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ABSTRACT

Convolutional neural networks (CNNs) have been shown to be state-of-the-art
models for visual cortical neurons. Cortical neurons in the primary visual cor-
tex are sensitive to contextual information mediated by extensive horizontal and
feedback connections. Standard CNNs integrate global contextual information to
model contextual modulation via two mechanisms: successive convolutions and
a fully connected readout layer. In this paper, we find that self-attention (SA), an
implementation of non-local network mechanisms, can improve neural response
predictions over parameter-matched CNNs in two key metrics: tuning curve cor-
relation and peak tuning. We introduce peak tuning as a metric to evaluate a
model’s ability to capture a neuron’s feature preference. We factorize networks to
assess each context mechanism, revealing that information in the local receptive
field is most important for modeling overall tuning, but surround information is
critically necessary for characterizing the tuning peak. We find that self-attention
can replace posterior spatial-integration convolutions when learned incrementally,
and is further enhanced in the presence of a fully connected readout layer, sug-
gesting that the two context mechanisms are complementary. Finally, we find
that decomposing receptive field learning and contextual modulation learning in
an incremental manner may be an effective and robust mechanism for learning
surround-center interactions.

1 INTRODUCTION

Feedforward CNN models have been shown in recent years to be an effective approach for modeling
and predicting visual cortical neurons’ responses to arbitrary natural images (Kindel et al., 2019;
Klindt et al., 2018; Yamins & DiCarlo, 2016; Zhang et al., 2018; Cadena et al., 2017; Kriegeskorte,
2015). Neurons in the primate visual cortex are known to have extensive horizontal and feedback
recurrent connections for mediating contextual modulation (Felleman & van Essen, 1991; Markov
et al., 2014). Feedforward CNNs can model the influence of contextual surround on the responses
of the neurons via two mechanisms: successive convolution layers and a fully connected layer. Both
can make the neural model’s responses sensitive to the global image context, outside the traditional
classical receptive fields of neurons. In the context of neural prediction, it is found that including the
inductive bias of horizontal recurrent connections can improve the model’s predictive capabilities
(Zhang et al., 2022), and that replacing a feedforward layer with a recurrent layer using a Markovian
local kernel consistently outperforms parameter-matched feedforward CNNs in image classification
tasks (Han et al., 2018; Nayebi et al., 2018; Kubilius et al., 2019; Zhang et al., 2022). However,
contextual modulation in the visual cortex involves both the near surround and far surround, with
the far surround being mediated by top-down feedback (Angelucci & Bressloff, 2006; Sasaki et al.,
2013; Shushruth et al., 2013). In addition, there is evidence that contextual modulation is dynamic
and highly image-dependent, suggesting a flexible gating mechanism (Coen-Cagli et al., 2015).
Such a flexible gating mechanism can be modeled by a combination of Gaussian mixture models,
implemented either by image-dependent normalization (Coen-Cagli et al., 2015) or by non-local
networks and the self-attention mechanism in deep learning (Fei & Pitkow, 2022). Self-attention-
based architectures such as vision transformers have recently been shown to be effective in modeling
mouse V1 neurons (Li et al., 2023). However, these networks, often using a large number of layers
and multiple attention heads, may be unnecessarily complex for this task.
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A Large Dataset of Macaque V1 Responses to Natural Images Revealed Complexity in V1 Neural Codes
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Summary and conclusion
● We collected extensive data on the response of 1689 Macaque V1 neurons to 30k-50k natural images. Using this 

data, we developed neural network models that more accurately predicts neural responses, and characterizes the 
receptive fields of the neurons.

● Our findings suggest that V1 neurons exhibit complexity beyond traditional oriented Gabor and tuned to curves, 
textures, eyes, and other higher order features.

● We demonstrate a large data set of natural images is important for revealing the complexity of receptive fields that 
white noise stimuli fail to recover.  

● We also found complex receptive fields predicted by overcomplete sparse coding fit neural responses better than 
standard sparse coding, though still not as powerful as the CNN models.

● The CNN models automatically exhibit surround suppression, suggesting that models have captured neurons' 
sensitivity to context, and that these CNN models can potentially be used as neurons-in-silicon for carrying out 
"neurophysiological experiments". 
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Research shows that Convolutional Neural Network is an excellent tool for modeling neural 
representation and computation in the ventral stream of macaque monkeys (Yamins and DiCarlo 
2016) and for characterizing V1 receptive fields in monkeys (Zhang et al. 2019) and mice ( 
Candena et al., 2019,  Walker et al., 2019.).  Our earlier studies showing that V1 neurons are tuned 
to more complex features beyond orientation-selective Gabor filters (Tang et al., 2018a., Zhang et 
al. 2019) were based on a parametric artificial pattern and might be biased.  The extreme sparsity 
of macaque V1 responses to natural images in 2-P calcium imaging had prevented adequate CNN 
fitting of macaque V1 receptive fields (Tang et al. 2018b). This study provides a large dataset for 
better characterizations of the neural codes of macaque V1 neurons. 

Experiments & Data
Using two-photon imaging with GCaMP5, we measured the responses of 1689 neurons from 6 sites 
of three awake behaving macaque monkeys to 30k-50k natural images. About 300 cells from each 
site  were tracked  across five days anatomically and based on responses to 200 fingerprint 
images.  Monkeys performed fixation task.  The images were presented in sequence with 1 second 
per image preceded by 1 second of gray screen. The 30k-50k images in the training set were 
presented once,  1000 images in the validation set were tested once with 10 repeats. 

Individual CNN (iCNN) (Zhang et al. 2019) or shared core CNN (SCM) (Klindt et al. 2017), (with 4 
conv layers) were fitted to the responses to 30k-50k training images to predict the responses to 
1000 validation images.  The metric used to evaluate the models was the Pearson correlation 
between neuron responses and model-predicted responses. Predicted correlation for entire 
population of neurons is around 0.53. (Histogram of the performance distribution iCNN vs SCM 
shown below).
z

Shared-core model. Proposed by Klindt, et al. in 2017Individual-CNN, with 4 Convolutional layers 
and 2 Max Pooling layers
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Top 20 images in presented stimuliExample 2-photon imaging results for one site
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CNN modeling of V1 RFs

Diversity and Complexity of V1 tunings

Surround suppression

Receptive fields based on Over-complete sparse coding fit better than complex sparse coding 

Visualizations: By visualizing all neurons in the collected V1 
data, we can observe complex tuning that differs from 
traditional Gabor-oriented filters. All neurons in a example 
site M1S1 see below (iCNN visualizations): 
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We tested the fitted CNN models with 
the Pattern stimuli used in Tang et al. 
2018a, augmented with reverse contrast 
and Laplacian filtered versions to 
compare neurons' visualization to their 
classification based on responses to 
curves, junctions, bars and edges in the 
earlier study.

Augmented pattern stimuli

Data size matters 

Ranked tuning curve (blue curve) for an example neuron 
against the prediction of the model (orange curve) with 
performance of 0.77 correlation. The neuron's preferred 
image is "visualized" by optimizing the input image via 
backpropagation to maximize the responses of the 
neurons. The dashed line shows the response of the 
model to the visualized image (see above). Validation set 
images with top responses were shown for comparison.

V1 neurons forms certain clusters: V1 neurons exhibit clustering 
behavior, as evidenced by the example neurons presented in the 
center panel below, each belonging to a labeled cluster. These 
neurons exhibit different patterns, such as curves, textures, and 
even eye-specific neurons. The top panel displays the top 5 
validation images that elicited the largest responses from each 
neuron, while the bottom panel shows the top 5 Pattern stimuli. 
Notably, the preferred validation images and pattern stimuli of the 
neurons share similar shapes with the visualizations, indicating 
the intricate nature of the V1 neural code.

Curves TexturesEyes SineGrating Bar othersCorner

Validation Top 5 imagesValidation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images

Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5Pattern stimuli Top 5 Pattern stimuli Top 5

Left panel shows the response prediction performance of 40 top-performing neurons from site M2S1 as 
a function of the amount of data used to train the models. It shows the general trend, also evident for 
the entire population, response prediction performance improves with the number of training samples 
used.
Right panel shows the visualizations of two example neurons increase in complexity with more and 
more data.  

Natural images matters 

½ * Max response

One cell evolves 
from a traditional 
oriented edge to a 
curve while the 
other evolves from 
a grating to an eye. 

As the size of the dataset grows, we observed more neurons become classified as Higher-Order (HO). 
A neuron is classified as HO when all the pattern stimuli that elicit responses greater than 50% of its 
peak response belong to one or more higher order categories (curves, corners, crosses, rings). 
Neurons with oriented bars or edges above half-peak response are classified as OT (Oriented-Tuning). 

With limited data, 
neurons are 
predominantly 
classified as 
oriented tuned (OT), 
but models trained 
with more data 
revealed a higher 
proportion of 
neurons tuned to 
complex patterns 
(HO).

We evaluated the performance 
of linear-nonlinear (LN) models 
in predicting neural responses 
using linear filters learned 
through sparse coding from 16 
x 16 natural image patches. 
Our results indicate that 
prediction performance 
improves with increasing 
overcompleteness of the 
representation, as shown in the 
right graph. To account for 
rotation and translation 
variations, we rotated each 
filter set by 18 orientations, 
shifted them by 25 positions, 
and reversed the contrast 
before identifying the best filter 
for each LN model to predict 
neuron responses.

Overcomplete sparse coding (cite Olshausen, LeCun, Sommer) also yields more 
complex receptive fields than standard sparse coding (Olshausen and Field 1996). 
The best fitted "overcomplete" codes for neurons in site m2s1 (Middle Panel, 16X 
overcomplete) revealed  curvature and corner neurons versus the standard Gabor 
filters in the standard sparse coding (Left Panel). CNN models' visualization (Right 
Panel)  show a greater degree of diversity and complexity in neural codes.

Natural images, with rich features, are crucial for 
recovering complex receptive fields, in addition to 
the amount of data. Testing CNN models with white 
noise image, we found that standard 
reverse-correlation techniques fail to recover 
complex pattern receptive fields even with 5 million 
white noise patterns.  CNN visualization, top 
response weighted average stimuli, as well as the 
receptive fields recovered from white noises are 
shown for comparison. 

Visualizations Top image Weighted-sum 5 million whitenoise

Response

…

Reverse correlation method

We tested the CNN models of 279 neurons (all sites combined) with good response prediction performance (> 0.7 in 
Pearson Correlation) with sine-wave grating with size,  ranging from 1X to 7X receptive field size. Interestingly,  these 
neurons trained with natural images exhibit the classical surround suppression effect automatically.  (a) RF distribution 
of the neurons, as mapped by bars. (b) averaged responses of the selected CNN neurons to a sine-wave grating 
(averaged over 4 phases) of each cell’s preferred orientation and spatial frequency inside (grating center-only) or 
outside (gray center, grating surround-only) apertures of different diameters. (c) distribution of the magnitude of the 
surround suppression index (MaxRsp - MinRsp) / MaxRsp, which is very similar to that reported in Cavanaugh et al. 
(2002) (d). 

RF distribution of selected neurons

N=279

Center and Surround Grating Responses Dist of surround suppression
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Summary and conclusion
● We collected extensive data on the response of 1689 Macaque V1 neurons to 30k-50k natural images. Using this 

data, we developed neural network models that more accurately predicts neural responses, and characterizes the 
receptive fields of the neurons.

● Our findings suggest that V1 neurons exhibit complexity beyond traditional oriented Gabor and tuned to curves, 
textures, eyes, and other higher order features.

● We demonstrate a large data set of natural images is important for revealing the complexity of receptive fields that 
white noise stimuli fail to recover.  

● We also found complex receptive fields predicted by overcomplete sparse coding fit neural responses better than 
standard sparse coding, though still not as powerful as the CNN models.

● The CNN models automatically exhibit surround suppression, suggesting that models have captured neurons' 
sensitivity to context, and that these CNN models can potentially be used as neurons-in-silicon for carrying out 
"neurophysiological experiments". 
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Research shows that Convolutional Neural Network is an excellent tool for modeling neural 
representation and computation in the ventral stream of macaque monkeys (Yamins and DiCarlo 
2016) and for characterizing V1 receptive fields in monkeys (Zhang et al. 2019) and mice ( 
Candena et al., 2019,  Walker et al., 2019.).  Our earlier studies showing that V1 neurons are tuned 
to more complex features beyond orientation-selective Gabor filters (Tang et al., 2018a., Zhang et 
al. 2019) were based on a parametric artificial pattern and might be biased.  The extreme sparsity 
of macaque V1 responses to natural images in 2-P calcium imaging had prevented adequate CNN 
fitting of macaque V1 receptive fields (Tang et al. 2018b). This study provides a large dataset for 
better characterizations of the neural codes of macaque V1 neurons. 

Experiments & Data
Using two-photon imaging with GCaMP5, we measured the responses of 1689 neurons from 6 sites 
of three awake behaving macaque monkeys to 30k-50k natural images. About 300 cells from each 
site  were tracked  across five days anatomically and based on responses to 200 fingerprint 
images.  Monkeys performed fixation task.  The images were presented in sequence with 1 second 
per image preceded by 1 second of gray screen. The 30k-50k images in the training set were 
presented once,  1000 images in the validation set were tested once with 10 repeats. 

Individual CNN (iCNN) (Zhang et al. 2019) or shared core CNN (SCM) (Klindt et al. 2017), (with 4 
conv layers) were fitted to the responses to 30k-50k training images to predict the responses to 
1000 validation images.  The metric used to evaluate the models was the Pearson correlation 
between neuron responses and model-predicted responses. Predicted correlation for entire 
population of neurons is around 0.53. (Histogram of the performance distribution iCNN vs SCM 
shown below).
z

Shared-core model. Proposed by Klindt, et al. in 2017Individual-CNN, with 4 Convolutional layers 
and 2 Max Pooling layers
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Visualizations: By visualizing all neurons in the collected V1 
data, we can observe complex tuning that differs from 
traditional Gabor-oriented filters. All neurons in a example 
site M1S1 see below (iCNN visualizations): 
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We tested the fitted CNN models with 
the Pattern stimuli used in Tang et al. 
2018a, augmented with reverse contrast 
and Laplacian filtered versions to 
compare neurons' visualization to their 
classification based on responses to 
curves, junctions, bars and edges in the 
earlier study.

Augmented pattern stimuli

Data size matters 

Ranked tuning curve (blue curve) for an example neuron 
against the prediction of the model (orange curve) with 
performance of 0.77 correlation. The neuron's preferred 
image is "visualized" by optimizing the input image via 
backpropagation to maximize the responses of the 
neurons. The dashed line shows the response of the 
model to the visualized image (see above). Validation set 
images with top responses were shown for comparison.

V1 neurons forms certain clusters: V1 neurons exhibit clustering 
behavior, as evidenced by the example neurons presented in the 
center panel below, each belonging to a labeled cluster. These 
neurons exhibit different patterns, such as curves, textures, and 
even eye-specific neurons. The top panel displays the top 5 
validation images that elicited the largest responses from each 
neuron, while the bottom panel shows the top 5 Pattern stimuli. 
Notably, the preferred validation images and pattern stimuli of the 
neurons share similar shapes with the visualizations, indicating 
the intricate nature of the V1 neural code.

Curves TexturesEyes SineGrating Bar othersCorner
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Left panel shows the response prediction performance of 40 top-performing neurons from site M2S1 as 
a function of the amount of data used to train the models. It shows the general trend, also evident for 
the entire population, response prediction performance improves with the number of training samples 
used.
Right panel shows the visualizations of two example neurons increase in complexity with more and 
more data.  

Natural images matters 

½ * Max response

One cell evolves 
from a traditional 
oriented edge to a 
curve while the 
other evolves from 
a grating to an eye. 

As the size of the dataset grows, we observed more neurons become classified as Higher-Order (HO). 
A neuron is classified as HO when all the pattern stimuli that elicit responses greater than 50% of its 
peak response belong to one or more higher order categories (curves, corners, crosses, rings). 
Neurons with oriented bars or edges above half-peak response are classified as OT (Oriented-Tuning). 

With limited data, 
neurons are 
predominantly 
classified as 
oriented tuned (OT), 
but models trained 
with more data 
revealed a higher 
proportion of 
neurons tuned to 
complex patterns 
(HO).

We evaluated the performance 
of linear-nonlinear (LN) models 
in predicting neural responses 
using linear filters learned 
through sparse coding from 16 
x 16 natural image patches. 
Our results indicate that 
prediction performance 
improves with increasing 
overcompleteness of the 
representation, as shown in the 
right graph. To account for 
rotation and translation 
variations, we rotated each 
filter set by 18 orientations, 
shifted them by 25 positions, 
and reversed the contrast 
before identifying the best filter 
for each LN model to predict 
neuron responses.

Overcomplete sparse coding (cite Olshausen, LeCun, Sommer) also yields more 
complex receptive fields than standard sparse coding (Olshausen and Field 1996). 
The best fitted "overcomplete" codes for neurons in site m2s1 (Middle Panel, 16X 
overcomplete) revealed  curvature and corner neurons versus the standard Gabor 
filters in the standard sparse coding (Left Panel). CNN models' visualization (Right 
Panel)  show a greater degree of diversity and complexity in neural codes.

Natural images, with rich features, are crucial for 
recovering complex receptive fields, in addition to 
the amount of data. Testing CNN models with white 
noise image, we found that standard 
reverse-correlation techniques fail to recover 
complex pattern receptive fields even with 5 million 
white noise patterns.  CNN visualization, top 
response weighted average stimuli, as well as the 
receptive fields recovered from white noises are 
shown for comparison. 

Visualizations Top image Weighted-sum 5 million whitenoise

Response

…

Reverse correlation method

We tested the CNN models of 279 neurons (all sites combined) with good response prediction performance (> 0.7 in 
Pearson Correlation) with sine-wave grating with size,  ranging from 1X to 7X receptive field size. Interestingly,  these 
neurons trained with natural images exhibit the classical surround suppression effect automatically.  (a) RF distribution 
of the neurons, as mapped by bars. (b) averaged responses of the selected CNN neurons to a sine-wave grating 
(averaged over 4 phases) of each cell’s preferred orientation and spatial frequency inside (grating center-only) or 
outside (gray center, grating surround-only) apertures of different diameters. (c) distribution of the magnitude of the 
surround suppression index (MaxRsp - MinRsp) / MaxRsp, which is very similar to that reported in Cavanaugh et al. 
(2002) (d). 
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Summary and conclusion
● We collected extensive data on the response of 1689 Macaque V1 neurons to 30k-50k natural images. Using this 

data, we developed neural network models that more accurately predicts neural responses, and characterizes the 
receptive fields of the neurons.

● Our findings suggest that V1 neurons exhibit complexity beyond traditional oriented Gabor and tuned to curves, 
textures, eyes, and other higher order features.

● We demonstrate a large data set of natural images is important for revealing the complexity of receptive fields that 
white noise stimuli fail to recover.  

● We also found complex receptive fields predicted by overcomplete sparse coding fit neural responses better than 
standard sparse coding, though still not as powerful as the CNN models.

● The CNN models automatically exhibit surround suppression, suggesting that models have captured neurons' 
sensitivity to context, and that these CNN models can potentially be used as neurons-in-silicon for carrying out 
"neurophysiological experiments". 
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Research shows that Convolutional Neural Network is an excellent tool for modeling neural 
representation and computation in the ventral stream of macaque monkeys (Yamins and DiCarlo 
2016) and for characterizing V1 receptive fields in monkeys (Zhang et al. 2019) and mice ( 
Candena et al., 2019,  Walker et al., 2019.).  Our earlier studies showing that V1 neurons are tuned 
to more complex features beyond orientation-selective Gabor filters (Tang et al., 2018a., Zhang et 
al. 2019) were based on a parametric artificial pattern and might be biased.  The extreme sparsity 
of macaque V1 responses to natural images in 2-P calcium imaging had prevented adequate CNN 
fitting of macaque V1 receptive fields (Tang et al. 2018b). This study provides a large dataset for 
better characterizations of the neural codes of macaque V1 neurons. 

Experiments & Data
Using two-photon imaging with GCaMP5, we measured the responses of 1689 neurons from 6 sites 
of three awake behaving macaque monkeys to 30k-50k natural images. About 300 cells from each 
site  were tracked  across five days anatomically and based on responses to 200 fingerprint 
images.  Monkeys performed fixation task.  The images were presented in sequence with 1 second 
per image preceded by 1 second of gray screen. The 30k-50k images in the training set were 
presented once,  1000 images in the validation set were tested once with 10 repeats. 

Individual CNN (iCNN) (Zhang et al. 2019) or shared core CNN (SCM) (Klindt et al. 2017), (with 4 
conv layers) were fitted to the responses to 30k-50k training images to predict the responses to 
1000 validation images.  The metric used to evaluate the models was the Pearson correlation 
between neuron responses and model-predicted responses. Predicted correlation for entire 
population of neurons is around 0.53. (Histogram of the performance distribution iCNN vs SCM 
shown below).
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Visualizations: By visualizing all neurons in the collected V1 
data, we can observe complex tuning that differs from 
traditional Gabor-oriented filters. All neurons in a example 
site M1S1 see below (iCNN visualizations): 
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We tested the fitted CNN models with 
the Pattern stimuli used in Tang et al. 
2018a, augmented with reverse contrast 
and Laplacian filtered versions to 
compare neurons' visualization to their 
classification based on responses to 
curves, junctions, bars and edges in the 
earlier study.

Augmented pattern stimuli

Data size matters 

Ranked tuning curve (blue curve) for an example neuron 
against the prediction of the model (orange curve) with 
performance of 0.77 correlation. The neuron's preferred 
image is "visualized" by optimizing the input image via 
backpropagation to maximize the responses of the 
neurons. The dashed line shows the response of the 
model to the visualized image (see above). Validation set 
images with top responses were shown for comparison.

V1 neurons forms certain clusters: V1 neurons exhibit clustering 
behavior, as evidenced by the example neurons presented in the 
center panel below, each belonging to a labeled cluster. These 
neurons exhibit different patterns, such as curves, textures, and 
even eye-specific neurons. The top panel displays the top 5 
validation images that elicited the largest responses from each 
neuron, while the bottom panel shows the top 5 Pattern stimuli. 
Notably, the preferred validation images and pattern stimuli of the 
neurons share similar shapes with the visualizations, indicating 
the intricate nature of the V1 neural code.
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Left panel shows the response prediction performance of 40 top-performing neurons from site M2S1 as 
a function of the amount of data used to train the models. It shows the general trend, also evident for 
the entire population, response prediction performance improves with the number of training samples 
used.
Right panel shows the visualizations of two example neurons increase in complexity with more and 
more data.  

Natural images matters 

½ * Max response

One cell evolves 
from a traditional 
oriented edge to a 
curve while the 
other evolves from 
a grating to an eye. 

As the size of the dataset grows, we observed more neurons become classified as Higher-Order (HO). 
A neuron is classified as HO when all the pattern stimuli that elicit responses greater than 50% of its 
peak response belong to one or more higher order categories (curves, corners, crosses, rings). 
Neurons with oriented bars or edges above half-peak response are classified as OT (Oriented-Tuning). 

With limited data, 
neurons are 
predominantly 
classified as 
oriented tuned (OT), 
but models trained 
with more data 
revealed a higher 
proportion of 
neurons tuned to 
complex patterns 
(HO).

We evaluated the performance 
of linear-nonlinear (LN) models 
in predicting neural responses 
using linear filters learned 
through sparse coding from 16 
x 16 natural image patches. 
Our results indicate that 
prediction performance 
improves with increasing 
overcompleteness of the 
representation, as shown in the 
right graph. To account for 
rotation and translation 
variations, we rotated each 
filter set by 18 orientations, 
shifted them by 25 positions, 
and reversed the contrast 
before identifying the best filter 
for each LN model to predict 
neuron responses.

Overcomplete sparse coding (cite Olshausen, LeCun, Sommer) also yields more 
complex receptive fields than standard sparse coding (Olshausen and Field 1996). 
The best fitted "overcomplete" codes for neurons in site m2s1 (Middle Panel, 16X 
overcomplete) revealed  curvature and corner neurons versus the standard Gabor 
filters in the standard sparse coding (Left Panel). CNN models' visualization (Right 
Panel)  show a greater degree of diversity and complexity in neural codes.

Natural images, with rich features, are crucial for 
recovering complex receptive fields, in addition to 
the amount of data. Testing CNN models with white 
noise image, we found that standard 
reverse-correlation techniques fail to recover 
complex pattern receptive fields even with 5 million 
white noise patterns.  CNN visualization, top 
response weighted average stimuli, as well as the 
receptive fields recovered from white noises are 
shown for comparison. 

Visualizations Top image Weighted-sum 5 million whitenoise

Response

…

Reverse correlation method

We tested the CNN models of 279 neurons (all sites combined) with good response prediction performance (> 0.7 in 
Pearson Correlation) with sine-wave grating with size,  ranging from 1X to 7X receptive field size. Interestingly,  these 
neurons trained with natural images exhibit the classical surround suppression effect automatically.  (a) RF distribution 
of the neurons, as mapped by bars. (b) averaged responses of the selected CNN neurons to a sine-wave grating 
(averaged over 4 phases) of each cell’s preferred orientation and spatial frequency inside (grating center-only) or 
outside (gray center, grating surround-only) apertures of different diameters. (c) distribution of the magnitude of the 
surround suppression index (MaxRsp - MinRsp) / MaxRsp, which is very similar to that reported in Cavanaugh et al. 
(2002) (d). 

RF distribution of selected neurons

N=279

Center and Surround Grating Responses Dist of surround suppression

(a) (b)

(c) (d)

= Convolution Layer

= Max Pooling Layer

(a) (b) (c)

Figure 1: Macaque neuronal response dataset. (a) shows a two-photon image with cells. (b) shows
the response of one neuron to 50k stimuli and the top 20 images that induced the strongest responses.
On average, less than 0.5% of the images induce responses greater than half peak height. Each site
contains around 300 neurons. (c) shows a feedforward CNN used to model neural response.

In this paper, we demonstrate that a simple self-attention layer coupled with a CNN is sufficient in
improving neural response prediction of macaque V1 neurons in two performance metrics: overall
tuning correlation and prediction of the tuning peaks. To understand the mechanism driving im-
provement, we assessed the three contextual modulation mechanisms – convolutions, self-attention,
and a fully connected readout layer. We found that while the three context mechanisms complement
one another to produce the best prediction performance when used in conjunction, they have specific
roles. First, the fully connected layer plays a critical role in peak prediction, though self-attention
can further enhance it. Second, self-attention alone can improve tuning curve correlation but is in-
sufficient for predicting the response peak. The performance of self-attention models can be greatly
enhanced when the feedforward receptive fields are learned first before learning the self-attention
network, rather than learning everything simultaneously. The benefits of such incremental learning
(van de Ven et al., 2022; Cotton et al., 2020) in this context are novel, suggesting that decoupling
the learning of feedforward receptive fields and recurrent connections allows the system to learn a
richer representation of contextual modulation, as well as potentially providing insights towards the
underlying computational organization of cortical development.

2 RELATED WORKS

Modeling neural response prediction Feedforward deep neural networks have proven effective
in modeling and predicting neural responses in early visual brain areas (Kindel et al., 2019; Klindt
et al., 2018; Yamins & DiCarlo, 2016; Zhang et al., 2018; Cadena et al., 2017; Kriegeskorte, 2015).
However, the brain’s visual areas contain abundant recurrent connections that are essential for gen-
erating neural responses (Felleman & van Essen, 1991; Markov et al., 2014; Spoerer et al., 2020).
Incorporating biologically-inspired simple recurrent circuits, in the form of a Markov network, into
convolutional neural networks has been shown to enhance efficiency compared to purely feedfor-
ward models, achieving similar performance in image classification and neural prediction tasks
(Zhang et al., 2022). In the context of neural prediction, the underlying assumption is that the closer
a model can replicate the neural computation mechanisms responsible for a real neuron’s response,
the more accurate the model’s predictive capabilities become (Pogoncheff et al., 2023; Willeke et al.,
2023; Li et al., 2019).

Self-attention for global dependencies Self-attention mechanisms have recently become a piv-
otal component in deep learning models, especially in natural language processing and increasingly
in computer vision tasks (Vaswani et al., 2023; Zhao et al., 2020; Kim et al., 2021). In computer
vision, self-attention performs a weighted average operation based on the context of input features,
computing attention weights dynamically through a similarity function between pixel pairs (Vaswani
et al., 2023; Pan et al., 2022). This flexibility allows the attention module to adaptively focus on
different regions and capture informative features (Ramachandran et al., 2019). Self-attention has
also been integrated with CNNs to enhance their representational power (Pan et al., 2022; Yang
et al., 2019; Bello et al., 2020). By enabling CNNs to consider distant spatial relationships within
an image, self-attention improves the network’s ability to capture global context. This mechanism
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Figure 2: Models explored in this study. Models are constructed from two types of convolutional
processing blocks (CPB): αCPB and βCPB. αCPB has a fixed convolution kernel size = 5 and max
pooling kernel size = 2. βCPB takes an input convolution kernel size of k, and has no pooling
layers. The two final layer readout modes are fully connected (FCL) and center hypercolumn only
(CTL). Self-attention (SA) takes as input a boolean γ that determines whether the value (V) vector
is transformed; if γ =True then V is mapped, otherwise V is equal to the input. All models with SA
utilize single-headed attention. (a) shows the feedforward CNN. (b) shows the feedforward CNN
augmented with self-attention. (c) shows the receptive field CNN. (d) shows the receptive field CNN
augmented with self-attention.

overcomes the limitations of traditional CNNs, which primarily concentrate on local features be-
cause of their convolutional structure. Taking the complementary properties of convolution and
self-attention, the benefits of each paradigm can be extracted by integrating the two and using self-
attention to augment convolution modules (Dai et al., 2021; Yang et al., 2019; Pan et al., 2022;
Cordonnier et al., 2020).

3 APPROACH

In this study, we developed a set of deep learning models to model V1 neural response to natural
images, with the goal of evaluating the potential roles of the self-attention mechanism in neural
computation within the visual cortex. We obtained a dataset of neuronal responses measured us-
ing two-photon imaging with GCaMP5 from two awake behaving macaque monkeys performing
a fixation task, consisting of 302 neurons from monkey 1 (M1S1) and 299 neurons from monkey
2 (M2S1), in response to 34k and 49k natural images extracted from the ImageNet dataset. The
neurons were recorded across five days and tracked anatomically based on landmarks as well as
based on their responses to 200 fingerprint images tested every day. The images were presented in
sequence with 500 ms per image preceded by 1500 second of blank screen. The 30k-50k images
in the training set were presented once, and the 1000 images in the validation set were tested once
with 10 repeats. Images were 100× 100 pixels, with 30× 30 pixels for 1 degree visual angle. The
eccentricity of the recording sites were 3 degrees and 1.79 degrees, with average receptive field sizes
(diameters at half-height) of about 0.75 and 0.5 degrees, respectively. We preprocessed the dataset
before modeling, and notably downsampled input images to 50× 50 pixels, yielding 15× 15 pixels
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per degree visual angle. The receptive fields of neurons from each 1 mm × 1 mm site (the scale/size
of a hypercolumn) in macaque monkeys exhibited significant overlap. These fields were mapped
using oriented bars or SmoothGrad feature attribution on our deep learning model. The standard
deviation of the receptive field centers, all of which are contained within the center hypercolumn
of our CNN models, was less than 1 pixel (1/15 degree visual angle). See Appendix A.1 for more
details of the macaque experimental setup.

3.1 AUGMENTING FEEDFORWARD CNNS WITH SELF-ATTENTION

First, we investigate whether incorporating self-attention into the baseline feedforward CNN model
enhances neural response prediction performance. See Appendix A.3 for comparisons to other es-
tablished models.

Baseline feedforward model (ff-CNN) See Figure 2(a) for the architecture. The baseline
feedforward model is comprised of two α-convolutional processing blocks (αCPB) and two β-
convolutional processing blocks (βCPB), followed by a fully connected readout layer (FCL) . A
single ff-CNN model is fitted to each neuron. All models described below are derived from this
baseline model. Given a grayscale input image with dimensions 50×50 pixels, the two αCPB layers
with a 5×5 kernel encode the input of size (1×50×50) into (c×9×9) where c ∈ N is the number
of channels (c ∈ {30, 32} in this study). The center hypercolumn of the post-αCPB encoding has
a centered effective receptive field size of 13 × 13 pixels. In other words, the center hypercolumn
of the latent representation after the αCPB layers will have a 13 × 13 (or 0.8 × 0.8 degree visual
angle) feedforward receptive field at the center of input 50 × 50 image. Note that the real neurons’
receptive fields are contained inside the receptive field of the center hypercolumn. In the baseline
model, the two αCPB layers are followed by two βCPB layers with 3× 3 kernels to further expand
the effective receptive field of the center-hypercolumn. Finally, ff-CNN has access to the entirety
of the input image in the final layer as the readout has full access to all the hypercolumns. Thus,
the baseline ff-CNN CNN has two modalities of contextual modulation – convolutions and a fully
connected layer.

Feedforward with self-attention model (ff+sa-CNN) See Figure 2(b) for the architecture. We
augment ff-CNN with a self-attention layer immediately after the last αCPB and before the first
βCPB. This placement enables SA to act on an adequately convolved feature representation, but
also be further modulated by convolutions before feeding into the final layer. We compare the per-
formance of ff+sa-CNN against that of ff-CNN, controlling the parameter counts to be roughly
equal by decreasing the number of channels, which is maintained throughout entire model, from
c = 32 in the baseline CNNs to c = 30 in the self-attention models to account for the addition of
the SA layer. In the context of contextual modulation, ff+sa-CNN intermixes spatial interactions
and inter-channel mixing across SA, the posterior βCPBs, and the FCL.

3.2 FACTORIZING THE CONTEXTUAL MODULATION MECHANISMS

There are three mechanisms in ff+sa-CNN mediating contextual interactions. We proceed to fac-
torize ff+sa-CNN by removing the contextual modulation contributed by the βCPBs and the FCL
to assess the standalone capability of SA in incorporating surrounding context. This is accomplished
by constructing a baseline receptive field model and a model where only SA is mediating horizontal
connections.

Baseline receptive field model (rf-CNN) See Figure 2(c) for the architecture. We first construct
the rf-CNN model, which is devoid of contextual modulation, by subtracting from ff-CNN: the
kernel size in the βCPBs are changed from 3× 3 to 1× 1 and the fully connected layer is changed
to look only at the center hypercolumn (CTL). The 1× 1 convolutions perform no spatial expansion
before feeding into the CTL. Thus, rf-CNN is making predictions solely based on the center hyper-
column receptive field produced by the αCPBs, which covers the center 13× 13 pixels of the input
image.

Receptive field with self-attention model (rf+sa-CNN) See Figure 2(d) for the architecture.
We add self-attention to rf-CNN prior to the βCPBs to construct rf+sa-CNN. Self-attention is
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Figure 3: Incremental learning models setup. (a) shows the baseline receptive field CNN, equivalent
to Figure 2(c). (b) shows (a) augmented with self-attention and learned incrementally; the αCPBs
are taken from (a) and the remaining layers are learned. The ∗ denotes slight modification from
rf+sa-CNN, Figure 2(d), namely γ is changed to True. (c), (d) show the result of replacing the
CTL in (b) with a FCL, and learned incrementally; (c) freezes only the center hypercolumn in the
FCL (FC1) whereas (d) allows the FCL to learn freely (FC2). (c) and (d) have all other layers taken
from (b). The ∗ denotes slight modification from ff+sa-CNN, Figure 2(b), namely k in βCPB is
changed to k = 1. (Simul.) models are equivalent in architecture, except all blocks are learned.

the only mechanism for incorporating surround context in this model. The parameter counts are
again controlled by reducing the number of channels from c = 32 (in rf-CNN) to c = 30 (see
Appendix A.10 for more details). We compare the performance of the two receptive field models,
alongside the feedforward models. Note that in rf+sa-CNN, γ is False in the SA layer, meaning
SA operates exclusively on the horizontal spatial interactions between hypercolumns without any
inter-channel mixing. In contrast, γ is True in the SA layer of ff+sa-CNN, which allows channel
mixing in SA. Channel mixing potentially provides self-attention greater flexibility (see Appendix
A.9 and A.11).

3.3 INCREMENTAL LEARNING: FACTORIZING THE LEARNING PROCESS

Discussed in Section 4.2, comparing the four models above reveals that contextual modulation in-
troduced in rf+sa-CNN via SA did not produce better performance relative to rf+CNN, despite
ff+sa-CNN having clear performance improvements over ff-CNN. This is not due to the differ-
ence in channel mixing (the γ parameter in SA). We hypothesize that bottle-necking all the gradient
signals solely through the center hypercolumn during backpropagation makes it difficult for the net-
work to properly learn the αCPB layers and the SA layer simultaneously. Thus, we investigate an
incremental learning paradigm where we allow the receptive fields of the αCPBs to be learned be-
fore incorporating any context mechanisms. We then incrementally add and learn a self-attention
layer followed by a fully connected readout layer.

The following progression of models, rf-CNN, rf+sa-CNN∗, and ff+sa-CNN∗ (as shown in
Figure 3), incrementally expands the capacity of contextual modulation. An important distinction
between incremental models and models shown in Figure 2, marked by ∗, is a 1 × 1 kernel in
the βCPB, which maintains channel mixing but removes further spatial integration through con-
volution. rf-CNN (shown in Figure 3(a) or Figure 2(c)) has information only from the center
receptive field. rf+sa-CNN∗ (shown in Figure 3(b)) uses only the self-attention mechanism for
contextual modulation. ff+sa-CNN∗ (shown in Figure 3(c)-(d)) has the same surround-center
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Figure 4: Pearson correlation does not reflect peak tuning. Despite rf-CNN having the better
correlation, it is clear that ff+sa-CNN is able to capture the peak significantly better, at the cost
of a noisier overall tuning. Example shown is M1S1 neuron 238. See Appendix A.8 for population
averages.

modulation as rf+sa-CNN∗ from self-attention, but allows spatial integration of the global con-
text by changing the CTL to FCL at the end. As horizontal connections in the visual cortex are
known to mature after the development of the receptive fields, we designed an incremental learn-
ing setup where rf-CNN first learns the receptive fields, then rf+sa-CNN∗(Incr.) learns a
self-attention layer only after rf-CNN has already learned the αCPB receptive fields. Finally,
ff+sa-CNN∗(Incr.FC1) and ff+sa-CNN∗(Incr.FC2) inherit the receptive fields and self-
attention structures of rf+sa-CNN∗, but differ in the change to a FCL readout. Models labelled
(Incr.) are learned incrementally as such, and models labelled (Simul.) are traditionally
trained simultaneously.

3.4 HYPERPARAMETER SELECTION AND MODEL TRAINING

Rather than splitting the evaluation set for hyperparameter selection, we partitioned our population
of neurons to select hyperparameters (training and architectural). We fine-tuned, by experimenting
with batch size, learning rate, epochs, number of layers, number of channels per layer, etc., model
hyperparameters on a subset of 50 neurons using a relatively coarse grid search. We list key training
hyperparameters here: (1) batch size = 50, (2) learning rate = 0.001, (3) optimizer = Adam, (4) loss
= MSE, (5) epochs = 50. Training and computations were performed on an in-house computing
cluster with GPU (NVIDIA V100 or similar) nodes. Training hyperparameters were held constant
across all models. Architectural hyperparameters were held constant across layers shared between
models. We do not optimize hyperparameters for models other than the baseline ff-CNN.

The primary objective of this project is to demonstrate that self-attention can enhance neural re-
sponse prediction relative to the baseline feedforward CNN, despite hyperparameters being opti-
mized only for the baseline model. Since we show that ff+sa-CNN improves upon ff-CNN in
both evaluation metrics (see Section 4.1), further hyperparameter optimization is unnecessary for
our objective. Instead, we are interested in understanding the reason behind this improvement. The
other models tested in this study are architectural subsets of the ff+sa-CNN, designed to dis-
sect their contributions to its success. We do not anticipate any derivative models outperforming
ff+sa-CNN, justifying holding hyperparameters constant across models for fair comparison.

3.5 MODEL EVALUATION

To quantify performance, models were evaluated on two criteria, Pearson correlation and peak tuning
index. Pearson correlation represents the overall tuning similarity between a model’s predicted
responses and the real neuron’s recorded responses. The peak tuning index is used to quantify
how well a model can predict and match in magnitude the strongest responses recorded by the real
neuron. This lets us evaluate how well a model can discriminate between, as well as model the
response magnitude of, images that are strongly excitatory and images that incite a weak response.

Pearson correlation: The Pearson correlation (CORR.) is taken between neuron responses and
model-predicted responses. Pearson correlation is a standard measure for evaluating neural response
prediction. Other established measures, including FEV, r2er, and CC2

norm (Willeke et al., 2022;
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Cadena et al., 2017; Pospisil & Bair, 2021; Zhang et al., 2022), were used as well and yielded
similar results to Pearson correlation (see Appendix A.3 and A.4).

In this paper, we explored a set of measures to assess the peak of a neuronal tuning curve. In
our macaque V1 dataset, we found that neurons exhibit sharp stimulus selectivity, consistent with
findings from Tang et al. (2018b;a), reinforcing the diversity and complexity of V1 neurons (see
Appendix A.2). We found that Pearson correlation and other standard metrics (see Appendix A.4)
are successful in measuring a model’s fit to the overall tuning curve, but often fail to represent the
peak tuning preference of neurons, of which is a key aspect of a neuronal function. For example,
Figure 4 demonstrates that while rf+CNN achieves a higher correlation in approximating the overall
tuning curve compared to ff+sa-CNN, the latter outperforms in modeling the neuron’s tuning
curve peak. To address this issue, we developed two new metrics to better assess a model’s ability
to capture the peak tuning of neurons.

Peak tuning index: The peak tuning index (PT) is a membership metric of the strongest predic-
tions above a threshold determined by the top 1% of real responses. PT can be roughly interpreted
as the percentage of the peak that a model captures, under a magnitude prior. The index is calculated
as:

PT =
# of top 1% predictions ≥ min(top 1% real responses)

# of responses in the top 1%
× 100%

PT is divided into PTJ and PTS , based on how # of top 1% predictions is defined. PTJ is
when predictions are jointly rank ordered with respect to the real responses. PTS is when predictions
are separately rank ordered independently of the real responses. PTJ is a stricter measure. Note
that because we train with MSE loss, models are incentivized to minimize the absolute difference
between predictions and real responses, rather than match the curvature of the tuning curve. This
minimizes the risk of PT being misrepresentative due to lateral shifts in the tuning curve.

4 RESULTS

4.1 SELF-ATTENTION IMPROVES NEURAL RESPONSE PREDICTION

Table 1: Average Pearson correlation and peak tuning metrics for models trained on M1S1 and
M2S1. Correlation SEM = 0.009 was consistent across models and monkeys. Despite rf-CNN
unexpectedly outperforming rf+sa-CNN, the difference is recovered when rf+sa-CNN is trained
incrementally (see Section 4.2).

M1S1 M2S1

Model CORR. ∆ ff-CNN PTJ PTS CORR. ∆ ff-CNN PTJ PTS

ff-CNN 0.393 0.0% 3.3 ± 0.5 5.6 ± 0.9 0.477 0.0% 8.6 ± 0.9 16.2 ± 1.6
ff+sa-CNN 0.416 +6.6% 5.6 ± 0.6 10.5 ± 1.1 0.491 +3.3% 11.5 ± 0.9 23.5 ± 1.8

rf-CNN 0.420 +8.6% 1.1 ± 0.3 1.8 ± 0.5 0.496 +4.3% 4.4 ± 0.6 6.6 ± 1.0
rf+sa-CNN 0.414 +7.2% 0.7 ± 0.2 1.0 ± 0.3 0.486 +2.4% 3.4 ± 0.5 5.1 ± 0.8

We compared the performance of the ff+sa-CNN model to the parameter-matched baseline
ff-CNN model and found that incorporating self-attention significantly improved correlation and
both peak tuning metrics (see first two rows of Table 1). This indicates that self-attention enhances
modeling of both the overall tuning and peak tuning aspects of the neurons, with consistent results
across both monkeys.

It is important to note that the ff-CNN center hypercolumn at the readout layer has a receptive
field much larger than the real neuron’s receptive field, due to successive convolutions in the αCPBs
and βCPBs. Additionally, the fully connected readout layer also incorporates long-range spatial
dependencies. Thus, the self-attention layer in ff+sa-CNN acts as an additional mechanism for
modeling horizontal connections, and provides additional performance benefits.

To better understand the role of self-attention in contextual modulation, we constructed a baseline
receptive field model, rf-CNN, that is devoid of all contextual modulation mechanisms. rf-CNN’s
CTL readout only uses the center-hypercolumn of the convolved feature space to make predictions.
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Note that the feedforward receptive field of the center hypercolumn after the two αCPBs is a centered
13 × 13 pixel portion of the input image. Moreover, between the αCPB layers and the CTL layer,
the size of the center hypercolumn receptive field does not expand due the the 1 × 1 kernel in the
βCPBs. This means that predictions are being made solely based on the center 13×13 pixels, which
corresponds roughly to the real neuron’s receptive field.

Surprisingly, we found that rf-CNN achieved the highest correlation, indicating that models focus-
ing primarily on the classical receptive field offer the best fit to the overall tuning curve (see Table 1).
However, correlation fails to reflect the model’s shortcomings in fitting the peak of the tuning curve.
Table 1 also reveals that while rf-CNN has the highest Pearson correlation, it performs worse at
capturing the tuning peak compared to ff+sa-CNN and ff-CNN. Thus, we conclude that contex-
tual modulation plays a crucial role in peak tuning, and that the three mechanisms in ff+sa-CNN
for integrating surround information are complementary.

4.2 DISSECTING CONTEXTUAL MODULATION MECHANISMS VIA INCREMENTAL LEARNING

We explore the relative contributions of the different contextual modulation mechanisms. Specif-
ically, we first ask: Is self-attention alone sufficient to model contextual modulation? To answer
this question, we added SA to rf-CNN to produce rf+sa-CNN. We found that without posterior
βCPBs and a FCL, the self-attention in rf+sa-CNN is not useful. In fact, the performance is worse
than rf-CNN in overall correlation and both peak tuning metrics (see Table 1). This result is some-
what unexpected, as the addition of self-attention in ff+SA-CNN does improve upon ff-CNN. It
is possible that the spatial integration mechanisms in the βCPBs, along with the FCL, are necessary
to provide sufficient pathways for backpropagating the gradients during learning, so that both the
αCPB receptive fields and self-attention kernels can be properly learned.

To test this hypothesis, we explored whether an incremental learning approach, where differ-
ent network components are learned sequentially, could yield a model that performs on par with
ff+sa-CNN. We show that learning the feedforward kernels in the αCPBs first, followed by learn-
ing the self-attention layer, and finally the fully connected layer, can nearly match the performance
of ff+sa-CNN. This indicates that although the spatial integration by βCPBs contributes to perfor-
mance, the self-attention layer plays a more critical role in capturing horizontal interactions crucial
for modeling peak tuning.

Table 2: Average Pearson correlation for models incrementally and simultaneously trained on M1S1
and M2S1. Correlation SEM = 0.009 was consistent across models and monkeys.

M1S1 M2S1

Model (Training Method) CORR. ∆ rf-CNN CORR. ∆ rf-CNN

rf-CNN(Simul.) 0.420 0.0% 0.496 0.0%

rf+sa-CNN∗(Simul.) 0.409 −2.6% 0.480 −3.2%
rf+sa-CNN∗(Incr.) 0.421 +0.6% 0.493 −0.3%

ff+sa-CNN∗(Simul.) 0.416 −0.8% 0.490 −0.7%
ff+sa-CNN∗(Incr.FC1) 0.430 +3.0% 0.494 −0.1%
ff+sa-CNN∗(Incr.FC2) 0.414 −1.3% 0.488 −1.1%

Incremental learning offers a valuable approach for accurately assessing the potential of each spatial
integration mechanism in modeling contextual modulation and evaluating their interdependence in
generating an effective model. Table 2 highlights several incremental models we tested and their
relative improvements. Learning the receptive field first, followed by learning self-attention in
rf+SA-CNN∗(Incr.), outperforms learning both simultaneously in rf+SA-CNN∗(Simul.)
(see second and third rows of Table 2, and middle pairs in Figure 5). This supports our hypothesis
that jointly learning the αCPB receptive fields and self-attention may overwhelm the system when
gradients are constrained to propagate through the center hypercolumn alone. Incremental learning
can improve rf+sa-CNN∗ to match the peak prediction performance of rf-CNN, but not beyond.
This suggests that, when used with a CTL readout, self-attention alone is insufficient to fully capture
peak tuning.

Table 2 and Figure 5 demonstrate that removing the CTL restriction–i.e., allowing the read-
out to access information from the hypercolumns in the final convolutional layer via FCL, as
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Figure 5: Average peak tuning indices for incrementally and simultaneously trained models. Top
row: bar charts for M1S1. Bot row: bar charts for M2S1. Left col: average PTJ values. Right col:
average PTs values. Error bars are SEM.

in ff+sa-CNN∗–enables the network to nearly match the performance of the ff+sa-CNN.
ff+sa-CNN∗ is named as such because it closely resembles ff+sa-CNN, with the only differ-
ence being the use of a 1× 1 kernel instead of a 3× 3 kernel in the βCPBs. These findings suggest
that posterior convolution is not required for spatial integration after the self-attention layer when
the model is trained incrementally.

A reoccurring observation is that focusing on receptive field information tends to improve over-
all correlation, while emphasizing contextual information enables the network to better model
peak tuning. This pattern is evident when comparing rf-CNN with ff+sa+CNN in Table 1. A
similar contrast exists between ff+sa-CNN∗(Incr.FC1) and ff+sa-CNN∗(Incr.FC2). In
ff+sa-CNN∗(Incr.FC1), the model inherits the center hypercolumn weights and then learns the
surrounding hypercolumn contributions through the FCL. In contrast, ff+sa-CNN∗(Incr.FC2)
learns the weights of all hypercolumns in the FCL simultaneously. While the former excels in cor-
relation, the latter performs better in peak tuning. This suggests that the receptive field is most
important towards overall tuning, whereas surround-center interactions are key to capturing peak
tuning.

The ff+sa-CNN∗ models saw an improvement in PTJ and PTS over the rf+sa-CNN∗ models.
This suggests that either the fully connected layer (FCL) plays a critical role in predicting peak re-
sponses, or that constraining the readout to the center hypercolumn (CTL) in rf+sa-CNN∗ limits
error propagation to the self-attention block during training. As a result, self-attention may be in-
adequately learned in these cases, impairing the model’s ability to effectively implement contextual
modulation.

4.3 INCREMENTAL LEARNING EMPHASIZES THE CONTRIBUTION OF THE CLASSICAL
RECEPTIVE FIELD

A well-established neurophysiological principle is that stimuli within the classical receptive
field of V1 neurons are the primary driver of neural responses, while the contextual surround
modulates them. We found that when the entire network is trained simultaneously, as in
ff+sa-CNN∗(Simul.), performance is weaker and the network does not follow this principle.
However, with incremental learning, the center hypercolumn develops into the dominant contribu-
tor, as observed in ff+sa-CNN∗(Incr.FC1) and ff+sa-CNN∗(Incr.FC2). Figure 6 illus-
trates the sum of connection weights from the readout, showing that in ff+sa-CNN∗(Simul.),
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Figure 6: Average FCL decomposition of ff+sa-CNN∗ when trained differently. The center contri-
bution (green) and the total surround contribution (pink) sum to the prediction tuning curve (orange).
Plots are rank ordered with respect to predicted responses. Averages are calculated by plotting rank
ordered decomposed tuning curve for each neuron, then averaging across each image. Individual
contributions from hypercolumns can be found in Appendix A.5.

weights are evenly distributed, whereas in the incrementally trained models, the center hypercol-
umn, corresponding to the classical receptive field, is emphasized. Incremental learning fosters this
center-surround division and modulation, yielding interpretable performance benefits.

5 DISCUSSION

CNNs are widely used and effective models for visual cortical neurons, and they inherently include
two mechanisms for contextual modulation: successive convolutions and a fully connected layer,
which allow the global image context to be accessible to the readout. In this paper, we demon-
strated that augmenting CNN models of cortical neurons with self-attention enhances predictions
of both the overall tuning curve and the tuning peak. Self-attention, resembling three-way interac-
tions in probabilistic graphical models, facilitates flexible surround-center modulation via contex-
tual variables (Coen-Cagli et al., 2015; Fei & Pitkow, 2022). This provides additional flexibility and
complementary benefits to the CNN’s inherent context mechanisms. While large-scale transformer
models with multiple attention heads have achieved state-of-the-art performance in modeling mouse
V1 neurons by capturing long-range dependencies (Li et al., 2023), our work explicitly explores the
role of self-attention in CNNs for modeling horizontal circuits, highlighting the dependencies and
complementary interactions between different mechanisms of contextual modulation.

Several key findings emerged from this work that advance our understanding of cortical computation
and neural codes. First, we found that focusing on receptive field information, as in rf-CNN, yields
the highest Pearson correlation, alongisde other standard measures (see Appendix A.4), for overall
neuronal tuning curves (see Table 1). This suggests that the classical receptive field is the primary
driver behind a neuron’s overall response. Our incremental learning experiments further supports the
advantage of concentrating on information within the classical receptive field in the center hypercol-
umn (see Figure 6). Second, we demonstrated that contextual modulation is crucial for a strong and
robust peak tuning, with self-attention playing a pivotal role. A trade-off, however, exists between
the receptive field and surround modulation: RF-centric models fit overall tuning curves more ac-
curately, while increased contextual surround modulation enhances peak tuning, though often at the
expense of overall tuning correlation. Incremental learning, which fosters a strong receptive field
bias, may help even out this trade-off. This is consistent with neurophysiological evidence support-
ing a dominant classical receptive field and weaker surround modulation, with recurrent connections
potentially being fine-tuned after receptive field development.

A recent CNN-based model of mouse V1 neurons revealed that the most excitable images often in-
volve stimulus features outside the receptive fields, consistent with the concept of pattern completion
(Fu et al., 2023). Similarly, we found that models capable of capturing peak tuning display inter-
pretable contextual modulation, such as association fields and pattern completion, within the self-
attention module (see Appendix A.6). Additionally, incorporating a self-attention layer improved
models’ data efficiency (see Appendix A.7). Further theoretical and experimental investigations are
needed to characterize and evaluate the interactions facilitated by self-attention, in order to uncover
how these mechanisms may be implemented by biological circuits.
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A APPENDIX

A.1 ADDITIONAL DETAILS ON MACAQUE EXPERIMENTAL SETUP

We collected data using a nearly identical experimental protocol as detailed in (Tang et al., 2018b;a),
except that our dataset was considerably larger, including up to 34K and 49K stimulus-response pairs
for the two monkeys respectively.

During each fixation task, a blank screen was presented for 1500 ms after the monkey estab-
lished fixation, followed by the presentation of a visual stimulus for 500 ms. 34,000 stimuli were
tested in monkey 1 and 49,000 stimuli were tested in monkey 2 over a data collection period of 5
days.Neurons were registered anatomically and also by testing a 200 stimuli finger-print each day.
To quantify the neural response, a differential image of GCamp5s calcium signals between the stim-
ulus period and blank period was computed for each trial. The dF/F was then calculated based on a
200 ms to 600 ms window after stimulus onset. We note that GCamp5s is slow, but the signal has
been found to be correlated with firing rate (Li et al., 2017). The training set was collected with 1
repeat for each stimulus. The validation set consists of 1000 stimuli, each with 10 repeats.

A.2 V1 PREFERRED FEATURES

A Large Dataset of Macaque V1 Responses to Natural Images Revealed Complexity in V1 Neural Codes

1a

Summary and conclusion
● We collected extensive data on the response of 1689 Macaque V1 neurons to 30k-50k natural images. Using this 

data, we developed neural network models that more accurately predicts neural responses, and characterizes the 
receptive fields of the neurons.

● Our findings suggest that V1 neurons exhibit complexity beyond traditional oriented Gabor and tuned to curves, 
textures, eyes, and other higher order features.

● We demonstrate a large data set of natural images is important for revealing the complexity of receptive fields that 
white noise stimuli fail to recover.  

● We also found complex receptive fields predicted by overcomplete sparse coding fit neural responses better than 
standard sparse coding, though still not as powerful as the CNN models.

● The CNN models automatically exhibit surround suppression, suggesting that models have captured neurons' 
sensitivity to context, and that these CNN models can potentially be used as neurons-in-silicon for carrying out 
"neurophysiological experiments". 
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Research shows that Convolutional Neural Network is an excellent tool for modeling neural 
representation and computation in the ventral stream of macaque monkeys (Yamins and DiCarlo 
2016) and for characterizing V1 receptive fields in monkeys (Zhang et al. 2019) and mice ( 
Candena et al., 2019,  Walker et al., 2019.).  Our earlier studies showing that V1 neurons are tuned 
to more complex features beyond orientation-selective Gabor filters (Tang et al., 2018a., Zhang et 
al. 2019) were based on a parametric artificial pattern and might be biased.  The extreme sparsity 
of macaque V1 responses to natural images in 2-P calcium imaging had prevented adequate CNN 
fitting of macaque V1 receptive fields (Tang et al. 2018b). This study provides a large dataset for 
better characterizations of the neural codes of macaque V1 neurons. 

Experiments & Data
Using two-photon imaging with GCaMP5, we measured the responses of 1689 neurons from 6 sites 
of three awake behaving macaque monkeys to 30k-50k natural images. About 300 cells from each 
site  were tracked  across five days anatomically and based on responses to 200 fingerprint 
images.  Monkeys performed fixation task.  The images were presented in sequence with 1 second 
per image preceded by 1 second of gray screen. The 30k-50k images in the training set were 
presented once,  1000 images in the validation set were tested once with 10 repeats. 

Individual CNN (iCNN) (Zhang et al. 2019) or shared core CNN (SCM) (Klindt et al. 2017), (with 4 
conv layers) were fitted to the responses to 30k-50k training images to predict the responses to 
1000 validation images.  The metric used to evaluate the models was the Pearson correlation 
between neuron responses and model-predicted responses. Predicted correlation for entire 
population of neurons is around 0.53. (Histogram of the performance distribution iCNN vs SCM 
shown below).
z

Shared-core model. Proposed by Klindt, et al. in 2017Individual-CNN, with 4 Convolutional layers 
and 2 Max Pooling layers

Response for 50K Natural Stimuli

100μm

Top 20 images in presented stimuliExample 2-photon imaging results for one site
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CNN modeling of V1 RFs

Diversity and Complexity of V1 tunings

Surround suppression

Receptive fields based on Over-complete sparse coding fit better than complex sparse coding 

Visualizations: By visualizing all neurons in the collected V1 
data, we can observe complex tuning that differs from 
traditional Gabor-oriented filters. All neurons in a example 
site M1S1 see below (iCNN visualizations): 
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We tested the fitted CNN models with 
the Pattern stimuli used in Tang et al. 
2018a, augmented with reverse contrast 
and Laplacian filtered versions to 
compare neurons' visualization to their 
classification based on responses to 
curves, junctions, bars and edges in the 
earlier study.

Augmented pattern stimuli

Data size matters 

Ranked tuning curve (blue curve) for an example neuron 
against the prediction of the model (orange curve) with 
performance of 0.77 correlation. The neuron's preferred 
image is "visualized" by optimizing the input image via 
backpropagation to maximize the responses of the 
neurons. The dashed line shows the response of the 
model to the visualized image (see above). Validation set 
images with top responses were shown for comparison.

V1 neurons forms certain clusters: V1 neurons exhibit clustering 
behavior, as evidenced by the example neurons presented in the 
center panel below, each belonging to a labeled cluster. These 
neurons exhibit different patterns, such as curves, textures, and 
even eye-specific neurons. The top panel displays the top 5 
validation images that elicited the largest responses from each 
neuron, while the bottom panel shows the top 5 Pattern stimuli. 
Notably, the preferred validation images and pattern stimuli of the 
neurons share similar shapes with the visualizations, indicating 
the intricate nature of the V1 neural code.

Curves TexturesEyes SineGrating Bar othersCorner

Validation Top 5 imagesValidation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images Validation Top 5 images

Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5 Pattern stimuli Top 5Pattern stimuli Top 5 Pattern stimuli Top 5

Left panel shows the response prediction performance of 40 top-performing neurons from site M2S1 as 
a function of the amount of data used to train the models. It shows the general trend, also evident for 
the entire population, response prediction performance improves with the number of training samples 
used.
Right panel shows the visualizations of two example neurons increase in complexity with more and 
more data.  

Natural images matters 

½ * Max response

One cell evolves 
from a traditional 
oriented edge to a 
curve while the 
other evolves from 
a grating to an eye. 

As the size of the dataset grows, we observed more neurons become classified as Higher-Order (HO). 
A neuron is classified as HO when all the pattern stimuli that elicit responses greater than 50% of its 
peak response belong to one or more higher order categories (curves, corners, crosses, rings). 
Neurons with oriented bars or edges above half-peak response are classified as OT (Oriented-Tuning). 

With limited data, 
neurons are 
predominantly 
classified as 
oriented tuned (OT), 
but models trained 
with more data 
revealed a higher 
proportion of 
neurons tuned to 
complex patterns 
(HO).

We evaluated the performance 
of linear-nonlinear (LN) models 
in predicting neural responses 
using linear filters learned 
through sparse coding from 16 
x 16 natural image patches. 
Our results indicate that 
prediction performance 
improves with increasing 
overcompleteness of the 
representation, as shown in the 
right graph. To account for 
rotation and translation 
variations, we rotated each 
filter set by 18 orientations, 
shifted them by 25 positions, 
and reversed the contrast 
before identifying the best filter 
for each LN model to predict 
neuron responses.

Overcomplete sparse coding (cite Olshausen, LeCun, Sommer) also yields more 
complex receptive fields than standard sparse coding (Olshausen and Field 1996). 
The best fitted "overcomplete" codes for neurons in site m2s1 (Middle Panel, 16X 
overcomplete) revealed  curvature and corner neurons versus the standard Gabor 
filters in the standard sparse coding (Left Panel). CNN models' visualization (Right 
Panel)  show a greater degree of diversity and complexity in neural codes.

Natural images, with rich features, are crucial for 
recovering complex receptive fields, in addition to 
the amount of data. Testing CNN models with white 
noise image, we found that standard 
reverse-correlation techniques fail to recover 
complex pattern receptive fields even with 5 million 
white noise patterns.  CNN visualization, top 
response weighted average stimuli, as well as the 
receptive fields recovered from white noises are 
shown for comparison. 

Visualizations Top image Weighted-sum 5 million whitenoise

Response

…

Reverse correlation method

We tested the CNN models of 279 neurons (all sites combined) with good response prediction performance (> 0.7 in 
Pearson Correlation) with sine-wave grating with size,  ranging from 1X to 7X receptive field size. Interestingly,  these 
neurons trained with natural images exhibit the classical surround suppression effect automatically.  (a) RF distribution 
of the neurons, as mapped by bars. (b) averaged responses of the selected CNN neurons to a sine-wave grating 
(averaged over 4 phases) of each cell’s preferred orientation and spatial frequency inside (grating center-only) or 
outside (gray center, grating surround-only) apertures of different diameters. (c) distribution of the magnitude of the 
surround suppression index (MaxRsp - MinRsp) / MaxRsp, which is very similar to that reported in Cavanaugh et al. 
(2002) (d). 

RF distribution of selected neurons

N=279

Center and Surround Grating Responses Dist of surround suppression

(a) (b)

(c) (d)

Figure 7: V1 neuron exhibit diversity and complexity in preferred features. Individual CNNs were
used to model neurons’ responses to a large set of natural images. Mid row: visualizations of the
optimal stimuli for ff-CNN models for 28 neurons. Neurons are clustered into 7 equally sized
classes representing preferences for curves, rings (eyes), textures, grating, bars, corners, and other
more complex higher order features. Top row: top 5 natural images in the validation set that elicited
the largest response from real neurons in each class. Bot row: top 5 artificial stimuli that elicited the
largest response from ff-CNN models of neurons in each class. The artificial stimuli preferences
are consistent with the optimal stimuli seen in the middle row.

A driving motivation of our study was to identify the natural image features that V1 neurons prefer,
which include corners, curvatures, junctions, rings and other higher order features, rather than the
traditional orientation and frequency tunings. While traditional artificial stimuli produce a tuning
curve, these stimuli rarely represent the neuron’s most preferred stimulus. The studies referenced
above show that the neurons’ true preferences are not necessarily a specific orientation or spatial fre-
quency, and may not be well modeled by Gabor functions and traditional linear/nonlinear models.
Rather, the preferred features, which are encoded by the peak responses of neurons as visualized in
Figure 7, exhibited diversity and complexity in the tuned features. The objective of this study is not
to prove or argue for the diversity and complexity of V1 neural codes, but to explore the mecha-
nisms contributing to them. A key finding of this paper is that the surround contextual mechanism,
implemented by a non-local network (i.e. self-attention), positively contributes to the generation of
the response peak, and is related to the encoding of preferred higher-order features in neurons. As
such,this study aims to model the peak response of neurons and develop a novel metric to evaluate
the model’s accuracy in capturing the peak of each neuron’s ”natural image tuning curve.”
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A.3 COMPARISONS TO OTHER ESTABLISHED MODELS

Figure 8: Comparing the performance of ff-CNN. (A), (C) shows the Pearson correlation compar-
isons of ff-CNNwith the ”what and where” (shared core factorized) model and the transfer learning
(goal driven VGG) model, respectively. (B), (D) show CC norm squared comparisons between mod-
els. (E) shows hyperparameter experiments on a subset of 50 neurons from M2S1. (F) Comparison
between ff-CNN and the ”what and where” model on the ability to capture M2S1 tuning peaks. All
results on M1S1 are similar.

Four major classes of models are found in neural response prediction literature: (1) transfer learning
models, (2) single CNN feedforward models, the (3) shared core factorized (“what and where”)
model (Klindt et al., 2018; Lurz et al., 2021), and more recently a (4) transformer based model for
mouse V1. The first three types of models have been used in macaque V1, whereas the transformer
based model has only been used in mouse V1. We experimented with the first three classes of models
and found that for our dataset, the performance of our baseline feedforward models (ff-CNN) are
comparable, and at times better, to the transfer learning model and the shared core factorized mode
(see Figure 8). Thus, we used the single CNN feedforward model as our baseline model. We did
not compare our model with transformer based models such as ViT (Li et al., 2023), which use deep
and complex layers to achieve SOTA neural response prediction. The focus of our research and
our contributions are different. We demonstrate that surround contextual modulation is critical in
predicting the peak responses of macaque V1 neurons in response to natural images. Towards this,
we used self-attention to model horizontal interactions, rather than just using an entire transformer
module to achieve SOTA performance.
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A.4 COMPARISONS TO OTHER ESTABLISHED METRICS

Figure 9: Pearson correlation versus FEV scatter plot for different models. Average FEV is calcu-
lated by averaging over neurons in M2S1. Note that the performance of models improve relative
to the ff-CNN baseline when evaluated based on FEV, following a similar trend to that of Pearson
correlation.

Figure 10: Pearson correlation versus r2er scatter plot for different models. Average r2er is calculated
by averaging over neurons in M2S1. Note that the performance of models improve relative to the
ff-CNN baseline when evaluated based on r2er, following a similar trend to that of Pearson correla-
tion.

We compute measures FEV and r2er for each of our models. We calculated the average FEV and r2er
across all neurons in M2S1 for different models. Similar to Pearson correlation and CC2

norm, FEV
and r2er measures are similar across models used in our study, and are comparable to established
baselines (see Figure 9 and Figure 10). Despite FEV and r2er taking prediction magnitudes into
account, they are still unable to capture the peak tuning properties. This can be attributed to the
high degree of sparsity in individual neurons’ tuning curve (to natural stimuli), where only 0.4% of
the stimuli above half height on average. Because standard measures of performance are heavily
influenced by remaining 99% low-responding stimuli, they are not sufficient for capturing the sharp
tuning curves peaks we observed (i.e.recognizing the most preferred stimuli of the neurons).
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A.5 FCL DECOMPOSITION: AVERAGE CONTRIBUTION FROM EACH HYPERCOLUMN
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Figure 11: Average FCL contribution from each hypercolumn for M1S1. Center hypercolumn out-
lined in red. Each heatmap is independently contrast normalized. Note that the distribution in the
first heatmap is evenly distributed compared to the others (see contrast scale).

Figure 6 plots the individual contribution of the center hypercolumn with the sum of all surrounding
hypercolumns. We observed an evenly distributed contribution from all hypercolumns in the si-
multaneously trained model, but a strong center contribution in incrementally learned models. This
effect is further observed when we display the average contribution of each hypercolumn (see Fig
11).

A.6 MODELS THAT CAN CAPTURE PEAK TUNING EXHIBIT INTERPRETABLE CONTEXTUAL
MODULATION SUCH AS ASSOCIATION FIELDS IN THE SELF-ATTENTION MODULE

rf+sa-CNN*(Simul.) rf+sa-CNN*(Incr.) ff+sa-CNN*(Simul.)

Figure 12: Attention highlighting for incremental learning models. Top two highest re-
sponse inducing image are shown for M1S1 neuron 153. Note that rf+sa-CNN∗(Incr),
ff+sa-CNN∗(Incr.FC1), and ff+sa-CNN∗(Incr.FC2) all have the same attention map due
to the freezing scheme. The center hypercolumn is queried for highlighted images.

Comparing the attention highlighting between self-attention models from the incremental learn-
ing experiment, we observe that models learned incrementally have a more focused attention ver-
sus equivalent-architecture counterparts trained simultaneously (as shown in Figure 12). Models
with strong peak tuning, which incorporate the surround properly, displays association field ef-
fects, focusing on similar patterns as present in the receptor field. Furthermore, because of the
incremental freezing scheme between all incremental models, they have the same attention despite
variations in the readout layer. However, incremental models display a focused attention, meaning
the initially trained SA representation using the CTL (in rf+sa-CNN∗(Incr)) allows for proper
learning of attention weights. This further supports that the 30 to 1 paramter bottleneck in the
CTL is not a limiting factor, and the the gain in performance in the latter incremental models (in
ff+sa-CNN∗(Incr.FC1) and ff+sa-CNN∗(Incr.FC2)) are associated with the FCL.
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A.7 SELF-ATTENTION CNNS ARE DATA EFFICIENT

Table 3: Average Pearson correlation and peak tuning metrics for models trained at different data
sizes of M1S1. Correlation SEM = 0.008 was consistent across models.

25% of M1S1 50% of M1S1

Model ∆ CORR. of ff-CNN PTJ PTS ∆CORR. of ff-CNN PTJ PTS

ff-CNN 0.0% 0.232 1.026 0.0% 0.762 1.556
ff+sa-CNN +7.2% 0.927 1.656 +7.6% 1.026 2.715
rf-CNN +26.9% 0.000 0.000 +21.1% 0.000 0.000
rf+sa-CNN +23.6% 0.000 0.000 +19.8% 0.000 0.000

We trained baseline feedforward CNN models and their counterparts with self-attention at various
training dataset sizes. We conclude that percentage improvements over ff-CNN are furthered at
lower data constraints (as shown in Table 3), alluding to the potential efficiency of SA in accumu-
lating surround information compared to other context mechanisms. We note that rf-CNN is the
most data efficient when evaluated solely on Pearson correlation. However, it is important to see
from Table 3 that at 25% and 50%data, rf-CNN and rf+sa-CNN completely fail in the peak tun-
ing index, indicating that the models were entirely unable to model the response magnitude of the
highest excitatory images. This lends to our claim that although rf-CNN does well in correlation,
contextual information (as is present in ff-CNN and ff+sa-CNN) is necessary to capture peak
responses.

A.8 POPULATION TUNING CURVES

ff-CNN ff+sa-CNNrf-CNN rf+sa-CNN

Figure 13: Population average tuning curves for M1S1.

Differences in peak tuning can also be observed in the population tuning curves (see Figure 13).
Average curves are derived by calculating rank ordered tuning curves for each neuron individually,
then averaging over the image number across neurons.

A.9 V MAPPING PARAMETER γ IN SELF-ATTENTION

In the self-attention layer (as shown in Figure 2), the V mapping parameter γ allows further factor-
ization of inter-channel mixing and spatial interactions. Toggling γ = False removes the transformed
value vector, and attention weights instead directly on the input representation. Note that the γ pa-
rameter does make a difference performance wise. The only difference between rf+sa-CNN∗ and
rf+sa-CNN is the presence of a SA with γ = True block in the former and a SA with γ = False
block in the latter. rf+sa-CNN∗ has better correlation, PTJ , and PTS values, meaning allowing
for the V mapping in SA allows for more flexibility, despite the lack of a 3×3 convolution and FCL
layer in these models.
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A.10 CTL CHANNEL NUMBER BOTTLENECK

In models with a CTL readout, the final layer is performing a 30 to 1 or 32 to 1 weighted sum,
depending on the number of channels. Thus, an issue we considered was that such a narrow final
layer would inhibit proper backpropagation of error signals to upstream modules. To address the
concern of a 30 → 1 mapping in the CTL layer being too tight of a an initial bottleneck, we trained
rf+sa-CNN with c = 375 channels, so that it would have a 375 → 1 CTL mapping instead. The
results were comparable to the rf+sa-CNN with c = 30, meaning the drop in performance from
rf-CNN cannot be attributed to a parameter bottleneck.

A.11 IMPORTANCE OF POST-SELF-ATTENTION CHANNEL MIXING

Additionally, we tested self-attention models without post-SA convolutions (i.e. no βCPB layers)
and observed sharp drops in performances compared to baseline CNNs. This suggests that inter-
channel mixing is crucial in processing the output of self-attention into a interpretable representation
by the readout layer. We note that transformer block in modern computer vision models employ a
multi-layer perceptron immediately after self-attention, which aligns with our findings.

To compare the importance of the 3×3 versus 1×1 kernel size and FCL vs CTL readout as a means
of incorporating surround information, we compared the following models: [αCPB → αCPB →
SA(γ = True) → βCPB(k = 1)→ βCPB(k = 1) → FCL] vs⇐⇒ [αCPB → αCPB → SA(γ =
True) → βCPB(k = 3)→ βCPB(k = 3) → CTL].

The former with βCPB(k = 1) and FCL outperformed the latter with βCPB(k = 3) and CTL.
Thus, direct access to all spatial features with a fully connected layer is stronger than convolving
the surround into the center. We observe that the FCL is the strongest factor for predicting the
peak responses, and is bolstered by the addition SA, as ff+sa-CNN outperforms ff-CNN in peak
tuning.

A.12 CODE FOR EXPERIMENTS

The code is hosted at the github repository: https://anonymous.4open.science/r/sacnn/
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