
Ctrl-DNA: Controllable Cell-Type-Specific Regulatory
DNA Design via Constrained RL

Xingyu Chen1,2,3∗ Shihao Ma1,2,3∗ Runsheng Lin1 Jiecong Lin4

Bo Wang1,2,3†

1University of Toronto
2Vector Institute for Artificial Intelligence

3University Health Network 4Changping Laboratory

Abstract

Designing regulatory DNA sequences that achieve precise cell-type-specific gene
expression is crucial for advancements in synthetic biology, gene therapy and
precision medicine. Although transformer-based language models (LMs) can ef-
fectively capture patterns in regulatory DNA, their generative approaches often
struggle to produce novel sequences with reliable cell-type-specific activity. Here,
we introduce Ctrl-DNA, a novel constrained reinforcement learning (RL) frame-
work tailored for designing regulatory DNA sequences with controllable cell-type
specificity. By formulating regulatory sequence design as a biologically informed
constrained optimization problem, we apply RL to autoregressive genomic LMs,
enabling the models to iteratively refine sequences that maximize regulatory ac-
tivity in targeted cell types while constraining off-target effects. Our evaluation
on human promoters and enhancers demonstrates that Ctrl-DNA consistently out-
performs existing generative and RL-based approaches, generating high-fitness
regulatory sequences and achieving state-of-the-art cell-type specificity. Moreover,
Ctrl-DNA-generated sequences capture key cell-type-specific transcription factor
binding sites (TFBS), short DNA motifs recognized by regulatory proteins that
control gene expression, demonstrating the biological plausibility of the generated
sequences.
Code available at: github.com/bowang-lab/Ctrl-DNA

1 Introduction

Cis-Regulatory elements (CRE), such as promoters and enhancers, are critical DNA sequences that
control gene expression. The ability to engineer DNA sequences with precise regulatory activities has
widespread implications in biotechnology, including gene therapy, synthetic biology, and precision
medicine [1, 2]. A particularly desirable but challenging goal is designing CREs that drive high gene
expression in a target cell type while maintaining controlled or limited fitness 3 in off-target cell
types. A CRE’s regulatory function is largely determined by its transcription factor binding sites
(TFBSs), which are short DNA motifs recognized by transcription factors (TFs) that mediate gene
regulation in cells. The presence or absence of specific TFBSs directly influences the fitness of a
sequence across different cellular contexts. Although millions of regulatory sequences have evolved

∗Equal contribution.
†Corresponding author: bo.wang@vectorinstitute.ai
3CRE fitness is defined as the ability to enhance gene expressions.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/bowang-lab/Ctrl-DNA

naturally [3], these sequences are not optimized for targeted biomedical applications. For example,
despite the human body comprising over 400 distinct cell types, very few cell-type-specific promoters
have been identified [4]. This scarcity highlights the need for novel, engineered CREs with precise
cell-type specificity. However, the design space for regulatory sequences is immense: a 100-base
sequence yields approximately 4100 possibilities, making purely experimental approaches expensive
and impractical.

Massively parallel reporter assays (MPRAs) have significantly advanced our ability to evaluate
large libraries of DNA sequences for their cell-type-specific fitness [5, 6]. Building upon these
assays, recent deep learning approaches leverage predictive models as reward functions to guide
the optimization of CREs [1, 7]. However, these methods typically rely on iterative optimization
strategies based on mutating existing or randomly initialized sequences, which often limits the
sequence diversity and can trap optimization in local optima. Furthermore, enforcing complex
constraints in multiple cell types is non-trivial in these frameworks.

Recent studies have adapted autoregressive language models (LMs) for regulatory DNA sequence
design, successfully capturing functional sequence patterns and enabling the generation of sequences
with desired properties, such as enhanced gene expression levels [8]. However, these models primarily
imitate the distribution of known sequences, limiting their ability to explore novel regions of the
sequence landscape. Reinforcement learning (RL) has emerged as an approach to finetune genomics
LMs for optimizing DNA sequence design. However, existing RL-based approaches for cell-type-
specific CRE design typically focus on maximizing fitness in a target cell type without accounting
for fitness in other cell types [9]. To date, integrating explicit constraints within RL frameworks
to suppress off-target regulatory activity using genomic LMs remains unexplored. Furthermore,
conventional RL optimization strategies often depend on accurate value models and dense reward
signals, introducing increased difficulty and inefficiency when navigating the vast DNA sequence
space with complex biological constraints and sparse fitness reward signals.

To address these limitations, we introduce Ctrl-DNA, a reinforcement learning framework for con-
trollable cell-type-specific regulatory DNA design via constrained RL. To the best of our knowledge,
this work represents one of the first efforts to design regulatory DNA sequences with precise and
controllable cell-type specificity. Building on recent advances in RL [10, 11, 12], we develop an
RL-based fine-tuning framework based on pre-trained autoregressive genomic LMs. Our method
avoids value model training by incorporating Lagrangian-regularized policy gradients directly from
batch-normalized rewards, enabling stable and efficient optimization across multiple cell types. Ctrl-
DNA supports explicit cell-type-specific constraints, enabling the generation of sequences with high
expression in target cell types while constraining off-target activities. We evaluate Ctrl-DNA on
human promoter and enhancer design tasks across six cell types. Our results show that Ctrl-DNA
consistently outperforms existing generative and RL-based methods, achieving higher activity in
target cell types while improving constraint satisfaction in non-target cell types. We also show
that Ctrl-DNA-generated sequences maintain substantial sequence diversity and effectively capture
biologically meaningful, cell-type-specific regulatory motifs.

Our main contributions are as follows:

• We develop a novel constraint-aware RL framework for CRE design, utilizing Lagrange
multipliers explicitly and effectively to control cell-type specificity. To our knowledge, this
represents one of the first efforts to incorporate constraint-based optimization into regulatory
sequence generation.

• By directly computing policy gradients from batch-normalized biological rewards and
constraints, our method eliminates the need for computationally expensive value models,
enabling efficient learning under complex CRE design constraints.

• Through extensive empirical evaluations on human promoter and enhancer design tasks, we
demonstrate that Ctrl-DNA consistently outperforms existing generative and RL-based meth-
ods, achieving higher targeted regulatory activity with state-of-the-art cell-type specificity.

2 Related Works

DNA Sequence Design Optimization: Optimization strategies complement generative models by
explicitly steering sequences toward desired functions. Classical evolutionary algorithms, such as

2

genetic algorithms, iteratively refine sequences using fitness predictors, but they are often computa-
tionally expensive and may converge to suboptimal solutions [13]. To improve efficiency, heuristic
techniques such as greedy search have been developed, incrementally editing sequences toward
higher predicted performance [1]. Gradient-based approaches leverage differentiable surrogate mod-
els (e.g., neural predictors like Enformer) to perform gradient ascent directly in sequence space
[4, 14]. Although computationally efficient, these methods often initialize from random or high-
fitness observed sequences, reducing the diversity of generated sequences. Reinforcement learning
(RL) offers a powerful framework that combines generative modeling with goal-directed optimization.
DyNA-PPO [15] demonstrated the effectiveness of deep RL for DNA design, outperforming random
mutation-based methods. GFlowNets further advanced this direction by learning stochastic policies
that align with reward distributions, enabling diverse exploration of sequence space [16]. More
recently, TACO [9] used RL to fine-tune pretrained DNA language models with biologically informed
rewards. However, these approaches primarily focus on optimizing fitness in a single target cell type,
without mechanisms to suppress or constrain activity in undesired cell types.

Constrained Reinforcement Learning: Constrained Reinforcement Learning (CRL), or often
formulated as constrained Markov decision processes (CMDPs), addresses the critical challenge
of optimizing policies under explicit constraints. Early foundational studies include actor-critic
methods [17] and constrained policy optimization with function approximation [18]. Subsequent
studies have explored integrating constraints into RL, often using Lagrangian methods that introduce
non-stationarity into rewards [19, 20, 21]. Regularized policy optimization augments standard
objectives with Kullback–Leibler (KL) or trust-region constraints [22], and is widely used in both
single-task [23] and multi-task settings [24]. CRL has been applied in language generation to suppress
undesired outputs through techniques like Lagrangian reward shaping [11, 12, 25], balancing primary
objectives with safety constraints. However, such approaches remain largely unexplored in regulatory
DNA design, where sparse rewards and multiple cell-type-specific constraints introduce significant
challenges for standard constrained RL frameworks.

Generative Models for Biological Sequence Design: Deep generative models have advanced
the design of functional DNA sequences. Diffusion-based approaches have emerged as promising
tools, beginning with the Dirichlet Diffusion Score Model (DDSM), which creates promoters based
on expression levels [26]. Building on this foundation, several subsequent studies have further
developed diffusion models for designing regulatory DNA sequences[27, 28, 29]. Researchers have
also leveraged Generative Adversarial Networks (GANs) for regulatory sequence design, with [7]
creating cell-type-specific enhancers in Drosophila and humans, and ExpressionGAN [30] generates
yeast promoters that outperform natural sequences in expression efficiency. Autoregressive genomic
language models have recently been applied to model DNA sequences, learning statistical patterns
from large-scale genomic datasets. For example, RegLM[8] fine-tuned the HyenaDNA model [31]
using prefix tokens that encode expression levels, allowing the generation of enhancers with controlled
activity. However, despite producing biologically plausible sequences, generative models typically
replicate distributions observed in training data, constraining their ability to explore novel, out-
of-distribution solutions. This inherent limitation underscores the need for integrating generative
approaches with optimization frameworks such as reinforcement learning.

3 Methods

3.1 Problem Formulation

We formulate DNA sequence design as a constrained Markov decision process (CMDP). A DNA
sequence is defined as X = (x1, x2, . . . , xL) ∈ V L, where V = {A,C,G,T} is the nucleotide vocab-
ulary and L is the sequence length. The CMDP is defined as M = (S,A, p, R0, {Ri}mi=1, {δi}mi=1),
where S is the state space, A = V is the action space. p(st+1 | st, at) is a transition function that
appends nucleotide at to the current sequence prefix st. The sequence is evaluated by m black-box
reward functions {Ri : V

L → R}mi=0, where we denote reward R0 as the CRE fitness in target cell,
and reward Ri for i ≥ 1 as CRE fitness in off-target cell types. The values δi ∈ R is the constraint
threshold for off-target cell i. At each time step t, the agent observes state st = (x1, . . . , xt−1) ∈ S ,
selects an action at ∈ A according to a policy πθ(at | st), and transitions to the next state st+1.
Rewards {Ri(X)} are only calculated at the terminal step t = L.

3

Pre-trained DNA LM
(e.g., HyenaDNA)

 G A T A A
G A T A
G A T
G A
G

?
?
?
?
?
?

?
?
?

?
?
?

?
??

CREs Measured activity

0.9

0.8

0.2

0.3

0.3

0.2

HepG2 SK-N-SHK562

...

Cell-Type-Specific Generation

... ...

Ctrl-DNA

RL iterations

Re
w

ar
ds

HepG2

K562

SK-N-SH

constraint

Figure 1: Overview of the Ctrl-DNA framework for controllable regulatory sequence generation.
Ctrl-DNA builds on a pre-trained autoregressive DNA language model and applies constrained
reinforcement learning to guide sequence generation toward high fitness in a target cell type (e.g.,
HepG2) while suppressing off-target fitness (e.g., K562, SK-N-SH), enabling the generation of CREs
with strong cell-type specificity.

Our objective is to learn a policy πθ that maximizes the expected CRE fitness in the target cell type
while ensuring off-target fitness remains within the specified constraints. Formally, we aim to solve:

max
πθ

EX∼πθ
[R0(X)] s.t. EX∼πθ

[Ri(X)] ≤ δi, ∀i ∈ {1, . . . ,m}. (1)

For clarity, we define Ji(θ) = EX∼πθ
[Ri(X)] as the expected reward for cell type i, where J0(θ)

is referred to as task rewards and Ji(θ) for i ≥ 1 is referred to as constraints (also called off-target
rewards throughout this paper).

3.2 Constrained Batch-wise Relative Policy Optimization

We now describe our approach for solving the constrained reinforcement learning problem for CRE
sequence generation introduced in Section 3.1. Most deep-learning-based constrained RL methods
rely on training one or more value models to estimate expected returns and costs [11, 32, 12], which
can significantly increase training complexity. Moreover, reward signals that are sparse and only
available at the end of a generated sequence may further complicate the training of value models that
need accurate values at each step [33].

To address this, we adapt work in [33, 10] for our constrained DNA sequence design task, avoiding
value network training for each cell type while enforcing constraints on off-target cell CRE fitness. We
adopt a primal-dual approach based on Lagrangian relaxation, which introduces adaptive multipliers
to enforce constraints while optimizing the main objective.

Lagrangian Relaxation and Constrained RL. The Lagrangian relaxation of the constrained
objective in Eq. 1 defines a primal-dual optimization problem:

Llag(θ, λ) = max
θ

min
λ≥0

[
J0(θ)−

m∑
i=1

λi(Ji(θ)− δi)

]
, (2)

where δi is a user-specified threshold and λi ≥ 0 is a dual variable for constraint i.

In practice, we solve primal-dual policy optimization by taking iterative gradient ascent-descent steps
of the policy parameter θ and Lagrange multiplier λi:

θk+1 = θk + ηθ∇θLlag(θ, λ) = θk + ηθ∇θ

[
J0(θ)−

m∑
i=1

λiJi(θ)

]
, (3)

λi,k+1 = λi,k − ηλi∇λiLlag(θ, λ) = λk − ηλi∇λi [λi(δi − Ji(θ))] . (4)

where ηθ and ηλi
are learning rates. k denotes the optimization step. This min-max formulation seeks

a saddle point that maximizes reward while satisfying constraints [21, 11].

Our Methods. As commonly done in reinforcement learning [34, 35], ∇θJ(θ) is calculated by
policy gradient methods where ∇θJ(θ) = Eπ [Ψt∇θ log πθ(at | st)]. Ψt represents a surrogate
signal such as rewards, state-action values or advantage estimates [36]. While standard approaches
compute advantages using learned value functions, we avoid value network training by drawing

4

inspirations from the Group Relative Policy Optimization (GRPO) framework [10, 33]. GRPO
estimates advantages by comparing outputs generated from the same prompt. In contrast, we propose
a batch-level variant for CRE sequence optimization, where advantages are computed by grouping
sequences within each training batch.

Formally, for each objective i ∈ {0, . . . ,m}, the normalized advantage for sequence Xj is defined as
A

(j)
i =

Ri(Xj)−R̄i

σ(Ri)
, where Ri(Xj) is the reward assigned by the i-th reward function, and R̄i, σ(Ri)

denote the batch mean and standard deviation of Ri over the current batch of sequences. To guide
policy updates under constraints, we use the Lagrange multipliers to form a convex combination of
advantages from different cell types. We define the Lagrangian advantage as:

Â(j) =

(
m−

m∑
i=1

λi

)
A

(j)
0 −

m∑
i=1

λiA
(j)
i , (5)

where m is the number of constraints, and λ
(j)
i is the Lagrange multiplier applied for constraint i.

This encourages the policy to favor sequences with high target rewards while discouraging those that
violate constraints.

To estimate ∇θJ(θ) during policy updates, we adopt a clipped surrogate objective with KL regular-
ization [10, 35]:

Lpolicy(θ) =
1

B

B∑
j=1

T∑
i=1

min
{
ρ
(j)
i Â(j), clipϵ(ρ

(j)
i)Â(j)

}
− β · KL(πθ ||πref), (6)

where πθ and πold denote the current and previous policy networks. πref is the reference model, which

usually is the initial policy model. Here, ρ(j)i =
πθ(a

j
i |s

j
i)

πold(a
j
i |s

j
i)

is the importance sampling ratio, and

clipϵ(ρ
(j)
i) = clip(ρ(j)i , 1 − ϵ, 1 + ϵ) restricts large policy updates. The coefficient β controls the

strength of the KL divergence penalty, and ϵ sets the clipping threshold.

To adaptively enforce constraints, we update the Lagrange multiplier λi based on batch-level
constraint satisfaction. For each constraint i, we define the multiplier loss as Lmultiplier(λi) =
1
B

∑B
j=1

(
R

(j)
i − δi

)
λi, where δi is the constraint for cell type i. This formulation increases the

penalty on off-target cell types whose predicted fitness exceeds the constraint thresholds, while
reducing the weight of those that already satisfy the constraints.

With this setup, the primal-dual updates (Equation 3& 4) become:

θk+1 = θk + ηθ∇θLpolicy(θ), λi,k+1 = λi,k − ηλi
∇λi

Lmultiplier(λi).

Detailed pseudocode for the full algorithm and gradient functions are provided in Appendix A.1.

Empirical Designs. To improve training stability and model performance, we introduce several
empirical modifications. First, we maintain a replay buffer of previously generated sequences and mix
them with samples from the current policy. This helps reduce variance in batch-level reward statistics
and leads to smoother advantage estimation. Second, we clip each Lagrange multiplier λi to the
range [0, 1], which prevents overly aggressive constraint enforcement and stabilizes the dual updates.
Lastly, to prevent the main objective from being overwhelmed when constraint weights are large, we
clip its coefficient in Eq. 5 as min(1,m −

∑m
i=1 λi), ensuring sufficient signal for optimizing the

target reward.

3.3 Regularizing Generated Sequences via TFBS Frequency Correlation

Although Ctrl-DNA effectively optimizes sequence generation under specified constraints, the result-
ing sequences may still deviate from biologically realistic distributions due to reward hacking [37].
To further regularize the generated distribution toward biologically plausible patterns, we introduce
an additional reward term based on the correlation between transcription factor binding site (TFBS)
frequencies in generated and real sequences.

Specifically, we first compute TFBS frequencies from a reference set of real DNA sequences. For
each TFBS, we calculate its occurrence frequency across these real sequences, forming a reference

5

frequency vector qreal. Similarly, for each sequence generated by the policy πθ, we compute a
corresponding motif frequency vector qgen. We then quantify the similarity between generated and
real sequence distributions using the Pearson correlation coefficient: RTFBS(X) = Corr(qgen, qreal)
for each generated sequence X .

We treat RTFBS as an additional constraint reward function to maintain realistic TFBS patterns
in generated sequences. However, to prevent the policy from overfitting to correlation alone and
generating sequences that merely replicate the real distribution, we apply a clipped upper bound
on the corresponding dual multiplier λTFBS. That is, from Equation 4, we clip λTFBS to the range
[0, λmax] where λmax ≤ 1, where λmax is a predefined hyperparameter. This clipping mechanism
ensures a balanced optimization process that maintains realistic TFBS frequencies without overly
constraining policy exploration or the main optimization objective.

TFBS information is widely used in CRE design [8, 4, 29]. However, existing methods typically
incorporate TF motifs either as post-hoc evaluation metrics or through explicit tiling strategies during
sequence design. A closely related approach is TACO [9], which trains a LightGBM model to predict
sequence fitness from motif frequencies and derives motif-level rewards from SHAP values. In
contrast, our method bypasses the need for additional predictive models by directly aligning the motif
frequency distribution of generated sequences with that of real sequences. This removes the potential
biases introduced by model training and provides a more reliable regularization signal from real
biological distributions.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our method on human promoter and enhancer datasets [38, 39]. The enhancer
dataset includes 200 bp sequences from three cell lines: HepG2, K562, and SK-N-SH. The promoter
dataset consists of 250 bp sequences from Jurkat, K562, and THP1. Each dataset contains sequence-
fitness pairs across the three respective cell types, with fitness measured via massively parallel reporter
assays (MPRAs) [40]. We adopt the preprocessing pipeline described in [8] to preprocess all datasets.
Please refer to Appendix A.4 for details.

Motif Processing and Real Sequence Statistics. We obtain human-specific position probability
matrices (PPMs) and pairwise motif correlation data from the JASPAR 2024 database [41]. Following
the preprocessing procedure described in [8], we retain a curated set of 464 human transcription
factor motifs. For each task, we identify real sequences by selecting those in the top 50th percentile
for fitness in the target cell type and the bottom 50th percentile in off-target cell types. We then apply
FIMO [42] to scan for motif occurrences and compute motif frequency distributions, which serve as
the reference motif distribution for optimization and evaluation.

Reward Models. We train a reward model for each cell type using the Enformer architecture [43],
following protocols from prior works on cis-regulatory element (CRE) design [8, 9, 4, 29, 38].
For the human enhancer task, we directly adopted the pretrained model weights from [8]. For
human promoters, we trained a separate reward model using the data split from [4] (70% train, 20%
validation, 10% test). Training was conducted using the AdamW optimizer with a learning rate of
1e-4 and MSE loss, over 20 epochs. The checkpoint with the best validation performance was used
for evaluation.

All reward models are based on an Enformer architecture [44], combining convolutional and Trans-
former layers, which has shown strong performance in DNA regulatory prediction tasks. Both the
enhancer and promoter models share the same architecture: 11 layers with a hidden dimension of
1536.

Models and Baselines. For sequence generation, we fine-tune HyenaDNA [31], an autoregressive ge-
nomic LM pre-trained on the human genome, as our policy model. We compare our proposed method,
Ctrl-DNA, against a diverse set of baselines, including evolutionary algorithms (AdaLead [45],
BO [46], CMAES [47], PEX [48]), generative models (RegLM [8]), and reinforcement learning
approaches (TACO [9], PPO [35], PPO-Lagrangian [12]). Full baseline details are provided in
Appendix A.5.

6

Figure 2: Pairwise fitness comparison of generated CREs highlights Ctrl-DNA’s cell-type specificity.
Each subplot compares mean ± s.d. fitness in two human cell lines (y = target, x = off-target); points
in the top-right denote sequences with high on-target and low off-target fitness. Baseline methods
are shown in pastel colors, while Ctrl-DNA variants (δ = 0.3/0.4, 0.5, 0.6) are connected in red dotted
lines, illustrating the trade-off as constraint strength increases and Ctrl-DNA’s dominance in the
top-right corner for both enhancer (a) and promoter (b) datasets.

Evaluation Metrics. To assess the performance of each method, we report median rewards (
Median) over the generated sequences in the final round. Additionally, we report Reward Difference
(∆R) to quantify the average difference between the target cell’s fitness and the fitness across
off-target cell types, indicating the cell-type fitness specificity. Motif Correlation is defined as
the Pearson correlation between TFBS frequencies in generated sequences and real sequences. A
higher correlation indicates greater alignment with biologically plausible motif distributions. Lastly,
Diversity is calculated as the Shannon entropy of the generated sequences in the final round, reflecting
the model’s ability to explore diverse solutions. We report the mean and standard deviation of each
metric over 5 runs initialized with different random seeds.

4.2 Ctrl-DNA optimizes enhancer and promoter sequences under cell-type-specific constraints

We evaluate Ctrl-DNA on two regulatory sequence design tasks using the Human Enhancer and
Human Promoter datasets. Results are presented in Figure 2. In these plots, points positioned
further to the right indicate lower fitness in off-target cell types (i.e., better constraint satisfaction),
while points higher on the vertical axis indicate higher fitness in the target cell type. Methods that
appear in the upper-right corner achieve the best trade-off between maximizing target cell fitness and
minimizing off-target expression.

7

Table 1: Performance comparison across methods for each target cell type on the Human Enhancer
and Human Promoter datasets. For each target, we report ∆R (↑) and motif correlation (↑). Constraint
thresholds are set to 0.5 for all six cell types. Note that K562* refers to the K562 cell type in the
Human Promoter dataset. Motif Corr† computed using 90th-percentile reference sequences.

Cell Type Metric AdaLead BO CMAES PEX RegLM PPO TACO PPO-Lag Ctrl-DNA

HepG2 ∆R ↑ 0.02 (0.04) -0.03 (0.03) 0.01 (0.01) 0.13 (0.03) 0.16 (0.01) -0.06 (0.02) -0.05 (0.01) -0.02 (0.03) 0.49 (0.01)
Motif Corr ↑ 0.45 (0.03) 0.21 (0.10) 0.15 (0.08) 0.31 (0.04) 0.22 (0.07) 0.41 (0.14) 0.30 (0.03) 0.41 (0.02) 0.43 (0.07)

K562 ∆R ↑ 0.16 (0.05) 0.08 (0.02) 0.03 (0.02) 0.17 (0.03) 0.19 (0.02) 0.14 (0.04) 0.11 (0.01) 0.05 (0.05) 0.54 (0.01)
Motif Corr ↑ 0.49 (0.07) 0.08 (0.18) 0.06 (0.04) 0.21 (0.06) 0.23 (0.01) 0.35 (0.11) 0.28 (0.02) 0.44 (0.05) 0.51 (0.02)

SK-N-SH ∆R ↑ -0.02 (0.07) -0.01 (0.02) 0.00 (0.01) -0.04 (0.01) 0.14 (0.01) -0.04 (0.08) 0.08 (0.02) -0.04 (0.07) 0.37 (0.11)
Motif Corr ↑ 0.15 (0.13) 0.05 (0.06) 0.03 (0.04) 0.17 (0.02) 0.18 (0.01) 0.23 (0.01) 0.11 (0.12) 0.42 (0.03) 0.25 (0.04)

JURKAT ∆R ↑ 0.09 (0.06) 0.04 (0.03) -0.00 (0.01) 0.15 (0.03) 0.09 (0.01) 0.04 (0.02) 0.03 (0.12) 0.11 (0.01) 0.25 (0.01)
Motif Corr ↑ 0.41 (0.07) 0.19 (0.23) 0.30 (0.02) 0.60 (0.05) 0.14 (0.02) 0.61 (0.11) 0.55 (0.11) 0.29 (0.33) 0.69 (0.02)

K562* ∆R ↑ -0.12 (0.01) -0.15 (0.02) -0.17 (0.02) -0.04 (0.02) -0.08 (0.03) -0.09 (0.03) -0.10 (0.02) -0.22 (0.04) 0.12 (0.02)
Motif Corr ↑ 0.60 (0.15) 0.13 (0.16) 0.24 (0.08) 0.63 (0.02) 0.42 (0.04) 0.39 (0.11) 0.50 (0.12) 0.42 (0.22) 0.75 (0.06)

THP1 ∆R ↑ 0.24 (0.01) 0.20 (0.02) 0.20 (0.01) 0.29 (0.01) -0.01 (0.01) 0.24 (0.03) 0.24 (0.08) 0.18 (0.03) 0.56 (0.01)
Motif Corr ↑ 0.63 (0.06) 0.26 (0.09) 0.19 (0.06) 0.84 (0.01) 0.35 (0.01) 0.42 (0.10) 0.36 (0.03) 0.42 (0.10) 0.25 (0.04)
Motif Corr† ↑ 0.16 (0.13) 0.06 (0.08) 0.06 (0.04) 0.04 (0.02) 0.29 (0.01) 0.37 (0.04) 0.33 (0.01) -0.02 (0.07) 0.60 (0.02)

For enhancers, we evaluate performance under three constraint thresholds (δ = 0.3, 0.5, 0.6). Across
all thresholds, Ctrl-DNA consistently achieves the highest target-cell fitness while satisfying the
off-target constraints. PPO-Lagrangian (PPO-Lag) struggles to balance optimization and constraint
satisfaction, likely due to the difficulty of training value networks under sparse, sequence-level reward
signals. Notably, while methods such as TACO and CMAES achieve relatively high expression in the
target cell type, they fail to suppress off-target fitness, leading to poor cell-type specificity.

The promoter design task is a more challenging task because all three target cell types are mesoderm-
derived hematopoietic cells, which share substantial transcriptional similarity [4]. We test under three
constraint thresholds (δ = 0.4, 0.5, 0.6). Ctrl-DNA outperforms all baselines in maximizing target
cell-type fitness and satisfying constraints at δ = 0.5 and 0.6. However, no method, including Ctrl-
DNA, successfully reduces THP1 fitness below the stricter threshold of δ = 0.4. We hypothesize that
this is due to the data distribution: the 25th percentile of THP1 fitness is already 0.49 (Appendix A.4),
indicating that most sequences exhibit high expression in this cell type. Despite this challenge, when
THP1 is treated as an off-target cell, Ctrl-DNA still achieves the lowest THP1 fitness among all
methods.

Across both enhancer and promoter tasks, Ctrl-DNA consistently achieves the best trade-off between
optimizing target cell types and enforcing cell-type-specific constraints, substantially outperforming
existing RL and generative baselines. Interestingly, we observe a clear trade-off when enforcing
stricter constraints: as the constraint threshold decreases, the fitness in the target cell type slightly
declines. This trend likely arises because stricter constraint enforcement potentially narrows the feasi-
ble sequence space, making it more challenging to simultaneously optimize target cell-type activity
and minimize off-target expression. For completeness, we compared our constrained formulation
to a scalarized differential-expression (DE) objective and found that DE imposes a fixed trade-off
that underperforms our adaptive Lagrangian approach; see Appendix A.8 for details. Despite this
inherent difficulty, Ctrl-DNA’s constraint-aware optimization framework remains highly effective,
demonstrating robustness in maintaining superior target-cell fitness even under rigorous constraint
conditions.

4.3 Ctrl-DNA captures biologically relevant motifs with higher specificity

Besides the fitness of generated CRE sequences in each cell type, we also evaluate the sequences
with three other metrics: reward difference (∆R), motif correlation and diversity. In Table 1, we
can observe that Ctrl-DNA achieves highest reward differences across all cell types in both human
promoter and enhancers, indicating it is better at optimizing DNA sequences for cell-type-specific
fitness. For motif correlation, Ctrl-DNA also achieves stronger performance across most cell types,
except for THP1 in promoter design. As noted in Section 4.2, THP1 fitness values are skewed, with
the majority of sequences in the dataset exhibiting fitness around 0.5. Since motif correlation is
evaluated against sequences near the 50th percentile (see Section 4.1), the resulting motif frequency
distribution may not accurately reflect the high-activity sequences we aim to design.

8

a Enhancer - HepG2 Promoter - K562bLiver Erythropoietic

Di
ve

rs
ity

M
ot

if
Fr

ac
tio

n

Figure 3: (a) Fraction of Ctrl-DNA-generated enhancers containing selected cell-type-specific
transcription factor (TF) motifs. (b) Diversity scores of generated sequences for HepG2 enhancers
(left) and K562 promoters (right) across different methods.

To further investigate this discrepancy, we extract motifs from promoter sequences in the 90th
percentile of THP1 fitness, applying a significance threshold of q < 0.05 to avoid false positives. We
then re-evaluate the motif correlation between generated sequences and this more selective reference
set. These results, denoted as Motif Corr† in Table 1, show that Ctrl-DNA outperforms all baselines
under this stricter setting. In contrast, most baseline methods exhibit reduced motif correlation,
suggesting that they tend to align with non-informative or broadly distributed motifs. Despite being
regularized using motifs from a less selective reference set, Ctrl-DNA successfully prioritizes the
most discriminative motifs during optimization. Finally, the correlation improvements persist when
evaluated against alternative reference sets explicitly designed to reduce circularity (Appendix A.10),
with consistently high correlations across cell lines.

To further demonstrate that Ctrl-DNA selects more cell-type-discriminative motifs during sequence
generation, we evaluated the frequency of known cell-type-specific TFBS in the generated sequences.
In particular, we examined generated sequences for liver-specific and erythropoietic-specific motifs.
As shown in Figure 3a, Ctrl-DNA-generated sequences for HepG2 (a liver-derived cell line) show the
highest frequency of liver-specific motifs such as HNF4A and HNF4G. Similarly, sequences generated
for K562 (an erythropoietic lineage cell line) contain the highest frequency of erythropoietic-specific
motifs such as GATA1 and GATA2. These findings indicate that Ctrl-DNA not only optimizes for
target-cell fitness, but also learns regulatory patterns that reflect underlying cell-type specificity.

Finally, we assess the diversity of generated sequences in Figure 3b and Appendix A.6. Ctrl-DNA
achieves comparable or higher diversity than most baselines, indicating its ability to generate diverse
sequences without sacrificing regulatory control.

4.4 Ablation Study

Constraint Formulations. To investigate alternative constraint enforcement strategies, we explored
several other constrained methods from current works. First, we adapt the loss from Interior-point
Policy Optimization (IPO) [49], referring to this variant as Ctrl-DNA-IPO. Second, we implement
a log-barrier penalty on constraint rewards following [50], which we denote as Ctrl-DNA-Log. All
experiments are conducted using a constraint threshold of 0.5. See Appendix A.7 for detailed setup.
As shown in Table 2, Ctrl-DNA-Log suppresses off-target rewards effectively but fails to maintain
high fitness in the target cell type. In contrast, Ctrl-DNA-IPO improves target reward but does not
enforce constraints adequately. These results highlight that our proposed formulation strikes a better
balance between optimizing target cell-type fitness and minimizing off-target expression.

TFBS Regularization. In Section 3.3, we introduced a correlation-based regularization using TFBS
motif frequencies to promote biologically plausible sequences. By changing the upper bound on
the TFBS multiplier (λmax) we can limit the weight we put on this regularization. From Table 2,
we observe that increasing λmax from 0.0 to 0.1 improves motif correlation without substantially
degrading other metrics. In certain cell types, such as JURKAT, a higher value of λmax also leads
to improved optimization performance (See Appendix Table 7). This supports the utility of TFBS
regularization in guiding sequence generation. However, since our comparisons use motif frequencies
computed from a loosely matched reference set, we recommend tuning λmax carefully in practical
applications depending on the reliability of the available ground truth.

9

Table 2: Ablation study on constraint formulation and TFBS regularization. We compare variants of
Ctrl-DNA using alternative constraint handling methods (Ctrl-DNA-IPO, Ctrl-DNA-Log) and varying
TFBS regularization strengths (λmax). Results are reported on the Human Enhancer dataset (target
cell: HepG2), with constraint threshold δ = 0.5 in both experiments. See Appendix A.7 for complete
results across all datasets.

Method Target: HepG2

HepG2 ↑ K562 ↓ SK-N-SH ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.24 (0.02) 0.24 (0.03) 0.21 (0.04) 0.02 (0.06) 0.16 (0.13) 1.62 (0.08)
Ctrl-DNA-IPO 0.74 (0.01) 0.86 (0.02) 0.83 (0.02) -0.10 (0.02) 0.39 (0.14) 1.58 (0.13)
Ctrl-DNA (λmax = 0.00) 0.78 (0.02) 0.40 (0.06) 0.33 (0.03) 0.42 (0.02) 0.33 (0.12) 1.82 (0.02)
Ctrl-DNA (λmax = 0.01) 0.77 (0.01) 0.34 (0.04) 0.30 (0.02) 0.45 (0.02) 0.16 (0.10) 1.84 (0.01)
Ctrl-DNA (λmax = 0.1) 0.77 (0.01) 0.36 (0.04) 0.31 (0.04) 0.44 (0.03) 0.43 (0.07) 1.82 (0.04)

5 Discussion

Designing cell-type-specific cis-regulatory sequences presents a challenging optimization problem
that involves balancing competing objectives. Our proposed method, Ctrl-DNA, achieves strong per-
formance across both enhancer and promoter datasets, outperforming evolutionary and RL baselines
in maximizing target cell-type fitness while satisfying off-target constraints. In addition, Ctrl-DNA
supports explicit control over constraint thresholds, enabling flexible and controllable CRE sequence
design. By computing Lagrangian advantages directly from batch-normalized rewards without train-
ing value models, Ctrl-DNA offers a lightweight and effective solution to constrained CRE DNA
sequence generation.

Nevertheless, the ability to enforce constraints is inherently limited by the data distribution. For
instance, in the THP1 promoter dataset, a large proportion of sequences exhibit high baseline activity,
making it difficult to enforce stricter constraints such as δ = 0.4. This challenge affects both the
accuracy of the learned reward model and the capacity of Ctrl-DNA to suppress expression in such
settings. These observations highlight the importance of considering dataset-specific characteristics
when setting constraint thresholds or evaluating constrained RL methods.

Although Ctrl-DNA already demonstrates robust performance, there are several directions for im-
provement. First, tuning Lagrange multipliers remains empirical. Future work could explore adaptive
control methods such as proportional–integral–derivative controllers [51]. Second, additional bi-
ological constraints could be incorporated to further improve the plausibility and functionality of
generated sequences. Finally, our current framework is limited to reinforcement learning fine-tuning
on autoregressive models. As a next step, we plan to extend Ctrl-DNA to other structures such as
diffusion-based DNA models.

10

References
[1] Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Kousuke Mouri, Michael Alasoadura,

Susan Kales, Thanh Thanh L Nguyen, Ramil R Noche, Arya S Rao, et al. Machine-guided design of
cell-type-targeting cis-regulatory elements. Nature, pages 1–10, 2024.

[2] Shannon E Boye, Sanford L Boye, Alfred S Lewin, and William W Hauswirth. A comprehensive review
of retinal gene therapy. Molecular therapy, 21(3):509–519, 2013.

[3] Tianshun Gao and Jiang Qian. Enhanceratlas 2.0: an updated resource with enhancer annotation in 586
tissue/cell types across nine species. Nucleic acids research, 48(D1):D58–D64, 2020.

[4] Aniketh Janardhan Reddy, Xinyang Geng, Michael Herschl, Sathvik Kolli, Aviral Kumar, Patrick Hsu,
Sergey Levine, and Nilah Ioannidis. Designing cell-type-specific promoter sequences using conservative
model-based optimization. Advances in Neural Information Processing Systems, 37:93033–93059, 2024.

[5] Ryan Tewhey, Dylan Kotliar, Daniel S Park, Brandon Liu, Sarah Winnicki, Steven K Reilly, Kristian G
Andersen, Tarjei S Mikkelsen, Eric S Lander, Stephen F Schaffner, et al. Direct identification of hundreds
of expression-modulating variants using a multiplexed reporter assay. Cell, 165(6):1519–1529, 2016.

[6] Carl G de Boer, Eeshit Dhaval Vaishnav, Ronen Sadeh, Esteban Luis Abeyta, Nir Friedman, and Aviv Regev.
Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nature biotechnology,
38(1):56–65, 2020.

[7] Ibrahim I Taskiran, Katina I Spanier, Hannah Dickmänken, Niklas Kempynck, Alexandra Pančíková,
Eren Can Ekşi, Gert Hulselmans, Joy N Ismail, Koen Theunis, Roel Vandepoel, et al. Cell-type-directed
design of synthetic enhancers. Nature, 626(7997):212–220, 2024.

[8] Avantika Lal, David Garfield, Tommaso Biancalani, and Gokcen Eraslan. Designing realistic regulatory
dna with autoregressive language models. Genome Research, 34(9):1411–1420, 2024.

[9] Zhao Yang, Bing Su, Chuan Cao, and Ji-Rong Wen. Regulatory dna sequence design with reinforcement
learning. In The Thirteenth International Conference on Learning Representations.

[10] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

[11] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pages 22–31. PMLR, 2017.

[12] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

[13] Eeshit Dhaval Vaishnav, Carl G de Boer, Jennifer Molinet, Moran Yassour, Lin Fan, Xian Adiconis,
Dawn A Thompson, Joshua Z Levin, Francisco A Cubillos, and Aviv Regev. The evolution, evolvability
and engineering of gene regulatory dna. Nature, 603(7901):455–463, 2022.

[14] Johannes Linder and Georg Seelig. Fast activation maximization for molecular sequence design. BMC
bioinformatics, 22:1–20, 2021.

[15] Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In International conference
on learning representations, 2019.

[16] Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP Dossou,
Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al. Biological sequence
design with gflownets. In International Conference on Machine Learning, pages 9786–9801. PMLR, 2022.

[17] Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems & control
letters, 54(3):207–213, 2005.

[18] Shalabh Bhatnagar and K Lakshmanan. An online actor–critic algorithm with function approximation for
constrained markov decision processes. Journal of Optimization Theory and Applications, 153:688–708,
2012.

[19] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

11

[20] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pages 9133–9143. PMLR, 2020.

[21] Yuhao Ding and Javad Lavaei. Provably efficient primal-dual reinforcement learning for cmdps with
non-stationary objectives and constraints. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 7396–7404, 2023.

[22] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[23] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

[24] Ted Moskovitz, Michael Arbel, Jack Parker-Holder, and Aldo Pacchiano. Towards an understanding of
default policies in multitask policy optimization. In International Conference on Artificial Intelligence and
Statistics, pages 10661–10686. PMLR, 2022.

[25] Ted Moskovitz, Aaditya K Singh, DJ Strouse, Tuomas Sandholm, Ruslan Salakhutdinov, Anca D Dragan,
and Stephen McAleer. Confronting reward model overoptimization with constrained rlhf. arXiv preprint
arXiv:2310.04373, 2023.

[26] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score model
for biological sequence generation. In International Conference on Machine Learning, pages 1276–1301.
PMLR, 2023.

[27] Simon Senan, Aniketh Janardhan Reddy, Zach Nussbaum, Aaron Wenteler, Matei Bejan, Michael I
Love, Wouter Meuleman, and Luca Pinello. Dna-diffusion: Leveraging generative models for controlling
chromatin accessibility and gene expression via synthetic regulatory elements. In ICLR 2024 Workshop on
Machine Learning for Genomics Explorations, 2024.

[28] Zehui Li, Yuhao Ni, Tim August B Huygelen, Akashaditya Das, Guoxuan Xia, Guy-Bart Stan, and Yiren
Zhao. Latent diffusion model for dna sequence generation. arXiv preprint arXiv:2310.06150, 2023.

[29] Anirban Sarkar, Ziqi Tang, Chris Zhao, and Peter K Koo. Designing dna with tunable regulatory activity
using discrete diffusion. bioRxiv, pages 2024–05, 2024.

[30] Jan Zrimec, Xiaozhi Fu, Azam Sheikh Muhammad, Christos Skrekas, Vykintas Jauniskis, Nora K Speicher,
Christoph S Börlin, Vilhelm Verendel, Morteza Haghir Chehreghani, Devdatt Dubhashi, et al. Controlling
gene expression with deep generative design of regulatory dna. Nature communications, 13(1):5099, 2022.

[31] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes, Stefano
Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range genomic
sequence modeling at single nucleotide resolution. Advances in neural information processing systems,
36:43177–43201, 2023.

[32] Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

[33] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

[34] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[36] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[37] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.

[38] Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Susan Kales, Ramil R Noche, Kousuke
Mouri, Pardis C Sabeti, Steven K Reilly, and Ryan Tewhey. Machine-guided design of synthetic cell
type-specific cis-regulatory elements. bioRxiv, 2023.

12

[39] Aniketh Janardhan Reddy, Michael H Herschl, Xinyang Geng, Sathvik Kolli, Amy X Lu, Aviral Kumar,
Patrick D Hsu, Sergey Levine, and Nilah M Ioannidis. Strategies for effectively modelling promoter-driven
gene expression using transfer learning. bioRxiv, pages 2023–02, 2024.

[40] Eilon Sharon, Yael Kalma, Ayala Sharp, Tali Raveh-Sadka, Michal Levo, Danny Zeevi, Leeat Keren,
Zohar Yakhini, Adina Weinberger, and Eran Segal. Inferring gene regulatory logic from high-throughput
measurements of thousands of systematically designed promoters. Nature biotechnology, 30(6):521–530,
2012.

[41] Jaime A Castro-Mondragon, Rafael Riudavets-Puig, Ieva Rauluseviciute, Roza Berhanu Lemma, Laura
Turchi, Romain Blanc-Mathieu, Jeremy Lucas, Paul Boddie, Aziz Khan, Nicolás Manosalva Pérez, et al.
Jaspar 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic
acids research, 50(D1):D165–D173, 2022.

[42] Timothy L Bailey, James Johnson, Charles E Grant, and William S Noble. The meme suite. Nucleic acids
research, 43(W1):W39–W49, 2015.

[43] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska, Kyle R
Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene expression
prediction from sequence by integrating long-range interactions. Nature methods, 18(10):1196–1203,
2021.

[44] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska, Kyle R
Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene expression
prediction from sequence by integrating long-range interactions. Nature methods, 18(10):1196–1203,
2021.

[45] Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D Kelsic.
Adalead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv preprint
arXiv:2010.02141, 2020.

[46] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

[47] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary computa-
tion: Advances in the estimation of distribution algorithms, pages 75–102, 2006.

[48] Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration for model-
guided protein sequence design. In International Conference on Machine Learning, pages 18520–18536.
PMLR, 2022.

[49] Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 4940–4947, 2020.

[50] Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine, and
Tommaso Biancalani. Reward-guided iterative refinement in diffusion models at test-time with applications
to protein and dna design. arXiv preprint arXiv:2502.14944, 2025.

[51] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pages 9133–9143. PMLR, 2020.

[52] Erlong Liu, Yu-Chang Wu, Xiaobin Huang, Chengrui Gao, Ren-Jian Wang, Ke Xue, and Chao Qian.
Pareto set learning for multi-objective reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 18789–18797, 2025.

[53] Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal, Tommi
Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion models via
reward optimization with applications to dna and protein design. arXiv preprint arXiv:2410.13643, 2024.

[54] David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for robust
design. In International conference on machine learning, pages 773–782. PMLR, 2019.

13

A Technical Appendices and Supplementary Material

A.1 Training Details for Ctrl-DNA

We provide a high-level overview of our constrained reinforcement learning procedure for optimizing
constraint-aware regulatory sequence generation. We also present the hyperparameter settings used
in our experiments in Table 3. All models were trained using the Adam optimizer with a learning rate
specified in Table 3 with 100 training epochs.

Experiments were conducted on a single NVIDIA A100 GPU with 40 GB of memory. Each
experiment typically required between 1 to 2 hours of wall-clock time. The experiment results
reported are mean performances across five seeds.

Algorithm 1 Ctrl-DNA

Require: Initialized policy πθ, Reference policy πref, Lagrange multipliers {λi}mi=1, reward functions
{Ri}mi=0, reference TFBS frequency qreal, constraint thresholds {δi}, learning rates ηθ, ηλ,
hyperparameters β, ϵ, replay buffer B, batch size B, replay batch size Br

1: for each training iteration do
2: Update πold = πθ

3: Sample B sequences {Xj}Bj=1 from policy πold

4: Compute rewards {Ri(Xj)} for i = 0, . . . ,m

5: Compute TFBS frequency q
(j)
gen and correlation RTFBS(Xj) = Corr(qreal, q

(j)
gen).

6: Treat RTFBS as additional reward Rm+1 and append to the reward set
7: Sample Br sequences from replay buffer B and merge with current batch
8: Compute normalized advantage: A(j)

i =
Ri(Xj)−R̄i

σ(Ri)
for each reward Ri

9: Compute clipped main reward coefficient:
10: α0 = min(1,m−

∑m
i=1 λi)

11: Construct mixed advantage:
12: Â(j) = α0 ·A(j)

0 −
∑m

i=1 λiA
(j)
i

13: Add current batch {(Xj , {r(j)i })} to replay buffer B
14: for each policy update step do
15: Update policy parameters θ using Lpolicy(θ) (Eq. 6)
16: for each constraint i = 1, . . . ,m+ 1 do
17: Update λi using:
18: Lmultiplier(λi) =

1
B+Br

∑B+Br

j=1 (Ri(Xj)− δi) · λi

19: end for
20: end for
21: end for

Table 3: Experiment Hyperparameters.

Hyperparameter HepG2 K562 SK-N-SH JURKAT K562 THP1

Batch Size 256 256 256 256 256 256
Replay Buffer Batch Size 24 24 24 24 24 24
Policy Learning Rate (ηθ) 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Multiplier Learning Rate (ηλ) 3e-4 3e-4 3e-4 3e-4 3e-3 3e-3
KL Value Coefficient (β) 0.2 0.2 0.2 0.2 0.2 0.2
TFBS Multiplier Upper Bound (λmax) 0.1 0.1 0.1 0.1 0.1 0.1

A.2 Policy Optimization Objective

As discussed in Section 3.2, the objective for updating policy parameters θ is defined as:

Lpolicy(θ) =
1

B

B∑
j=1

T∑
i=1

min
{
ρ
(j)
i Â(j), clipϵ(ρ

(j)
i)Â(j)

}
− β · KL(πθ ||πref), (7)

14

where ρ
(j)
i =

πθ(a
j
i |s

j
i)

πold(a
j
i |s

j
i)

is the importance sampling ratio, and clipϵ(ρ
(j)
i) = clip(ρ(j)i , 1 − ϵ, 1 + ϵ)

applies clipping for stability. Following [33], we assume one policy update per iteration, allowing
πold = πθ for simplification.

The gradient of this objective with respect to θ becomes:

∇θLpolicy(θ) =
1

B

B∑
j=1

T∑
i=1

Â(j)∇θ log πθ(a
(j)
i | s(j)i)

− β · ∇θ

(
πref(a

(j)
i | s(j)i)

πθ(a
(j)
i | s(j)i)

− log
πref(a

(j)
i | s(j)i)

πθ(a
(j)
i | s(j)i)

− 1

)
(8)

=
1

B

B∑
j=1

T∑
i=1

[
Â(j) − β

(
πref(a

(j)
i | s(j)i)

πθ(a
(j)
i | s(j)i)

− 1

)]
∇θ log πθ(a

(j)
i | s(j)i).

A.3 Lagrange Multiplier Update

We apply Lagrangian relaxation to enforce soft constraints on off-target cell types. The gradient of
the multiplier objective with respect to each Lagrange multiplier λi is given by:

∇λiLmultiplier(λi) =
1

B

B∑
j=1

(Ri(Xj)− δi) ,

where Ri(Xj) is the constraint-specific reward (e.g., off-target activity) for sample Xj , and δi is the
user-defined constraint threshold.

A.4 Dataset

In this section, we describe the datasets used in our experiments. The human enhancer dataset
contains cis-regulatory element (CRE) activity measured by MPRA across three cell lines: HepG2
(liver cell line), K562 (erythrocyte cell line), and SK-N-SH (neuroblastoma cell line). Each sequence
in this dataset is 200 base pairs long.

The human promoter dataset contains promoter activity (CRE fitness) measured from three leukemia-
derived cell lines: JURKAT, K562, and THP1. All three are mesoderm-derived hematopoietic cell
lines and share high biological similarity. Each sequence in this dataset is 250 base pairs in length.
Compared to enhancer datasets that span multiple germ layers and tissue types, optimization and
constraint satisfaction in the promoter dataset is more challenging due to the biological similarity
between the cell lines [4].

We provide percentile statistics of normalized activity scores in Tables 4 and 5. Notably, in the THP1
cell line, even the 25th percentile activity reaches 0.49, suggesting a right-skewed distribution. This
distributional bias may partially explain the increased difficulty in constraining THP1 activity, as
discussed in Section 4.2.

Table 4: Percentile statistics of normalized activity scores across cell types in Human Enhancer
datasets

Cell Line 25th Percentile 50th Percentile 75th Percentile 90th Percentile
HepG2 0.34 0.36 0.40 0.45
K562 0.34 0.36 0.40 0.45
SK-N-SH 0.35 0.37 0.40 0.45

15

Table 5: Percentile statistics of normalized activity scores across cell types in Human Promoter
datasets.

Cell Line 25th Percentile 50th Percentile 75th Percentile 90th Percentile
JURKAT 0.35 0.38 0.44 0.54
K562 0.23 0.26 0.32 0.40
THP1 0.49 0.51 0.53 0.59

A.5 Baselines

In this section, we provide detailed descriptions of all baseline methods compared in the main paper:

• AdaLead [45]: is implemented as a novelty-guided hill-climbing algorithm with mutation
rate µ =1 (applied as µ/L per position), recombination rate r =0.2, and greedy threshold k=
0.05 for selecting parents with fitness above (1–k) of the current best. Recombination is
disabled (ρ= 0), and each candidate is evaluated with v= 20 model queries.

• Bayesian Optimization (BO) [45]: A black-box optimization method that models the fitness
function with a Gaussian process surrogate and selects new candidates by maximizing an
acquisition function.

• CMA-ES [47]: A population-based evolutionary algorithm that adapts a multivariate Gaus-
sian distribution over iterations. We apply CMA-ES on one-hot encoded sequence repre-
sentations with a population size of 16 and initial search variance of 0.2. The number of
iterations is scaled to the model query budget.

• PEX [48]: An evolutionary approach that prioritizes generating high-fitness variants with
minimal mutations relative to the wild-type sequence. It generates candidates by applying 2
random mutations to high-fitness frontier sequences, stratified by Hamming distance from
the wild-type. The frontier neighbor size is set to 5, and predictions are processed in batches
of 64.

• RegLM [8]: An autoregressive language model trained to generate cis-regulatory el-
ements (CREs) conditioned on cell-type-specific fitness profiles. We fine-tune the
hyenadna-medium-160k-seqlen configuration (6.55M parameters) for 16 epochs, using
the AdamW optimizer (learning rate = 0.0001, batch size = 1024) and cross-entropy loss,
with inverse-frequency label sampling to address class imbalance.

• TACO [9]: A reinforcement learning method based on REINFORCE [34], which incorpo-
rates transcription factor motif rewards to guide generation toward high-fitness sequences.
Its implementation follows the original paper’s hyperparameter settings. The TFBS reward
coefficient is set to 0.01. We use a batch size of 256 and run optimization for 100 iterations.
The learning rate is fixed at 1e-4 across all datasets.

• PPO [35]: A widely used policy optimization algorithm that updates policies using clipped
surrogate objectives to ensure stable training. We use Generalized Advantage Estimation
(GAE) to compute the advantage function. Optimization is performed using the Adam
optimizer with a learning rate of 1e-4. The value network shares the same pretrained
HyenaDNA backbone as the policy network, with a linear head on top of the final hidden
state to predict value estimates. We use a batch size of 256 and train for 100 iterations.

• PPO-Lagrangian [12]: A constrained variant of PPO that incorporates Lagrangian relax-
ation to balance main rewards and constraint satisfaction. For each reward component (i.e.,
each cell type), a separate value network is trained to estimate the expected return for that
component. These value networks share the same architecture as in PPO. However, due
to GPU memory constraints, we apply LoRA to fine-tune only the MLP and mixer layers
in the HyenaDNA model. The optimizer, learning rate (1e-4), batch size (256), and total
training iterations (100) are kept consistent with the PPO setup.

16

A.6 Sequence Diversity

In this section, we report the full results of sequence diversity for Ctrl-DNA and baseline methods as
shown in Figure 4.

a HepG2 K562 SK-N-SH

En
ha

nc
er

b JURKAT K562 THP1

Pr
om

ot
er

Figure 4: Sequence diversity scores for generated sequences on the human enhancer and promoter
datasets. Higher values indicate greater variability among generated sequences.

A.7 Extended Ablation Results

This section provides additional results and implementation details for the ablation experiments
introduced in Section 4.4. We evaluate ablations on both the Human Enhancer and Human Promoter
datasets.

Ctrl-DNA-Log. Following the reward-guided approach proposed in [50], we implement a log-barrier
transformation of the constraint reward. Specifically, we define a log-augmented reward as

Rlog(X) = R0(X) +

m∑
i=1

log (max (δi −Ri(X), c1)) , (9)

where R0 is the target reward, Ri is the constraint reward for i ≥ 1, c is the threshold, and c1 is a small
constant for numerical stability. We then compute normalized advantages using this transformed
reward:

A
(j)
log =

Rlog(Xj)− R̄log

σ(Rlog)
. (10)

We replace the mixed advantages in the original loss function (Equation 6) with A
(j)
log . All other

settings (e.g., surrogate loss, clipping, KL regularization) remain the same as in Ctrl-DNA.

17

Table 6: Ablation study for Ctrl-DNA across three target cell types in Human Enhancer datasets.

Method Target: HepG2

HepG2 ↑ K562 ↓ SK-N-SH ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.24 (0.02) 0.24 (0.03) 0.21 (0.04) 0.02 (0.06) 0.16 (0.13) 1.62 (0.08)
Ctrl-DNA-IPO 0.74 (0.01) 0.86 (0.02) 0.83 (0.02) -0.10 (0.02) 0.39 (0.14) 1.58 (0.13)
Ctrl-DNA (λmax = 0.00) 0.78 (0.02) 0.40 (0.06) 0.33 (0.03) 0.42 (0.02) 0.33 (0.12) 1.82 (0.02)
Ctrl-DNA (λmax = 0.01) 0.77 (0.01) 0.34 (0.04) 0.30 (0.02) 0.45 (0.02) 0.16 (0.10) 1.84 (0.01)
Ctrl-DNA (λmax = 0.1) 0.77 (0.01) 0.36 (0.04) 0.31 (0.04) 0.44 (0.03) 0.43 (0.07) 1.82 (0.04)

Method Target: K562

K562 ↑ HepG2 ↓ SK-N-SH ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.28 (0.01) 0.16 (0.06) 0.19 (0.02) 0.11 (0.02) 0.14 (0.07) 1.68 (0.16)
Ctrl-DNA-IPO 0.84 (0.11) 0.65 (0.09) 0.73 (0.19) 0.15 (0.03) 0.39 (0.05) 1.08 (0.62)
Ctrl-DNA (λmax = 0.00) 0.93 (0.01) 0.43 (0.01) 0.35 (0.01) 0.54 (0.01) 0.50 (0.02) 1.72 (0.02)
Ctrl-DNA (λmax = 0.01) 0.93 (0.01) 0.42 (0.05) 0.35 (0.01) 0.54 (0.06) 0.52 (0.03) 1.73 (0.05)
Ctrl-DNA (λmax = 0.1) 0.93 (0.01) 0.43 (0.01) 0.35 (0.01) 0.54 (0.01) 0.51 (0.02) 1.82 (0.04)

Method Target: SK-N-SH

SK-N-SH ↑ HepG2 ↓ K562 ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.46 (0.07) 0.05 (0.01) 0.05 (0.01) 0.41 (0.07) 0.12 (0.02) 1.68 (0.08)
Ctrl-DNA-IPO 0.91 (0.04) 0.87 (0.01) 0.70 (0.01) 0.13 (0.03) 0.13 (0.04) 1.66 (0.07)
Ctrl-DNA (λmax = 0.00) 0.83 (0.04) 0.57 (0.11) 0.38 (0.07) 0.35 (0.10) 0.35 (0.06) 1.78 (0.03)
Ctrl-DNA (λmax = 0.01) 0.88 (0.01) 0.47 (0.05) 0.30 (0.03) 0.49 (0.03) 0.15 (0.02) 1.84 (0.04)
Ctrl-DNA (λmax = 0.1) 0.86 (0.02) 0.54 (0.13) 0.44 (0.01) 0.37 (0.11) 0.51 (0.02) 1.82 (0.04)

Table 7: Ablation study for Ctrl-DNA across three target cell types in Human Promoter datasets.

Method Target: JURKAT

JURKAT ↑ K562 ↓ THP1 ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.46 (0.02) 0.17 (0.02) 0.45 (0.02) 0.15 (0.01) 0.11 (0.36) 1.61 (0.07)
Ctrl-DNA-IPO 0.55 (0.14) 0.28 (0.18) 0.55 (0.15) 0.15 (0.01) 0.31 (0.29) 1.22 (0.38)
Ctrl-DNA (λmax = 0.00) 0.59 (0.11) 0.19 (0.03) 0.49 (0.02) 0.25 (0.09) 0.28 (0.36) 1.56 (0.09)
Ctrl-DNA (λmax = 0.01) 0.56 (0.12) 0.18 (0.02) 0.49 (0.02) 0.22 (0.10) 0.18 (0.31) 1.56 (0.07)
Ctrl-DNA (λmax = 0.1) 0.69 (0.09) 0.38 (0.02) 0.49 (0.01) 0.25 (0.01) 0.69 (0.01) 1.69 (0.03)

Method Target: K562

K562 ↑ JURKAT ↓ THP1 ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.26 (0.04) 0.29 (0.03) 0.44 (0.03) -0.11 (0.06) 0.60 (0.01) 1.49 (0.11)
Ctrl-DNA-IPO 0.59 (0.02) 0.59 (0.06) 0.69 (0.09) -0.11 (0.06) 0.57 (0.05) 1.65 (0.14)
Ctrl-DNA (λmax = 0.00) 0.61 (0.04) 0.49 (0.03) 0.49 (0.01) 0.11 (0.03) 0.61 (0.16) 1.63 (0.06)
Ctrl-DNA (λmax = 0.01) 0.58 (0.04) 0.52 (0.03) 0.49 (0.01) 0.08 (0.02) 0.67 (0.05) 1.62 (0.11)
Ctrl-DNA (λmax = 0.1) 0.58 (0.03) 0.43 (0.06) 0.50 (0.01) 0.12 (0.02) 0.75 (0.06) 1.64 (0.04)

Method Target: THP1

THP1 ↑ JURKAT ↓ K562 ↓ ∆R Motif Correlation Diversity

Ctrl-DNA-Log 0.51 (0.01) 0.10 (0.04) 0.16 (0.01) 0.38 (0.02) 0.42 (0.05) 1.50 (0.03)
Ctrl-DNA-IPO 0.88 (0.04) 0.59 (0.06) 0.42 (0.11) 0.38 (0.01) 0.57 (0.05) 1.77 (0.06)
Ctrl-DNA (λmax = 0.00) 0.92 (0.01) 0.51 (0.02) 0.33 (0.05) 0.50 (0.03) 0.23 (0.07) 1.82 (0.01)
Ctrl-DNA (λmax = 0.01) 0.92 (0.01) 0.50 (0.01) 0.32 (0.01) 0.51 (0.02) 0.23 (0.02) 1.82 (0.01)
Ctrl-DNA (λmax = 0.1) 0.92 (0.01) 0.51 (0.01) 0.31 (0.03) 0.51 (0.01) 0.25 (0.04) 1.81 (0.01)

18

Ctrl-DNA-IPO. Based on Interior-point Policy Optimization (IPO) [49], we incorporate the log-
barrier directly into the optimization objective. The surrogate loss becomes:

LIPO(θ) =
1

B

B∑
j=1

T∑
i=1

min
{
ρ
(j)
i A

(j)
0 , clipϵ(ρ

(j)
i)A

(j)
0

}
− β · KL(πθ ||πold)−

m∑
i=1

ϕ
(
Ĵπθ
i

)
, (11)

where the log-barrier penalty is defined as

ϕ(Ĵπθ
i) =

1

t
log
(
δi − Ĵπθ

i

)
, (12)

with t > 0 controlling the sharpness of the approximation to the indicator function. A larger t yields
a tighter barrier. We set t = 50 in our experiments. Note that, unlike the main Ctrl-DNA method, this
variant does not compute mixed advantages as in Equation 5. Instead, we compute advantages using
only the target reward:

A
(j)
0 =

R0(Xj)− R̄0

σ(R0)
. (13)

A.8 Differential Expression Optimization

To assess whether a scalarized objective suffices for cell-type-specific design, we replace the original
constrained reward in all optimizers with the differential expression (DE) objective [4]. Concretely,
for each target cell type t and set of off-target cell types O, we optimize a single reward of the form

DE(x) = R0(x)−
1

m

m∑
i=1

{Ri(x)},

where R0(x) are the cell activity of sequence x in the target cell type. We evaluate TACO, AdaLead,
PEX, and Ctrl-DNA (ours) on the human enhancer tasks by substituting their training rewards with
DE(x); we also include a Ctrl-DNA-DE variant that uses DE as its reward during policy updates.
The rest of the training and evaluation protocol is unchanged from the main experiments.

We additionally include Simulated Annealing (SA) for probabilistic exploration and Fast SeqProp
(FSP) for gradient-based refinement [38]. These two methods optimize MinGap, which is a specific
scalarization similar to DE. The DE-based evaluations are therefore directly comparable to their
standard objective.

As reported in Table 8, DE-based baseline variants consistently perform worse than Ctrl-DNA, even
in terms of DE values. This is because using a DE reward imposes a fixed trade-off between target and
off-target expression, which often results in suboptimal solutions when the objectives conflict. This
fixed weighting lacks the flexibility to adjust the balance between objectives throughout training [52].
In contrast, our Lagrangian approach allows for a more effective coordination of competing goals,
resulting in better performance.

Figure 2 further shows that Ctrl-DNA supports variable off-target thresholds (e.g., 0.3, 0.5, 0.6),
allowing users to tailor optimization to specific biological requirements. Once the constraint is
satisfied, the model focuses on maximizing on-target activity within the feasible region. In contrast,
DE optimization can lead the model to suppress off-target activity, even at the cost of reducing
on-target activation. For example, when optimizing for SK-N-SH , Ctrl-DNA-DE tends to suppress
off-target expression at the expense of decreasing SK-N-SH cell activity.

A.9 Reward Model Generalization

We optimized and evaluated sequences using the same pretrained reward model from regLM [4],
trained on promoter data with chromosomes 7, 13, 21, and 22 held out. To test robustness to reward
model shift (and potential reward hacking), we introduced two evaluation settings: (1) optimization
uses the regLM reward model, while evaluation uses a separate “full” reward model trained on the
entire dataset (including all chromosomes); (2) optimization uses a reward model trained on a random
80% subset of the full data, while evaluation again uses the same full reward model as in Setting 1.

19

Table 8: DE optimization study for Ctrl-DNA across three target cell types in Human Enhancer
datasets.

Method Target: HepG2

HepG2 ↑ K562 ↓ SK-N-SH ↓ ∆R

Ctrl-DNA 0.77 (0.01) 0.36 (0.04) 0.31 (0.04) 0.44 (0.03)
Ctrl-DNA-DE 0.67 (0.02) 0.47 (0.02) 0.37 (0.03) 0.25 (0.02)
TACO-DE 0.58 (0.05) 0.46 (0.04) 0.39 (0.01) 0.16 (0.03)
AdaLead-DE 0.45 (0.03) 0.46 (0.05) 0.43 (0.13) -0.01 (0.02)
Pex-DE 0.67 (0.06) 0.57 (0.03) 0.61 (0.04) 0.06 (0.03)
FSP 0.62 (0.03) 0.36 (0.02) 0.36 (0.04) 0.26 (0.03)
SA 0.61 (0.01) 0.33 (0.01) 0.33 (0.01) 0.28 (0.03)

Method Target: K562

K562 ↑ HepG2 ↓ SK-N-SH ↓ ∆R

Ctrl-DNA 0.93 (0.01) 0.43 (0.01) 0.35 (0.01) 0.54 (0.01)
Ctrl-DNA-DE 0.87 (0.04) 0.43 (0.01) 0.35 (0.02) 0.48 (0.03)
TACO-DE 0.80 (0.01) 0.48 (0.01) 0.49 (0.02) 0.50 (0.01)
AdaLead-DE 0.54 (0.16) 0.49 (0.12) 0.49 (0.15) 0.05 (0.03)
Pex-DE 0.81 (0.04) 0.60 (0.06) 0.61 (0.08) 0.18 (0.07)
FSP 0.67 (0.07) 0.35 (0.02) 0.32 (0.04) 0.33 (0.04)
SA 0.67 (0.07) 0.34 (0.01) 0.33 (0.01) 0.33 (0.04)

Method Target: SK-N-SH

SK-N-SH ↑ HepG2 ↓ K562 ↓ ∆R

Ctrl-DNA 0.86 (0.02) 0.54 (0.13) 0.44 (0.01) 0.37 (0.11)
Ctrl-DNA-DE 0.68 (0.02) 0.26 (0.02) 0.28 (0.04) 0.41 (0.02)
TACO-DE 0.54 (0.02) 0.42 (0.04) 0.42 (0.09) 0.12 (0.01)
AdaLead-DE 0.45 (0.03) 0.43 (0.03) 0.45 (0.05) 0.01 (0.02)
Pex-DE 0.77 (0.03) 0.64 (0.09) 0.67 (0.09) 0.09 (0.02)
FSP 0.54 (0.03) 0.39 (0.02) 0.36 (0.01) 0.16 (0.02)
SA 0.54 (0.04) 0.37 (0.05) 0.35 (0.04) 0.18 (0.05)

In all cases we use the human enhancer dataset targeting HepG2-specific activity, and the evaluation
protocol matches the main experiments.

As shown in Table 9, both settings have trends and values consistent with the main results on
expression predictions, indicating that the observed gains are not artifacts of overfitting to the training
reward. In particular, evaluating under a distinct, stronger reward model (Settings 1–2) preserves
the relative performance of Ctrl-DNA, suggesting robustness to evaluator shift and minimal reward
hacking.

Table 9: Reward model generalization evaluation on the human enhancer task (HepG2 target).
Method HepG2 ↑ K562 ↓ SK-N-SH ↓ ∆R ↑
Ctrl-DNA 0.77 (0.01) 0.36 (0.04) 0.31 (0.04) 0.44 (0.03)
Setting 1 0.76 (0.02) 0.35 (0.03) 0.35 (0.02) 0.40 (0.04)
Setting 2 0.82 (0.04) 0.37 (0.08) 0.36 (0.02) 0.45 (0.01)

A.10 Extended TFBS Reward Analysis

A potential concern is the use of motif-frequency correlation both as a regularizer during training and
as an evaluation metric. To address concerns of circularity, we conducted an additional analysis using
distinct reference sets for evaluation, created by splitting sequences at the 90th and 50th percentiles
based on their on and off target activities. The motif frequency correlation results are evaluated by
using the new reference sets (Table 10). Although this filtering significantly reduced the dataset size
(leaving only 18 sequences for JURKAT, 4 for K562, and 7 for THP1 out of the original 12,335), Ctrl-
DNA continued to demonstrate strong performance, substantially outperforming baseline methods
across all tested cell lines with correlations of 0.37 for JURKAT, 0.52 for K562, and 0.60 for THP1.

20

Table 10: Motif-frequency correlation under 90/50 percentile selection.
Cell Type Ctrl-DNA AdaLead BO CMA-ES PEX PPO-Lag PPO TACO

JURKAT 0.37 (0.02) 0.23 (0.10) 0.10 (0.17) 0.19 (0.06) 0.34 (0.02) 0.27 (0.15) 0.32 (0.12) 0.39 (0.09)
K562 0.52 (0.11) 0.54 (0.23) 0.13 (0.25) 0.14 (0.05) 0.31 (0.02) 0.18 (0.18) 0.31 (0.13) 0.21 (0.14)
THP1 0.60 (0.02) 0.16 (0.13) 0.06 (0.08) 0.06 (0.04) 0.04 (0.02) -0.02 (0.07) 0.37 (0.04) 0.33 (0.01)

Beyond circularity, we emphasize that the TFBS reward is global: we first compute a motif-frequency
vector from a reference set of real sequences, then use the Pearson correlation between this reference
vector and the motif frequencies of generated sequences. This encourages distributional alignment of
motif usage rather than direct motif matching, in contrast to methods such as TACO. Despite this
coarse-grained signal, Ctrl-DNA still captures cell-type–specific motifs (e.g., HNF4A in HepG2,
GATA1 in K562), indicating that specificity emerges from optimizing the global reward in conjunction
with explicit off-target constraints (see Fig. 3a).

Regarding threshold choice, we follow prior work [8, 9] and adopt percentile-based selection (on-
target ≥ 50th; off-target ≤ 50th) to reduce sensitivity to cross-cell-type scaling and normalization.
While a stricter 90th-percentile cutoff for on-target activity can enrich for highly specific sequences, it
yields too few samples for reliable TFBS enrichment estimates (e.g., 18/4/7 for JURKAT/K562/THP1
in promoters; none across all three cell types in the human enhancer set among ∼660k candidates).
To further guard against overfitting to spurious motif correlations, Ctrl-DNA employs learnable,
upper-bounded weights for each TFBS regularization term (Section 3.3), which regularizes the
influence of any single motif channel.

A.11 Effect of Pretraining on Optimization

We use pretrained HyenaDNA backbones without task-specific fine-tuning prior to reinforcement
learning. To quantify the impact of pretraining, we ablate the model initialization on the HepG2
enhancer task by comparing a pretrained backbone to a randomly initialized one. Training and
evaluation protocols match the main setup. We do not employ fine-tuned backbones in the main
results because prior work [6] and our early trials showed minimal benefits over pretraining alone.

Table 11: Pretraining ablation on the HepG2 enhancer task.
Method HepG2 ↑ K562 ↓ SK-N-SH ↓ ∆R ↑
Pretrained 0.77 (0.01) 0.36 (0.04) 0.31 (0.04) 0.44 (0.03)
Random Init. 0.71 (0.01) 0.49 (0.03) 0.42 (0.02) 0.25 (0.01)

Pretraining materially improves target activation while reducing off-target expression, yielding a
substantially higher ∆R (Table 11). Notably, TACO also uses a pretrained HyenaDNA backbone
(Fig. 2) yet underperforms Ctrl-DNA, indicating that pretraining helps but does not explain the
performance gap; the optimization framework remains the dominant factor.

A.12 Additional Experiments

We extend our human enhancer experiments with two additional baselines. Specifically, we add
DRAKES, a diffusion-based generator for regulatory sequences [53], and CbAS, a model-based
design method that conditions a search distribution on meeting a property event via importance-
weighted maximum likelihood [54]. Results are reported in Table 12. Across all three target cell types
(HepG2, K562, and SK-N-SH), Ctrl-DNA consistently achieves the highest target-specific activity
and the largest ∆R, indicating superior ability to enhance the target cell type while suppressing
off-target expression. For example, when targeting HepG2, Ctrl-DNA improves ∆R to 0.44 ± 0.03,
compared to near-zero or negative shifts for CbAS and DRAKES, demonstrating effective specificity
control. Similar gains are observed for K562 (∆R = 0.54 ± 0.01) and SK-N-SH (∆R = 0.37 ± 0.11).
These results highlight the advantage of Ctrl-DNA in handling multiple constraints compared to
diffusion and model-based methods optimized for single objectives.

21

Table 12: Additional experiments for Ctrl-DNA across three target cell types in Human Enhancer
datasets.

Method Target: HepG2

HepG2 ↑ K562 ↓ SK-N-SH ↓ ∆R

Ctrl-DNA 0.77 (0.01) 0.36 (0.04) 0.31 (0.04) 0.44 (0.03)
CbAS 0.74 (0.03) 0.79 (0.04) 0.73 (0.03) -0.02 (0.02)
DRAKES 0.68 (0.004) 0.78 (0.007) 0.71 (0.007) -0.07 (0.005)

Method Target: K562

K562 ↑ HepG2 ↓ SK-N-SH ↓ ∆R

Ctrl-DNA 0.93 (0.01) 0.43 (0.01) 0.35 (0.01) 0.54 (0.01)
CbAS 0.90 (0.01) 0.66 (0.02) 0.69 (0.01) 0.23 (0.18)
DRAKES 0.83 (0.003) 0.69 (0.002) 0.80 (0.001) 0.08 (0.002)

Method Target: SK-N-SH

SK-N-SH ↑ HepG2 ↓ K562 ↓ ∆R

Ctrl-DNA 0.86 (0.02) 0.54 (0.13) 0.44 (0.01) 0.37 (0.11)
CbAS 0.81 (0.05) 0.68 (0.03) 0.81 (0.06) 0.06 (0.01)
DRAKES 0.79 (0.001) 0.80 (0.003) 0.69 (0.002) 0.05 (0.002)

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All primary claims made in the abstract and introduction are substantiated by
our experimental findings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discuss the limitations of our method in the final paragraph of the
Discussion section. Specifically, we acknowledge the challenges in generalizing to broader
genomic contexts and limitations posed by dataset distribution. We also discuss limitations
related to training stability in sparse-reward settings and potential extensions to incorporate
more complex biological constraints.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

22

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This work primarily proposes an empirical method for applying constrained
reinforcement learning to cis-regulatory DNA sequence design. It does not introduce new
theoretical results or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:All code and training details, including hyperparameters, training settings,
environment specifications, and pseudocode, will be provided in the supplementary material
to ensure full reproducibility of our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

23

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all training code and instructions to reproduce the main experi677
mental results in supplementary materials. The repository includes detailed documentation
on environment setup, data preprocessing, training, and evaluation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide comprehensive implementation and training details in Section B
and Section A, including data preprocessing, model architecture, optimizer settings, and
hyperparameters. These details are sufficient to reproduce the results reported in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all experiments, we used multiple random seeds and reported both the
mean and standard deviation (or confidence interval) averaged across them.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix A provides details on the computational resources used, including
GPU type, memory, and training time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

25

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research adheres to the NeurIPS Code of Ethics. It uses publicly available
datasets under appropriate licenses, does not involve human subjects or sensitive data, and
poses minimal risk of harm. All contributions are properly credited, and results are reported
transparently to support reproducibility.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a discussion of broader societal impacts. We highlight
potential positive outcomes, such as enabling cell-type-specific gene regulation design for
therapeutic applications. We also address risks, including the potential misuse of generative
models for harmful synthetic biology applications, and recommend that use be restricted to
academic and clinically approved research settings.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

26

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models and datasets used in this work focus on regulatory DNA sequence
design for scientific research. They do not pose foreseeable risks of misuse, and no high-risk
assets such as language models, generative image models, or scraped personal data are
involved.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: All external datasets and software tools used in this work are publicly available
and appropriately cited in the manuscript. We ensured that their licenses (e.g., MIT, CC-BY)
permit academic use and complied with all terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release all code and pretrained models used in this work in supplementary
materials. The materials include detailed instructions for reproducing our experiments,
including data pre-processing, training, and evaluation.
Guidelines:

• The answer NA means that the paper does not release new assets.

27

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects or any form of crowdsourcing; all
data are in-silico and model-based.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects or any form of crowdsourcing; all
data are in-silico and model-based.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: : LLMs are not used in any core methodological component of this work

Guidelines:

28

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Methods
	Problem Formulation
	Constrained Batch-wise Relative Policy Optimization
	Regularizing Generated Sequences via TFBS Frequency Correlation

	Experiments
	Experimental Setup
	Ctrl-DNA optimizes enhancer and promoter sequences under cell-type-specific constraints
	Ctrl-DNA captures biologically relevant motifs with higher specificity
	Ablation Study

	Discussion
	Technical Appendices and Supplementary Material
	Training Details for Ctrl-DNA
	Policy Optimization Objective
	Lagrange Multiplier Update
	Dataset
	Baselines
	Sequence Diversity
	Extended Ablation Results
	Differential Expression Optimization
	Reward Model Generalization
	Extended TFBS Reward Analysis
	Effect of Pretraining on Optimization
	Additional Experiments

