
Published as a conference paper at ICLR 2024

General Graph Random Features
Isaac Reid1ú, Krzysztof Choromanski2,3ú, Eli Berger4ú, Adrian Weller1,5
1University of Cambridge, 2Google DeepMind, 3Columbia University,
4University of Haifa, 5Alan Turing Institute
ir337@cam.ac.uk, kchoro@google.com

Abstract

We propose a novel random walk-based algorithm for unbiased estimation
of arbitrary functions of a weighted adjacency matrix, coined general graph
random features (g-GRFs). This includes many of the most popular ex-
amples of kernels defined on the nodes of a graph. Our algorithm en-
joys subquadratic time complexity with respect to the number of nodes,
overcoming the notoriously prohibitive cubic scaling of exact graph kernel
evaluation. It can also be trivially distributed across machines, permit-
ting learning on much larger networks. At the heart of the algorithm is
a modulation function which upweights or downweights the contribution
from di�erent random walks depending on their lengths. We show that by
parameterising it with a neural network we can obtain g-GRFs that give
higher-quality kernel estimates or perform e�cient, scalable kernel learn-
ing. We provide robust theoretical analysis and support our findings with
experiments including pointwise estimation of fixed graph kernels, solving
non-homogeneous graph ordinary di�erential equations, node clustering and
kernel regression on triangular meshes.1

1 Introduction and related work

The kernel trick is a powerful technique to perform nonlinear inference using linear learn-
ing algorithms (Campbell, 2002; Kontorovich et al., 2008; Canu and Smola, 2006; Smola
and Schölkopf, 2002). Supposing we have a set of N datapoints X = {xi}

N

i=1, it replaces
Euclidean dot products x€

i
xj with evaluations of a kernel function K : X ◊ X æ R, cap-

turing the ‘similarity’ of the datapoints by instead taking an inner product between implicit
(possibly infinite-dimensional) feature vectors in some Hilbert space HK .
An object of key importance is the Gram matrix K œ R

N◊N whose entries enumerate
the pairwise kernel evaluations, K := [K(xi,xj)]N

i,j=1. Despite the theoretical rigour and
empirical success enjoyed by kernel-based learning algorithms, the requirement to manifest
and invert this matrix leads to notoriously poor O(N3) time-complexity scaling. This has
spurred research dedicated to e�ciently approximating K, the chief example of which is
random features (Rahimi and Recht, 2007): a Monte-Carlo approach which gives explicitly
manifested, finite dimensional vectors „(xi) œ R

m whose Euclidean dot product is equal to
the kernel evaluation in expectation,

Kij = E
#
„(xi)€

„(xj)
$

. (1)

This allows one to construct a low-rank decomposition of K which provides much better scal-
ability. Testament to its utility, a rich taxonomy of random features exists to approximate
many di�erent Euclidean kernels including the Gaussian, softmax, and angular and linear
kernels (Johnson, 1984; Dasgupta et al., 2010; Goemans and Williamson, 2004; Choromanski
et al., 2020).
Kernels defined on discrete input spaces, e.g. K : N ◊ N æ R with N the set of nodes of
a graph G (Smola and Kondor, 2003; Kondor and La�erty, 2002; Chung and Yau, 1999),

ú
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enjoy widespread applications including in bioinformatics (Borgwardt et al., 2005), commu-
nity detection (Kloster and Gleich, 2014) and recommender systems (Yajima, 2006). More
recently, they have been used in applications as diverse as manifold learning for deep gener-
ative modelling (Zhou et al., 2020) and for solving single- and multiple-source shortest path
problems (Crane et al., 2017). However, for these graph-based kernel methods the problem
of poor scalability is particularly acute. This is because even computing the corresponding
Gram matrix K is typically of at least cubic time complexity in the number of nodes N ,
requiring e.g. the inversion of an N ◊ N matrix or computation of multiple matrix-matrix
products. Despite the presence of this computational bottleneck, random feature methods
for graph kernels have proved elusive. Indeed, only recently was a viable graph random fea-
ture (GRF) mechanism proposed by Choromanski (2023). Their algorithm uses an ensemble
of random walkers which deposit a ‘load’ at every vertex they pass through that depends on
i) the product of weights of edges traversed by the walker and ii) the marginal probability of
the subwalk. Using this scheme, it is possible to construct random features {„(i)}N

i=1 µ R
N

such that „(i)€
„(j) gives an unbiased approximation to the ij-th matrix element of the

2-regularised Laplacian kernel. Multiple independent approximations can be combined to
estimate the d-regularised Laplacian kernel with d ”= 2 or the di�usion kernel (although the
latter is only asymptotically unbiased). The GRFs algorithm enjoys both subquadratic time
complexity and strong empirical performance on tasks like k-means node clustering, and it
is trivial to distribute across machines when working with massive graphs.
However, a key limitation of GRFs is that they only address a limited family of graph
kernels which may not be suitable for the task at hand. Our central contribution is a simple
modification which generalises the algorithm to arbitrary functions of a weighted adjacency
matrix, allowing e�cient and unbiased approximation a much broader class of graph node
kernels. We achieve this by introducing an extra modulation function f that controls each
walker’s load as it traverses the graph. As well as empowering practitioners to approximate
many more fixed kernels, we demonstrate that f can also be parameterised by a neural
network and learned. We use this powerful approach to optimise g-GRFs for higher-quality
approximation of fixed kernels and for scalable implicit kernel learning.
The remainder of the manuscript is organised as follows. In Sec. 2 we introduce gen-
eral graph random features (g-GRFs) and prove that they enable scalable approximation
of arbitrary functions of a weighted adjacency matrix, including many of the most popular
examples of kernels defined on the nodes of a graph. We also extend the core algorithm
with neural modulation functions, replacing one component of the g-GRF mechanism with
a neural network, and derive generalisation bounds for the corresponding class of learnable
graph kernels (Sec. 2.1). In Sec. 3 we run extensive experiments, including: pointwise
estimation of a variety of popular graph kernels (Sec. 3.1); simulation of time evolution un-
der non-homogeneous graph ordinary di�erential equations (Sec. 3.2); kernelised k-means
node clustering including on large graphs (Sec. 3.3); training a neural modulation function
to suppress the mean square error of fixed kernel estimates (Sec 3.4); and training a neu-
ral modulation function to learn a kernel for node attribute prediction on triangular mesh
graphs (Sec. 3.5).

2 General graph random features

Consider a directed weighted graph G(N , E , W := [wij ]i,jœN ) where: i) N := {1, ..., N} is
the set of nodes; ii) E is the set of edges, with (i, j) œ E if there is a directed edge from i

to j in G; and iii) W is the weighted adjacency matrix, with wij the weight of the directed
edge from i to j (equal to 0 if no such edge exists). Note that an undirected graph can be
described as directed with the symmetric weighted adjacency matrix W. Now consider the
matrices K↵(W) œ R

N◊N , where ↵ = (–k)Œ
k=0 and –k œ R:

K↵(W) =
Œÿ

k=0
–kWk

. (2)

We assume that the sum above converges for all W under consideration, which can be
ensured with a regulariser W æ ‡W, ‡ œ R+. Without loss of generality, we also assume
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that ↵ is normalised such that –0 = 1. The matrix K↵(W) can be associated with a graph
function K

G
↵ : N ◊ N æ R mapping from a pair of graph nodes to a real number.

Note that if G is an undirected graph then K↵(W) automatically inherits the symmetry
of W. In this case, it follows from Weyl’s perturbation inequality (Bai et al., 2000) that
K↵(W) is positive semidefinite for any given ↵ provided the spectral radius fl(W) :=
max⁄œ�(W) (|⁄|) is su�ciently small (with �(W) the set of eigenvalues of W). This can
again be ensured by multiplying the weight matrix W by a regulariser ‡ œ R+. It then
follows that K↵(W) can be considered the Gram matrix of a graph kernel function K

G
↵.

With suitably chosen ↵ = (–k)Œ
k=0, the class described by Eq. 2 includes many popular

examples of graph node kernels in the literature (Smola and Kondor, 2003; Chapelle et al.,
2002). They measure connectivity between nodes and are typically functions of the graph
Laplacian matrix, defined by L := I≠ ÊW with ÊW := [wij/


didj ]N

i,j=1. Here, di :=
q

j
wij is

the weighted degree of node i such that ÊW is the normalised weighted adjacency matrix. For
reference, Table 1 gives the kernel definitions and normalised coe�cients –k (corresponding
to powers of ÊW) to be considered later in the manuscript. In practice, factors in –k equal
to a quantity raised to the power of k are absorbed into the normalisation of ÊW.

Name Form –k

d-regularised Laplacian (IN + ‡2L)
≠d

!
d+k≠1

k

" !
1 + ‡≠2"≠k

p-step random walk (–IN ≠ L)
p, – Ø 2

!
p
k

"
(– ≠ 1)

≠k

Di�usion exp(≠‡2L/2)
1
k! (

‡2
2 )

k

Inverse Cosine cos (Lfi/4)
1
k!

!
fi
4
"k

·

Ó
(≠1)

k
2 if k even, (≠1)

k≠1
2 if k odd

Ô

Table 1: Di�erent graph functions/kernels K
G
↵ : N ◊N æ R. The exp and cos mappings are

defined via Taylor series expansions rather than element-wise, e.g. exp(M) := limnæŒ(IN +
M/n)n and cos(M) := Re(exp(iM)). ‡ and – are regularisers. Note that the di�usion
kernel is sometimes instead defined by exp(‡2(IN ≠ L)) but these forms are equivalent up
to normalisation.

The chief goal of this work is to construct a random feature map „(i) : N æ R
l with l œ N

that provides unbiased approximation of K↵(W) as in Eq. 1. To do so, we consider the
following algorithm.

Algorithm 1 Constructing a random feature vector „f (i) œ R
N to approximate K↵(W)

Input: weighted adjacency matrix W œ R
N◊N , vector of unweighted node degrees (no.

neighbours) d œ R
N , modulation function f : (N fi {0}) æ R, termination probability

phalt œ (0, 1), node i œ N , number of random walks to sample m œ N.
Output: random feature vector „f (i) œ R

N

1: initialise: „f (i) Ω 0
2: for w = 1, ..., m do
3: initialise: load Ω 1
4: initialise: current_node Ω i

5: initialise: terminated Ω False
6: initialise: walk_length Ω 0
7: while terminated = False do
8: „f (i)[current_node] Ω „f (i)[current_node]+load◊f (walk_length )
9: walk_length Ω walk_length+1

10: new_node Ω Unif [N (current_node )] Û assign to one of neighbours
11: load Ω load◊

d[current_node]
1≠phalt

◊ W [current_node,new_node ] Û update load
12: current_node Ω new_node
13: terminated Ω (t ≥ Unif(0, 1) < phalt) Û draw RV t to decide on termination
14: end while
15: end for
16: normalise: „f (i) Ω „f (i)/m
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f(i)

i

Figure 1: Schematic for a random walk on a graph (solid red) and an accompanying modu-
lation function f (dashed blue) used to approximate an arbitrary graph node function K

G .

This is identical to the algorithm presented by Choromanski (2023) for constructing features
to approximate the 2-regularised Laplacian kernel, apart from the presence of the extra
modulation function f : (Nfi{0}) æ R in line 8 that upweights or downweights contributions
from walks depending on their length (see Fig. 1). We refer to „f as general graph random
features (g-GRFs), where the subscript f identifies the modulation function. Crucially, the
time complexity of Alg. 1 is subquadratic in the number of nodes N , in contrast to exact
methods which are O(N3).2

We now state the following central result, proved in App. A.2.
Theorem 2.1 (Unbiased approximation of K↵ via convolutions). For two modulation func-
tions: f1, f2 : (N fi {0}) æ R, g-GRFs

!
„f1(i))N

i=1, („f2(i)
"N

i=1 constructed according to Alg.
1 give unbiased approximation of K↵,

[K↵]
ij

= E
#
„f1(i)€

„f2(j)
$

, (3)
for kernels with an arbitrary Taylor expansion ↵ = (–k)Œ

k=0 provided that ↵ = f1 úf2. Here,
ú is the discrete convolution of the modulation functions f1, f2; that is, for all k œ (Nfi{0}),

kÿ

p=0
f1(k ≠ p)f2(p) = –k. (4)

Clearly the class of pairs of modulation functions f1, f2 that satisfy Eq. 4 is highly degen-
erate. Indeed, it is possible to solve for f1 given any f2 and ↵ provided f2(0) ”= 0. For
instance, a trivial solution is given by: f1(i) = –i, f2(i) = I(i = 0) with I(·) the indicator
function. In this case, the walkers corresponding to f2 are ‘lazy’, depositing all their load
at the node at which they begin. Contributions to the estimator „f1(i)€

„f2(j) only come
from walkers initialised at i traversing all the way to j rather than two walkers both passing
through an intermediate node. Also of great interest is the case of symmetric modulation
functions f1 = f2, where now intersections do contribute. In this case, the following is true
(proved in App. A.3).
Theorem 2.2 (Computing symmetric modulation functions). Supposing f1 = f2 = f , Eq.
4 is solved by a function f which is unique (up to a sign) and is given by

f(i) = ±

iÿ

n=0

3 1
2
n

4 ÿ

k1+2k2+3k3...=i
k1+k2+k3+...=n

3
n

k1k2k3...

4 1
–

k1
1 –

k2
2 –

k3
3 ...

2
. (5)

Moreover, f(i) can be e�ciently computed with the iterative formula
Y
]

[
f(0) = ±

Ô
–0 = ±1

f(i + 1) =
–i+1≠

qi≠1
p=0

f(i≠p)f(p+1)
2f(0) for i Ø 0.

(6)

2
Concretely, Alg. 1 yields a pair of matrices �1,2 := („(i))N

i=1 œ R
N◊N

such that K = E(�1�
€
2 )

in subquadratic time. Of course, explicitly multiplying the matrices to evaluate every element of ‚K
would be O(N3

), but we avoid this since in applications we just evaluate �1(�€
2 v) where v œ R

N

is some vector and the brackets give the order of computation. This is O(N2
).
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For symmetric modulation functions, the random features „f1(i) and „f2(i) are identical
apart from the particular sample of random walks used to construct them. They cannot
share the same sample or estimates of diagonal kernel elements [K↵]ii will be biased.
Computational cost: Note that when running Alg. 1 one only needs to evaluate the
modulation functions f1,2(i) up to the length of the longest walk one samples. A batch
of size b, (f1,2(i))b

i=1, can be pre-computed in time O(b2) and reused for random features
corresponding to di�erent nodes and even di�erent graphs. Further values of f can be
computed at runtime if b is too small and also reused for later computations. Moreover, the
minimum length b required to ensure that all m walks are shorter than b with high probability
(Pr(fim

i=1len(Êi) Æ b) > 1≠”, ” π 1) scales only logarithmically with m (see App. A.1). This
means that, despite estimating a much more general family of graph functions, g-GRFs are
essentially no more expensive than the original GRF algorithm. Moreover, any techniques
used for dimensionality reduction of regular GRFs (e.g. applying the Johnson-Lindenstrauss
transform (Dasgupta et al., 2010) or using ‘anchor points’ (Choromanski, 2023)) can also
be used with g-GRFs, providing further e�ciency gains.

Generating functions: Inserting the constraint for unbiasedness in Eq. 4 back into the
definition of K↵(W), we immediately have that

K↵(W) = Kf1(W)Kf2(W) (7)
where Kf1(W) :=

qŒ
i=0 f1(i)Wi is the generating function corresponding to the sequence

(f1(i))Œ
i=0. This is natural because the (discrete) Fourier transform of a (discrete) convolu-

tion returns the product of the (discrete) Fourier transforms of the respective functions. In
the symmetric case f1 = f2, it follows that

Kf (W) = ± (K↵(W))
1
2 . (8)

If the RHS has a simple Taylor expansion (e.g. K↵(W) = exp(W) so Kf (W) = exp( W
2 )),

this enables us obtain f without recourse to the conditional sum in Eq. 5 or the iterative

Name f(i)

d-regularised Laplacian
(d≠2+2i)!!

(2i)!!(d≠2)!!

p-step random walk
! p

2
i

"

Di�usion
1

2ii!

expression in Eq. 6. This is the case for many
popular graph kernels; we provide some promi-
nent examples in the table left. A notable ex-
ception is the inverse cosine kernel.
As an interesting corollary, by considering
the di�usion kernel we have also proved thatq

k

p=0
1

2pp!
1

2k≠p(k≠p)! = 1
k! .

2.1 Neural modulation functions, kernel learning and generalisation

Instead of using a fixed modulation function f to estimate a fixed kernel, it is possible to
parameterise it more flexibly. For example, we can define a neural modulation function
f

(N) : (N fi {0}) æ R by a neural network (with a restricted domain) whose input and
output dimensionalities are equal to 1. During training, we can choose the loss function
to target particular desiderata of g-GRFs: for example, to suppress the mean square error
of estimates of some particular fixed kernel (Sec. 3.4), or to learn a kernel which performs
better in a downstream task (Sec. 3.5). Implicitly learning K↵ via f

(N) is more scalable
than learning K↵ directly because it obviates the need to repeatedly compute the exact
kernel, which is typically of O(N3) time complexity. Since any modulation function f maps
to a unique ↵ by Eq. 4, it is also always straightforward to recover the exact kernel which
the g-GRFs estimate, e.g. once the training is complete.
Supposing we have (implicitly) learned ↵, how can the learned kernel K

G
↵ be expected to

generalise? Let  K– : x æ HK– denote the feature mapping from the input space to the
reproducing kernel Hilbert space HK– induced by the kernel K

G
↵. Define the hypothesis set

H = {x æ w€ K–(x) : |–i| Æ –
(M)
i

, ÎwÎ2 Æ 1}, (9)
where we restricted our family of kernels so that the absolute value of each Taylor coe�cient
–i is smaller than some maximum value –

(M)
i

. Following very similar arguments to Cortes
et al. (2010), the following is true.
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Theorem 2.3 (Empirical Rademacher complexity bound). For a fixed sample S = (xi)m

i=1,
the empirical Rademacher complexity ‚R(H) is bounded by

‚R(H) Æ

ı̂ıÙ 1
m

Œÿ

i=0
–

(M)
i

fl(W)i, (10)

where fl(W) is the spectral radius of the weighted adjacency matrix W.

Naturally, the bound on ‚R(H) increases monotonically with fl(W). Following standard ar-
guments in the literature, this immediately yields generalisation bounds for learning kernels
K

G
↵. We discuss this in detail, including proving Theorem 2.3, in App. A.4.

3 Experiments

Here we test the empirical performance of g-GRFs, both for approximating fixed kernels
(Secs 3.1-3.3) and with learnable neural modulation functions (Secs 3.4-3.5).

3.1 Unbiased pointwise estimation of fixed kernels

We begin by confirming that g-GRFs do indeed give unbiased estimates of the graph kernels
listed in Table 1, taking regularisers ‡ = 0.25 and – = 20 with phalt = 0.1. We use symmetric
modulation functions f , computed with the closed forms where available and using the
iterative scheme in Eq. 6 if not. Fig. 2 plots the relative Frobenius norm error between
the true kernels K and their approximations with g-GRFs ‚K (that is, ÎK ≠ ‚KÎF /ÎKÎF )
against the number of random walkers m. We consider 8 di�erent graphs: a small random
Erd�s-Rényi graph, a larger Erd�s-Rényi graph, a binary tree, a d-regular graph and 4 real
world examples (karate, dolphins, football and eurosis) (Ivashkin, 2023). They vary
substantially in size. For every graph and for all kernels, the quality of the estimate improves
as m grows and becomes very small with even a modest number of walkers.

Figure 2: Unbiased estimation of popular kernels on di�erent graphs using g-GRFs. The
approximation error (y-axis) improves with the number of walkers (x-axis). We repeat 10
times; one standard deviation of the mean error is shaded.

3.2 Solving differential equations on graphs

An intriguing application of g-GRFs for fixed kernels is e�ciently computing approximate
solutions of time-invariant non-homogeneous ordinary di�erential equations (ODEs) on
graphs. Consider the following ODE defined on the nodes N of the graph G:

dx(t)
dt

= Wx(t) + y(t), (11)

6
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where x(t) œ R
N is the state of the graph at time t, W œ R

N◊N is a weighted adjacency
matrix and y(t) is a (known) driving term. Assuming the null initial condition x(0) = 0,
Eq. 11 is solved by the convolution

x(t) =
⁄

t

0
exp(W(t ≠ ·))y(·)d· = E·œP

5
1

p(·) exp(W(t ≠ ·))y(·)
6

(12)

where P is a probability distribution on the interval [0, t], equipped with a (preferably
e�cient) sampling mechanism and probability density function p(·). Taking n œ N Monte
Carlo samples (·i)n

i=1
i.i.d.
≥ P, we can construct the unbiased estimator:

‚x(t) := 1
n

nÿ

j=1

1
p(·j) exp(W(t ≠ ·j))y(·j). (13)

Note that exp(W(t ≠ ·j)) is nothing other than the di�usion kernel, which is expensive
to compute exactly for large N but can be e�ciently approximated with g-GRFs. Take
exp(W(t ≠ ·j)) ƒ �j�€

j
with �j := („(i))N

i=1 an N ◊ N matrix whose rows are g-GRFs
constructed to approximate the kernel at a particular ·j . Then we have that

‚x(t) := 1
n

nÿ

j=1

1
p(·j)�j�€

j
y(·j) (14)

which can be computed in quadratic time (c.f. cubic if the heat kernel is computed exactly).
Further speed gains are possible if dimensionality reduction techniques are applied to the
g-GRFs (Choromanski, 2023; Dasgupta et al., 2010).

Figure 3: ODE simulation error decreases
as the number of walkers grows.

As an example, we consider di�usion on three
real-world graphs with a fixed source at one
node, taking W = L (the graph Laplacian) and
y(t) = y = (1, 0, 0, ...)€. The steady state is
x(Œ) = W≠1(≠y). We simulate evolution un-
der the ODE for t = 1 with n = 10 discreti-
sation timesteps and P uniform, approximating
exp(W(t ≠ ·j)) with di�erent numbers of walk-
ers m. As m grows, the quality of approxima-
tion improves and the (normalised) error on the
final state Î‚x(1) ≠x(1)Î2/Îx(1)Î2 drops for ev-
ery graph. We take 100 repeats for statistics and
plot the results in Fig. 3. One standard devia-
tion of the mean error is shaded. phalt = 0.1 and
the regulariser is given by ‡ = 1.

3.3 Efficient kernelised graph node clustering

Table 2: Errors in kernelised k-means
clustering when approximating the kernel
exp(‡2W) with g-GRFs.

Graph N Clustering error, Ec

karate 34 0.08

dolphins 62 0.16

polbooks 105 0.12

football 115 0.02

databases 1046 0.10

eurosis 1272 0.09

cora 2485 0.01

citeseer 3300 0.04

As a further demonstration of the utility of
our new mechanism, we show how estimates
of the kernel K = exp(‡2W) can be used
to assign nodes to k = 3 clusters. Here, we
choose W to be the (unweighted) adjacency
matrix and the regulariser is ‡

2 = 0.2. We
follow the algorithm proposed by Dhillon
et al. (2004), comparing the clusters when
we use exact and g-GRF-approximated ker-
nels. For all graphs, m Æ 80. Table 2 re-
ports the clustering error, defined by

Ec := no. wrong pairs
N(N ≠ 1)/2 . (15)

This is the number of misclassified pairs of nodes (assigned to the same cluster when the
converse is true or vice versa) divided by the total number of pairs. The error is small even
with a modest number of walkers and on large graphs; kernel estimates e�ciently constructed
using g-GRFs can be readily deployed on downstream tasks where exact methods are slow.

7
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3.4 Learning f
(N) for better kernel approximation

Following the discussion in Sec. 2.1 we now replaced fixed f with a neural modulation
function f

(N) parameterised by a simple neural network with 1 hidden layer of size 1:
f

(N)(x) = ‡softplus (w2‡ReLU(w1x + b1) + b2) , (16)
where w1, b1, w2, b2 œ R and ‡ReLU and ‡softplus are the ReLU and softplus activation func-
tions, respectively. Bigger, more expressive architectures (including allowing f

(N) to take
negative values) can be used but this is found to be su�cient for our purposes.
We define our loss function to be the Frobenius norm error between a target Gram matrix
and our g-GRF-approximated Gram matrix on the small Erd�s-Rényi graph (N = 20) with
m = 16 walks. For the target, we choose the 2-regularised Laplacian kernel. We train
symmetric f

(N)
1 = f

(N)
2 but provide a brief discussion of the asymmetric case (including its

respective strengths and weaknesses) in App. A.5. On this graph, we minimise the loss with
the Adam optimiser and a decaying learning rate (LR = 0.01, “ = 0.975, 1000 epochs). We
make the following striking observation: f

(N) does not generically converge to the unique
unbiased (symmetric) modulation function implied by ↵, but instead to some di�erent f

that though biased gives a smaller mean squared error (MSE). This is possible because by
downweighting long walks the learned f

(N) gives estimators with a smaller variance, which
is su�cient to suppress the MSE on the kernel matrix elements even though it no longer
gives the target value in expectation. We then fix f

(N) and use it for kernel approximation
on the remaining graphs. The learned, biased f

(N) still provides better kernel estimates,
including for graphs with very di�erent topologies and a much greater number of nodes:
eurosis is bigger by a factor of over 60. See Table 3 for the results. phalt = 0.5 and ‡ = 0.8.
Naturally, the learned f

(N) is dependent on the the number of random walks m; as m grows,
the variance on the kernel approximation drops so it is intuitive that the learned f

(N) will
approach the unbiased f . Fig. 4 empirically confirms this is the case, showing the learned
f

(N) for di�erent numbers of walkers. The line labelled Œ is the unbiased modulation
function, which for the 2-regularised Laplacian kernel is constant.

Table 3: Kernel approximation error with
m = 16 walks and unbiased or learned mod-
ulation functions. Lower is better. Brackets
give one standard deviation of the last digit.

Graph N Frob. norm error on ‚K
Unbiased Learned

Small ER 20 0.0488(9) 0.0437(9)
Larger ER 100 0.0503(4) 0.0448(4)
Binary tree 127 0.0453(4) 0.0410(4)
d-regular 100 0.0490(2) 0.0434(2)
karate 34 0.0492(6) 0.0439(6)
dolphins 62 0.0505(5) 0.0449(5)
football 115 0.0520(2) 0.0459(2)
eurosis 1272 0.0551(2) 0.0484(2)

Figure 4: Learned modulation function
with di�erent numbers of random walkers
m. It approaches the unbiased f

(N) as
m æ Œ

These learned modulation functions might guide the more principled construction of biased,
low-MSE GRFs in the future. An analogue in Euclidean space is provided by structured
orthogonal random features (SORFs), which replace a random Gaussian matrix with a HD-
product to estimate the Gaussian kernel (Choromanski et al., 2017; Yu et al., 2016). This
likewise improves kernel approximation quality despite breaking estimator unbiasedness.

3.5 Implicit kernel learning for node attribute prediction

As suggested in Sec. 2.1, it is also possible to train the neural modulation function f
(N)

directly using performance on a downstream task, performing implicit kernel learning. We
have argued that this is much more scalable than optimising K↵ directly.
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In this spirit, we now address the problem of kernel regression on triangular mesh graphs,
as previously considered by Reid et al. (2023). For graphs in this dataset (Dawson-
Haggerty, 2023), every node is associated with a normal vector v(i)

œ R
3 equal to the

mean of the normal vectors of its 3 surrounding faces. The task is to predict the direc-
tions of missing vectors (a random 5% split) from the remainder. Our (unnormalised)
predictions are given by ‚v(i) :=

q
j

‚K(N)(i, j)v(j), where ‚K(N) is a kernel estimate con-
structed using g-GRFs with a neural modulation function f

(N) (see Eq. 3). The an-
gular prediction error is 1 ≠ cos ◊i with ◊i the angle between the true v(i) and and

Figure 5: Fixed and learned modulation
functions for kernel regression

approximate ‚v(i) normals, averaged over the
missing vectors. We train a symmetric pair f

(N)

using this angular prediction error on the small
cylinder graph (N = 210) as the loss function.
Then we freeze f

(N) and compute the angular
prediction error for other larger graphs. Fig. 5
shows the learned f

(N) as well as some other
modulation functions corresponding to popular
fixed kernels. Note also that learning f

(N) al-
ready includes (but is not limited to) optimis-
ing the lengthscale of a given kernel: taking
ÊW æ — ÊW is identical to f(i) æ f(i)—i

’ i.
The prediction errors are highly correlated be-
tween the di�erent modulation functions for a
given random draw of walks; ensembles which ‘explore’ the graph poorly, terminating quickly
or repeating edges, will give worse g-GRF estimators for every f . For this reason, we com-
pute the prediction errors as the average normalised di�erence compared to the learned
kernel result. Table 4 reports the results. Crucially, this di�erence is found to be positive
for every graph and every fixed kernel, meaning the learned kernel always performs best.

Table 4: Normalised di�erence in angular prediction error compared to the learned
kernel defined by f

(N) (trained on the cylinder graph). All entries are positive since
the learned kernel always performs best. We take 100 repeats (but only 10 for the very
large cycloidal graph). The brackets give one standard deviation on the final digit.

Graph N Normalised �(pred error) c.f. learned

1-reg Lap 2-reg Lap Di�usion

cylinder 210 +0.40(2) +0.85(4) +0.029(3)

teapot 480 +0.81(5) +1.78(8) +0.059(3)

idler-riser 782 +0.52(2) +1.12(1) +0.042(2)

busted 1941 +0.81(2) +1.60(4) +0.063(2)

torus 4350 +2.13(5) +5.3(1) +0.067(2)

cycloidal 21384 +0.065(4) +0.13(1) +0.011(1)

It is remarkable that the learned f
(N) gives the smallest error for all the graphs even

though it was just trained on cylinder, the smallest one. We have implicitly learned a
good kernel for this task which generalises well across topologies. It is also intriguing that
the di�usion kernel performs only slightly worse. This is to be expected because their
modulation functions are similar (see Fig. 5) so they encode very similar kernels, but this
will not always be the case depending on the task at hand.

4 Conclusion

We have introduced ‘general graph random features’ (g-GRFs), a novel random walk-based
algorithm for time-e�cient estimation of arbitrary functions of a weighted adjacency matrix.
The mechanism is conceptually simple and trivially distributed across machines, unlocking
kernel-based machine learning on very large graphs. By parameterising one component of
the random features with a simple neural network, we can futher suppress the mean square
error of estimators and perform scalable implicit kernel learning.

9
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5 Ethics and reproducibility

Ethics: Our work is foundational. There are no direct ethical concerns that we can see,
though of course increases in scalability a�orded by graph random features might amplify
risks of graph-based machine learning, from bad actors or as unintended consequences.
Reproducibility: To foster reproducibility, we clearly state the central algorithm in Alg. 1.
Source code is available at https://github.com/isaac-reid/general_graph_random_features.
All theoretical results are accompanied by proofs in Appendices A.1-A.4, where any assump-
tions are made clear. The datasets we use correspond to standard graphs and are freely
available online. We link suitable repositories in every instance. Except where prohibitively
computationally expensive, results are reported with uncertainties to help comparison.
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