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Abstract

The recent development of Foundation Mod-001
els (FMs), represented by large language mod-002
els, vision transformers, and multimodal mod-003
els, has been making a significant impact on004
both academia and industry. Compared with005
small-scale models, FMs have a much stronger006
demand for high-volume data during the pre-007
training phase. Although general FMs can be008
pre-trained on data collected from open sources009
such as the Internet, domain-specific FMs need010
proprietary data, posing a practical challenge011
regarding the amount of data available due to012
privacy concerns. Federated Learning (FL) is013
a collaborative learning paradigm that breaks014
the barrier of data availability from different015
participants. Therefore, it provides a promising016
solution to customize and adapt FMs to a wide017
range of domain-specific tasks using distributed018
datasets whilst preserving privacy. This survey019
paper discusses the potentials and challenges of020
synergizing FL and FMs and summarizes core021
techniques, future directions, and applications.022

1 Introduction023

The landscape of Artificial Intelligence (AI) has024

been revolutionized by the emergence of Founda-025

tion Models (FMs) (Bommasani et al., 2021), such026

as BERT (Devlin et al., 2019), GPT series (Brown027

et al., 2020; OpenAI, 2022, 2023), and LLaMA se-028

ries (Touvron et al., 2023a,b) in Natural Language029

Processing (NLP); ViTs (Dosovitskiy et al., 2021)030

and SAM (Kirillov et al., 2023) in Computer Vi-031

sion (CV); CLIP (Radford et al., 2021), DALL-E032

(Ramesh et al., 2021), and Gemini (Google, 2023)033

in multimodal applications. These FMs have be-034

come pivotal in a myriad of AI applications across035

diverse domains. Their superb capability to gen-036

eralize across tasks and domains stems from their037

pre-training on extensive datasets (Gunasekar et al.,038

2023), which imbues them with a profound under-039

standing of language, vision, and multimodal data.040

While general-purpose FMs can leverage openly 041

accessible data from the Internet, domain-specific 042

FMs require proprietary data. However, it is chal- 043

lenging to collect vast amounts of proprietary data 044

and perform centralized pre-training or fine-tuning 045

for domain-specific FMs, due to privacy restrictions 046

(Jo and Gebru, 2020; GDPR, 2016; CCPA, 2023). 047

Particularly in domains such as law, healthcare, and 048

finance, where data is inherently privacy-sensitive, 049

there is a pressing need for stringent privacy safe- 050

guards. Furthermore, given that data often consti- 051

tutes a pivotal asset for enterprises, its widespread 052

distribution is prohibitive. Consequently, there is 053

an urgent need for novel strategies to handle data 054

availability and facilitate model training, thereby 055

unlocking the potential of domain-specific FMs 056

whilst respecting data privacy. 057

To address the challenges associated with data 058

privacy in model training, Federated Learning (FL) 059

(McMahan et al., 2017) has emerged as a promis- 060

ing paradigm. FL facilitates collaborative model 061

training across decentralized clients without the 062

need for sharing raw data, thus ensuring privacy 063

preservation. Concretely, FL encompasses periodic 064

interactions between the server and decentralized 065

clients for the exchange of trainable model param- 066

eters, without the requirement for private client 067

data. Recognizing such a benefit, integrating FMs 068

with FL presents a compelling solution for domain- 069

specific FMs (Zhuang et al., 2023; Yu et al., 2023d). 070

Despite the potential synergies between FL and 071

FMs, the field is still nascent, lacking a comprehen- 072

sive understanding of challenges, methodologies, 073

and directions. This survey aims to bridge this gap 074

by providing a thorough exploration of the integra- 075

tion of FMs and FL. We delve into the motivations 076

and challenges of combining these two paradigms, 077

highlight representative techniques, and discuss fu- 078

ture directions and applications. By elucidating the 079

intersection of FL and FMs, we aim to catalyze 080

further research and innovation in this burgeon- 081
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ing area, ultimately advancing the development of082

privacy-aware, domain-specific AI models.083

The paper continues as follows: The next section084

introduces background on FMs and FL. Section 3085

presents the motivation and challenges for marry-086

ing FMs and FL. Section 4 highlights representative087

techniques. Before concluding, we discuss future088

directions and applications in Section 5.089

2 Background090

2.1 Foundation Models091

An FM is a model that can be adapted to a wide092

array of tasks through fine-tuning after initial pre-093

training (Bommasani et al., 2021). The lifecycle094

of FMs typically involves pre-training on extensive095

generic data to establish the basis of their abilities096

(Bubeck et al., 2023), followed by adaptation to097

downstream tasks such as domain-specific question098

answering (Zhang et al., 2023b), and ultimately099

application in various domains.100

FMs have sparked a significant paradigm shift in101

various fields of AI such as NLP, CV, speech and102

acoustics, and beyond. In the realm of NLP, the103

most prominent example is Large Language Mod-104

els (LLMs) with substantial parameter sizes (Zhao105

et al., 2023). These models, such as ChatGPT and106

GPT-4 (OpenAI, 2022, 2023), demonstrate excep-107

tional prowess in natural language understanding108

and generation, enabling them to comprehend and109

respond to user inputs with remarkable contextual110

relevance. This capability proves invaluable in ap-111

plications like customer service, virtual assistants,112

and chatbots, where effective communication is113

paramount. Moreover, LLMs eliminate the need114

for training models from scratch for specific tasks,115

be it machine translation, document summarization,116

text generation, or other language-related tasks.117

In the realm of CV and other modalities, FMs118

have also made remarkable progress. Vision Trans-119

formers (ViTs) (Dosovitskiy et al., 2021) segment120

images into distinct patches, which serve as in-121

puts for transformer architectures. SAM (Kirillov122

et al., 2023) can segment anything in images ac-123

cording to the input prompts. CLIP (Radford et al.,124

2021) bridges the gap between text and images125

through contrastive learning. DALL·E, proposed126

by Ramesh et al. (2021), generates images from127

textual descriptions, expanding the possibilities of128

creative image generation. Additionally, models129

like GAto, introduced by Reed et al. (2022), exhibit130

versatility by being applicable across various tasks131

such as conversational agents, robotic control, and 132

gaming. 133

2.2 Federated Learning 134

FL (McMahan et al., 2017) is a distributed learn- 135

ing paradigm that involves periodic interactions 136

between the server and decentralized clients for the 137

exchange of trainable model parameters, without 138

the need for private client data. FL offers a privacy- 139

preserving and efficient way to train models on a 140

large scale and diverse data (Kairouz et al., 2021), 141

leading to its application across various domains 142

such as healthcare (Lincy and Kowshalya, 2020; 143

Rieke et al., 2020; Joshi et al., 2022), finance (Chat- 144

terjee et al., 2023; Liu et al., 2023b), and smart 145

cities (Ramu et al., 2022; Pandya et al., 2023). 146

3 FM-FL Marriage: Motivation and 147

Challenges 148

In this section, we first motivate the marriage of 149

FMs and FL (§3.1), then summarize the key chal- 150

lenges stemming from the FM-FL marriage (§3.2). 151

3.1 Motivation 152

The AI sector widely concurs that the capabilities 153

of FMs are fundamentally driven by large-scale 154

and high-quality datasets (Bommasani et al., 2021; 155

Kaplan et al., 2020; Gunasekar et al., 2023), which 156

encompass both public and private sources. Lever- 157

aging private data for training FMs presents consid- 158

erable challenges owing to privacy concerns. Pri- 159

vacy regulations and data protection laws often pro- 160

hibit sharing sensitive information (GDPR, 2016; 161

CCPA, 2023), limiting the feasibility of traditional 162

data-centralized training processes. 163

The FM-FL marriage represents a compelling 164

collaboration that utilizes the strengths of each to 165

address their respective limitations, embodying a 166

complementary relationship (Zhuang et al., 2023; 167

Li and Wang, 2024). 168

FL expands data availability for FMs. By lever- 169

aging data from a wide range of sources in a 170

privacy-preserving manner, FL makes it possible 171

to build models on sensitive data in specific do- 172

mains, such as healthcare (Lincy and Kowshalya, 173

2020; Joshi et al., 2022; Rieke et al., 2020) and 174

finance (Chatterjee et al., 2023; Liu et al., 2023b). 175

This enhances the diversity and volume of train- 176

ing data, improving model robustness and adapt- 177

ability. Moreover, FL enables the integration of 178

personal and task-specific data, allowing FMs to 179
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be customized for personal applications. For in-180

stance, Google has trained next-word-prediction181

language models on mobile keyboard input data182

with FL to improve user experience (Xu et al.,183

2023c; Bonawitz et al., 2021).184

FMs boost FL with knowledge and understand-185

ing capabilities. By pre-training on large-scale186

generic data, FMs acquire essential knowledge and187

understanding capabilities (Brown et al., 2020).188

Firstly, they benefit FL systems by offering ad-189

vanced feature representations and learning capa-190

bilities from the outset. Secondly, leveraging the191

pre-learned knowledge of FMs accelerates the FL192

process, enabling efficient and effective adapta-193

tion to specific tasks with minimal additional train-194

ing. Thirdly, FMs’ powerful generative capabilities195

could help FL overcome the data heterogeneity196

challenge by synthesizing extra data, thus enhanc-197

ing model convergence (Huang et al., 2024).198

3.2 Challenges199

In this part, we discuss challenges emerging from200

the FM-FL marriage in three levels: Task-Level,201

System-Level, as well as Governance-Level. Due202

to the space limitation, we only list the most repre-203

sentative challenges for each level.204

3.2.1 Task-Level Challenges205

Task-level challenges stem from the adaptation of206

an FM to a specific downstream task (e.g., by fine-207

tuning) in a federated setting. Challenges include:208

Data Heterogeneity. Performance degradation209

in FL, attributed to heterogeneous data distri-210

butions among clients, is a well-recognized is-211

sue (Kairouz et al., 2021; Li et al., 2022). A recent212

study (Babakniya et al., 2023a) has shown that such213

performance penalty is even more substantial when214

fine-tuning FMs.215

Federated Alignment Tuning. Model alignment216

is the process of ensuring that FMs behave in line217

with human intentions and values (Ji et al., 2024).218

The distributed nature of FL, where data remains on219

local devices, and the diversity of data exacerbate220

the difficulty of ensuring fairness, transparency, and221

accountability in models (Ezzeldin et al., 2023).222

3.2.2 System-Level Challenges223

System-level challenges stem from the mismatch224

between the significant resource demands of FM225

training and the limited, heterogeneous system re- 226

sources (e.g., for mobile devices) within FL sys- 227

tems, such as communication bandwidth, computa- 228

tional power, and memory (Su et al., 2023a). This 229

line of challenges include: 230

Communication Efficiency. In FL, the com- 231

munication bottleneck is induced by frequently 232

exchanging training information between the 233

server and clients over limited bandwidth chan- 234

nels (Kairouz et al., 2021). The substantial number 235

of parameters in FMs further exacerbates this bur- 236

den, thus hindering the training process. 237

System Heterogeneity. The memory and compu- 238

tational resources of the devices for different par- 239

ticipants may be diverse (Diao et al., 2021), which 240

could cause delays for model synchronization and 241

inactivation of some participants, i.e., stragglers, 242

making it challenging to leverage the full potential 243

of FMs in FL setting. 244

3.2.3 Trustworthiness Challenges 245

This level emphasizes the overarching concerns 246

such as ethical considerations, privacy, security, 247

and fairness in the entire lifecycle of FM-FL, from 248

the pre-training and model adaptation to the appli- 249

cation stages. We present two representative types 250

of challenges from this perspective: 251

Intellectual Property. Intellectual property (IP) 252

protection in FM-FL primarily involves attribut- 253

ing ownership rights for both models and data. 254

FL complicates the identification of contributions 255

from multiple participants, raising questions about 256

who holds the IP for developed models and the 257

FM-generated contents (Li et al., 2023a). From 258

the server’s perspective, broadcasting a pre-trained 259

model to multiple nodes for fine-tuning poses IP 260

protection and security risks (e.g., model theft), 261

necessitating measures to safeguard IP rights and 262

ensure model integrity (Kang et al., 2024). 263

Privacy Leakage. Although FL does not imme- 264

diately share data, studies have shown that it may 265

not always guarantee sufficient privacy preserva- 266

tion (Geiping et al., 2020), as model parameters 267

(e.g., weights or gradients) may leak sensitive infor- 268

mation to malicious adversaries (Zhu et al., 2019). 269

In terms of FMs, recent studies (Huang et al., 2022; 270

Li et al., 2023c) have shown that generative mod- 271

els still suffer from privacy leakage threats through 272

well-crafted prompts (e.g., jailbreak prompts), even 273

though safety mechanisms are implemented. 274
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Task-Oriented
Adaptation (§4.1)

Domain Adaptation FMTDA (Yao et al., 2022), FFDAPT (Jiang et al., 2023b), FEDBFPT (Wang et al., 2023a)

Personalized
Adaptation

Adapter-based FedDAT (Chen et al., 2023a), C2A (Kim et al., 2023), Fed-MNMT (Liu et al., 2023d)

Prompt-based pFedPG (Yang et al., 2023a), MetePFL (Chen et al., 2023c), pFedPT (Li et al., 2023b)

Resource-Efficiency
(§4.2)

Federated
Parameter-Efficient

Fine-Tuning
(FedPEFT)

Selective Methods RaFFM (Yu et al., 2023c), FedBF (Zhang et al., 2023c), FedSelect (Tamirisa et al., 2023)

Additive Methods

Adapter Tuning FedCLIP (Lu et al., 2023a), FedDAT (Chen et al., 2023a),C2A (Kim et al., 2023),
Fed-MNMT (Liu et al., 2023d), AdaFL (Cai et al., 2023), FedASR (Jia et al., 2023)

Prompt Tuning PROMPTFL (Guo et al., 2023), FedTPG (Qiu et al., 2024) , MFPT (Zhao et al., 2024),
FedPR (Feng et al., 2023a), FedAPT (Su et al., 2023b), FedSP (Dong et al., 2023),

Reparameterization-
based Methods

SLoRA (Babakniya et al., 2023a), LP-FL (Jiang et al., 2023a), FedMS (Wu et al., 2023), FedIT (Zhang et al., 2023a),
pFedS2T (Du et al., 2024), FFA-LoRA (Sun et al., 2024), HETLORA (Cho et al., 2024)

Resource-
Heterogeneous

Methods

Split Learning FedBERT (Tian et al., 2022), MaskSL (Wang et al., 2023b), FedSplitX (Shin et al., 2023b)

Heterogeneous
LoRA FedRA (Su et al., 2023a), pFedLoRA (Yi et al., 2024), HETLORA (Cho et al., 2024)

Heterogeneous
Subnetworks

HeteroFL (Diao et al., 2021), ScaleFL (Ilhan et al., 2023), RaFFM (Yu et al., 2023c),
hetero-FLASH (Babakniya et al., 2023b)

Model Compression
Sparsification PruneFL (Jiang et al., 2023c), DeltaMask (Tsouvalas et al., 2023), FLASH (Babakniya et al., 2023b)

Quantization FedSplitBERT (Lit et al., 2022)

Zeroth-Order Optimization BAFFLE (Feng et al., 2023b), FedZeN (Maritan et al., 2023), FedKSeed (Qin et al., 2023),
FwdLLM (Xu et al., 2024a), FedMeZO (Ling et al., 2024)

Trustworthiness

IP Protection
Watermarking WAFFLE (Tekgul et al., 2021), DUW (Yu et al., 2023a)

Black-Box Tuning Fed-BBPT (Lin et al., 2023), FedBPT (Sun et al., 2023b), ZooPFL (Lu et al., 2023b), pFedGPT (Anonymous, 2023)

Privacy Protection DP-FTRL (Xu et al., 2023c), DP-LoRA (Liu et al., 2023c), FFA-LoRA-DP (Sun et al., 2024), FILM (Gupta et al., 2022)

Figure 1: Taxonomy of research in foundation models with federated learning

4 Techniques275

In this section, we survey FM-FL techniques,276

categorizing them as Task-Oriented Adapta-277

tion (§4.1), Resource-Efficiency (§4.2), and Trust-278

worthiness (§4.3). As shown in Figure 1, we fur-279

ther refine them according to the key features of280

different methods.281

4.1 Task-Oriented Adaptation282

This part introduces major approaches that adapt283

FMs to handle specific tasks with FL, aiming to284

tackle task-level challenges.285

4.1.1 Domain Adaptation286

Despite being heavily reliant on large-scale, public287

datasets for their initial training, FMs often require288

further Domain-Adaptive Pre-Training (DAPT)289

with domain-specific data for tasks that necessitate290

specialized knowledge (Gururangan et al., 2020;291

Guo and Yu, 2022). In domains like healthcare, FL292

allows for the continued pre-training of these mod-293

els using sensitive, domain-specific data without294

compromising privacy. Based on this idea, Jiang295

et al. (2023b) proposed FFDAPT, a computational-296

efficient further pre-training algorithm that freezes297

a portion of consecutive layers while optimizing298

the rest of the layers. Similarly, Wang et al. (2023a)299

proposed FEDBFPT that builds a local model for300

each client, progressively training the shallower301

layers of local models while sampling deeper lay-302

ers, and aggregating trained parameters on a server 303

to create the final global model. 304

4.1.2 Personalized Adaptation 305

Personalized adaptation refers to the process of tai- 306

loring a pre-trained FM to meet the specific needs 307

or preferences of individual clients while leverag- 308

ing the decentralized and privacy-preserving nature 309

of FL. Particularly, we discuss two types of popular 310

personalized methods as follows1: 311

Adapter-based. Adapter-based methods intro- 312

duce small, trainable modules (adapters) into the 313

frozen pre-trained FMs, allowing for client-specific 314

model adaptation without altering the original FL. 315

FedDAT (Chen et al., 2023a) leverages a dual- 316

adapter structure, with personalized adapters fo- 317

cusing on client-specific knowledge, and a global 318

adapter maintaining client-agnostic knowledge. 319

FedDAT executes bi-directional knowledge distilla- 320

tion between personalized adapters and the global 321

adapter to regularize the client’s updates and pre- 322

vent overfitting. 323

Prompt-based. Prompt-based methods involve 324

using client-specific soft prompts to guide the 325

model’s response. pFedPG (Yang et al., 2023a) 326

trains a prompt generator to exploit underlying 327

client-specific characteristics and produce personal- 328

1While this classification intersects with FedPEFT (§4.2.1),
which is detailed later, the focus here is on personalization
aspects.
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ized prompts for each client enabling efficient and329

personalized adaptation.330

4.2 Resource-Efficiency331

In response to the system-level challenges, there332

has been a considerable focus on developing333

resource-efficient approaches. This part describes334

techniques that improve resource efficiency.335

4.2.1 Federated Parameter-Efficient336

Fine-Tuning337

Federated Parameter-Efficient Fine-Tuning (Fed-338

PEFT), originating from the fine-tuning practices339

of FMs (Lester et al., 2021; Hu et al., 2022; Li and340

Liang, 2021), is a suite of techniques designed to341

reduce both the computational load and the asso-342

ciated communication overheads (Malaviya et al.,343

2023; Woisetschläger et al., 2024). In alignment344

with existing FM fine-tuning taxonomies (Lialin345

et al., 2023; Ding et al., 2023), we present FedPEFT346

methods in three categories: Selective Methods,347

Additive Methods, and Reparameterization-Based348

Methods. We depict this taxonomy and representa-349

tive methods in Figure 2.350

Figure 2: Taxonomy of Federated Parameter-Efficient
Fine-Tuning (FedPEFT).

Selective Methods. Selective methods fine-tune351

a small subset of the parameters, leaving the ma-352

jority unchanged during fine-tuning. In the field353

of LLMs, a prominent example of such methods354

is BitFit (Ben Zaken et al., 2022), which only fine-355

tunes the bias terms. BitFit has inspired a series356

of studies in FedPEFT (Bu et al., 2022; Sun et al.,357

2022a; Zhang et al., 2023c), demonstrating the su-358

perior communication efficiency of only updating359

the bias terms while still achieving competitive360

performance. More sophisticated methods strive361

to find sparse subnetworks for partial fine-tuning. 362

Among them, various methods (Seo et al., 2021; 363

Li et al., 2021; Tamirisa et al., 2023) advocate for 364

the Lottery Ticket Hypothesis (LTH) (Frankle and 365

Carbin, 2019), positing that a dense network con- 366

tains many subnetworks whose inference capabili- 367

ties are as accurate as that of the original network. 368

FedSelect (Tamirisa et al., 2023) is a representa- 369

tive method that encourages clients to find opti- 370

mal subnetworks based on LTH and continually 371

fine-tunes these derived subnetworks to encapsu- 372

late local knowledge. As another important aspect, 373

RaFFM (Yu et al., 2023c) proposes to prioritize 374

specialized salient parameters by ranking them us- 375

ing salience evaluation metrics such as `1 and `2 376

norms. 377

Additive Methods. Instead of fine-tuning a sub- 378

set of model parameters, additive methods incorpo- 379

rate lightweight trainable blocks into frozen FMs 380

and tune the additional parameters for model adap- 381

tation. These methods not only enhance computa- 382

tional and communicational efficiency but also in- 383

troduce an extra benefit: personalization (Lu et al., 384

2023a), i.e., the integration of these supplementary 385

parameters allows for the customization of hetero- 386

geneous models tailored to specific local data char- 387

acteristics or user preferences. Additive methods 388

include the following representative branches: 389

Adapter Tuning. Adapter tuning integrates small- 390

scale neural networks (known as “adapters”) into 391

the pre-trained models (Houlsby et al., 2019; Hu 392

et al., 2022). A straightforward implementation of 393

adapter tuning is to collaboratively train a shared 394

adapter among all clients in the FedAvg manner, 395

as highlighted by Sun et al. (2022a). Based on Fe- 396

dAvg, FedCLIP (Lu et al., 2023a) incorporates an 397

attention-based adapter for the image encoder in 398

CLIP models (Radford et al., 2021). In the domain 399

of multilingual machine translation, where differ- 400

ent language pairs exhibit substantial discrepancies 401

in data distributions, Fed-MNMT (Liu et al., 2023d) 402

explores clustering strategies that group adapter 403

parameters and makes inner-cluster parameters ag- 404

gregation for alleviating the undesirable effect of 405

data discrepancy. Another representative approach 406

named C2A (Kim et al., 2023) employs hypernet- 407

works (Ha et al., 2017) to generate client-specific 408

adapters by conditioning on the client’s informa- 409

tion, maximizing the utility of shared model param- 410

eters while minimizing the divergence caused by 411

data heterogeneity. 412

5



Prompt Tuning. Prompt tuning incorporates413

trainable task-specific continuous prompt vectors414

at the input layer (Liu et al., 2023a; Dong et al.,415

2023). Compared to full fine-tuning, it achieves416

comparable performance but with 1000× less pa-417

rameter storage (Jia et al., 2022). A variation of418

prompt tuning, FedPerfix (Sun et al., 2023a) uses a419

local adapter to generate the prefixes and aggregate420

the original self-attention layers.421

Reparameterization-based Methods. The hy-422

pothesis behind reparameterization-based meth-423

ods is that fine-tuning adaptions can be re-424

parameterized into optimization within low-rank425

subspaces (Aghajanyan et al., 2021). Low-Rank426

Adaptation (LoRA) (Hu et al., 2022), as a popu-427

lar PEFT method from the area of LLMs, reduces428

the number of trainable parameters for downstream429

tasks by representing the weight updates with two430

smaller matrices (called update matrices) through431

low-rank decomposition (Ding et al., 2023). For in-432

stance, FedIT (Zhang et al., 2023a) leverages LoRA433

to improve the response quality of LLMs by utiliz-434

ing diverse instructions from different clients. No-435

ticeably, LoRA and its variants have also exhibited436

considerable potential in addressing the challenges437

inherent in data heterogeneity among clients in FL.438

FedLoRA (Yi et al., 2024) assigns a homogeneous439

small low-rank linear adapter for each clients local440

personalized heterogeneous local model.441

4.2.2 Resource-Heterogeneous Methods442

FL systems may consist of devices with varying443

levels of resources, leading to disparities where cer-444

tain devices exhibit more efficient model training445

compared to others (Chen et al., 2023a). To ad-446

dress this, several methods have been developed to447

customize model architectures for heterogeneous448

clients.449

Heterogeneous LoRA. LoRA-based FedPEFT450

exhibits unique flexibility for resource-limited mo-451

bile devices with natural system heterogeneity. Cho452

et al. (2023) applied heterogeneous LoRA ranks453

across clients via utilizing zero-padding and trun-454

cation for the aggregation and distribution of the455

LoRA modules. FedRA (Su et al., 2023a) integrates456

LoRA with randomly-allocated subnetworks for lo-457

cal fine-tuning with heterogeneous clients.458

Heterogeneous Subnetworks. Some works train459

heterogeneous subnetworks selected from global460

models, tailored to the varying capabilities of in-461

dividual clients. HeteroFL (Diao et al., 2021) 462

appeared as the first method that adaptively allo- 463

cates subsets of global model parameters for local 464

training. ScaleFL (Ilhan et al., 2023) integrates a 465

resource-adaptive 2-D model downscaling mech- 466

anism along the width and depth dimensions by 467

leveraging early exits to find the best-fit models for 468

resource-aware local training. 469

Split Learning. Split learning addresses the re- 470

source heterogeneity between servers and clients by 471

splitting a large model into client-side and server- 472

side components (Thapa et al., 2022). For the first 473

time, FedBERT (Tian et al., 2022) leverages split 474

training for training the BERT model, showing the 475

feasibility of pre-training large FMs in FL settings. 476

FedSplitX (Shin et al., 2023b) is a more fine-grained 477

method that allows multiple partition points for 478

model splitting, accommodating diverse client ca- 479

pabilities. 480

4.2.3 Model Compression 481

Model compression refers to the techniques used 482

to reduce the size of models, thereby improving 483

communication and computational efficiency (Shah 484

and Lau, 2023). 485

Sparsification. Model sparsification methods re- 486

duce communication burden by only transmitting a 487

subset of FM parameters across the network (Jiang 488

et al., 2023c). Typical methods focus on identifying 489

and cultivating high-potential subnetworks (Fran- 490

kle and Carbin, 2019; Tsouvalas et al., 2023). 491

Quantization. Quantization is well-established 492

in both the FM and FL domains (Xu et al., 2024b; 493

Reisizadeh et al., 2020), which involves decreas- 494

ing the precision of floating-point parameters for 495

mitigating the storage, computational, and commu- 496

nication demands. Quantization is both effective 497

and easy to implement, making it ideal for use with 498

other resource-efficient methods (Lit et al., 2022). 499

4.2.4 Zeroth-Order Optimization 500

Distinct from the ubiquitous reliance on gradient 501

descent in most FL optimization algorithms, a spe- 502

cific line of research advocates for the removal of 503

backpropagation (BP) (Malladi et al., 2023) in fa- 504

vor of Zeroth-Order Optimization (ZOO) (Fang 505

et al., 2022; Li and Chen, 2021). BP-free ap- 506

proaches conserve memory needed for computing 507

gradients and minimize communication overhead 508

for model aggregation (Qin et al., 2023), mak- 509

ing FMs more accessible for lower-end devices, 510
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thereby enhancing their applicability in diverse511

hardware environments of FL. Recent work based512

on perturbed inferences, such as that by Xu et al.513

(2023a); Qin et al. (2023), has initiated preliminary514

explorations into the deployment of both FedPEFT515

and full-model fine-tuning of billion-sized FMs,516

like LLaMA, on mobile devices.517

4.3 Trustworthiness518

This line of work aims to enhance trustworthiness519

throughout the FM-FL lifecycle, covering a variety520

of key areas including, but not limited to, IP Pro-521

tection, Attack Robustness, and Privacy Protection.522

IP Protection. Existing IP protection involves523

safeguarding ownership of FL models from unau-524

thorized use (e.g., model theft) (Tekgul et al., 2021).525

Two common kinds of IP protection strategies are526

watermarking and black-box tuning.527

Watermarking is a well-known deterrence528

method for model IP protection by providing the529

identities for model owners to demonstrate owner-530

ship of their models (Adi et al., 2018). Tekgul et al.531

(2021) proposed WAFFLE, the first solution that532

addresses the ownership problem by injecting a wa-533

termark into the global model in FL environments.534

Recently, Yu et al. (2023b) proposed DUW that535

embeds a client-unique key into each clients local536

model, aiming to identify the infringer of a leaked537

model while verifying the FL models ownership.538

Black-Box Tuning is a set of gradient-free meth-539

ods to drive large language models. ZOO allows540

for black-box fine-tuning in scenarios where direct541

access to model parameters is restricted, e.g., due542

to privacy concerns or proprietary limitations (Sun543

et al., 2022b). Fed-BBPT (Lin et al., 2023) is a544

general prompt tuning framework that facilitates545

the joint training of a global lightweight prompt546

generator across multiple clients. FedBPT (Sun547

et al., 2023b) adopts a classic evolutionary-based548

ZOO method, CMA-ES (Hansen and Ostermeier,549

2001), for training an optimal prompt that improves550

the performance of the frozen FMs. ZooPFL (Lu551

et al., 2023b), on the other hand, applies coordinate-552

wise gradient estimate to learn input surgery that553

incorporates client-specific embeddings. Neverthe-554

less, the pronounced slower convergence rates of555

ZOO compared to gradient-based approaches in556

high-dimensional settings (Golovin et al., 2020),557

underscore a significant research gap. The impli-558

cations of these slower rates on convergence effi-559

ciency and computational burden in FL, especially560

for large-scale FMs, remain insufficiently explored. 561

Differential Privacy. Differential Privacy (DP) is 562

a theoretical framework that governs privacy bound- 563

aries and manages the tradeoff between privacy and 564

model convergence (Wei et al., 2020). DP-based 565

FL approaches often add artificial noise (e.g., Gaus- 566

sian noise) to parameters at the clients side before 567

aggregating to prevent information leakage (Xu 568

et al., 2023c). Besides, DP is compatible with most 569

FedPEFT methods. For instance, Sun et al. (2024) 570

showed that DP noise can even be amplified by 571

the locally "semi-quadratic" nature of LoRA-based 572

methods, motivating the integration of LoRA with 573

DP to improve resource efficiency while maintain- 574

ing data privacy (Liu et al., 2023c). In terms of 575

attack, Gupta et al. (2022) presented an attack that 576

recovers private text data by extracting information 577

from gradients transmitted during training, despite 578

the employment of a naive DP mechanism. 579

5 Future Directions & Applications 580

We highlight potential research directions and fu- 581

ture FL-FM applications in this section. 582

5.1 Future Directions 583

Personalization. FL on FMs can improve user 584

profiling by capturing more granular and diverse 585

data from individuals while preserving privacy. 586

This can lead to more accurate and comprehensive 587

user profiles, enabling personalized recommenda- 588

tions and services tailored to specific preferences, 589

needs, and contexts (Chen et al., 2023b). Users can 590

contribute their preferences, feedback, and insights, 591

allowing the models to learn directly from their 592

interactions and refine personalization algorithms 593

accordingly. Future research directions may incor- 594

porate multi-modal data, including text, images, 595

audio, and sensor data. 596

Model Compression. Future directions may in- 597

volve designing more efficient and lightweight 598

model compression techniques (Deng et al., 2020) 599

specifically tailored for FL systems to reduce the 600

computational and memory requirements of FMs 601

while maintaining their performance. They may 602

leverage multi-task learning approaches for model 603

sharing and parameter reuse across different tasks 604

or domains. Adaptive model compression tech- 605

niques could dynamically adjust the compression 606

level based on the available computing resources 607

or application requirements (Xu et al., 2023b). 608
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Split Learning. Split learning (Thapa et al.,609

2020) partitions the model, placing one part on610

the client device and the other on the server. Future611

developments may explore more sophisticated and612

adaptive methods for partitioning the FMs, such as613

adaptive model partitioning based on the compu-614

tational capabilities and resources of the client de-615

vices. Dynamic model partitioning techniques may616

adjust the partitioning scheme at different stages of617

the FL process.618

Mixture of Experts (MoE). MoE allows FL to619

incorporate multiple expert FMs, each specializ-620

ing in different aspects or domains of the data. By621

combining the expertise of these models, FL can622

achieve higher model performance and accuracy.623

MoE also allows FL and FM models to adapt to lo-624

cal data characteristics present on individual client625

devices. Bridging MoE with FMs could strengthen626

generalization ability by balancing between larger627

overall model capacity and flexible per-instance628

specialization (Cong et al., 2023).629

Privacy Preservation. Advanced model aggre-630

gation methods can be designed to incorporate pri-631

vacy awareness when performing FL on FMs. This632

includes techniques to control the amount of infor-633

mation leaked during the aggregation process and634

mechanisms to enforce privacy guarantees while635

maintaining the accuracy and utility of the aggre-636

gated model (Nagy et al., 2023). As privacy con-637

cerns continue to grow, future developments may638

involve the establishment of privacy regulations639

and standards specifically tailored for FL and FMs.640

Continual Learning. Continual learning enables641

models to adapt to new data over time, improving642

their performance and accuracy. By incorporat-643

ing new data into the model training process, FL644

and FMs can continuously improve and adapt to645

changing environments and user needs (Yang et al.,646

2023b). Future directions may involve leveraging647

transfer learning techniques in continual learning648

for FL and FMs. Models can transfer knowledge649

from previous tasks or domains to new ones, en-650

abling more efficient learning and adaptation (Good651

et al., 2023).652

Resource-Efficiency. FL-FM enables collabora-653

tive training, model adaptation, and utilization of654

FMs for a wide range of novel and powerful appli-655

cations on heterogeneous edge devices (Shen et al.,656

2024; Xu et al., 2024b). The design and adaptation657

of the FM models, optimization of computation 658

and communication, and coordination among het- 659

erogeneous edge devices and the cloud remain to 660

be further explored in this new era. 661

5.2 Domain-Specific Applications 662

In this section, we discuss how FM-FL can be uti- 663

lized in several representative domains. 664

Healthcare. FL and FMs enable the development 665

of personalized medical applications. By training 666

with massive individual patient data, such as medi- 667

cal history, genetics, and lifestyle factors, the mod- 668

els can learn global patterns and provide tailored 669

recommendations for treatment, medication, and 670

prevention strategies. 671

Law, Finance and Banking. FL can support 672

the training of FMs on massive legal documents, 673

cases, and statutes (Zhang et al., 2023b). The mod- 674

els can assist in identifying key legal arguments, 675

summarizing case details, providing insights, and 676

making predictive analytics into potential case out- 677

comes (Yue et al., 2023). FL can build FMs that 678

support risk management applications in banking 679

and finance. By analyzing aggregated data from 680

multiple sources, such as credit scores, market data, 681

and economic trends, the models can support risk 682

assessment, credit scoring, and investment manage- 683

ment (Shin et al., 2023a). FM-FL models trained 684

on historical investment data and market trends can 685

support investment opportunities, analyze invest- 686

ment risks, and assist in portfolio optimization. 687

Education and Personal Agents. FL can be used 688

to train FMs for intelligent tutoring systems to sup- 689

port individual student learning. Personalized foun- 690

dation models can provide customized and person- 691

alized responses to users based on their individual 692

interests, preferences, behavior, and history. 693

6 Conclusions 694

In this survey, we have meticulously surveyed the 695

intersection of FM and FL. We identified three lev- 696

els of challenges: task-level, system-level as well 697

as trustworthiness challenges, and proposed a com- 698

prehensive taxonomy of techniques in response to 699

these challenges. In addition, we discussed future 700

directions and applications in this research field, 701

hoping to attract more breakthroughs in future re- 702

search. 703
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Limitations704

FM and FL are very fast-moving fields. We have705

put a lot of effort to include the latest research706

efforts in the community in this survey. The ma-707

jority of the papers referenced in our taxonomy708

are indeed from 2023 which also demonstrates the709

importance of the integration of FM and FL. There-710

fore, we believe that our survey will help to inspire711

and push further research and innovation in this712

important areas. Our survey does not include any713

benchmarking of the available ideas and systems.714

We believe that would be an important next step715

that we are leaving to future work. It would, how-716

ever, require some tools to support such an evalua-717

tion campaign and such tools are, to the best of our718

knowledge, not available yet.719
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