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Abstract

The recent development of Foundation Mod-
els (FMs), represented by large language mod-
els, vision transformers, and multimodal mod-
els, has been making a significant impact on
both academia and industry. Compared with
small-scale models, FMs have a much stronger
demand for high-volume data during the pre-
training phase. Although general FMs can be
pre-trained on data collected from open sources
such as the Internet, domain-specific FMs need
proprietary data, posing a practical challenge
regarding the amount of data available due to
privacy concerns. Federated Learning (FL) is
a collaborative learning paradigm that breaks
the barrier of data availability from different
participants. Therefore, it provides a promising
solution to customize and adapt FMs to a wide
range of domain-specific tasks using distributed
datasets whilst preserving privacy. This survey
paper discusses the potentials and challenges of
synergizing FL. and FMs and summarizes core
techniques, future directions, and applications.

1 Introduction

The landscape of Artificial Intelligence (AI) has
been revolutionized by the emergence of Founda-
tion Models (FMs) (Bommasani et al., 2021), such
as BERT (Devlin et al., 2019), GPT series (Brown
et al., 2020; OpenAl, 2022, 2023), and LLaMA se-
ries (Touvron et al., 2023a,b) in Natural Language
Processing (NLP); ViTs (Dosovitskiy et al., 2021)
and SAM (Kirillov et al., 2023) in Computer Vi-
sion (CV); CLIP (Radford et al., 2021), DALL-E
(Ramesh et al., 2021), and Gemini (Google, 2023)
in multimodal applications. These FMs have be-
come pivotal in a myriad of Al applications across
diverse domains. Their superb capability to gen-
eralize across tasks and domains stems from their
pre-training on extensive datasets (Gunasekar et al.,
2023), which imbues them with a profound under-
standing of language, vision, and multimodal data.

While general-purpose FMs can leverage openly
accessible data from the Internet, domain-specific
FMs require proprietary data. However, it is chal-
lenging to collect vast amounts of proprietary data
and perform centralized pre-training or fine-tuning
for domain-specific FMs, due to privacy restrictions
(Jo and Gebru, 2020; GDPR, 2016; CCPA, 2023).
Particularly in domains such as law, healthcare, and
finance, where data is inherently privacy-sensitive,
there is a pressing need for stringent privacy safe-
guards. Furthermore, given that data often consti-
tutes a pivotal asset for enterprises, its widespread
distribution is prohibitive. Consequently, there is
an urgent need for novel strategies to handle data
availability and facilitate model training, thereby
unlocking the potential of domain-specific FMs
whilst respecting data privacy.

To address the challenges associated with data
privacy in model training, Federated Learning (FL)
(McMahan et al., 2017) has emerged as a promis-
ing paradigm. FL facilitates collaborative model
training across decentralized clients without the
need for sharing raw data, thus ensuring privacy
preservation. Concretely, FL. encompasses periodic
interactions between the server and decentralized
clients for the exchange of trainable model param-
eters, without the requirement for private client
data. Recognizing such a benefit, integrating FMs
with FL presents a compelling solution for domain-
specific FMs (Zhuang et al., 2023; Yu et al., 2023d).

Despite the potential synergies between FL and
FMs, the field is still nascent, lacking a comprehen-
sive understanding of challenges, methodologies,
and directions. This survey aims to bridge this gap
by providing a thorough exploration of the integra-
tion of FMs and FL. We delve into the motivations
and challenges of combining these two paradigms,
highlight representative techniques, and discuss fu-
ture directions and applications. By elucidating the
intersection of FL. and FMs, we aim to catalyze
further research and innovation in this burgeon-



ing area, ultimately advancing the development of
privacy-aware, domain-specific Al models.

The paper continues as follows: The next section
introduces background on FMs and FL. Section 3
presents the motivation and challenges for marry-
ing FMs and FL. Section 4 highlights representative
techniques. Before concluding, we discuss future
directions and applications in Section 5.

2 Background

2.1 Foundation Models

An FM is a model that can be adapted to a wide
array of tasks through fine-tuning after initial pre-
training (Bommasani et al., 2021). The lifecycle
of FMs typically involves pre-training on extensive
generic data to establish the basis of their abilities
(Bubeck et al., 2023), followed by adaptation to
downstream tasks such as domain-specific question
answering (Zhang et al., 2023b), and ultimately
application in various domains.

FMs have sparked a significant paradigm shift in
various fields of Al such as NLP, CV, speech and
acoustics, and beyond. In the realm of NLP, the
most prominent example is Large Language Mod-
els (LLMs) with substantial parameter sizes (Zhao
et al., 2023). These models, such as ChatGPT and
GPT-4 (OpenAl, 2022, 2023), demonstrate excep-
tional prowess in natural language understanding
and generation, enabling them to comprehend and
respond to user inputs with remarkable contextual
relevance. This capability proves invaluable in ap-
plications like customer service, virtual assistants,
and chatbots, where effective communication is
paramount. Moreover, LLMs eliminate the need
for training models from scratch for specific tasks,
be it machine translation, document summarization,
text generation, or other language-related tasks.

In the realm of CV and other modalities, FMs
have also made remarkable progress. Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021) segment
images into distinct patches, which serve as in-
puts for transformer architectures. SAM (Kirillov
et al., 2023) can segment anything in images ac-
cording to the input prompts. CLIP (Radford et al.,
2021) bridges the gap between text and images
through contrastive learning. DALL-E, proposed
by Ramesh et al. (2021), generates images from
textual descriptions, expanding the possibilities of
creative image generation. Additionally, models
like GAto, introduced by Reed et al. (2022), exhibit
versatility by being applicable across various tasks

such as conversational agents, robotic control, and
gaming.

2.2 Federated Learning

FL (McMahan et al., 2017) is a distributed learn-
ing paradigm that involves periodic interactions
between the server and decentralized clients for the
exchange of trainable model parameters, without
the need for private client data. FL offers a privacy-
preserving and efficient way to train models on a
large scale and diverse data (Kairouz et al., 2021),
leading to its application across various domains
such as healthcare (Lincy and Kowshalya, 2020;
Rieke et al., 2020; Joshi et al., 2022), finance (Chat-
terjee et al., 2023; Liu et al., 2023b), and smart
cities (Ramu et al., 2022; Pandya et al., 2023).

3 FM-FL Marriage: Motivation and
Challenges

In this section, we first motivate the marriage of
FMs and FL (§3.1), then summarize the key chal-
lenges stemming from the FM-FL marriage (§3.2).

3.1 Motivation

The Al sector widely concurs that the capabilities
of FMs are fundamentally driven by large-scale
and high-quality datasets (Bommasani et al., 2021;
Kaplan et al., 2020; Gunasekar et al., 2023), which
encompass both public and private sources. Lever-
aging private data for training FMs presents consid-
erable challenges owing to privacy concerns. Pri-
vacy regulations and data protection laws often pro-
hibit sharing sensitive information (GDPR, 2016;
CCPA, 2023), limiting the feasibility of traditional
data-centralized training processes.

The FM-FL marriage represents a compelling
collaboration that utilizes the strengths of each to
address their respective limitations, embodying a
complementary relationship (Zhuang et al., 2023;
Li and Wang, 2024).

FL expands data availability for FMs. By lever-
aging data from a wide range of sources in a
privacy-preserving manner, FL. makes it possible
to build models on sensitive data in specific do-
mains, such as healthcare (Lincy and Kowshalya,
2020; Joshi et al., 2022; Rieke et al., 2020) and
finance (Chatterjee et al., 2023; Liu et al., 2023b).
This enhances the diversity and volume of train-
ing data, improving model robustness and adapt-
ability. Moreover, FL enables the integration of
personal and task-specific data, allowing FMs to



be customized for personal applications. For in-
stance, Google has trained next-word-prediction
language models on mobile keyboard input data
with FL to improve user experience (Xu et al.,
2023c; Bonawitz et al., 2021).

FMs boost FL. with knowledge and understand-
ing capabilities. By pre-training on large-scale
generic data, FMs acquire essential knowledge and
understanding capabilities (Brown et al., 2020).
Firstly, they benefit FL systems by offering ad-
vanced feature representations and learning capa-
bilities from the outset. Secondly, leveraging the
pre-learned knowledge of FMs accelerates the FLL
process, enabling efficient and effective adapta-
tion to specific tasks with minimal additional train-
ing. Thirdly, FMs’ powerful generative capabilities
could help FL overcome the data heterogeneity
challenge by synthesizing extra data, thus enhanc-
ing model convergence (Huang et al., 2024).

3.2 Challenges

In this part, we discuss challenges emerging from
the FM-FL marriage in three levels: Task-Level,
System-Level, as well as Governance-Level. Due
to the space limitation, we only list the most repre-
sentative challenges for each level.

3.2.1 Task-Level Challenges

Task-level challenges stem from the adaptation of
an FM to a specific downstream task (e.g., by fine-
tuning) in a federated setting. Challenges include:

Data Heterogeneity. Performance degradation
in FL, attributed to heterogeneous data distri-
butions among clients, is a well-recognized is-
sue (Kairouz et al., 2021; Li et al., 2022). A recent
study (Babakniya et al., 2023a) has shown that such
performance penalty is even more substantial when
fine-tuning FMs.

Federated Alignment Tuning. Model alignment
is the process of ensuring that FMs behave in line
with human intentions and values (Ji et al., 2024).
The distributed nature of FL, where data remains on
local devices, and the diversity of data exacerbate
the difficulty of ensuring fairness, transparency, and
accountability in models (Ezzeldin et al., 2023).

3.2.2 System-Level Challenges

System-level challenges stem from the mismatch
between the significant resource demands of FM

training and the limited, heterogeneous system re-
sources (e.g., for mobile devices) within FL sys-
tems, such as communication bandwidth, computa-
tional power, and memory (Su et al., 2023a). This
line of challenges include:

Communication Efficiency. In FL, the com-
munication bottleneck is induced by frequently
exchanging training information between the
server and clients over limited bandwidth chan-
nels (Kairouz et al., 2021). The substantial number
of parameters in FMs further exacerbates this bur-
den, thus hindering the training process.

System Heterogeneity. The memory and compu-
tational resources of the devices for different par-
ticipants may be diverse (Diao et al., 2021), which
could cause delays for model synchronization and
inactivation of some participants, i.e., stragglers,
making it challenging to leverage the full potential
of FMs in FL setting.

3.2.3 Trustworthiness Challenges

This level emphasizes the overarching concerns
such as ethical considerations, privacy, security,
and fairness in the entire lifecycle of FM-FL, from
the pre-training and model adaptation to the appli-
cation stages. We present two representative types
of challenges from this perspective:

Intellectual Property. Intellectual property (IP)
protection in FM-FL primarily involves attribut-
ing ownership rights for both models and data.
FL complicates the identification of contributions
from multiple participants, raising questions about
who holds the IP for developed models and the
FM-generated contents (Li et al., 2023a). From
the server’s perspective, broadcasting a pre-trained
model to multiple nodes for fine-tuning poses IP
protection and security risks (e.g., model theft),
necessitating measures to safeguard IP rights and
ensure model integrity (Kang et al., 2024).

Privacy Leakage. Although FL does not imme-
diately share data, studies have shown that it may
not always guarantee sufficient privacy preserva-
tion (Geiping et al., 2020), as model parameters
(e.g., weights or gradients) may leak sensitive infor-
mation to malicious adversaries (Zhu et al., 2019).
In terms of FMs, recent studies (Huang et al., 2022;
Li et al., 2023c) have shown that generative mod-
els still suffer from privacy leakage threats through
well-crafted prompts (e.g., jailbreak prompts), even
though safety mechanisms are implemented.
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Figure 1: Taxonomy of research in foundation models with federated learning

4 Techniques

In this section, we survey FM-FL techniques,
categorizing them as Task-Oriented Adapta-
tion (§4.1), Resource-Efficiency (§4.2), and Trust-
worthiness (§4.3). As shown in Figure 1, we fur-
ther refine them according to the key features of
different methods.

4.1 Task-Oriented Adaptation

This part introduces major approaches that adapt
FMs to handle specific tasks with FL, aiming to
tackle task-level challenges.

4.1.1 Domain Adaptation

Despite being heavily reliant on large-scale, public
datasets for their initial training, FMs often require
further Domain-Adaptive Pre-Training (DAPT)
with domain-specific data for tasks that necessitate
specialized knowledge (Gururangan et al., 2020;
Guo and Yu, 2022). In domains like healthcare, FL.
allows for the continued pre-training of these mod-
els using sensitive, domain-specific data without
compromising privacy. Based on this idea, Jiang
et al. (2023b) proposed FFDAPT, a computational-
efficient further pre-training algorithm that freezes
a portion of consecutive layers while optimizing
the rest of the layers. Similarly, Wang et al. (2023a)
proposed FEDBFPT that builds a local model for
each client, progressively training the shallower
layers of local models while sampling deeper lay-

ers, and aggregating trained parameters on a server
to create the final global model.

4.1.2 Personalized Adaptation

Personalized adaptation refers to the process of tai-
loring a pre-trained FM to meet the specific needs
or preferences of individual clients while leverag-
ing the decentralized and privacy-preserving nature
of FL. Particularly, we discuss two types of popular
personalized methods as follows':

Adapter-based. Adapter-based methods intro-
duce small, trainable modules (adapters) into the
frozen pre-trained FMs, allowing for client-specific
model adaptation without altering the original FL.
FedDAT (Chen et al., 2023a) leverages a dual-
adapter structure, with personalized adapters fo-
cusing on client-specific knowledge, and a global
adapter maintaining client-agnostic knowledge.
FedDAT executes bi-directional knowledge distilla-
tion between personalized adapters and the global
adapter to regularize the client’s updates and pre-
vent overfitting.

Prompt-based. Prompt-based methods involve
using client-specific soft prompts to guide the
model’s response. pFedPG (Yang et al., 2023a)
trains a prompt generator to exploit underlying
client-specific characteristics and produce personal-

"While this classification intersects with FedPEFT (§4.2.1),
which is detailed later, the focus here is on personalization
aspects.



ized prompts for each client enabling efficient and
personalized adaptation.

4.2 Resource-Efficiency

In response to the system-level challenges, there
has been a considerable focus on developing
resource-efficient approaches. This part describes
techniques that improve resource efficiency.

4.2.1 Federated Parameter-Efficient
Fine-Tuning

Federated Parameter-Efficient Fine-Tuning (Fed-
PEFT), originating from the fine-tuning practices
of FMs (Lester et al., 2021; Hu et al., 2022; Li and
Liang, 2021), is a suite of techniques designed to
reduce both the computational load and the asso-
ciated communication overheads (Malaviya et al.,
2023; Woisetschliger et al., 2024). In alignment
with existing FM fine-tuning taxonomies (Lialin
etal., 2023; Ding et al., 2023), we present FedPEFT
methods in three categories: Selective Methods,
Additive Methods, and Reparameterization-Based
Methods. We depict this taxonomy and representa-
tive methods in Figure 2.
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Figure 2: Taxonomy of Federated Parameter-Efficient
Fine-Tuning (FedPEFT).

Selective Methods. Selective methods fine-tune
a small subset of the parameters, leaving the ma-
jority unchanged during fine-tuning. In the field
of LLMs, a prominent example of such methods
is BitFit (Ben Zaken et al., 2022), which only fine-
tunes the bias terms. BitFit has inspired a series
of studies in FedPEFT (Bu et al., 2022; Sun et al.,
2022a; Zhang et al., 2023c), demonstrating the su-
perior communication efficiency of only updating
the bias terms while still achieving competitive
performance. More sophisticated methods strive

to find sparse subnetworks for partial fine-tuning.
Among them, various methods (Seo et al., 2021;
Liet al., 2021; Tamirisa et al., 2023) advocate for
the Lottery Ticket Hypothesis (LTH) (Frankle and
Carbin, 2019), positing that a dense network con-
tains many subnetworks whose inference capabili-
ties are as accurate as that of the original network.
FedSelect (Tamirisa et al., 2023) is a representa-
tive method that encourages clients to find opti-
mal subnetworks based on LTH and continually
fine-tunes these derived subnetworks to encapsu-
late local knowledge. As another important aspect,
RaFFM (Yu et al., 2023c) proposes to prioritize
specialized salient parameters by ranking them us-
ing salience evaluation metrics such as ¢; and /o
norms.

Additive Methods. Instead of fine-tuning a sub-
set of model parameters, additive methods incorpo-
rate lightweight trainable blocks into frozen FMs
and tune the additional parameters for model adap-
tation. These methods not only enhance computa-
tional and communicational efficiency but also in-
troduce an extra benefit: personalization (Lu et al.,
2023a), i.e., the integration of these supplementary
parameters allows for the customization of hetero-
geneous models tailored to specific local data char-
acteristics or user preferences. Additive methods
include the following representative branches:

Adapter Tuning. Adapter tuning integrates small-
scale neural networks (known as “adapters”) into
the pre-trained models (Houlsby et al., 2019; Hu
et al., 2022). A straightforward implementation of
adapter tuning is to collaboratively train a shared
adapter among all clients in the FedAvg manner,
as highlighted by Sun et al. (2022a). Based on Fe-
dAvg, FedCLIP (Lu et al., 2023a) incorporates an
attention-based adapter for the image encoder in
CLIP models (Radford et al., 2021). In the domain
of multilingual machine translation, where differ-
ent language pairs exhibit substantial discrepancies
in data distributions, Fed-MNMT (Liu et al., 2023d)
explores clustering strategies that group adapter
parameters and makes inner-cluster parameters ag-
gregation for alleviating the undesirable effect of
data discrepancy. Another representative approach
named C2A (Kim et al., 2023) employs hypernet-
works (Ha et al., 2017) to generate client-specific
adapters by conditioning on the client’s informa-
tion, maximizing the utility of shared model param-
eters while minimizing the divergence caused by
data heterogeneity.



Prompt Tuning. Prompt tuning incorporates
trainable task-specific continuous prompt vectors
at the input layer (Liu et al., 2023a; Dong et al.,
2023). Compared to full fine-tuning, it achieves
comparable performance but with 1000x less pa-
rameter storage (Jia et al., 2022). A variation of
prompt tuning, FedPerfix (Sun et al., 2023a) uses a
local adapter to generate the prefixes and aggregate
the original self-attention layers.

Reparameterization-based Methods. The hy-
pothesis behind reparameterization-based meth-
ods is that fine-tuning adaptions can be re-
parameterized into optimization within low-rank
subspaces (Aghajanyan et al., 2021). Low-Rank
Adaptation (LoRA) (Hu et al., 2022), as a popu-
lar PEFT method from the area of LLMs, reduces
the number of trainable parameters for downstream
tasks by representing the weight updates with two
smaller matrices (called update matrices) through
low-rank decomposition (Ding et al., 2023). For in-
stance, FedIT (Zhang et al., 2023a) leverages LoRA
to improve the response quality of LLMs by utiliz-
ing diverse instructions from different clients. No-
ticeably, LoRA and its variants have also exhibited
considerable potential in addressing the challenges
inherent in data heterogeneity among clients in FL.
FedLoRA (Yi et al., 2024) assigns a homogeneous
small low-rank linear adapter for each clients local
personalized heterogeneous local model.

4.2.2 Resource-Heterogeneous Methods

FL systems may consist of devices with varying
levels of resources, leading to disparities where cer-
tain devices exhibit more efficient model training
compared to others (Chen et al., 2023a). To ad-
dress this, several methods have been developed to
customize model architectures for heterogeneous
clients.

Heterogeneous LoORA. LoRA-based FedPEFT
exhibits unique flexibility for resource-limited mo-
bile devices with natural system heterogeneity. Cho
et al. (2023) applied heterogeneous LoRA ranks
across clients via utilizing zero-padding and trun-
cation for the aggregation and distribution of the
LoRA modules. FedRA (Su et al., 2023a) integrates
LoRA with randomly-allocated subnetworks for lo-
cal fine-tuning with heterogeneous clients.

Heterogeneous Subnetworks. Some works train
heterogeneous subnetworks selected from global
models, tailored to the varying capabilities of in-

dividual clients. HeteroFL (Diao et al., 2021)
appeared as the first method that adaptively allo-
cates subsets of global model parameters for local
training. ScaleFL (Ilhan et al., 2023) integrates a
resource-adaptive 2-D model downscaling mech-
anism along the width and depth dimensions by
leveraging early exits to find the best-fit models for
resource-aware local training.

Split Learning. Split learning addresses the re-
source heterogeneity between servers and clients by
splitting a large model into client-side and server-
side components (Thapa et al., 2022). For the first
time, FedBERT (Tian et al., 2022) leverages split
training for training the BERT model, showing the
feasibility of pre-training large FMs in FL settings.
FedSplitX (Shin et al., 2023b) is a more fine-grained
method that allows multiple partition points for
model splitting, accommodating diverse client ca-
pabilities.

4.2.3 Model Compression

Model compression refers to the techniques used
to reduce the size of models, thereby improving
communication and computational efficiency (Shah
and Lau, 2023).

Sparsification. Model sparsification methods re-
duce communication burden by only transmitting a
subset of FM parameters across the network (Jiang
etal., 2023c). Typical methods focus on identifying
and cultivating high-potential subnetworks (Fran-
kle and Carbin, 2019; Tsouvalas et al., 2023).

Quantization. Quantization is well-established
in both the FM and FL domains (Xu et al., 2024b;
Reisizadeh et al., 2020), which involves decreas-
ing the precision of floating-point parameters for
mitigating the storage, computational, and commu-
nication demands. Quantization is both effective
and easy to implement, making it ideal for use with
other resource-efficient methods (Lit et al., 2022).

4.2.4 Zeroth-Order Optimization

Distinct from the ubiquitous reliance on gradient
descent in most FL. optimization algorithms, a spe-
cific line of research advocates for the removal of
backpropagation (BP) (Malladi et al., 2023) in fa-
vor of Zeroth-Order Optimization (ZOO) (Fang
et al., 2022; Li and Chen, 2021). BP-free ap-
proaches conserve memory needed for computing
gradients and minimize communication overhead
for model aggregation (Qin et al., 2023), mak-
ing FMs more accessible for lower-end devices,



thereby enhancing their applicability in diverse
hardware environments of FL. Recent work based
on perturbed inferences, such as that by Xu et al.
(2023a); Qin et al. (2023), has initiated preliminary
explorations into the deployment of both FedPEFT
and full-model fine-tuning of billion-sized FMs,
like LLaMA, on mobile devices.

4.3 Trustworthiness

This line of work aims to enhance trustworthiness
throughout the FM-FL lifecycle, covering a variety
of key areas including, but not limited to, /P Pro-
tection, Attack Robustness, and Privacy Protection.

IP Protection. Existing IP protection involves
safeguarding ownership of FL. models from unau-
thorized use (e.g., model theft) (Tekgul et al., 2021).
Two common kinds of IP protection strategies are
watermarking and black-box tuning.
Watermarking is a well-known deterrence
method for model IP protection by providing the
identities for model owners to demonstrate owner-
ship of their models (Adi et al., 2018). Tekgul et al.
(2021) proposed WAFFLE, the first solution that
addresses the ownership problem by injecting a wa-
termark into the global model in FL environments.
Recently, Yu et al. (2023b) proposed DUW that
embeds a client-unique key into each clients local
model, aiming to identify the infringer of a leaked
model while verifying the FL models ownership.
Black-Box Tuning is a set of gradient-free meth-
ods to drive large language models. ZOO allows
for black-box fine-tuning in scenarios where direct
access to model parameters is restricted, e.g., due
to privacy concerns or proprietary limitations (Sun
et al., 2022b). Fed-BBPT (Lin et al., 2023) is a
general prompt tuning framework that facilitates
the joint training of a global lightweight prompt
generator across multiple clients. FedBPT (Sun
et al., 2023b) adopts a classic evolutionary-based
700 method, CMA-ES (Hansen and Ostermeier,
2001), for training an optimal prompt that improves
the performance of the frozen FMs. ZooPFL (Lu
et al., 2023b), on the other hand, applies coordinate-
wise gradient estimate to learn input surgery that
incorporates client-specific embeddings. Neverthe-
less, the pronounced slower convergence rates of
Z00 compared to gradient-based approaches in
high-dimensional settings (Golovin et al., 2020),
underscore a significant research gap. The impli-
cations of these slower rates on convergence effi-
ciency and computational burden in FL, especially

for large-scale FMs, remain insufficiently explored.

Differential Privacy. Differential Privacy (DP) is
a theoretical framework that governs privacy bound-
aries and manages the tradeoff between privacy and
model convergence (Wei et al., 2020). DP-based
FL approaches often add artificial noise (e.g., Gaus-
sian noise) to parameters at the clients side before
aggregating to prevent information leakage (Xu
et al., 2023c). Besides, DP is compatible with most
FedPEFT methods. For instance, Sun et al. (2024)
showed that DP noise can even be amplified by
the locally "semi-quadratic" nature of LoRA-based
methods, motivating the integration of LoRA with
DP to improve resource efficiency while maintain-
ing data privacy (Liu et al., 2023c). In terms of
attack, Gupta et al. (2022) presented an attack that
recovers private text data by extracting information
from gradients transmitted during training, despite
the employment of a naive DP mechanism.

S Future Directions & Applications

We highlight potential research directions and fu-
ture FL-FM applications in this section.

5.1 Future Directions

Personalization. FL on FMs can improve user
profiling by capturing more granular and diverse
data from individuals while preserving privacy.
This can lead to more accurate and comprehensive
user profiles, enabling personalized recommenda-
tions and services tailored to specific preferences,
needs, and contexts (Chen et al., 2023b). Users can
contribute their preferences, feedback, and insights,
allowing the models to learn directly from their
interactions and refine personalization algorithms
accordingly. Future research directions may incor-
porate multi-modal data, including text, images,
audio, and sensor data.

Model Compression. Future directions may in-
volve designing more efficient and lightweight
model compression techniques (Deng et al., 2020)
specifically tailored for FL systems to reduce the
computational and memory requirements of FMs
while maintaining their performance. They may
leverage multi-task learning approaches for model
sharing and parameter reuse across different tasks
or domains. Adaptive model compression tech-
niques could dynamically adjust the compression
level based on the available computing resources
or application requirements (Xu et al., 2023b).



Split Learning. Split learning (Thapa et al.,
2020) partitions the model, placing one part on
the client device and the other on the server. Future
developments may explore more sophisticated and
adaptive methods for partitioning the FMs, such as
adaptive model partitioning based on the compu-
tational capabilities and resources of the client de-
vices. Dynamic model partitioning techniques may
adjust the partitioning scheme at different stages of
the FL process.

Mixture of Experts (MoE). MoE allows FL to
incorporate multiple expert FMs, each specializ-
ing in different aspects or domains of the data. By
combining the expertise of these models, FL can
achieve higher model performance and accuracy.
MoE also allows FL and FM models to adapt to lo-
cal data characteristics present on individual client
devices. Bridging MoE with FMs could strengthen
generalization ability by balancing between larger
overall model capacity and flexible per-instance
specialization (Cong et al., 2023).

Privacy Preservation. Advanced model aggre-
gation methods can be designed to incorporate pri-
vacy awareness when performing FL on FMs. This
includes techniques to control the amount of infor-
mation leaked during the aggregation process and
mechanisms to enforce privacy guarantees while
maintaining the accuracy and utility of the aggre-
gated model (Nagy et al., 2023). As privacy con-
cerns continue to grow, future developments may
involve the establishment of privacy regulations
and standards specifically tailored for FL. and FMs.

Continual Learning. Continual learning enables
models to adapt to new data over time, improving
their performance and accuracy. By incorporat-
ing new data into the model training process, FL
and FMs can continuously improve and adapt to
changing environments and user needs (Yang et al.,
2023b). Future directions may involve leveraging
transfer learning techniques in continual learning
for FL and FMs. Models can transfer knowledge
from previous tasks or domains to new ones, en-
abling more efficient learning and adaptation (Good
et al., 2023).

Resource-Efficiency. FL-FM enables collabora-
tive training, model adaptation, and utilization of
FMs for a wide range of novel and powerful appli-
cations on heterogeneous edge devices (Shen et al.,
2024; Xu et al., 2024b). The design and adaptation

of the FM models, optimization of computation
and communication, and coordination among het-
erogeneous edge devices and the cloud remain to
be further explored in this new era.

5.2 Domain-Specific Applications

In this section, we discuss how FM-FL can be uti-
lized in several representative domains.

Healthcare. FL and FMs enable the development
of personalized medical applications. By training
with massive individual patient data, such as medi-
cal history, genetics, and lifestyle factors, the mod-
els can learn global patterns and provide tailored
recommendations for treatment, medication, and
prevention strategies.

Law, Finance and Banking. FL can support
the training of FMs on massive legal documents,
cases, and statutes (Zhang et al., 2023b). The mod-
els can assist in identifying key legal arguments,
summarizing case details, providing insights, and
making predictive analytics into potential case out-
comes (Yue et al., 2023). FL can build FMs that
support risk management applications in banking
and finance. By analyzing aggregated data from
multiple sources, such as credit scores, market data,
and economic trends, the models can support risk
assessment, credit scoring, and investment manage-
ment (Shin et al., 2023a). FM-FL models trained
on historical investment data and market trends can
support investment opportunities, analyze invest-
ment risks, and assist in portfolio optimization.

Education and Personal Agents. FL can be used
to train FMs for intelligent tutoring systems to sup-
port individual student learning. Personalized foun-
dation models can provide customized and person-
alized responses to users based on their individual
interests, preferences, behavior, and history.

6 Conclusions

In this survey, we have meticulously surveyed the
intersection of FM and FL. We identified three lev-
els of challenges: task-level, system-level as well
as trustworthiness challenges, and proposed a com-
prehensive taxonomy of techniques in response to
these challenges. In addition, we discussed future
directions and applications in this research field,
hoping to attract more breakthroughs in future re-
search.



Limitations

FM and FL are very fast-moving fields. We have
put a lot of effort to include the latest research
efforts in the community in this survey. The ma-
jority of the papers referenced in our taxonomy
are indeed from 2023 which also demonstrates the
importance of the integration of FM and FL. There-
fore, we believe that our survey will help to inspire
and push further research and innovation in this
important areas. Our survey does not include any
benchmarking of the available ideas and systems.
We believe that would be an important next step
that we are leaving to future work. It would, how-
ever, require some tools to support such an evalua-
tion campaign and such tools are, to the best of our
knowledge, not available yet.
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