always larger than Ra to ensure that the mismatch between local features and
the classifier is resolved before training the model parameters.

Upon completing local training, the parameters ϕi, τi, and hκ,i are aggregated at the server to
facilitate client collaboration, while pκ,i remains locally. We simply adopt the aggregation method
used in FedAvg. The pseudo-code of FedPFT is summarized in Algorithm 1.

3.6 FEDPFT WITH ADDITIONAL TASKS: AN EXAMPLE OF CONTRASTIVE LEARNING

As discussed in Section 3.3, our FTM provides strong flexibility. By inputting different prompts,
it can transform features to adapt to various downstream tasks. Benefiting from this, the FedPFT
framework also offers great flexibility, as it can easily incorporate tasks beneficial for PFL, such
as contrastive learning Wang et al. (2023), feature alignment Zhou et al. (2024); Xu et al. (2023),
multi-task learning, etc., by simply using task-specific prompts. Each task uses its own prompt to
transform features, effectively reducing interference between tasks. In this section, we use contrastive
learning as an example to illustrate how our method integrates with other tasks.

As depicted in Figure 3, we introduce another set of personalized prompts pρ,i, which are fed into τi
to transform features for the contrastive learning task with a global projection head hρ,i. The goal is

5
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Algorithm 1 FedPFT

Input: Each client’s initial personalized prompts p(0)κ,i; The initial global models {ϕ(0), τ (0), h
(0)
κ }; Client

Number N ; Total round T ; Epochs of two learning phases Rf and Ra.
Output: Personalized model {ϕ(T ), τ (T ), h

(T )
κ , p

(T )
κ,i } for each client.

for t = 0 to T − 1 do
Client-side:
for i = 1 to N in parallel do

Initializing {ϕ(t)
i , τ

(t)
i , h

(t)
κ,i} with {ϕ(t), τ (t), h

(t)
κ }.

Updating {τ (t)
i , p

(t)
κ,i} by Eq.(4) for Rf epochs to obtain {τ (t′)

i , p
(t+1)
κ,i }.

Updating {ϕ(t)
i , τ

(t′)
i , h

(t)
κ,i} by Eq.(5) for Ra epochs to obtain {ϕ(t+1)

i , τ
(t+1)
i , h

(t+1)
κ,i }.

Sending {ϕ(t+1)
i , τ

(t+1)
i , h

(t+1)
κ,i } to the server.

end for
Server-side:
Aggregating a set of global model {ϕ(t+1), τ (t+1), h

(t+1)
κ }.

Sending {ϕ(t+1), τ (t+1), h
(t+1)
κ } to each client i.

end for

for all clients to collaborate in optimizing the contrastive learning task, improving the performance of
the feature extractor. The training objective can be formulated as

min
ϕ,τ,hκ

min
{pκ,i}i∈[N]

Ei{Li(ϕ, τ, hκ, pκ,i; di) := Edi [LCE(ϕ, τ, hκ, pκ,i; di) + LCon(ϕ, τ ; di)]}, (6)

where LCon represents the contrastive learning loss function. The optimization process for this
objective and the definition of LCon can be found in Appendix C.
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Client 𝑖

Figure 3: FedPFT with contrastive learning. The
orange solid line and the green solid line represent
the forward propagation of the classification task
and the contrastive learning task, respectively.

As shown in Figure 3 and Eq.(6), FedPFT can
easily incorporate other tasks beneficial to PFL
by using task-specific prompts. In Section 4, we
refer to the above method as FedPFT+Con to vali-
date the effectiveness of combining FedPFT with
contrastive learning tasks. In Section G of the
Appendix, we also present experimental evidence
showing that our FTM effectively coordinates the
training of both tasks, enabling them to mutually
enhance each other.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this section, we mainly verify FedPFT in the label shift non-IID scenario, which is
one of the most commonly used scenarios in FL research. Specifically, we examine two settings:
Dirichlet non-IID and Pathological non-IID. In each setting, we employ three datasets: CIFAR-10
Krizhevsky et al. (2010), CIFAR-100 Krizhevsky et al. (2009), and Tiny ImageNet Le & Yang (2015).
We also verify FedPFT in the feature shift non-IID scenario in Appendix I.

In our experiments, each client is assigned 500 training samples. For CIFAR-10 and CIFAR-100
datasets, each client has 100 test samples; for the Tiny ImageNet dataset, each client has 200 test
samples. Both training and test data have the same label distribution.

Baseline methods. We compare our method against nine state-of-the-art (SOTA) methods: FedAMP
Huang et al. (2021), FedPer Arivazhagan et al. (2019), FedRep Collins et al. (2021), FedBN Li et al.
(2021b), FedRoD Chen & Chao (2022), pFedSD Jin et al. (2022), pFedGate Chen et al. (2023),
FedCAC Wu et al. (2023), and pFedPT Li et al. (2023a). These methods cover the advancements in
mainstream PFL research directions.

Hyperparameter settings. For the general hyperparameters of FL, we set the number of clients
N = 40, batch size B = 100, and local update rounds R = 5. In all datasets, we fix the total rounds
T = 1000 for each experiment to ensure all methods reach full convergence. The experimental result
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is determined by selecting the highest average accuracy achieved by all clients across all rounds. Each
experiment is repeated with three random seeds, and the mean and standard deviation are reported.
We employ the ResNet He et al. (2016) model architecture, specifically ResNet-8 for CIFAR-10 and
ResNet-10 for CIFAR-100 and Tiny ImageNet.

For more details on the experimental setup, please refer to Appendix D.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our proposed FedPFT with two baseline methods and nine SOTA methods across three
datasets and two non-IID scenarios. The experimental results on CIFAR-100 and Tiny ImageNet in
Dirichlet non-IID scenario are presented in Table 2. More results on the CIFAR-10 dataset and in
Pathological non-IID scenarios are presented in Appendix E.
Table 2: Test accuracy (%) of different methods under Dirichlet non-IID on CIFAR-100 and Tiny
ImageNet.

CIFAR-100 Tiny ImageNet

Methods α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 34.91±0.86 32.78±0.23 33.94±0.39 21.26±1.28 20.32±0.91 17.20±0.54
Local 47.61±0.96 22.65±0.51 18.76±0.63 24.07±0.62 8.75±0.30 6.87±0.28

FedAMP 46.68±1.06 24.74±0.58 18.22±0.41 27.85±0.71 10.70±0.32 7.13±0.21
FedPer 51.38±0.94 28.25±1.03 21.53±0.50 32.33±0.31 12.69±0.42 8.67±0.40
FedRep 51.25±1.37 26.97±0.33 20.63±0.42 30.83±1.05 12.14±0.28 8.37±0.25
FedBN 54.35±0.63 36.94±0.94 33.67±0.12 33.34±0.71 19.61±0.35 16.57±0.44
FedRoD 60.17±0.48 39.88±1.18 36.80±0.56 41.06±0.77 25.63±1.11 22.32±1.13
pFedSD 54.14±0.77 41.06±0.83 38.27±0.20 39.31±0.19 19.25±1.80 15.91±0.33

pFedGate 48.54±0.39 27.47±0.79 22.98±0.03 37.59±0.39 24.09±0.67 19.69±0.14
FedCAC 57.22±1.52 38.64±0.63 32.59±0.32 40.19±1.20 23.70±0.28 18.58±0.62
pFedPT 43.21±1.66 35.23±0.87 36.25±0.37 23.55±0.68 22.35±0.49 21.69±0.24

FedPFT 60.98±0.39 44.87±0.76 41.83±0.37 41.49±0.10 28.61±0.40 25.10±0.59

Results in Dirichlet non-IID scenario. In this setting, by varying α, we can evaluate the perfor-
mance of methods under different non-IID degrees. The results, as detailed in Table 2, demonstrate
that performance varies significantly depending on the underlying design principles of each method.
Among all methods, FedRoD demonstrates robust performance across all datasets and non-IID
degrees. This is attributed to its design of two classifiers: a personalized classifier for local feature
alignment and a global classifier for assistance from other clients to improve generalization. FedPFT
addresses the mismatch issue specifically and achieves superior results across all scenarios.

Table 3: Test accuracy (%) of FedPFT+Con under
Dirichlet non-IID on CIFAR-100 and Tiny ImageNet.

FedPFT+Con

Datasets α = 0.1 α = 0.5 α = 1.0

CIFAR-100 62.03±1.41 47.98±0.78 44.29±0.74
Tiny 43.42±1.62 32.44±0.58 27.84±0.41

We also include FedPFT+Con in the exper-
iments to validate the benefits of combin-
ing FedPFT with other tasks. As shown
in Table 3, FedPFT+Con further improves
performance by incorporating contrastive
learning into FedPFT, significantly outper-
forming SOTA methods by up to 7.08%.
This improvement is attributed to the strong
flexibility of our proposed FTM.

4.3 ABLATION STUDY

In this section, we validate the effectiveness of each component of our method on the CIFAR-100
dataset under two non-IID degrees. The experimental results are illustrated in Table 4.

Setting I represents FedAvg. Setting II incorporates classification prompts pκ to allow each client
to adjust the global model individually to obtain a personalized model, resulting in a performance
improvement. Setting III (i.e., FedPFT) incorporates alternating training, where prompts are firstly
updated to align local features with the global classifier to address the mismatch problem, followed by
training model parameters. This approach effectively resolves the mismatch issue and enhances the
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Table 4: Experiments on the CIFAR-100 to illustrate the effectiveness of different modules.

α = 0.1 α = 0.5

Settings pκ Alter. LCon pρ Accuracy (%) pκ Alter. LCon pρ Accuracy (%)

I 33.87±1.35 30.09±0.31
II ✓ 40.97±1.28 ✓ 31.45±1.35
III (FedPFT) ✓ ✓ 60.98±0.39 ✓ ✓ 44.87±0.76
IV ✓ ✓ ✓ 61.13±0.50 ✓ ✓ ✓ 47.67±1.42
V (FedPFT+Con) ✓ ✓ ✓ ✓ 62.03±1.41 ✓ ✓ ✓ ✓ 47.98±0.78
VI ✓ ✓ ✓ 53.76±0.35 ✓ ✓ ✓ 39.29±1.00

synergy between the feature extractor and classifier, resulting in the greatest performance improvement
(up to 20.01%) compared to other modules.

Setting IV adds contrastive learning loss to Setting III, primarily focusing on enhancing the feature
extractor’s performance through contrastive learning techniques. Setting V (i.e., FedPFT+Con)
incorporates specific prompts pρ to better transform features for the contrastive learning task, reducing
mutual interference between the two tasks during training. This approach is particularly effective in
scenarios with strong non-IID data (e.g., α = 0.1).

Setting VI represents incorporating contrastive learning into PFL without addressing the mismatch
issue. As shown, while contrastive learning can improve model accuracy by enhancing the quality
of the feature extractor, its performance is far inferior to FedPFT (i.e., Setting III). This further
highlights the importance of addressing the mismatch problem in the PFL.

4.4 LEARNED FEATURES OF DIFFERENT METHODS

In this section, we visually compare the quality of features extracted by different methods and
highlight the impact of different modules in FedPFT on feature extraction. We conduct experiments
on the CIFAR-10 dataset with 10 clients, each allocated 1000 training images and 500 testing images.
The data distribution is shown in Figure 4(a). For each method, we visualize the feature vectors of
testing data from different clients using t-SNE Van der Maaten & Hinton (2008). The visualization
results are shown in Figure 4(b)-(h). In these figures, different colors indicate various data categories,
while distinct markers represent different clients, as explained in Figure 4(a).

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

C
la

ss
 L

ab
el

s

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Client 0
Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9

(a) Data Distribution (b) FedAvg (c) FedCAC (d) FedPer

(e) FedPFT (f) FedPFT w/o Alter. (g) FedPFT-PerClassifier (h) FedPFT+Con

Figure 4: t-SNE visualization of features extracted by different methods on the CIFAR-10 dataset.

FedAvg and FedCAC exhibit noticeable cluster structures of features but do not have clear discrimi-
native boundaries. FedPer, on the other hand, shows overlapping features across various classes due
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to the use of personalized classifiers that generate unique local feature spaces for each client. As
a result, data from different classes across different clients are mapped to similar positions. This
interference among clients reduces the effectiveness of the global feature extractor.

FedPFT shows clearer discriminative boundaries, which is attributed to the alignment of local features
with the global classifier achieved during local training. We also observe that data from the same
class across different clients are mapped to the same positions in the feature space, indicating that the
global classifier provides a unified feature space for all clients. Adapting local features to this space
can align the training objectives among clients, promoting collaboration among clients.

‘FedPFT w/o Alter.’ represents not using alternating training. While it shows better clustering
than FedAvg, the discriminative quality of the boundaries is weaker compared to FedPFT. This
configuration shows increased interference among client models, as it does not fully address the
mismatch problem. ‘FedPFT-PerClassifier’ refers to the use of personalized classifiers. In this case,
the feature space becomes highly scattered. This is because the prompt pκ is trained to adapt to
personalized classifiers first, it amplifies the variability in feature spaces across clients. FedPFT+Con
further introduces contrastive learning into FedPFT, which enhances feature separability.

4.5 FEATURE SEPARABILITY OF DIFFERENT METHODS

In this section, we delve deeper into the linear separability of features extracted by various PFL
methods. Linear separability is a critical measure of feature quality, indicating the ability of a model
to distinguish between classes using simple linear classifiers. We conduct linear probing experiments
on the CIFAR-10 and CIFAR-100 datasets to assess this metric, with results detailed in Table 5.

Table 5: Linear probe accuracy (%) of different methods.
CIFAR-10 CIFAR-100

Methods α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 85.01% 72.52% 68.38% 59.50% 37.40% 32.33%
FedPer 84.44% 71.07% 66.51% 52.09% 26.61% 20.51%
FedBN 84.52% 70.15% 66.51% 57.86% 35.24% 30.28%

FedCAC 85.22% 71.56% 66.98% 56.86% 34.64% 29.35%
FedRoD 82.79% 67.07% 63.12% 56.88% 33.99% 29.22%
pFedSD 85.86% 72.42% 68.12% 60.07% 37.33% 31.99%

FedPFT 85.52% 72.59% 69.57% 61.60% 43.14% 38.47%

It can be observed that the feature linear separability of most PFL methods is inferior to FedAvg.
This indicates that although they partially alleviate the mismatch issue and achieve better model
performance, the quality of the feature extractor is inevitably compromised due to their design,
constraining the full potential of PFL.

In stark contrast, FedPFT significantly improves the linear separability of features compared to
FedAvg. It accomplishes this by fundamentally addressing the mismatch issue during the training
process rather than merely adapting the model post hoc. This proactive approach ensures that the
feature extractor not only aligns with the global classifier but also enhances the synergy between
them during training, thereby preserving its ability to generalize across diverse data distributions.
Consequently, FedPFT enhances both the performance and the utility of the feature extractor.

4.6 EFFECT OF PROMPTS

As discussed in the previous sections, two factors influence model performance during the inference
phase: 1) the alignment of local features with downstream tasks (e.g., the classifier) and 2) the
separability of these features. In this section, we delve into how prompts enhance model performance
during the inference phase.

The impact on the alignment of features with downstream tasks. We visualize the features
transformed by different prompts in FedPFT+Con using t-SNE. The experimental setup is consistent
with Section 4.4. The results are depicted in Figure 5. Larger markers in the figures represent feature
centroids of corresponding classes for each client.
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Figure 5: The effect of different prompts on feature space.

It is evident that the characteristics of features transformed by different prompts are closely related
to the downstream tasks. Features obtained from classification prompts pκ are not significantly
correlated with image similarity but rather with the distribution of client data. For example, two
classes within a client may be close together, regardless of whether the images themselves are truly
similar. Additionally, there are clear decision boundaries between features of different classes, which
is consistent with the nature of classification tasks. Conversely, features transformed by contrastive
learning prompts pρ are more related to image similarity. For instance, in Figure 5(b), the feature
centroids of ‘cat’ and ‘dog’ are close, while those of ‘airplane’ and ‘dog’ are far apart, which aligns
with the principles of contrastive learning.

Table 6: The effect of prompts pκ and pρ on linear probe accuracy (%).
CIFAR-10 CIFAR-100

Prompt Type α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 0.5

None 87.69% 77.12% 73.93% 64.08% 46.50% 40.79%
pκ 87.83% 77.25% 74.02% 64.12% 46.43% 40.95%
pρ 87.82% 77.25% 74.02% 64.18% 46.40% 40.95%

The impact on the linear separability of features. We conduct linear probe experiments using
the CIFAR-10 and CIFAR-100 datasets. The results are detailed in Table 6. We calculate the linear
separability of features at three points during the forward propagation process: ‘None’ represents the
features output by ϕ. ‘pκ’ represents the features transformed by the FTM using the classification
prompt. ‘pρ,i’ represents the features transformed by the FTM using the contrastive learning prompts.
Interestingly, the accuracies across different prompt conditions are generally similar, suggesting that
the use of either type of prompt does not significantly impact the feature separability.

The above experiments illustrate that during the inference phase, prompts work by transforming
features into the required format to align with downstream tasks, rather than improving feature
separability. This finding is consistent with the motivation of our paper and highlights the flexibility
and adaptability of our designed FTM. It can integrate various client-collaborative tasks, which is
beneficial for enhancing the performance of personalized models through task-specific prompts.

5 CONCLUSION AND DISCUSSION

We observe that the feature extractor from FedAvg surpasses those in most PFL methods, yet it suffers
from inadequate performance due to a mismatch between the local features and the classifier. This
mismatch issue not only impacts the performance during model inference but also affects the synergy
between the feature extractor and the classifier during training. We propose a new PFL method called
FedPFT with a prompt-driven feature transform module to address these issues during training. Our
experiments demonstrate that FedPFT not only resolves the mismatch issue but also significantly
improves the quality of the feature extractor, achieving substantial performance gains compared to
state-of-the-art methods. We discuss the limitations and our future work in Appendix O.
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A MORE EXPLANATION OF THE EXPERIMENTS DISCUSSED IN THE
INTRODUCTION

To facilitate understanding of the experiments mentioned in the introduction, we give a toy example
to visualize the models used to calculate Origin Acc., Probe Acc., and Match Acc. in Figure 6.

(b) Linear Probe

insert

(c) Linear Transform(a) Origin Model

Pretrained by 
FL algorithm

Retrained by 
client’s data

replace

Figure 6: A toy example illustrating the model structures used to calculate Origin Acc., Probe Acc.,
and Match Acc.
Figure 6(a) represents the model trained using the FL algorithm, where the accuracy measured on
the client’s local data is referred to as Origin Acc. Figure 6(b) illustrates the model obtained from
the linear probe experiment, where the classifier in the FL pre-trained model is replaced by a linear
classifier retrained on the client data. The accuracy corresponding to this model is referred to as
Probe Acc. Figure 6(c) depicts the model obtained from the linear transform experiment, where a
linear transformation layer, retrained on client data, is inserted between the feature extractor and
classifier of the FL pre-trained model. The accuracy of this model is referred to as Match Acc.

B RELATED WORK

Current PFL methods can primarily be categorized into several major types: meta-learning-based
methods Fallah et al. (2020); Acar et al. (2021), model-regularization-based methods T Dinh
et al. (2020); Li et al. (2021a), fine-tuning-based methods Jin et al. (2022); Chen et al. (2023); Li
et al. (2023b), personalized-weight-aggregation-based methods Huang et al. (2021); Luo & Wu
(2022), feature-alignment-based methods Xu et al. (2023); Zhou et al. (2024) and, parameter-
decoupling-based methods. This paper delves into the issues inherent in the global model of FedAvg
and primarily discusses parameter-decoupling methods that rely on the global model.

In addition to the aforementioned methods, a new category based on prompts has recently emerged.

Prompt-based methods. Recently, prompt technology has garnered widespread attention in the
fields of computer vision Jia et al. (2022); Liu et al. (2024) and natural language processing Lester
et al. (2021); Liu et al. (2021). This technology involves using prompts as inputs to guide the
behavior or output of models, typically for fine-tuning purposes. The domain of PFL has also seen
the emergence of prompt-based approaches. Most of these are based on pre-trained models, aiming to
train prompts to fine-tune the pre-trained models to fit client-local data, as seen in pFedPG Yang et al.
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(2023), SGPT Deng et al. (2023), FedOTP Li et al. (2024), and FedAPT Su et al. (2024). pFedPT Li
et al. (2023a) trains both the model and prompts, using prompts at the input level to learn personalized
knowledge for fine-tuning the global model to adapt to the client’s local distributions. Our FedPFT
fundamentally differs from these methods in its objective. Rather than fine-tuning, we introduce
prompts to guide feature transformations to align with the global classifier, thereby addressing the
mismatch issue inherent in the global model during the training process.

C DETAILS OF COMBINING FEDPFT WITH CONTRASTIVE LEARNING

Following Section 3.6, this section provides details of the combination of FedPFT with contrastive
learning, including the definition of LCon and the optimization process of Objective (6).

C.1 DEFINITION OF LCON

We adopt the Momentum Contrast (MoCo) framework He et al. (2020) for contrastive learning. The
associated contrastive loss function is defined as:

LCon(ϕ, τ, pρ,i, hρ;x) = − log
exp (q · k+/β)∑K
j=0 exp (q · kj/β)

,where x ∼ di. (7)

In this formula, hρ is the projection head used for contrastive learning. q = hρ ◦ τ([ϕ(x′), pρ,i])

represents the query vector, and k+ = h̃ρ ◦ τ([ϕ̃(x′′), pρ,i]) denotes the positive key vector. Here, x′

and x′′ are augmented versions of the sample x, ϕ̃ and h̃ρ refer to the momentum-updated encoder
and projection head, respectively. β is a temperature hyperparameter, and K is the number of negative
samples drawn from MoCo’s queue, comprising the set {kj}Kj=0.

C.2 OPTIMIZATION PROCESS OF FEDPFT+CON

As discussed in Section 3.5, FedPFT employs an alternating training strategy. In FedPFT+Con, we
extend this approach by incorporating contrastive learning into the optimization process.

Feature transformation phase. In this phase, FedPFT+Con additionally utilizes LCon to update ϕi,
τi and hρ,i to enhance the feature quality. The objective can be formulated as:

min
pκ,i,τi,ϕi,hρ,i

{LCE(τi, pκ,i;ϕi, hκ, di) + LCon(ϕi, τi, hρ,i; pρ,i, di)} . (8)

Model training phase. FedPFT+Con additionally updates pρ,i in this phase to align the features with
the contrastive learning task, reducing interference from the classification task. Its training objective
can be formulated as:

min
ϕi,τi,hκ,i,pρ,i

{LCE(ϕi, τi, hκ,i; pκ,i, di) + LCon(pρ,i, τi;ϕi, hρ,i, di)} . (9)
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Figure 7: Training process of FedPFT+Con in each client i.

Figure 7 illustrates the training pro-
cess of the contrastive learning and
classification tasks in FedPFT+Con.
The blue modules represent compo-
nents from FedPFT, while the orange
modules represent additional com-
ponents introduced in FedPFT+Con.
Solid arrows indicate forward prop-
agation and dashed arrows represent
backpropagation.
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D EXPERIMENT SETUP

D.1 INTRODUCTION TO NON-IID SCENARIOS

Pathological non-IID. In this setting, each client is randomly assigned data from a subset of classes
with equal data volume per class. For the CIFAR-10, CIFAR-100, and Tiny ImageNet datasets, we
assign 2, 20, and 40 classes of data to each client, respectively.
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Figure 8: Visualization of data partitioning in Dirichlet non-IID scenarios with different α.

Dirichlet non-IID. This is a commonly used setting in current FL research Wu et al. (2022; 2023);
Shi et al. (2023). In this scenario, the data for each client is generated from a Dirichlet distribution
denoted as Dir(α). As the value of α increases, the class imbalance within each client’s dataset
progressively decreases. This Dirichlet non-IID setting enables the evaluation of different methods
across a broad spectrum of non-IID conditions, reflecting various degrees of data heterogeneity.

For a clearer, more intuitive understanding, we involve 20 clients with 10-class and 50-class datasets
to visualize the data distribution among clients with varying α values. As depicted in Figure 8, the
horizontal axis labels the data class indices, while the vertical axis lists the client IDs. Each red dot
indicates the class data assigned to a client, with larger dots signifying a higher volume of data in that
class.

D.2 INTRODUCTION TO COMPARATIVE METHODS

FedAMP Huang et al. (2021) is a weighted-aggregation-based method where clients with similar
data distributions are given higher aggregation weights during model aggregation. Because it mainly
encourages the collaboration of clients with similar data distribution, it is a method that pays more
attention to the local data distribution of clients. FedPer Arivazhagan et al. (2019), FedRep Collins
et al. (2021), FedBN Li et al. (2021b), FedRoD Chen & Chao (2022), and FedCAC Wu et al. (2023)
are parameter-decoupling-based methods, which personalize the global model by retaining certain
parameters locally based on FedAvg. FedRoD additionally introduces a balanced global classifier to
obtain assistance from other clients, alleviating the overfitting issue caused by personalized classifiers
alone. pFedSD Jin et al. (2022) and pFedGate Chen et al. (2023) are fine-tuning-based methods that
adapt the global model to local data through fine-tuning. pFedSD directly fine-tunes the global model
by distilling local models, while pFedGate trains an additional gating network and applies it to the
global model. pFedPT Li et al. (2023a), a prompt-based method, can also be viewed as a fine-tuning
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approach, enhancing the global model’s adaptation to local data distributions by adding prompts to
images.

D.3 HYPERPARAMETER SETTINGS IN DIFFERENT METHODS

For the unique hyperparameters of each baseline method, we utilize the optimal parameter combina-
tions reported in their respective papers. For learning rates, we adjust within {1e-1, 1e-2, 1e-3}.

In FedPFT, to simplify the hyperparameter tuning process and enhance usability, we provide a default
set of hyperparameters: for all scenarios, we set nκ = 10 and (Rf , Ra) = (4, 1). We use the SGD
optimizer with a learning rate of 0.05 for the FTM and 0.1 for other components. In FedPFT+Con,
for the Dirichlet non-IID scenario with α = 0.1, we set (Rf , Ra) = (3, 2), while in other scenarios,
we use (Rf , Ra) = (4, 1). The learning rate for the FTM remains 0.01, with other hyperparameters
consistent with FedPFT. Unless otherwise specified, the above hyperparameter settings are used in our
experiments, though fine-tuning these parameters for specific scenarios may yield better performance.

D.4 COMPUTE RESOURCES

All the experiments are implemented using PyTorch and conducted on NVIDIA V100 GPUs. For
the methods we compared, as well as FedPFT, a single training session requires 24-48 hours. For
FedPFT+Con, the training process takes longer due to the use of the MoCo algorithm, which requires
data augmentation that can only be executed on the CPU. Consequently, a single training session for
FedPFT+Con requires 48-72 hours.

E COMPARISON WITH STATE-OF-THE-ART METHODS

We present the comparative results of FedPFT and FedPFT+Con against established methods on
CIFAR-10, CIFAR-100, and Tiny ImageNet datasets under Pathological non-IID scenarios, as well
as CIFAR-10 under Dirichlet non-IID scenarios in Tables 7 and 8.
Table 7: Test accuracy (%) of different methods under Pathological non-IID setting on CIFAR-10,
CIFAR-100, and Tiny ImageNet.

Methods CIFAR-10 CIFAR-100 Tiny ImageNet

FedAvg 54.33 ± 3.03 34.27 ± 0.44 18.05 ± 0.23
Local 85.85 ± 0.93 38.40 ± 0.69 16.20 ± 0.30

FedAMP 88.88 ± 0.83 38.36 ± 0.79 16.13 ± 0.55
FedPer 87.51 ± 0.95 41.54 ± 0.74 20.25 ± 0.65
FedRep 87.10 ± 0.91 40.63 ± 0.74 19.24 ± 0.33
FedBN 87.02 ± 1.41 47.75 ± 1.03 24.91 ± 0.48

FedRoD 88.06 ± 1.70 52.55 ± 0.92 32.25 ± 0.80
pFedSD 89.97 ± 1.45 52.30 ± 1.18 30.27 ± 0.78

pFedGate 89.15 ± 0.76 43.73 ± 0.14 22.42 ± 0.83
FedCAC 89.77 ± 1.14 49.07 ± 0.87 30.83 ± 0.42
pFedPT 86.29 ± 1.11 39.92 ± 0.33 21.38 ± 0.98

FedPFT 89.67 ± 1.96 57.62 ± 1.18 36.13 ± 1.32
FedPFT+Con 90.55 ± 1.35 58.14 ± 0.71 37.59 ± 0.39

Results in Pathological non-IID scenario. This is an extreme setting where each client has data
from only a subset of classes. This scenario is particularly pronounced in the CIFAR-10 dataset,
where each client essentially performs a simple binary classification task. Here, clients can achieve
decent performance by solely focusing on their local tasks (‘Local’), even without collaboration with
other clients. As such, methods that prioritize local data distribution, such as FedAMP, pFedSD, and
pFedGate, perform well. In contrast, on CIFAR-100 and Tiny ImageNet datasets, as clients have
more local classes with fewer samples per class, local tasks become more challenging. Effective
collaboration with other clients becomes crucial. Consequently, methods such as FedRoD, which
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Table 8: Test accuracy (%) of different methods under Dirichlet non-IID setting on CIFAR-10.

Methods α = 0.1 α = 0.5 α = 1.0

FedAvg 60.39 ± 1.46 60.41 ± 1.36 60.91 ± 0.72
Local 81.91 ± 3.09 60.15 ± 0.86 52.24 ± 0.41

FedAMP 84.99 ± 1.82 68.26 ± 0.79 64.87 ± 0.95
FedPer 84.43 ± 0.47 68.80 ± 0.49 64.92 ± 0.66
FedRep 84.59 ± 1.58 67.69 ± 0.86 60.52 ± 0.72
FedBN 83.55 ± 2.32 66.79 ± 1.08 62.20 ± 0.67
FedRoD 86.23 ± 2.12 72.34 ± 1.77 68.45 ± 1.94
pFedSD 86.34 ± 2.61 71.97 ± 2.07 67.21 ± 1.89

pFedGate 87.25 ± 1.91 71.98 ± 1.61 67.85 ± 0.87
FedCAC 86.82 ± 1.18 69.83 ± 0.46 65.39 ± 0.51
pFedPT 82.38 ± 2.91 67.33 ± 1.33 64.37 ± 1.22

FedPFT 87.23 ± 2.69 74.10 ± 1.95 69.23 ± 0.76
FedPFT+Con 88.60 ± 2.19 77.54 ± 1.88 74.81 ± 0.77

emphasize client collaboration, exhibit increasingly significant performance. FedAMP and pFedGate
show considerable performance degradation. FedPer, FedRep, FedBN, and FedCAC, by personalizing
certain parameters of FedAvg, enhance local performance by indirectly aligning local features with
classifiers to some extent. However, as they do not address the mismatch issue, they compromise the
performance of feature extractors to some extent, thereby limiting their performance to a moderate
level across the three datasets. FedPFT aligns local features with the global feature space using
classification prompts, enhancing both local feature-classifier alignment and inter-client collaboration
effectiveness. It achieves competitive performance on CIFAR-10 and surpasses existing SOTA
methods on CIFAR-100 and Tiny ImageNet. FedPFT+Con further incorporates contrastive learning
tasks to enhance feature extractor performance, outperforming SOTA methods significantly across all
datasets.

F ADDRESSING MISMATCH BY INSERTING LINEAR LAYER

As discussed in Section 1, a straightforward approach to address the mismatch problem is to insert a
personalized linear transformation layer between the global feature extractor and the global classifier
(FedAvg+Linear). In this section, we validate this method through experiments, with the results
shown in Table 9.

By combining the results in Table 2 and Table 8, we observe that FedAvg+Linear outperforms most
SOTA methods on the CIFAR-10 dataset, demonstrating the effectiveness of addressing the mismatch
problem during training. However, on the more challenging CIFAR-100 dataset, FedAvg+Linear un-
derperforms several SOTA methods. This illustrates that a simple linear transformation is insufficient
for complex datasets. Notably, on CIFAR-100 with α = 1.0, FedAvg+Linear even underperforms
FedAvg, highlighting that FedAvg+Linear tends to overfit the limited local training data due to the
large number of personalized parameters introduced.

In comparison, FedPFT demonstrates superior performance across all scenarios. Leveraging the
flexibility of the FTM, FedPFT+Con further enhances model performance, significantly outperforming
FedAvg+Linear.

G COMPARISON OF FEDPFT+CON WITH TWO-STAGE APPROACH

In FedPFT+Con, we propose an FTM to coordinate the joint training of contrastive learning and
classification tasks. To illustrate the superiority of this design, we introduce a baseline called ‘Two-
stage,’ similar to Wang et al. (2023), where contrastive learning training is conducted first, followed
by classification task training after convergence. For fairness, in the two-stage method, we first
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Table 9: Test accuracy (%) of FedAvg+Linear under Dirichlet non-IID on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

Methods α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 60.39±1.46 60.41±1.36 60.91±0.72 34.91±0.86 32.78±0.23 33.94±0.39
Local 81.91±3.09 60.15±0.86 52.24±0.41 47.61±0.96 22.65±0.51 18.76±0.63

FedAvg+Linear 85.96±2.23 71.17±1.28 67.63±0.83 58.07±0.41 37.09±0.85 31.23±0.24

FedPFT 87.23±2.69 74.10±1.95 69.23±0.76 60.98±0.39 44.87±0.76 41.83±0.37
FedPFT+Con 88.60±2.19 77.54±1.88 74.81±0.77 62.03±1.41 47.98±0.78 44.29±0.74

perform 1000 rounds of contrastive learning training, followed by 1000 rounds of classification task
training. The experimental results are depicted in Figure 9.
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Figure 9: Comparison with two-stage approach on training LCon, LCE, and testing accuracy.

Firstly, from the perspective of the contrastive learning loss (LCon), FedPFT+Con registers lower
loss values compared to the Two-stage approach, suggesting that simultaneous training with the
classification task enhances the efficacy of contrastive learning. Secondly, considering both Figure 9(b)
and Figure 9(c), our method exhibits significantly higher accuracy compared to the Two-stage
approach. However, LCE converges to a higher training loss value, suggesting that in our design,
contrastive learning tasks can alleviate overfitting issues in the classification task during training.
These experiments demonstrate that our proposed approach can effectively coordinate both tasks,
allowing them to assist each other. Importantly, these experiments also indicate that the significant
performance improvement brought by contrastive learning in our method is largely attributed to the
design of our FTM and training approach.

H ATTENTION WEIGHT VISUALIZATION

In the FTM of FedPFT and FedPFT+Con, self-attention mechanisms are employed to facilitate the
integration of prompts with sample features. This section visualizes the attention weights to reveal
how prompts influence the transformation process. We analyze 20 test samples from a single client
on the CIFAR-10 dataset, with results depicted in Figure 10. Each row in the figure corresponds
to the attention weights for the output feature f ′ of a single sample. Columns represent the input
dimensions of the FTM: the first column corresponds to the original input feature f , while subsequent
columns relate to different prompts from the sets pκ,i or pρ,i.

It can be observed that when α = 0.1, indicating severe local class imbalances, each client has
data from only a few classes. In this case, the feature transformation task is relatively simple, and
the influence of different prompts on a sample is similar. As α increases, indicating more complex
local tasks, the influence of prompts becomes more intricate. Particularly at α = 1.0, it can be seen
that each sample is affected differently by different prompts. This also indicates that our approach
performs sample-level feature transformation.
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Figure 10: Visualize attention weights for different prompts in a client in the CIFAR-10 dataset under
the Dirichlet non-IID scenario.

I EXPERIMENTS IN FEATURE SHIFT NON-IID SCENARIOS

In the experiments presented in our main text, we primarily conduct validation in the label shift
non-IID scenarios. In this section, we further validate FedPFT in feature shift non-IID scenarios.

We conduct experiments on two feature shift datasets, PACS Li et al. (2017) and DomainNet Peng
et al. (2019). PACS and DomainNet have four and six domains, respectively, with each domain
assigned to one client. The number of clients corresponds to the number of domains. For each client,
we allocate 1000 training samples and 500 testing samples. The experimental results are shown in
Table 10.

Table 10: Comparison of different methods in the feature shift non-IID scenarios.

PACS DomainNet

Methods Origin Acc. Match Acc. Origin Acc. Match Acc.

FedAvg 71.48% 75.49% 63.53% 67.17%

FedPer 74.86% 75.31% 65.70% 65.67%
FedBN 73.91% 74.71% 67.57% 68.57%

FedCAC 74.94% 75.94% 67.80% 68.53%

FedPFT 77.67% 77.64% 70.37% 70.57%

Existence of the mismatch phenomenon. The results show that in both datasets, there are still
noticeable gaps between Origin Acc. and Match Acc. across all methods, especially in FedAvg. This
indicates that the mismatch problem persists and is a major reason for the suboptimal performance of
FedAvg.

Superiority of our method. From the perspective of mismatch degree, the small gap between Origin
Acc. and Match Acc. in FedPFT demonstrates its effectiveness in addressing the mismatch problem
in feature shift non-IID scenarios. In terms of Origin Acc., FedPFT significantly outperforms SOTA
methods (e.g., by up to 2.73% on PACS), further highlighting the superiority of FedPFT in address
the feature shift non-IID problem.
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J EXPANDING TO MORE CLIENTS AND MORE COMPLEX MODELS

To demonstrate the scalability of FedPFT, we further conduct experiments on CIFAR-10 in Dirichlet
non-IID scenarios with more clients and more complex models.

Scaling to more clients. We perform experiments with 100 clients, and the test accuracies of various
methods are presented in Table 11.

Table 11: Accuracy (%) of different methods with 100 clients.

Scenarios FedPer FedBN FedRoD FedCAC FedPFT

α = 0.1 84.68 85.51 87.58 87.40 88.43
α = 0.5 71.40 70.85 75.23 72.82 76.49
α = 1.0 66.92 67.18 70.99 69.06 72.53

Scaling to more complex models. We conduct experiments using ResNet-18, with the test accuracies
of different methods shown in Table 12.

Table 12: Accuracy (%) of different methods with ResNet-18.

Scenarios FedPer FedBN FedRoD FedCAC FedPFT

α = 0.1 82.80 78.10 83.50 82.60 83.52
α = 0.5 65.35 55.38 67.55 63.27 68.93
α = 1.0 61.83 56.88 62.05 60.53 64.95

In both experiments, FedPFT significantly outperforms state-of-the-art methods, highlighting the
scalability of our approach.

K PARTIAL CLIENT PARTICIPATION

In FL, challenges such as offline clients and unstable communication may result in only a subset of
clients participating in training each round, posing a challenge to the robustness of FL algorithms.
In this section, we investigate whether FedPFT is robust to this issue. We conduct experiments on
CIFAR-10, CIFAR-100, and Tiny ImageNet, considering scenarios where only a random 50%, 70%,
and 90% of clients participate in training each round. The experimental results are presented in
Table 13.
Table 13: Accuracy (%) of FedPFT when different proportions of clients participate in each round of
training. The content in ‘()’ represents the performance change compared to 100% client participation.

Datasets 100% 90% 70% 50%

CIFAR-10 74.10±1.95 73.88±1.84 (-0.22) 74.21±1.45 (+0.11) 74.33±1.38 (+0.23)
CIFAR-100 44.87±0.76 45.74±0.32 (+0.87) 45.46±1.14 (+0.59) 45.87±0.81 (+1.00)
Tiny 28.61±0.40 28.53±0.62 (-0.08) 29.24±0.16 (+0.63) 29.90±0.10 (+1.29)

It can be observed that compared to scenarios where all clients participate in training, FedPFT’s
accuracy is not significantly reduced when only a subset of clients participate. Furthermore, in
CIFAR-100 and Tiny ImageNet, the performance of FedPFT may even be improved. This is because
reducing the number of participating clients each round may mitigate the impact of non-IID data
distribution on the global model. These experiments demonstrate the robustness of FedPFT to
scenarios where only a subset of clients participate.

L EFFECT OF HYPERPARAMETERS

In the previous experiments, we utilize the default hyperparameter combination. In this section, we
verify how variations in these hyperparameters influence the performance of FedPFT.
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Figure 11: The effect of hyperparameter nκ on CIFAR-10 and CIFAR-100 in the Dirichlet non-IID
scenario.

L.1 EFFECT OF nκ

nκ represent the number of prompts in pκ,i for each client. We examine the impact of this hyperpa-
rameter on the performance of FedPFT on CIFAR-10 and CIFAR-100 datasets. The experimental
results are depicted in Figure 11.

FedPFT shows considerable robustness to variations in nκ. On the CIFAR-10 dataset, changes
in nκ have minimal impact on performance, suggesting that the model can effectively handle
simpler data distributions even with fewer prompts. In contrast, on the more complex CIFAR-100
dataset, performance is initially limited by a small number of prompts, which may not sufficiently
cover the diverse feature space required for effective feature transformation. As the number of
prompts increases, the model’s ability to transform and adapt features improves, leading to enhanced
performance.

L.2 EFFECT OF Rf AND Ra

Rf and Ra are used to control the number of training epochs for the two training stages. Since
we set Rf + Ra = R, in this experiment, we only adjust Rf to examine the impact of these two
hyperparameters on model performance. The experimental results are illustrated in Figure 12.
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(c) Tiny ImageNet, α = 0.1

Figure 12: The effect of hyperparameter Rf on CIFAR-10, CIFAR-100, and Tiny ImageNet in the
Dirichlet non-IID scenario with α = 0.1.

When Rf = 0, it indicates that local features are not aligned with the global classifier before training
the model parameters. Under this condition, the model performance is observed to be very poor. As
Rf gradually increases, the model performance initially improves but then declines in some scenarios,
suggesting that Rf balances the trade-off between the two training stages. When Rf is too small,
local features are not sufficiently transformed to match the classifier, resulting in the model being
affected by the mismatch during the model training phase, which reduces the synergy between the
feature extractor and classifier. On the other hand, when Rf is too large, the model parameters are
insufficiently trained, limiting the learning of local knowledge from clients.

In general, Rf and Ra are two hyperparameters that need careful adjustment, as they have a significant
impact on the performance of FedPFT. Typically, in scenarios where clients’ local tasks are simple, it
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may be appropriate to decrease the value of Rf . In other cases, we recommend using a larger Rf

value to fully align the local features with the global classifier.

M COMPUTATION EFFICIENCY

We empirically evaluate the computational efficiency of our method on CIFAR-100 using ResNet-
10, with results displayed in Table 14. We run each method for 100 rounds and calculate their
average runtime per round. Each method exclusively utilizes a single machine during runtime. All
experiments are conducted on four NVIDIA RTX 2080 GPUs.

Table 14: The average computation time per round for different methods on CIFAR-100.

Methods FedAvg FedPer FedBN FedRoD FedCAC FedPFT

Time per round (s) 50.10 51.81 52.65 54.76 55.35 51.61

FedPFT introduces the FTM, which adds some computational overhead. However, since it does not
require updating the feature extractor during the feature learning phase, this helps reduce training
costs to some extent. Overall, from the results in Table 14, FedPFT takes slightly longer to compute
than FedAvg but is more time-efficient compared to SOTA methods.

N COMMUNICATION COST

In this section, we calculate the communication overhead of one client in FedAvg and FedPFT in
each communication round.
Table 15: The communication cost of each client in FedAvg and FedPFT in one communication
round. The percentages in parentheses represent the increase compared to FedAvg.

Models ϕi τi hκ,i FedAvg FedPFT

ResNet-8 1.24M 0.26M 25.70K 1.27M 1.53M (20.47%)
ResNet-10 4.91M 1.05M 51.30K 4.96M 6.01M (21.17%)

In FedAvg, each communication round uploads the feature extractor ϕi and classifier hκ,i. FedPFT
adds FTM τi, increasing communication overhead by 20.47% for ResNet-8 and 21.17% for ResNet-
10.

While FedPFT brings additional communication costs, it is important to weigh it against the per-
formance enhancements and flexibility offered by τi, as discussed in earlier sections of this paper.
The improved model accuracy and robustness to non-IID data might justify the additional costs in
scenarios where model performance is critical.

Moving forward, considering the increase in communication cost is primarily due to the additional
components τi, we aim to develop a more efficient and lightweight FTM to reduce communication
demands without compromising model effectiveness in our future work.

O LIMITATIONS AND FUTURE WORK

In this paper, we primarily investigate PFL methods that derive personalized models based on a global
model. We analyze the essential reasons these methods enhance performance from the perspective of
mismatches between local features and classifiers. Although such methods occupy the mainstream in
the current PFL field, it is necessary to admit that there are some PFL methods that are not based
on global models, such as personalized-weight-aggregation-based methods, which are not explored
in this study. Additionally, while this paper observes that personalizing a subset of parameters
degrades the quality of the feature extractor, the underlying reasons for this phenomenon require
further investigation.
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P THEORETICAL ANALYSIS

Since the main problem in Eq. (1) is non-convex, we focus on the factors affecting convergence in
the non-convex setting.

Table 16: The glossary of notations used in the theoretical analysis.

Implication Notation

Global / Local loss L / Li

Global / Local problem F / Fi

Local Dataset on ith client d̃i ∈ di
Feature extractor ϕ

Feature transformation module τ
Classification / Contrastive learning prompts pκ / pρ

Feature extractor & Feature transformation module & Classifier w
Classification / Contrastive learning task head hκ / hρ

Global / Local problem’s gradient ∇F (w) / ∇Fi(w)
Local gradient approximation gti,r

Client number N
Local update epoch R

The number of clients sampled at each global epoch S
The set of clients sampled at global epoch t St

The actual learning rate of global problem η̃
The learning rate of local problem η

Approximated local gradient error’s upper-bound δ
Local-global gradient error’s upper-bound σF

Index of client, local epoch and global epoch i ∈ [N ], r ∈ [R], t ∈ [T ]

P.1 PROBLEM SETUP

Non-convex case analyses are provided, because our model is multi-layer transformer. Analyses are
as follows.

We transform the problem into an unconditional bi-level optimization problem:

min
w

EF (w) = Ei{Fi(w) := min
pκ,i

Edi
LCE(w, pκ,i; di)}

where E represents the expectation of all random variables, Ei means the expectation of client
sampling, Edi

is the local data sampling expectation, and we use w = {ϕ, τ, hκ} for simplification,
based on the equivalence of block coordinate descent and gradient descent.

With contrastive learning the problem could be transformed into a similar problem with constrain. By
Lagrange duality, the main problem is transformed as follows:

min
ϕ,τ,hκ

min
{pκ,i}i∈[N]

EiEdi
LCE(ϕ, τ, hκ, pκ,i; di)

s.t. EiEdi
LCon(ϕ, τ ; di) ≤ HCon

P.2 PROPOSITIONS

Proposition P.1 (L-smooth). If f is L-smooth, ∀x, y we have:
⟨∇f(x)−∇f(y), x− y⟩ ≤ L||x− y||2

||∇f(x)−∇f(y)|| ≤ L||x− y||
||∇f(x)−∇f(y)||2 ≤ 2L[f(x)− f(y)]

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
||y − x||2
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Proposition P.2 (Jensen’s inequality). If f is convex, we have the following inequality:

EXf(X) ≥ f(EXX).

A variant of the general one shown above, given a group {xi}i∈[N ]:

||
∑
i∈[N ]

xi||2 ≤ N
∑
i∈[N ]

||xi||2.

Proposition P.3 (Triangle inequality). The triangle inequality, where || · || is the norm, and A, B is
the elements in the corresponding norm space:

||A+B|| ≤ ||A||+ ||B||

Proposition P.4 (Matrix norm compatibility). The matrix norm compatibility, A ∈ Ra×b, B ∈
Rb×c, v ∈ Rb:

||AB||m ≤ ||A||m||B||m
||Av||m ≤ ||A||m||v||

Proposition P.5 (Peter Paul inequality). ∀x, y and ∀ϵ > 0, we have the following inequality:

2⟨x, y⟩ ≤ 1

ϵ
||x||2 + ϵ||y||2

P.3 ASSUMPTIONS

Assumption P.1 (L-smooth local objectives). ∀i, Fi is LF -Smooth, the main proposition is shown in
Prop. P.1. Notice that the Fi is assumed to be L-smooth and non-convex, which matches the problem
and neural network architecture setting in the main paper.

Assumption P.2 (Bounded local variance). The local problem’s gradient is assumed not to be too far
from the global problem’s gradient.

∀w,Ei||∇Fi(w)−∇F (w)|| ≤ σF

Assumption P.3 (Bounded approximated gradient). The first-order approximation of the local
problem’s gradient gti,r should not be too far from the ground truth ∇Fi(w

t
i,r). In this assumption,

the approximated error of the block coordinate descent in Algorithm 1 is bounded.

∀{(i, r, t)}, ||gti,r −∇Fi(w
t
i,r)|| ≤ δ

P.4 LEMMAS

Lemma P.1 (Bounded local approximation error). If η̃ := ηR ≤ 1
2LF

, we have the following bound
of client drift error:

1

NR

N,R∑
i,r

E||g(t)i,r −∇Fi(w
(t))||2 ≤ 2δ2 + 2R+3LF [3η̃

2
N∑
i

E||∇Fi(w
(t))||2 + 2η̃2δ2

R
]

Proof. The client drift error on given ith client and its upper bound are as follows:

E||g(t)i,r −∇Fi(w
(t))||2

≤2E||g(t)i,r −∇Fi(w
(t)
i,r)||

2 + 2E||∇Fi(w
(t))−∇Fi(w

(t)
i,r)||

2

≤2δ2 + 2LFE||w(t)
i,r − w(t)||2

(10)

where the first inequality is by Proposition P.3 and the second one is by Assumption P.1.
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For the last term in the upper bound, we have the iterative formulation as follows:

E||w(t)
i,r − w(t)||2

=E||w(t)
i,r−1 − w(t) − g

(t)
i,r−1||

2

≤2E||w(t)
i,r−1 − w(t) − η∇Fi(w

(t))||2 + 2η2E||g(t)i,r−1 −∇Fi(w
(t))||2

≤2(1 +
1

2R
)E||w(t)

i,r−1 − w(t)||2 + 2(1 + 2R)η2E||∇Fi(w
(t))||2

+ 4η2[δ2 + L2
FE||w(t)

i,r − w(t)||2]

=2(1 +
1

2R
+ 2η2L2

F )E||w(t)
i,r−1 − w(t)||2 + 4η2δ2

+ 2(1 + 2R)η2E||∇Fi(w
(t))||2

where the two inequalities are by Proposition P.3, Proposition P.5 and Eq. (10).

Take η̃ := ηR ≤ 1
2LF

, we recursively unroll the inequality as follows:

E||w(t)
i,r − w(t)||2

≤2(1 +
1

R
)E||w(t)

i,r−1 − w(t)||2 + 4η2δ2 + 2(1 + 2R)η2E||∇Fi(w
(t))||2

≤[3η̃2E||∇Fi(w
(t))||2 + 2η̃2δ2

R
]2R+2

where the inequality is unrolled and we use 1
R ≤ 1. Thus, we have:

E||g(t)i,r −∇Fi(w
(t))||2 ≤ 2δ2 + 2R+4η̃2LF [3σ

2
F + 3E||∇F (w(t))||2 + δ2

R
]

P.5 THEOREM AND DISCUSSION

Theorem P.2 (Non-convex and smooth convergence of FedPFT). Let Assumption P.1, Assumption P.2
and Assumption P.3 hold, if η̃ := ηR ≤ min{ 1

2LF
, η̂} is taken, where η̂ := N/S−1

24(N−1)2R
σ2
F − 1, we

have the following bound:

O(E||∇F (w(t̄))||2) := O(
∆F

η̂T
+

2R/3L
1/3
F (Rσ2

F + δ2)1/3∆
2/3
F

T 2/3R1/3
+ (

σF

√
LF (N/S − 1)∆F√

TN
) + δ2)
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Proof.

EF (w(t+1))−EF (w(t))

≤E⟨∇F (w(t)), w(t+1) − w(t)⟩+ LF

2
E||w(t+1) − w(t)||2

=− η̃E⟨∇F (w(t)), g(t)⟩+ η̃2LF

2
E||g(t)||2

=− η̃E||∇F (w(t))||2 − η̃E⟨∇F (w(t)), g(t) −∇F (w(t))⟩+ η̃2LF

2
E||g(t)||2

≤− η̃

2
E||∇F (w(t))||2 + η̃

2
E|| 1

NR

N,R∑
i,r

g
(t)
i,r −∇Fi(w

(t))||2 + η̃2LF

2
E||g(t)||2

≤− η̃

2
E||∇F (w(t))||2 + η̃

2
E|| 1

NR

N,R∑
i,r

g
(t)
i,r −∇Fi(w

(t))||2

+
3η̃2LF

2
E[||g(t) −∇Fi(w

(t))||2 + || 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 + ||∇F (w(t))||2]

=− η̃(1− 3η̃LF )

2
E||∇F (w(t))||2 + η̃(1 + 3η̃LF )

2

1

NR

N,R∑
i,r

E||g(t)i,r −∇Fi(w
(t))||2

+
3η̃2LF

2
|| 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2

≤− η̃(1− 3η̃LF )

2
E||∇F (w(t))||2 + 3η̃2LF

N/S − 1

N − 1
[σ2

F + ||∇F (w(t))||2]

+ η̃(1 + 3η̃LF )[δ
2 + 2R+3η̃2LF [3σ

2
F + 3E||∇F (w(t))||2 + δ2

R
]]

where the four inequalities are respectively by LF -smooth of F := EiFi, Proposition P.5, Lemma P.1
and the similar classic Lemma 4 in (Shi et al., 2023).

Let c1 := 3δ2, c2 := 3LFσ
2
F

N/S−1
N−1 , c3 := 2R+3LF [3σ

2
F + δ2

R ],

EF (w(t+1))−EF (w(t)) ≤− η̃

2
{1− [

3

2
− 3

N/S − 1

N − 1
σ2
F + 72× 2Rη̃]}E||∇F (w(t))||2

+ c3η̃
3 + c2η̃

2 + c1η̃

≤− η̃

2
E||∇F (w(t))||2 + c3η̃

3 + c2η̃
2 + c1η̃

where let η̃ ≤ min{ 1
2LF

, η̂, where η̂ := 2
3×2R+4

N/S−1
N−1 σ2

F − 1}. Re-arranging the inequality above
and accumulating, we have:

1

2
E||∇F (w(t))||2 ≤ EF (w(t+1))−EF (w(t)) + c3η̃

2 + c2η̃ + c1

1

2T

t=T−1∑
t=0

E||∇F (w(t))||2 ≤ EF (w(T ))−EF (w(0)) + c3η̃
2 + c2η̃ + c1

Let ∆F = F (w0)− F (w∗), where w∗ is the minimum of the main problem argminw EF (w). To
measure the exact term of the bounds, we consider the following cases:

• ∆F

c3T
≤ η̃3 or ∆F

c2T
≤ η̃2, let η̃ = min{(∆F

c3T
)1/3, (∆F

c2T
)1/2}, we have:

1

2
E||∇F (w(t))||2 ≤

c
1/3
3 ∆

2/3
F

T 2/3
+ (

c2∆F

T
)1/2 + c1
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• ∆F

c3T
≥ η̃3 and ∆F

c2T
≥ η̃2, let η̃ = η̂, we have:

1

2
E||∇F (w(t))||2 ≤ ∆F

η̂T
+

c
1/3
3 ∆

2/3
F

T 2/3
+ (

c2∆F

T
)1/2 + c1

Uniformly sample a t̄ ∈ [T ]− 1, we have the upper bound as follows:

1

T

T−1∑
t=0

E||∇F (w(t)||2) = O(E||F (w(t̄))||2)

:=O(
∆F

η̂T
+

2R/3L
1/3
F (Rσ2

F + δ2)1/3∆
2/3
F

T 2/3R1/3
+ (

σF

√
LF (N/S − 1)∆F√

TN
) + δ2)

Remark P.2.1. According to Theorem P.2, our proposed FedPFT converges at a sub-linear level. The
linear term O(∆F

η̂T ) is affected by η̂ and the initialization gap ∆F . The sub-linear term O(1/T 2/3) is
affected by R, especially when R is large due to the exponential factor 2R. As the local approximation
error of the gradient δ grows, both the convergence radius O(δ) and the sub-linear term O(1/T 2/3)

are affected by the local optimizer selection significantly. Another sub-linear term O(
√
T ) is

eliminated if N/S − 1 = 0 when all the clients are sampled. Otherwise, the sub-linear rate is mainly
affected by σF .

FedPFT aligns the training objectives across clients by introducing pκ,i . Our design can effectively
reduce differences in local gradients among clients during training, thereby reducing σF and sub-
sequently lowering the upper bound. During training, pκ,i incorporate information from the local
datasets. By using them as part of the input, FedPFT effectively reduces the randomness in gradient
computation, thereby lowering δ and consequently reducing the upper bound.
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