
FLOWER: Democratizing Generalist Robot Policies
with Efficient Vision-Language-Action Flow Policies

Moritz Reuss1 Hongyi Zhou1 Marcel Rühle1 Ömer Erdinç Yağmurlu1

Fabian Otto2 Rudolf Lioutikov1

1Intuitive Robots Lab, Karlsruhe Institute of Technology, Germany 2Microsoft Research

Abstract: Developing efficient Vision-Language-Action (VLA) policies is cru-
cial for practical robotics deployment, yet current approaches face prohibitive
computational costs and resource requirements. Existing diffusion-based VLA
policies require multi-billion-parameter models and massive datasets to achieve
strong performance. We tackle this efficiency challenge with two contributions:
intermediate-modality fusion, which reallocates capacity to the diffusion head
by pruning up to 50% of LLM layers, and action-specific Global-AdaLN con-
ditioning, which cuts parameters by 20% through modular adaptation. We in-
tegrate these advances into a novel 950 M-parameter VLA called FLOWER.
Pretrained in just 200 H100 GPU hours, FLOWER delivers competitive perfor-
mance with bigger VLAs across 190 tasks spanning ten simulation and real-
world benchmarks and demonstrates robustness across diverse robotic embodi-
ments. In addition, FLOWER achieves a new SoTA of 4.53 on the CALVIN
ABC benchmark. Demos, code and pretrained weights are available at https:
//intuitive-robots.github.io/flower_vla/.

Keywords: Imitation Learning, VLA,Language-conditioned Manipulation

1 Introduction

Generalist robotic manipulation policies that execute diverse tasks across different embodiments
remain a key goal in robotics. Recent advances in Imitation Learning (IL) have made significant
progress toward this vision, particularly along the direction of generalist Vision-Language-Action-
Model (VLA) Policies [2, 1, 3]. VLAs fine-tune pretrained Vision-Language-Models (VLMs) to
generate robot actions from free-form language commands [2, 1, 3]. These models commonly
adopt discrete [4, 1, 5, 6] or diffusion-based objectives [7, 8, 9] for action prediction. In partic-
ular, diffusion- and flow-based action generation excel at modeling complex, multimodal action
distributions and have been successfully adopted for VLAs [8, 7, 10]. While VLAs offer many
advantages, they have a major limitation: Current VLAs such as OpenVLA [1] and RDT-1B [8]
contain several billion parameters and they require a lot of compute for pretraining, fine-tuning and
real-robot deployment. This barrier limits access to more diverse research in the field.

In this work, we present contributions and insights that result in an efficient VLA policy that con-
tains fewer than 1 billion parameters while matching current SoTA VLAs on 190 tasks across 10
benchmarks with 4 embodiments. As illustrated in Figure 1, dedicating most parameters to a deep,
off-the-shelf VLM backbone forces the diffusion head to be severely under-parameterized for mod-
eling rich, multimodal robot trajectories; conversely, shrinking the VLM to free up capacity strips
away semantic features essential for robust instruction conditioning. Moreover, relying on the full
VLM for denoising significantly slows convergence during training and increases inference latency.

Correspondence to: moritz.reuss@kit.edu

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://intuitive-robots.github.io/flower_vla/
https://intuitive-robots.github.io/flower_vla/

VLM
Diffusion

HeadVLM Diffusion
Transformer

Early VLM Layers

Late Fusion VLA:Early Fusion VLA: Intermediate Fusion VLA (ours):

noise

noise

noise

Cont. actions
Cont. actions Cont. actions

Late VLM Layers

DP OpenVLA π0 FLOWER
0

2

4

6

8

10

12

14

16

0.52

14.57

6.69

1.85

V
R
A
M

[G
B
]

DP OpenVLA π0 FLOWER
0

2

4

6

8

10

12

14

16

0.52

14.57

6.69

1.85

V
R
A
M

[G
B
]

(a) Small GPU Memory

OpenVLA RDT-1B FLOWER
0

1

2

3

4
·104

21500

35000

192
P
re
tr
ai
n
in
g
G
P
U

H
ou

rs
[h
]

(b) Less Compute

FLOWER (ours) Octo π0

OpenVLA DP

CALVIN ABC

CALVIN ABCDSIMPLER Bridge

SIMPLER
Google Robot

Aloha Sim

LIBERO Long
LIBERO Spatial

Kitchen
Single Task

Kitchen
Generalization

0.91

0.93

0.40

0.32

0.54

0.94

0.97

0.61

0.51

0.66

0.10

(c) Strong Performance

Figure 1: Intermediate fusion for efficient VLA policies. Our fusion strategy (top-right) strategi-
cally prunes VLM layers while enhancing Flow Transformer capacity in parameter-constrained set-
tings. This approach informs FLOWER, a novel, 950M VLA that achieves competitive performance
across 10 benchmarks using only 1% of the pretraining compute of models like OpenVLA [1], while
maintaining a small memory footprint across diverse embodiments and action spaces (bottom).

To resolve this budget–tradeoff, we introduce four key contributions. First, we propose intermediate-
level fusion: we prune between 30% and 50% of the pretrained VLM’s layers and condition our Flow
Transformer on the resulting intermediate embeddings, thereby retaining semantic grounding while
reclaiming parameters. Second, we develop a global action-space AdaLN mechanism: an action-
specific LayerNorm controller within the diffusion transformer that reduces head parameters by 20%
without any loss of accuracy or expressivity. Third, we provide extensive ablations across multiple
benchmarks that evaluate design choices and yield additional insights into which VLM architectures
and pretraining objectives are best suited for efficient VLA adoption.

Leveraging these contributions and insights, we present our fourth contribution: Florence With
Embodied Flow (FLOWER), a 950M parameter VLA policy that converges quickly, cuts pretrain-
ing cost on heterogeneous robotics data by 99%, and yields competitive performance with current
VLAs across 190 tasks in 10 benchmarks across simulation and real world settings.

2 Related Work

Early imitation-learning studies demonstrated that policy performance scales with dataset size.
For example, Pinto and Gupta [11] used over 50K grasps and observed steady improvements
in manipulation proficiency. Building on this, the OXE benchmark provided 1.4M trajectories
across more than 20 robot embodiments, enabling research into generalist policies [6]. Several
diffusion-policy approaches directly train on OXE without leveraging pretrained VLMs. Octo [3]
applies a transformer-based diffusion policy to delta end-effector actions but lacks a pretrained vi-
sion–language encoder and model capacity, which limits its generalization as observed on bench-
marks such as SIMPLER [12]. RDT introduces a 1.2B-parameter diffusion transformer paired with
an 11.4B-parameter pretrained language encoder model and Vision Transformer (ViT). However,
its one-month pretraining on 48 A100 GPUs highlights the need for more computationally efficient
VLA pretraining [8]. Addressing this need, our contributions yield versatile VLAs in only 200 GPU
hours of pretraining.

2

To address generalization, recent methods incorporate large pretrained VLMs into the policy. Open-
VLA fine-tunes a 7.7B-parameter VLM for discrete end-effector action prediction, yet its size
makes real-robot deployment challenging [1]. Several other VLAs apply discrete action predic-
tion [2, 13, 5, 14, 15, 16]. RoboDual improves upon OpenVLA, by integrating a small diffusion
transformer with OpenVLA via asynchronous updates, while Latent Bridge uses a fine-tuned VLM
to generate latent commands that condition a diffusion policy [17, 18]. Similar to FLOWER, π0

[7] and GR00T-N1 [9], also introduce generalist flow-based VLA with more than 2B parameters,
which are both trained on a closed-source cross-embodiment datasets. Despite their effectiveness,
these approaches retain very large VLMs with high-memory requirements and slow convergence.
In contrast, FLOWER matches these methods with less than 1 billion parameters and significantly
lower memory and fully open source training.

Efforts to reduce model size and finetuning overhead include using smaller VLM backbones or al-
ternative fusion strategies. TinyVLA attaches a compact diffusion head to a lightweight VLM with a
late-fusion approach and no pretraining [19]. Fusion strategies range from early fusion, that merges
raw VLM outputs with the action generator at the input stage, to late fusion, where modalities are
processed separately and combined only after independent streams [19, 8, 20, 21]. In contrast,
intermediate fusion (our contribution) injects mid-level VLM tokens into the Flow Transformer, al-
lowing selective pruning of the VLM while preserving semantic richness. While DeerVLA [22] has
explored early exit strategies for continuous action prediction VLAs, FLOWER significantly sur-
passes it across benchmarks by wide margins thanks to our novel flow-based fusion design. Beyond
model architecture, the choice of data sources and automated data collection are key to pretraining
robust policies. Concurrent work has also explored intermediate-fusion [9] without any ablation and
insights on the impact. FLOWER advances efficient VLAs using intermediate-modality fusion and
global-adaln conditioning, enabling faster training and inference while achieving SoTA performance
on diverse benchmarks.

3 Method

We learn an efficient, generalist policy πθ that generates actions conditioned on state st, text goal
tokens gt, and meta-embodiment information ei. This task is challenging due to heterogeneity in
action spaces (varying degrees-of-freedom, control modes), observation spaces (different sensors),
and task specifications (diverse language goals). Given trajectories from multiple embodiments, we
learn a unified policy that generalizes across robots, tasks, and observation formats by maximizing
LIL = E(s,a,g,e)∼D[log πθ(a | s, g, e)].

3.1 Intermediate Modality Fusion Vision-Language-Action-Models

On a high level, flow-based VLA consists of two main components: A VLM pretrained on internet-
scale vision and text data to encode state information and text and a flow prediction module to
generate a sequence of actions conditioned on the current context from Gaussian noise.

We propose to fuse pretrained vision–language representations with Flow Transformer embeddings
at an intermediate stage to balance semantic depth and computational efficiency. Prior work in
Large-Language-Model (LLM) explainability shows that features from the penultimate quarter of
transformer layers capture broad semantics, whereas final layers specialize in next-token prediction
[23]. Accordingly, this motivates our VLA fusion strategy to extract hidden states from an inter-
mediate layer of the VLM backbone after jointly encoding visual (ViT) and textual tokens. These
intermediate features preserve rich context without overspecialization for next-token prediction and
reduced computational cost to enable more efficient VLA design. We prune the VLM based on its
architecture: For Encoder–Decoder VLMs (Florence-2 [24]), we remove the full decoder, keep-
ing only the encoder LLM layers. This reduces the number of layers by 50% while increasing its
performance and efficiency. For Decoder-Only VLMs (SmolFlow2-Video [25]), we drop the final
30% of transformer layers. This targeted pruning cuts 20–35% of parameters and reduces per-step

3

Agent Type: … Action Space: .. Task:
…

….

….

MLP +
Sinusoidal

MLP +

Sinusoidal MLP

Frequency ProprioFlow Timestep

Action Space Decoder

Flow Transformer

Noise Sequence

Continuous Action Sequence

Action-Space specific Modules

Action Space Decoder

or

Action-Space Global

AdaLNEarly VLM Layers

Late VLM Layers

Vision Tokens

Language Tokens

Action Tokens

Meta & Noise Tokens

Figure 2: FLOWER architecture. A fine-tuned VLM processes multimodal inputs and integrates
intermediate features into a Flow Transformer via cross-attention. The model predicts velocity fields
using action-space Global AdaLN-Zero conditioning with embodiment and temporal metadata.

latency. In Subsection 4.1, we provide ablations to verify our intermediate fusion design. The full
architecture is visualized in Figure 2.

Next, we take the projected VLM latent tokens and inject them into the Flow Transformer via
cross-attention. Specifically, we map the VLM hidden states through a linear layer followed by
RMSNorm [26] for increased stability. This design conditions each Flow layer on semantically rich
VLM features, preserving spatial and contextual structure and enabling faster policy convergence
without the late fusion overhead.

3.2 Cross-Action Space Flow Transformer

Scale & Shift

Cross-Attention

with QK-Norm

SwiGlu

Scale & Shift

Scale

RMS Norm

Self-Attention with

QK-Norm

Scale & Shift

RMS Norm

AdaLN

Scale & Shift

Cross-Attention

with QK-Norm

SwiGlu

Scale & Shift

Scale

RMS Norm

Self-Attention with

QK-Norm

Scale & Shift

RMS Norm

Global

AdaLN

LORA

AdaLN

AdaLN

LORA

LORA

Standard

AdaLN:

Global

AdaLN:

Vision Tokens

Lang. Tokens

Action Tokens

Meta & Noise

Tokens

Legend

Figure 3: Comparison of standard DiT blocks and our pro-
posed Global AdaLN with layer-specific Lora adapters.

We design a novel, efficient Flow
Transformer to handle heterogeneous
action spaces efficiently. In par-
ticular, we introduce Action-Space
Global-AdaLN-Zero, a unified nor-
malization layer that conditions each
transformer block on both temporal
signals (e.g., flow time step) and per-
action-type embeddings without in-
curring large parameter overheads, as
illustrated in Figure 3.

Standard AdaLN-Zero uses distinct
scale-and-shift parameters per layer,
adding up to 30% extra parameters in
diffusion transformers [27]. In contrast, Action-Space Global-AdaLN-Zero shares a single set of
modulation weights across all layers, while generating unique modulation signals for each action
category (e.g., delta-EEF vs. joint angle), initialized with zeros for stable training. This reduces
parameter count by over 20% compared to naive AdaLN-Zero, yet preserves adaptation to action-
space statistics. Given this lower per-layer expressiveness, we additionally inject lightweight LoRA
adapters into each layer. This provides fine-grained, layer-specific modulation with only a few extra
parameters per block. Additionally, each action type uses a small encoder/decoder to map actions
into/out of the transformer latent space, enabling consistent handling of differing action dimensions
without sacrificing weight sharing.

4

SIMPLER
Google Robot & BridgeLIBERO CALVIN Aloha Real World Kitchen Generalization

Figure 4: Simulation Environments used to test FLOWER. From left to right: CALVIN [34],
LIBERO [35], SIMPLER [12] with the Bridge and Google Robot variants and Aloha Simulation
Benchmark [36]. Real world multi-task kitchen setup and generalization experiments with cluttered
scenes, different lightning and novel objects.

3.3 Rectified Flow for Action Generation

We utilize Rectified Flow for generating actions. Flow models use straight-line velocity fields be-
tween noise and data distributions [28, 29]. This approach reduces inference computation while
maintaining expressiveness, which crucial for policies where latency matters. For conditional action
distribution πθ (ān,k|s̄n, g, e), the trajectory interpolation follows:

zt = (1− t)ān,k + tz1, z1 ∼ N (0, I), (1)

where t ∈ [0, 1] is normalized flow time sampled from t ∼ σ(N (0, I)), ān,k ∈ Rda is the ground
truth action sequence, and z1 is standard Gaussian noise. The model optimizes:

L(θ) = Et,z1

[
∥z1 − ān,k − vθ(zt, t, s̄n, g, e)∥2

]
, (2)

where vθ is the flow model conditioned on state s̄, language goal g, and embodiment e. Inference
requires only N = 4 denoising steps for single-arm and N = 8 for high-frequency dual-arm settings.

3.4 FLOWER: Efficient Flow-based Vision-Language-Action Models

Leveraging our contributions and insights in intermediate fusion and Global-AdaLN, we present
FLOWER: a compact, efficient VLA policy with exceptional performance-to-parameter ratio.
FLOWER uses half of the Florence-2-L VLM as its primary backbone, which our ablations show
provides optimal performance for robotic manipulation tasks. The model employs an 18-layer Flow
Transformer with 1024 latent dimension. Together with the action-specific modules, FLOWER has
947M parameters in total and only requires 1.85 GB of VRAM. This architecture achieves the com-
putational efficiency required for real-time deployment

Cost-Effective Pretraining Setup. To enable fast, cost-efficient pretraining, FLOWER uses a
small, carefully chosen “OXE-soup” of eight public robotic datasets (approximately 250k trajec-
tories total). We prioritize broad scene and embodiment diversity—including Franka Pandas and
XARMs—and, inspired by Lin et al. [30]. 75% of our data samples from Droid [31], Google Robot
[13], and BridgeV2 [32]. Unlike most OXE datasets, these data are gathered in varied environments
with rich distractions, backgrounds, and objects. We use an action chunk length of 20 and a single
static image input [23, 33]. By training on a compact mixture of 74% delta-EEF and 26% single-arm
joint-state data, we complete 360, 000 steps in 48 h (≈ 200 GPU-hours). Extending the run yields
no further gains (see App. A). To identify this optimum, we track zero-shot success on the Bridge
SIMPLER benchmark [12], observing that FLOWER Bridge performance stagnates thereafter.

4 Evaluation

We aim to answer the following research questions in our experiments: (RQ I) How do the proposed
design elements of our novel VLA architecture impact performance? (RQ II) Does our VLA-design
deliver strong performance while significantly reducing computational demands compared to sota
VLA policies across diverse settings? (RQ III) Can we train a VLA policy with less than 1B pa-
rameters that handles robot embodiments (e. g., single-arm vs. dual-arm, delta-EEF vs. joint angles)

5

Fusion
Strategy

Success Rate (%)
Florence-VLM SMol-VLM

C-ABC L-Long C-ABC L-Long
Early 57.1± 5.3 33.4± 6.0 25.8± 3.9 44.5± 2.7
Inter. 89.5± 1.0 93.4± 2.0 72.1± 5.0 70.7± 2.3
Late 71.2± 2.2 61.8± 2.5 66.3± 2.0 69.2± 1.9

Table 1: Evaluation of different VLA fusion strategies.
Intermediate fusion yields the best performance across both
VLM types.

Layers Model
C-ABC L-Long

Full 66.3± 2.0 69.2± 1.9
0.2 68.6± 3.2 71.8± 3.7
0.3 72.1± 5.0 70.7± 2.3
0.5 66.4± 6.4 62.5± 3.5

Table 2: Comparing Layer
Pruning for CALVIN ABC and
LIBERO Long.

and robustly transfers to unseen environments, novel objects, and varying conditions? We evaluate
our method across more than 190 tasks in 10 different benchmarks to answer these questions.

4.1 Evaluation of Critical Design Decisions for Efficient Flow VLAs

In this section, we evaluate the key design decisions that impact the efficiency and performance of
small Flow-based VLAs across two benchmarks: CALVIN ABC [34] and LIBERO-Long [35]. We
train each policy variant with 3 seeds for up to 100k steps and report the average performance. While
CALVIN-ABC focuses on generalization for free form instruction following to solve 34 different
task, LIBERO-Long emphasizes long-horizon task completion. Both benchmarks are established
for testing VLAs and provide useful insights into optimal design.

Does intermediate fusion provide strong performance with higher efficiency? The fusion strat-
egy determines how the VLM’s vision-language features integrate with the action prediction model.
We compare three strategies: early fusion (combining noise token with VLM tokens at LLM level),
our proposed intermediate fusion, and late fusion (using final VLM outputs to condition the flow
prediction module). As shown in Table 1 and Table 2, intermediate fusion outperforms alternatives
with both model variants and on both benchmarks. With Florence-VLM, it achieves 93.4% success
on LIBERO-Long, a 61 percentage point improvement over early fusion (33.4%) and 21 points over
late fusion (73%). This confirms our hypothesis that intermediate-layer features provide an optimal
balance of semantic richness and computational efficiency, addressing (RQ I).

Variant Avg. Len.
FLOWER 4.44±0.04
+ standard AdaLN 4.43±0.03
- Flow Head 3.33±0.04
- Custom LR 4.40±0.05
- No VLM train 2.65±0.36
+ small Florence 4.26±0.04
- VLM 3.42±0.07
+ Discrete Token 1.12±0.12
+ Smaller Head 2.60 ±0.09

Table 3: Average Sequence
Lengths for FLOWER Abla-
tions on CALVIN ABC.

What type of VLM backbone is best for efficient VLAs? We
explore different VLM backbones, comparing Florence-2-L [24]
and SmolFlow-500M [25]. Beyond their architectural differences
(Florence-2 being encoder-decoder and SmolFlow decoder-only),
their pretraining objectives significantly differ. Florence-2 was
trained on FLD-5B (5.4 billion annotations across 126 million im-
ages) with emphasis on object detection, segmentation and visual
grounding, while SmolFlow’s pretraining prioritizes general rea-
soning and language understanding capabilities across text, videos
and images. This is representative for a standard VLM pretraining.
Our experiments confirm that Florence-2’s pretraining translates
more effectively to robotic manipulation tasks, further addressing
(RQ I). We therefore use the Florence-2 variant of FLOWER for all subsequent experiments.

Does Global-AdaLN enable more efficient Flow Transformers? Next, we compare our proposed
Global-AdaLN against default AdaLN used in prior work [37, 38] for our Florence-based FLOWER
model on CALVIN ABC. The results in Table 3 demonstrate that our proposed Global AdaLN
enables relevant parameter reduction of 20% without reducing the performance.

Do we need a large-capacity Diffusion Transformer? Next, we test FLOWER with a small action
head using 384 latent dimensions and 6 layers. The final model only achieves significantly lower
average performance of 2.60 compared to our design. This confirms that having a high capacity
Diffusion Transformer is crucial for performance.

What other design choices matter? Finally, we test our VLA with several ablations variants using
the Florence2 version on CALVIN ABC (Table 3). The smaller Florence reduces performance
notably, while the frozen VLM has an even bigger negative impact on performance. In addition,

6

C-D C-ABC C-ABCD L-SGOL L-90 S-Bridge Simpler Google Aloha
0

50

100

R
o
b
o
U
n
iV

ie
w

V
P
P

M
D
T

O
p
en

V
L
A
-O

F
T

M
o
D
E

C
F
o
rm

R
T
-1
X

A
C
T

60

27

63

72

78

25

66

77

62

2

24

95

36

77

87
90

97 95

30

42

54

87
91 93

96 95

45

32

54
A
v
g.

S
u
cc
es
s
R
at
e
(%

)

DP OpenVLA π0 Best-Baseline FLOWER

Figure 5: Simulation Results for FLOWER We report average results for various benchmarks
against relevant baselines. For brevity we reduce the shown baselines to most relevant ones but
provide detailed results for each benchmark (see Appendix B. C refers to CALVIN and L refers to
LIBERO. SGOL refers to average results for LIBERO Object, Goal, Spatial and Long.

our custom Learning Rate scheduler increases performance. Finally, we compare FLOWER with
an L1-prediction head like ACT [36] and a discrete token variant to demonstrate the importance of
using flow prediction. These findings complete our analysis for (RQ I).

4.2 Simulation Experiments

Next, we take the best performing VLA variant, FLOWER, with the Florence-2-L backbone and
pretrain it on our pretraining mix. After pretraining, we evaluate FLOWER across multiple simu-
lation benchmarks to assess its performance, generalization capabilities, and adaptation to different
robotic environments using finetuning.

Benchmark Evaluation. We evaluate FLOWER on four established benchmark suites represent-
ing diverse robotic manipulation challenges: CALVIN [34] features 34 tabletop manipulation tasks
with a Franka Panda robot using delta end-effector control across four scene configurations (splits
A-D). The dataset contains 24,000 language-annotated demonstrations. We evaluate three settings:
CALVIN D, CALVIN ABC (zero-shot generalization), and CALVIN ABCD (scaling with more
data). Performance is measured by success rates on sequential tasks and mean sequence length
completion. All evaluations require policies to follow free-form language instructions and complete
5 tasks in sequence across 1,000 different instruction chains. LIBERO [35] tests a delta-EEF con-
trolled Panda Robot across various scenes and challenges. We report results on four specialized
variants with 10 tasks each (Long, Spatial, Object, and Goal) and separately on LIBERO-90, which
requires policies to solve 90 different tasks in diverse scenes. Success is measured as the percentage
of successful task completions across 50 trials per task (20 for LIBERO-90). Aloha [36] simulation
tasks evaluate bi-manual joint state manipulation, requiring high-frequency control (50Hz), where
tasks include cube transfer and peg insertion. SIMPLER [12] provides evaluation after pretraining
on real2sim environments with Bridge and Google Robot variants.

Baselines. We compare our VLA against sota VLA policies and specialized approaches, using
results reported in prior publications for fair comparison. Our primary comparisons are with Open-
VLA [1] (7.7B parameters), π0 [7] (3.3B parameters), and a standard Diffusion Policy using a CNN
[39]. We provide detailed comparisons against additional relevant baselines for each benchmark in
Appendix B, including video-based VLAs like VPP [20], and specialized policies like Baku [40].

Results. The results for these experiments are summarized in Figure 5. FLOWER consistently
matches or surpasses all current SoTA approaches across all reported benchmarks. Notably, it sur-
passes OpenVLA on CALVIN and LIBERO by wide margins despite its smaller size and faster
training. It also outperforms π0 on the LIBERO and ALOHA benchmarks. Overall, these results
demonstrate the versatility of FLOWER to adapt do diverse embodiments and task settings. These
results confirm that FLOWER provides strong performance at low computational cost (RQ II) and
demonstrates generalization to unseen environment settings (RQ III).

7

Single Task Generalization
0

0.2

0.4

0.6

0.8

0.10

0.21

0.31

0.23

0.61

0.51

A
v
g.

S
u
cc
es
s
R
at
e

Octo CrossFormer OpenVLA FLOWER

(a) Real World Results for different Generalist Poli-
cies finetuned on a Franka Panda Kitchen Setup.

Generalization Scenario FLOWER OpenVLA
Novel Object 33.3% 10.0%
Flashlight 50.0% 25.0%
BG Distractors 69.5% 41.7%
New Tasks Composition 51.1% 16.7%

Average 51.0% 23.4%

(b) Generalization Results comparing FLOWER
and OpenVLA across different scenarios.

Figure 6: Real World Results for Multi-Task and Generalization Experiments

4.3 Real-World Evaluation and Generalization

Next, we want to verify our results from simulation in a real world setup. Therefore, we evaluate
FLOWER in a real-world kitchen setting with a Franka Panda Robot across 20 distinct tasks in-
volving various objects. The training data consists of 417 language-annotated trajectories from 45
minutes of human demonstrations collected via kinesthetic teaching. All Policies are finetuned in
joint state space at 6 Hz. An overview of various tasks is shown in Figure 4 and we additionally pro-
vide rollouts in our project page. We compare FLOWER against several generalist VLA policies:
Octo [3], OpenVLA [1], and CrossFormer [41], all finetuned on our dataset using recommended
hyperparameters (see subsubsection B.2.1 for details).

Results. First, we test all policies on instruction following for all 20 different tasks. Each task is
evaluated five times from randomized starting positions. As shown in Figure 6a, FLOWER achieves
the highest average success rate (61%), doubling the performance of the second-best baseline, Open-
VLA (31%). These results address (RQ II) by demonstrating FLOWER’s strong performance com-
pared to state-of-the-art baselines in real-world settings.

Generalization Analysis. We further test FLOWER’s generalization capabilities against OpenVLA
under challenging conditions: novel objects, flashlight-only lighting, background distractors, and
new task compositions. As summarized in Figure 6b, FLOWER consistently outperforms OpenVLA
across all scenarios, averaging 51.0% success compared to OpenVLA’s 23.4%. These experiments
verify that FLOWER can effectively adapt to unstructured, real-world variations (RQ III), though it
still faces challenges with fine manipulation in highly cluttered environments.

Method Throughput (Hz)↑ Latency (s)↓ VRAM (MB)↓
DP (0.26B) 130.67 0.341 517
OpenVLA (7B) 6.09 0.164 14574
π0 (3.3B) 288.11 0.104 6692
FLOWER+LF(1.15B) 287.36 0.055 2235
FLOWER (0.95B) 311.04 0.052 1848

Table 4: Mean inference efficiency (1000 steps in
Bf16). All policies except OpenVLA use chunk
length 50. LF refers to Late Fusion Ablation of
FLOWER with the complete VLM.

Inference Efficiency. We evaluated FLOWER
against baselines on an RTX 4090 GPU (Ta-
ble 4). FLOWER achieves a throughput of
311Hz, making it 8% faster than π0 (288Hz),
and 5007% faster than OpenVLA (6.1Hz).
FLOWER has the lowest memory footprint
among VLAs, using 27.6% of π0’s memory and
12.7% of OpenVLA’s, making it ideal for com-
modity hardware. These results strongly support (RQ II).

5 Conclusion

We introduced several contributions for efficient VLAs: intermediate-level fusion that preserves
semantic understanding while pruning 30-50% of VLM layers, and global action-space AdaLN
that reduces transformer head parameters by 20% without compromising expressivity. These tech-
niques enable compact yet powerful flow-based VLAs. This yields FLOWER, an efficient VLA that
matches current state-of-the-art VLAs across 190 tasks in 10 benchmarks, despite requiring only
950M parameters and 200 GPU hours for pretraining.

8

6 Limitations

Despite its advantages, FLOWER still has several limitations. First, it relies on an iterative sam-
pling procedure, which is inherently slower than a single forward pass from deterministic policies.
Second, we have validated FLOWER primarily on three manipulation action spaces; its ability to
generalize to other embodiments, such as mobile navigation or humanoid locomotion, remains un-
explored and is an important direction for future work. Third, pretraining performance for zero-
shot deployment on the SIMPLER Google Robot benchmark indicates that further improvements
are needed. We hypothesize that the generalization tested in SIMPLER benefits from larger mod-
els. Fourth, although FLOWER is considerably smaller than most state-of-the-art VLA models, its
≈ 1 B-parameter size may still present deployment challenges in low-resource or real-time settings.
Fifth, eight out of our ten used benchmarks are conducted in simulation, limiting the extent to which
our results can be taken as evidence of real-world generalization.

7 Acknowledgments

The work was funded by the German Research Foundation (DFG) – 448648559. The authors also
acknowledge support by the state of Baden-Württemberg through HoreKa supercomputer funded
by the Ministry of Science, Research and the Arts Baden-Württemberg and by the German Federal
Ministry of Education and Research.

References
[1] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,

G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Ju-
lian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,
I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-
1: Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817,
2022.

[3] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
C. Xu, J. Luo, T. Kreiman, Y. Tan, D. Sadigh, C. Finn, and S. Levine. Octo: An open-source
generalist robot policy. https://octo-models.github.io, 2023.

[4] X. Li, P. Li, M. Liu, D. Wang, J. Liu, B. Kang, X. Ma, T. Kong, H. Zhang, and H. Liu.
Towards generalist robot policies: What matters in building vision-language-action models.
arXiv preprint arXiv:2412.14058, 2024.

[5] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023.

[6] O. X.-E. Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023.

[7] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. pi 0: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024.

[8] S. Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su, and J. Zhu. Rdt-1b: a diffusion
foundation model for bimanual manipulation. arXiv preprint arXiv:2410.07864, 2024.

9

https://octo-models.github.io
https://arxiv.org/abs/2310.08864

[9] J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding, L. Fan, Y. Fang, D. Fox, F. Hu,
S. Huang, et al. Gr00t n1: An open foundation model for generalist humanoid robots. arXiv
preprint arXiv:2503.14734, 2025.

[10] M. Reuss, J. Pari, P. Agrawal, and R. Lioutikov. Efficient diffusion transformer policies with
mixture of expert denoisers for multitask learning, 2024.

[11] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages
3406–3413. IEEE, 2016.

[12] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, S. Levine, J. Wu, C. Finn, H. Su, Q. Vuong, and T. Xiao. Evaluating real-world robot
manipulation policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

[13] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[14] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza, T. Davchev, Y. Zhou,
A. Gupta, A. Raju, et al. Robocat: A self-improving foundation agent for robotic manipulation.
arXiv preprint arXiv:2306.11706, 2023.

[15] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On
bringing robots home. arXiv preprint arXiv:2311.16098, 2023.

[16] H. Etukuru, N. Naka, Z. Hu, S. Lee, J. Mehu, A. Edsinger, C. Paxton, S. Chintala, L. Pinto,
and N. M. M. Shafiullah. Robot utility models: General policies for zero-shot deployment in
new environments. arXiv preprint arXiv:2409.05865, 2024.

[17] Q. Bu, H. Li, L. Chen, J. Cai, J. Zeng, H. Cui, M. Yao, and Y. Qiao. Towards synergistic, gen-
eralized, and efficient dual-system for robotic manipulation. arXiv preprint arXiv:2410.08001,
2024.

[18] Y. Shentu, P. Wu, A. Rajeswaran, and P. Abbeel. From llms to actions: Latent codes as bridges
in hierarchical robot control. arXiv preprint arXiv:2405.04798, 2024.

[19] J. Wen, Y. Zhu, J. Li, M. Zhu, K. Wu, Z. Xu, N. Liu, R. Cheng, C. Shen, Y. Peng, et al.
Tinyvla: Towards fast, data-efficient vision-language-action models for robotic manipulation.
arXiv preprint arXiv:2409.12514, 2024.

[20] Y. Hu, Y. Guo, P. Wang, X. Chen, Y.-J. Wang, J. Zhang, K. Sreenath, C. Lu, and J. Chen. Video
prediction policy: A generalist robot policy with predictive visual representations, 2024. URL
https://arxiv.org/abs/2412.14803.

[21] J. Li, Y. Zhu, Z. Tang, J. Wen, M. Zhu, X. Liu, C. Li, R. Cheng, Y. Peng, and F. Feng. Improv-
ing vision-language-action models via chain-of-affordance. arXiv preprint arXiv:2412.20451,
2024.

[22] Y. Yue, Y. Wang, B. Kang, Y. Han, S. Wang, S. Song, J. Feng, and G. Huang. Deer-vla: Dy-
namic inference of multimodal large language models for efficient robot execution. Advances
in Neural Information Processing Systems, 37:56619–56643, 2024.

[23] L. Gao, T. D. la Tour, H. Tillman, G. Goh, R. Troll, A. Radford, I. Sutskever, J. Leike, and
J. Wu. Scaling and evaluating sparse autoencoders. arXiv preprint arXiv:2406.04093, 2024.

[24] B. Xiao, H. Wu, W. Xu, X. Dai, H. Hu, Y. Lu, M. Zeng, C. Liu, and L. Yuan. Florence-
2: Advancing a unified representation for a variety of vision tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4818–4829, 2024.

10

https://arxiv.org/abs/2412.14803

[25] A. Marafioti, O. Zohar, M. Farré, M. Noyan, E. Bakouch, P. Cuenca, C. Zakka, L. B. Allal,
A. Lozhkov, N. Tazi, V. Srivastav, J. Lochner, H. Larcher, M. Morlon, L. Tunstall, L. von
Werra, and T. Wolf. Smolvlm: Redefining small and efficient multimodal models. arXiv
preprint arXiv:2504.05299, 2025.

[26] B. Zhang and R. Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

[27] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[28] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

[29] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data
with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[30] F. Lin, Y. Hu, P. Sheng, C. Wen, J. You, and Y. Gao. Data scaling laws in imitation learning
for robotic manipulation. arXiv preprint arXiv:2410.18647, 2024.

[31] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma,
P. T. Miller, J. Wu, S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park,
I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mer-
cat, A. Rehman, P. R. Sanketi, A. Sharma, C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe,
T. Xiao, J. H. Yang, A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen, Q. Chen,
T. Chung, J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson,
C. Le, Y. Li, K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen,
A. O’Neill, R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang,
P. Yin, Y. Zhang, O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Ja-
yaraman, J. J. Lim, J. Malik, R. Martı́n-Martı́n, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu,
M. C. Yip, Y. Zhu, T. Kollar, S. Levine, and C. Finn. Droid: A large-scale in-the-wild robot
manipulation dataset. 2024.

[32] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. My-
ers, M. J. Kim, M. Du, et al. Bridgedata v2: A dataset for robot learning at scale. In Conference
on Robot Learning, pages 1723–1736. PMLR, 2023.

[33] P. Liu, Y. Orru, J. Vakil, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Ok-robot: What really
matters in integrating open-knowledge models for robotics. arXiv preprint arXiv:2401.12202,
2024.

[34] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters, 7(3):7327–7334, 2022.

[35] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowl-
edge transfer for lifelong robot learning. Advances in Neural Information Processing Systems,
36, 2024.

[36] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[37] M. Reuss, Ö. E. Yağmurlu, F. Wenzel, and R. Lioutikov. Multimodal diffusion transformer:
Learning versatile behavior from multimodal goals. In Robotics: Science and Systems, 2024.

[38] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
representations. arXiv preprint arXiv:2402.10885, 2024.

11

[39] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[40] S. Haldar, Z. Peng, and L. Pinto. Baku: An efficient transformer for multi-task policy learning.
arXiv preprint arXiv:2406.07539, 2024.

[41] R. Doshi, H. R. Walke, O. Mees, S. Dasari, and S. Levine. Scaling cross-embodied learning:
One policy for manipulation, navigation, locomotion and aviation. In 8th Annual Conference
on Robot Learning, 2024.

[42] S. Dasari, O. Mees, S. Zhao, M. K. Srirama, and S. Levine. The ingredients for robotic diffu-
sion transformers. arXiv preprint arXiv:2410.10088, 2024.

[43] N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[44] A. Henry, P. R. Dachapally, S. Pawar, and Y. Chen. Query-key normalization for transformers.
arXiv preprint arXiv:2010.04245, 2020.

[45] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In
Forty-first International Conference on Machine Learning, 2024.

[46] X. Li, M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing, W. Zhang, H. Liu, H. Li,
and T. Kong. Vision-language foundation models as effective robot imitators. arXiv preprint
arXiv:2311.01378, 2023.

[47] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-
shot robotic manipulation with pretrained image-editing diffusion models. arXiv preprint
arXiv:2310.10639, 2023.

[48] H. Wu, Y. Jing, C. Cheang, G. Chen, J. Xu, X. Li, M. Liu, H. Li, and T. Kong. Unleashing large-
scale video generative pre-training for visual robot manipulation. In International Conference
on Learning Representations, 2024.

[49] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d
scene representations. In 8th Annual Conference on Robot Learning, 2024. URL https:

//openreview.net/forum?id=gqCQxObVz2.

[50] Y. Tian, S. Yang, J. Zeng, P. Wang, D. Lin, H. Dong, and J. Pang. Predictive inverse dynamics
models are scalable learners for robotic manipulation. https://arxiv.org/abs/2412.15109, 2024.

[51] F. Liu, F. Yan, L. Zheng, Y. Huang, C. Feng, and L. Ma. Robouniview: Visual-language model
with unified view representation for robotic manipulation. arXiv preprint 2406.18977, 2024.

[52] K. Pertsch, K. Stachowicz, B. Ichter, D. Driess, S. Nair, Q. Vuong, O. Mees, C. Finn, and
S. Levine. Fast: Efficient action tokenization for vision-language-action models. arXiv preprint
arXiv:2501.09747, 2025.

[53] D. Driess, J. T. Springenberg, B. Ichter, L. Yu, A. Li-Bell, K. Pertsch, A. Z. Ren, H. Walke,
Q. Vuong, L. X. Shi, et al. Knowledge insulating vision-language-action models: Train fast,
run fast, generalize better. arXiv preprint arXiv:2505.23705, 2025.

[54] M. J. Kim, C. Finn, and P. Liang. Fine-tuning vision-language-action models: Optimizing
speed and success. arXiv preprint arXiv:2502.19645, 2025.

[55] R. Cadene, S. Alibert, A. Soare, Q. Gallouedec, A. Zouitine, and T. Wolf. Lerobot: State-
of-the-art machine learning for real-world robotics in pytorch. https://github.com/

huggingface/lerobot, 2024.

12

https://openreview.net/forum?id=gqCQxObVz2
https://openreview.net/forum?id=gqCQxObVz2
https://github.com/huggingface/lerobot
https://github.com/huggingface/lerobot

[56] X. Jiang, P. Mattes, X. Jia, N. Schreiber, G. Neumann, and R. Lioutikov. A comprehensive user
study on augmented reality-based data collection interfaces for robot learning. In Proceedings
of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, pages 333–
342, 2024.

[57] W. Huang, I. Mordatch, and D. Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pages
4455–4464. PMLR, 2020.

[58] T. Chen, A. Murali, and A. Gupta. Hardware conditioned policies for multi-robot transfer
learning. Advances in Neural Information Processing Systems, 31, 2018.

[59] A. Patel and S. Song. Get-zero: Graph embodiment transformer for zero-shot embodiment
generalization. arXiv preprint arXiv:2407.15002, 2024.

[60] J. H. Yang, D. Sadigh, and C. Finn. Polybot: Training one policy across robots while embracing
variability. In Conference on Robot Learning, pages 2955–2974. PMLR, 2023.

[61] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[62] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2020.

[63] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In ICLR, 2021.

[64] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal conditioned imitation learning using score-
based diffusion policies. In Proceedings of Robotics: Science and Systems (RSS), 2023.

[65] X. Jia, D. Blessing, X. Jiang, M. Reuss, A. Donat, R. Lioutikov, and G. Neumann. Towards
diverse behaviors: A benchmark for imitation learning with human demonstrations. arXiv
preprint arXiv:2402.14606, 2024.

[66] M. S. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

[67] N. Funk, J. Urain, J. Carvalho, V. Prasad, G. Chalvatzaki, and J. Peters. Actionflow: Equiv-
ariant, accurate, and efficient policies with spatially symmetric flow matching. arXiv preprint
arXiv:2409.04576, 2024.

[68] F. Zhang and M. Gienger. Affordance-based robot manipulation with flow matching. arXiv
preprint arXiv:2409.01083, 2024.

[69] M. Braun, N. Jaquier, L. Rozo, and T. Asfour. Riemannian flow matching policy for robot
motion learning. arXiv preprint arXiv:2403.10672, 2024.

[70] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

13

SIMPLER CALVIN LIBERO Aloha Real World Kitchen

Action Space Encoders 2-layered MLP
Action Space Decoders Linear Attention

Number of Flow-T Layers 18
Latent Dimension 1024
Number of Heads 16

Position Embedding 1D Rope
Sampling Distribution Uniform

Attention Dropout 0.1
MLP Dropout 0.1

Residual Dropout 0.1

Act Seq Length 10 10 10 100 20
Denoising Steps 4 4 4 8 5

Multistep 5 10 10 2: Insert 100:Transfer 15
Camera Views [Primary Static] [Primary Static, Wrist] [Primary Static, Wrist] [Primary Static] [Primary Static, Secondary Static]

Use Proprio False False False True False
Action Space Delta EEF Delta EEF Delta EEF Bi-Joint Joint

Frequency 3/5 10 10 50 6

Table 5: Overview of Hyperparameters used for FLOWER across different Benchmarks

Name Number of Parameters
ViT 360M
VLM 205M
Action Encoders 3.2M
Action Heads 31.8K
Global-AdaLN 28.3M
Cond Linear Proj. 1.0M
Timestep Embedder 1.3M
Cond Norm 1.0K
FreqEmbedder 1.3M
Flow Transformer 339M

Total Parameters FLOWER 947M
Table 6: Overview of Parameter Distribution across all Model Components of FLOWER.

A Pretraining Details

Table 7: Dataset Distribution by Percentage
Dataset Percentage (%)
bridge dataset 28.62
fractal data 24.68
droid 23.50
cmu play fusion 6.15
dobbe 5.94
libero 10 no noops 4.41
libero goal no noops 4.07
real kitchen lang 2.64

We pretrain FLOWER on different datasets mixes that are described in Table 7 using one cluster
node with 4 H100 GPUs for 48 hours. We pretrain all variants using a single static image and
only use proprioception signal for the bimanual settings. We set the action chunk length to 20
across all settings and condition the model on single image from the current state only for maximum
efficiency. Training is conducted using HuggingFace Accelerate for optimized Multi-GPU Training.
We created custom PyTorch wrapper for the OXE Torch Dataloaders [6] inspired by efforts from
OpenVLA [1]. We train FLOWER using BF-16 accuracy for optimized memory performance. For
the Cross-Action-and Delta-EEF Mix we set the batch size to 256 and use 4 gradient accumulate
steps to achieve an batch size of 1024. In total we trained for 300k-400k training steps depending
on the dataset composition. We did not notice major training instabilities.

A.1 Pretraining Ablation Experiences

We tested several ideas, that did not work well in our maximum efficiency pretraining settings:

14

Hyperparameter Value
GPU Type H100
N GPUS 4

Batch Size 256
Grad accumulate Steps 4

Optimizer FlowT AdamW
LR Max FlowT 1e-4
LR Scheduler warm-up with constant + cosine decay

Min LR FlowT 1e-5
Final LR FlowT 1e-5

FlowT LR scheduler phases [0.01, 0.39, 0.6]
Max Desired Train Steps 600,000

Optimizer VLM AdamW
Lr Max VLM 1e-5
Lr Scheduler warm-up with constant + cosine decay
Min LR VLM 1e-7
Final LR VLM 1e-6

VLM LR scheduler phases [0,1, 0.3, 0.6]
EMA False

Weight Decay FlowT 0.1
Weight Decay VLM 0.001
Total Training Time 48 hours

Training Steps reached 350,000
Table 8: Hyperparameteres for Pretraining FLOWER on all Pretraining Data Mixtures

• Using variable Length Action Chunks: We experimented with flexible action chunks
during training as done in CrossFormer [41]. However, we noticed slow convergence and
lower performance for our SIMPLER experiments. Thus, we decided to use a constant
chunk length for all datasets of 20. While many delta EEF datasets like Fractal operate on
lowe frequency and Aloha Setups like Biplay [42] require 50 Hz, we find 20 to be a good
trade-off that enables easy finetuning to different lengths, thanks to our 1D Rope Position
Embeddings.

• Using Multiple Images with Custom Masking: We also tested variations in pretraining
that involve flexible image padding up to 3 different views depending on the dataset. How-
ever, this reduces the overall training speed given the higher number of image tokens and
required GPU memory. Also given the more complex setting, we found that the training
time of 2 days not enough to achieve convergence. Thus, we limited pretraining to single
image. However, our finetuning experiments show the flexbility of FLOWER to adapt to
more image views without issues.

• Mixture-of-Experts Approaches for the Flow Transformer: We conducted architecture
ablation experiments with more action-specialist components. FLOWER ablations used
action-type specific MLPs with action-type specific LayerNorms. We also experimented
with a shared additional MLP, that all action types use while combining the output with
action-specific specialist MLP. However, the training was more memory intensive and had
issues with NaN losses. It also showed slower convergence. We found the action-specific
Global-AdaLN with all other parameters shared inside the Flow Transformer to work best.
However, we believe that future research can address this issue to develop even more effi-
cient architectures for cross-embodiment learning.

A.2 Language Prompt for the VLA

We encode the meta-information as part of our prompt for the VLM: “Agent Type: [robot type],
Action Space: [action space], Task: [task description]”.

15

A.3 Custom Learning Rate Scheduler

In early experiments with an older version of our model, we observed a substantial drop in perfor-
mance when training without our custom dual–optimizer learning rate scheduler (4.44 vs 0.8). Upon
further investigation after finalizing the model, we found that this was largely due to instabilities in
an earlier model variant rather than the absence of the scheduler itself. With our final architecture,
replacing the custom scheduler with a standard constant learning rate of 2 × 10−5 leads to only a
slight reduction in performance, confirming that the scheduler provides only minor benefits rather
than being a critical requirement for the performance.

A.4 Details for Cross-Action Space Flow Transformer

Large transformer models often face stability challenges when simultaneously dealing with different
data frequencies and distributions. We address this by allocating individual dual-RMSNorm param-
eters for each action type, capturing action-specific activation statistics more effectively than a single
normalization.

Additionally, we replace standard feed-forward layers with SwiGlu blocks [43], a sandwich-style
MLP that we express as follows. For an input vector h,

y =
(
Norm(W1 h)

)
⊙ SiLU

(
Norm(V1 h)

)
, (3)

where SiLU(x) = xσ(x), V and W are to linear matrices and Norm(·) indicates RMSNorm in our
implementation. Unlike LayerNorm, which subtracts the mean, RMSNorm normalizes each sample
by its root-mean-square:

RMSNorm(x) =
x√

1
d

∑d
j=1 x

2
j + ϵ

, (4)

yielding smoother gradients and reduced training instability [26]. Furthermore, we apply QK-value
normalization [44] in both self- and cross-attention modules to mitigate large softmax outputs. This
additional normalization has been used in many large-scale diffusion and flow transformer architec-
tures in image generation [45] or Diffusion Policies [8].

Together, (i) extended RoPE embeddings, (ii) action-specific encoders/decoders, (iii) a shared
AdaLN controller yielding action-specific normalization signals, and (iv) RMSNorm with SwiGLU
MLPs enable our Flow Transformer to train stably across heterogeneous data and multiple action
spaces. Its modular architecture requires minimal changes when adding new action types, retaining
efficient scalability for a wide range of robotic tasks.

B Detailed Experiments

In this section we provide detailed results and additional comparisons for all simulation environ-
ments and real robot experiments.

CALVIN Benchmark. [34] A language-conditioned manipulation benchmark containing 24k
human-teleoperated demonstrations. Each trajectory spans up to 64 timesteps and encompasses
34 predefined basic skills, including tasks such as ”rotate blue block right,” ”move slider right,” ”lift
red block slider,” ”turn off light bulb,” ”open drawer,” and ”place in drawer.” The dataset is divided
into four splits (A, B, C, D) and evaluates agents on completing 5 consecutive tasks. For evalua-
tion, an agent must complete a sequence of 5 randomly sampled tasks in order (e.g., ”open drawer”
→ ”lift blue block drawer” → ”place in drawer” → ”close drawer” → ”turn on light bulb”). The
evaluation consists of 1000 rollouts on split D, measuring both the success rate of completing the
entire sequence and the average number of successfully completed tasks within each sequence. The
Franka Emika Panda robot is controlled via Delta-End-Effector Space with a discrete gripper, utiliz-
ing both static and wrist cameras for scene understanding. There are three benchmark types: D→D,
ABC→D, ABCD→D, that depend on the used dataset for trainign the policies. After training all are
evaluated on the same environment D.

16

Benchmark FLOWER 2nd Best Abs. Imp. Rel. Imp. (%)
CALVIN D 87.0% 77.0% 10.0% 13.0%
CALVIN ABC 90.6% 85.8% 4.8% 5.6%
CALVIN ABCD 93.4% 90.4% 3.0% 3.3%
SIMPLER Bridge 40.0% 30.0% 10.0% 33.3%
SIMPLER Google 32.2% 42.4% -10.2% -24.1%
LIBERO OLGS 96.9% 97.1% -0.2% -0.2%
LIBERO 90 94.7% 96.0% -1.3% -1.4%
Real-World 61.0% 30.0% 31.0% 103.3%
Aloha 54.0% 54.0% 0.0% 0.0%
Real-Generalization 51.0% 23.4% 27.6% 118.0%

Average – – 7.5% 25.1%
Table 9: Normalized performance improvement of FLOWER compared to its second-best baseline
for each benchmark. CALVIN metrics are normalized by dividing the average sequence lengths
by 5. Real-Generalization values are computed as the average across Novel Object, Flashlight, BG
Distractors, and New Tasks Composition tests. The overall average improvement is computed over
all benchmarks.

Train→Test Method PrT Action Type VLM No. Instructions in a Row (1000 chains) Avg. Len.

1 2 3 4 5

ABC→D

Diff-P-CNN [39] × Diffusion × 63.5% 35.3% 19.4% 10.7% 6.4% 1.35±0.05
MDT [37] × Diffusion × 63.1% 42.9% 24.7% 15.1% 9.1% 1.55
RoboFlamingo [46] × Cont. ✓ 82.4% 61.9% 46.6% 33.1% 23.5% 2.47
SuSIE [47] ✓ Diffusion × 87.0% 69.0% 49.0% 38.0% 26.0% 2.69
DeerVLA [22] × Cont. ✓ 84.8% 72.3% 54.9% 44.6% 33.5% 2.90
GR-1 [48] ✓ Cont. × 85.4% 71.2% 59.6% 49.7% 40.1% 3.06
OpenVLA [1] ✓ Discrete ✓ 91.3% 77.8% 62.0% 52.1% 43.5% 3.27
3DDA [49] × Diffusion × 93.8% 80.3% 66.2% 53.3% 41.2% 3.35
MoDE [10] ✓ Diffusion × 96.2% 88.9% 81.1% 71.8% 63.5% 4.01±0.04
RoboDual [17] ✓ Diffusion ✓ 94.4% 82.7% 72.1% 62.4% 54.4% 3.66
VPP [20] ✓ Diffusion × 95.7% 91.2% 86.3% 81.0% 75.0% 4.29
Seer [50] ✓ Cont. × 96.3% 91.6% 86.1% 80.3% 74.0% 4.28
FLOWER (ours) × Flow ✓ 99.3% 96.0% 90.3% 82.3% 75.5% 4.44±0.04
FLOWER (ours) ✓ Flow ✓ 99.4% 95.8% 90.7% 84.9% 77.8% 4.53±0.04

ABCD→D

Diff-P-CNN [39] × Diffusion × 86.3% 72.7% 60.1% 51.2% 41.7% 3.16±0.06
RoboFlamingo [46] × Cont. ✓ 96.4% 89.6% 82.4% 74.0% 66.0% 4.09
DeerVLA [22] × Cont. ✓ 99.1% 93.3% 82.1% 74.6% 63.8% 4.13
GR-1 [48] ✓ Cont. × 94.9% 89.6% 84.4% 78.9% 73.1% 4.21
MDT [37] × Diffusion × 98.6% 95.8% 91.6% 86.2% 80.1% 4.52±0.02
MoDE [10] ✓ Diffusion × 97.1% 92.5% 87.9% 83.5% 77.9% 4.39±0.04
FLOWER (ours) × Flow ✓ 98.9% 96.7% 93.9% 90.2% 85.5% 4.62±0.03
FLOWER (ours) ✓ Flow ✓ 99.2% 96.9% 96.9% 92.3% 88.3% 4.67±0.04

D→D MDT [37] × Diffusion × 93.7% 84.5% 74.1% 64.4% 55.6% 3.72±(0.05)
RoboUniView [51] ✓ Cont ✓ 96.2% 88.8% 77.6% 66.6% 56.3% 3.85
FLOWER (ours) ✓ Flow ✓ 97.4% 92.4% 86.9% 81.3% 74.9% 4.35±0.02

Table 10: CALVIN Benchmark results for D, ABC and ABCD. The table reports average success
rates for individual tasks within instruction chains and the average rollout length (Avg. Len.) to
complete 5 consecutive instructions, based on 1000 chains. Zero standard deviation indicates meth-
ods without reported standard deviations.

For all experiments settings, we train FLOWER for up to 40k steps across 4 GPUS with a batch
size fo 8 each. The standardized evaluation protocol enable us to directly compare the results of
FLOWER against other baselines, which enables a fair comparison to prove the SoTA performance
of FLOWER.

Baselines We compare FLOWER against a diverse set of available baselines on all CALVIN
variants. Relevant VLAs include RoboDual [17], OpenVLA [1], RoboFlamingo [46] and depth-
reconstruction pretrained RoboUniView [51]. In addition we consider video-based policies pre-
trained on diverse video data SeeR [50], Video-Prediction-Policy [20] and GR-1 [48]. Moreover, we
consider relevant diffusion-based policies like MoDE [10], MDT [37] and depth-based 3D-Diffusor-

17

Actor [49] and SuSIE [47]. FLOWER surpasses all of these baselines across all CALVIN variants
with remarkable efficiency in just 6 hours of finetuning.

B.1 SIMPLER Benchmark Tasks

The real2sim benchmark SIMPLER [12] consists of two evaluation challenges, that we describe in
detail below:

Google Robot Setting. The Google Robot setting comprises four distinct manipulation tasks of
varying complexity. The first task, “pick coke can,” requires the robot to grasp and lift an empty
Coke can from the table. This task includes 75 total trials, testing three different can orientations:
horizontally laying, vertically laying, and standing upright. For each orientation, the can is placed
at 25 specific grid points within a defined rectangular area on the table, with the environment kept
free of distracting elements in its standard configuration.

The second task, “move objects near objects,” evaluates the robot’s ability to perform relative object
positioning with 60 total trials. The setup involves three objects arranged in a triangle pattern, where
one object serves as the source, another as the target, and the third as a distractor. The task utilizes
eight distinct objects: blue plastic bottle, Pepsi can, orange, 7up can, apple, sponge, Coke can, and
Redbull can. Five random triplets are selected from this object pool, with each triplet tested in both
upright and inverted triangle patterns. The specific triplet combinations include: (1) blue plastic
bottle, Pepsi can, and orange; (2) 7up can, apple, and sponge; (3) Coke can, Redbull can, and apple;
(4) sponge, blue plastic bottle, and 7up can; and (5) orange, Pepsi can, and Redbull can.

The third task focuses on drawer manipulation, comprising 54 trials that test the robot’s ability to
handle articulated objects. The robot is positioned at nine different locations within a rectangular
area on the floor and must either open or close a specific drawer (top, middle, or bottom) of a cabinet.
This creates a comprehensive evaluation across different robot positions and drawer configurations.

The fourth task combines drawer manipulation with object placement in a 27-trial multi-step inter-
action. The robot must first open the top drawer and then transfer an apple from the cabinet surface
into the drawer. This task evaluates the robot’s capability to execute sequential actions, with the
robot positioned at three distinct locations and the apple placed at nine specific grid points on the
cabinet surface.

WidowX + Bridge Setting. The WidowX + Bridge setting features four manipulation tasks, each
designed to test different aspects of robotic control. The first task, “put spoon on towel,” requires
placing a spoon from one corner to another of a 15cm square on the tabletop. The spoon’s initial ori-
entation alternates between horizontal and vertical, necessitating appropriate gripper reorientation.
This task comprises 24 trials total.

The second task, “put carrot on plate,” follows a similar structure to the spoon task but replaces the
objects, using a carrot instead of a spoon and a plate instead of a towel. This variation tests the
robot’s ability to transfer manipulation skills to different objects while maintaining the same spatial
constraints.

The third task evaluates precise object stacking, requiring the robot to place a green block (3cm in
size) on top of a yellow block. The task includes two square configurations with 10cm and 20cm
side lengths, creating different spatial challenges. The blocks are positioned at different corners of
these squares, totaling 24 trials.

The final task is “put eggplant into yellow basket,”. The eggplant is randomly positioned within the
right basin of a sink, while a yellow basket is placed in the left basin. The eggplant’s placement
varies in both location and orientation but is carefully arranged to remain easily graspable, avoiding
proximity to the sink’s edges. This task also comprises 24 trials.

We evaluate FLOWER on the SIMPLER benchmark [12] after pretraining on our cross-embodiment
mix. SIMPLER is a real2sim benchmark that implements several scenes from the diverse BridgeV2
[32] and Google Robot setup [13] to test foundation policies after pretraining. The benchmark

18

Method Put Carrot on Plate Spoon on Towel Stack the Blocks Eggplant in Yellow Basket Average

RT-1-X 4 0 0 0 1.1
Octo 8 12 0 43 16
CrossFormer 15 15 0 92 30
OpenVLA 0 0 0 4 1.0
FLOWER 13 71 8 88 45

Table 11: Experimental Results for the SIMPLER Bridge Benchmark. Average Performance
comparison across all Tasks in the Bridge Setting.

Method Open/Close Drawer Move Near Open Top Drawer and Place Apple Pick Coke Can Average

RT-1-X 59.7 31.7 21.3 56.7 42.4
Octo 22.7 4.2 0.0 17.0 11.0
CrossFormer 0.5 4.6 0.0 0.0 1.3
OpenVLA 35.6 46.2 0.0 16.3 24.5
FLOWER Cross-X Pret 27.8 43.3 0.0 56.3 31.9

Table 12: Experimental Results for the SIMPLER Google Robot Benchmark. Average Per-
formance comparison across different task variations for the Google Robot Setting. All tasks have
been tested for Visual Matching and Visual Aggregations Variants and show the average perfor-
mance across both.

requires policies to run approximately 3000 rollouts in different settings across two benchmarks
with 8 different tasks in various conditions.

Baselines. On this setup, we compare FLOWER against RT-1X [6], Octo [3], OpenVLA [1], and
CrossFormer [41]. For each model, we test on the full benchmark and report the average results for
a fair comparison.

Results. The results for the Google Robot tasks are summarized in Table 12 and the results for the
Bridge challenge are shown in Table 11. Overall, FLOWER outperforms both Octo and OpenVLA
on both benchmarks, despite having only 200 GPU hours of pre-training on heterogeneous robot
datasets. Notably, the FLOWER variant achieves stronger overall performance, with gains on the
Bridge Benchmark. In contrast, on the Google Robot benchmark, RT-1X attains the highest per-
formance across several tasks, suggesting that further improvements in action space modeling or
pretraining diversity might be beneficial. However, FLOWER achieves the second best performance
and surpasses all other generalist policies in this setting.

These findings show that FLOWER delivers strong performance with low computational demands
(RQ I) as well as robustly handles diverse robot embodiments and action spaces (RQ II). The robust
performance on the Bridge Benchmark highlights its capability to manage diverse action spaces after
heterogeneous pretraining, whereas the areas of lower performance on the Google Robot benchmark
point to opportunities for further refinement.

B.1.1 LIBERO Benchmark.

The LIBERO benchmark [35] comprises multiple task suites testing different aspects of robotic
manipulation. LIBERO-10 provides 50 demonstrations for 10 tasks, while LIBERO-90 extends to
90 different tasks. Both versions use a Franka Emika Panda robot with end-effector control and
dual camera inputs (static and wrist). The benchmark includes five distinct suites: Spatial (testing
spatial relationships), Goal (varying objectives), Object (object manipulation), Long (extended task
duration), and Suite-90 (diverse short-horizon tasks). Each task is evaluated over 50 trials for each
with different starting positions. We finetune FLOWER with 30k training steps on each setting and
50k steps for LIBERO 90 given its increased size.

We compare FLOWER against both generalist policies such as π0 [7] and π0-FAST [52], the
improved π0.5-ki (knowledge insulation) [53] OpenVLA [1], OpenVLA-OFT [54] Chain-of-
Affordance-VLA (CoA-VLA) [21], Octo [3], MiniVLA as well as against the current state-of-the-art
specialist policy Baku [40], which uses a small transformer-based model with action chunking. As
shown in Table 13, FLOWER significantly outperforms all baselines across every LIBERO vari-
ant, achieving near-perfect completion rates with success rates consistently above 93%. Notably,

19

Transfer Insert
0

0.2

0.4

0.6

0.8

1

0.06
0.00

0.87

0.21

0.54

0.14

0.71

0.18

0.66

0.16

0.82

0.26

A
v
g.

S
u
cc
es
s
R
at
e

DP-CNN ACT π0

FLOWER-S FLOWER-X FLOWER-J

Figure 7: Aloha Simulation Tasks: Average success rates of different models over 500 evaluations
on Cube Transfer and Insertion. S denotes FLOWER trained from scratch, X applies cross-action
space pretraining, and J represents droid-only joint state pretraining.

on LIBERO-Long, FLOWER is the only policy to exceed a 90% success rate (93.5%), while other
generalist approaches struggle with these complex, long-horizon tasks (50-54% success rates), with
only the specialist Baku model achieving competitive performance in this demanding setting.

Spatial Object Goal Long 90 Average (without 90)
SR (↑) SR (↑) SR (↑) SR (↑) SR (↑) SR (↑)

Diff-P-CNN [39] 78.3 ± 1.1% 92.5 ± 0.7% 68.3 ± 1.2% 50.5 ± 1.3% - 72.4 ± 0.7%
Octo [3] 78.9 ± 1.0% 85.7 ± 0.9% 84.6 ± 0.9% 51.1 ± 1.3% - 75.1 ± 0.6%
OpenVLA [1] 84.7 ± 0.9% 88.4 ± 0.8% 79.2 ± 1.0% 53.7 ± 1.3% - 76.5 ± 0.6%
OpenVLA-OFT [54] 97.6% 98.4% 97.9% 94.5% - 97.1%
CoA-VLA [21] 85.3 ± 0.9% 93.1 ± 1.0% 85.8 ± 0.9% 55.0 ± 1.2% - 79.8 ± 0.5%
Baku [40] - - - 86.0% 90.0% -
MiniVLA - - - - 86.0% -
MoDE [10] - - - 94.0% 95.0% -
π0 [7] 96.8% 98.8% 95.8% 85.2% - 94.2%
π0-FAST [52] 96.4% 96.8% 88.6% 60.2% - 85.5%
π0.5-ki (from scratch) [53] 96.6% 97.2% 94.6% 84.8% 92.7% 93.3%
π0.5-ki (from generalist model) [53] 98.0% 97.8% 95.6% 85.8% 96.0% 94.3%
FLOWER 97.5 ± 0.8% 99.1 ± 0.4% 96.1 ± 0.6% 94.9 ± 1.2% 94.7 ± 1.0% 96.9 ± 0.7%

Table 13: Experimental Results for the LIBERO Benchmarks. SR: Success Rate. Best results
in each column are shown in bold. FLOWER achieves state-of-the-art results across most tested
settings.

B.1.2 Aloha Benchmark.

The Aloha benchmark [36] provides 50 human-collected demonstrations for two tasks: Cube Trans-
fer and Insertion. In both tasks, a bi-manual Aloha robot operating in joint space is equipped with a
single top-view camera and proprioceptive state input. We evaluate each task over 500 episodes, with
each episode consisting of 500 steps. For the baselines we adopt ACT[36] and Diffusion Policy[39]
implemented by lerobot [55].

Next, we evaluate FLOWER’s ability to learn challenging high frequency control on the Aloha
simulation setup [36]. We test several versions of FLOWER that have been finetuned on different
pretraining mixes: Cross-X and joint state droid only. In addition, we compare FLOWER against
two common specialist policies: Diffusion Policies and the state-of-the-art policy for bi-manual
setups Action Chunking Tranformer (ACT) [36]. We use the two simulation tasks, ”Insert the peg
into the socket.” and ”Pick up the cube with the right arm and transfer it to the left arm.”, that are
visualized in Figure 4. The dataset contains 50 human-collected demonstrations for each tasks.

Results. As shown in Figure 7, FLOWER achieves a strong performance on both tasks with eight
denoising steps and outperforms the specialist ACT policy on the challenging Insertion task by a

20

considerable margin. FLOWER achieves comparable performance on the Transfer task compared to
ACT expect for the variant pretrained on cross action space data. The standard Diffusion Policy is
not able to solve any of the tasks. Comparing the different pretraining versions of FLOWER, we find
that the joint only mix using droid achieves the best results by a considerable margin. Surprisingly,
the cross-embodied pretraining is not able to achieve strong results and its final performance is even
lower than the version trained from scratch.

B.2 Real Kitchen Play Dataset.

We conducted data collection through teleoperation, utilizing a leader-follower robot configuration
to ensure precision and intuitive control [56]. The dataset includes proprioceptive sensor readings
and images captured by two static cameras at a frequency of 6 Hz. Actions were represented as
normalized desired joint positions. In total, we curated 417 labeled short-horizon segments, each
paired with text instructions. To enhance diversity in task descriptions, GPT-4 was employed to
generate varied language annotations.

Evaluation Protocol. Each policy is tested 5 times for each task from a starting position not seen
in training with some added noise to it. During our experiments, we further varied the orientation
of the banana slightly for the robot to pick up, while we kept the toaster in the same position during
all our experiments. We report the average success rate and rank for each task to determine the best
policy.

B.2.1 Pretraining Details for Baselines for the Real World Kitchen

For finetuning the baseline generalist robot policies (Octo, CrossFormer, and OpenVLA), we ad-
hered as closely as possible to the official recommendations provided in their respective GitHub
repositories, with only minimal modifications where necessary. All experiments were conducted on
a single-node GPU cluster equipped with four NVIDIA RTX 4090 GPUs (24GB each).

For Octo, we fine-tuned the model for 50,000 steps, which took approximately 6 hours. In our setup,
we used two images per sample—designating the top image as image primary and the side image
as image secondary. The baseline Octo model has a default action space of 7 dimensions (delta
end-effector position, rotation, and gripper controls). To accommodate our tasks, we extended the
default action head by one additional dimension, creating a 7+1 dimensional absolute action space
before fine-tuning.

For CrossFormer, we again relied on the default fine-tuning settings from the original repository
and trained for 50,000 steps, which took around 12 hours. The image setup was identical to that used
for Octo. We introduced a new action head, new arm single joint, with an action dimension of 8,
and developed a new observation tokenizer specifically for the secondary image. All other modules
were initialized from the pretrained weights provided in the repository and then fine-tuned.

For OpenVLA, which originally supports only delta end-effector actions and enforces an assertion
to prevent the use of joint-space OXE datasets for pretraining or fine-tuning, we modified the code
to remove this assertion. We then introduced appropriate action and normalization masks (masking
nothing for the action and masking the gripper for normalization). Using the default fine-tuning
configuration with LoRA-based updates, we trained OpenVLA for 150,000 steps. Due to memory
constraints, we reduced the batch size from the default of 16 to 1 and applied gradient accumulation
over 4 steps (as opposed to a larger accumulation factor, which would have substantially increased
training time). This fine-tuning process took approximately 60 hours on our 4-GPU setup.

For FLOWER we finetuned our model on the kitchen dataset for 50,000 steps. Since FLOWER has
been pretrained on single image, we extended the second static image for finetuning. No additional
modifications have been made to guarantee a fair comparison against the baselines.

Overall, these modifications allowed us to fine-tune all baseline models under comparable conditions
(approximately 100k–150k steps, moderate batch sizes, and consistent GPU resources), ensuring a
fair evaluation on our real-world kitchen tasks.

21

B.2.2 Failure Cases for different Policies

Octo. The most common failure mode involves Octo fixating on the microwave - repeatedly open-
ing, closing, or attempting to interact with its door even when the task involves other objects or
locations. The second most frequent failure involves Octo’s poor object manipulation, particularly
with the pot and banana, where it either drops items prematurely or fails to lift them high enough
to clear obstacles like the sink edge. Finally, there’s a consistent pattern of spatial navigation is-
sues where Octo either pushes objects into walls, hovers aimlessly above target locations, or places
objects in incorrect intermediate positions (like between the sink and stove).

CrossFormer. The Crossformer policy exhibits several consistent failure patterns across tasks, in-
cluding freezing in place, hovering without executing actions, and getting stuck on objects (e.g.,
sink, microwave door, oven). Many failures involve misinterpreting tasks, such as repeatedly pre-
tending to place toast in the sink or confusing objects like the banana and the oven tray. The model
also struggles with manipulating objects correctly, often failing to grasp, dropping, or pushing ob-
jects off surfaces rather than placing them accurately. Additionally, it frequently interacts with
unintended objects, such as opening and closing the microwave

OpenVLA. OpenVLA frequently fails due to object manipulation errors, such as pushing, flipping,
or throwing objects off surfaces rather than placing them correctly. A recurring issue is poor grasping
ability, especially with pots and bananas, often failing to lift them or dropping them prematurely.
Additionally, the policy exhibits random movement behaviors, such as hovering aimlessly, crashing
into the kitchen, or moving without executing the task. It also struggles with partial execution,
frequently opening and then immediately closing doors or trays instead of completing the full action.

FLOWER. The most common failure mode of FLOWER is imprecise spatial positioning, particu-
larly evident in tasks like pushing the toaster lever where the agent consistently misses by about 1cm.
We hypothesize that this is due to workspace normalization issues at boundary regions. The second
major failure pattern involves interaction with pots in the sink, where FLOWER either gets stuck
in loops just before completion, fails to properly clear the sink walls, or incorrectly routes objects
(like trying to drop pots into the sink during stove-to-stove transfers). Finally, there are issues with
excessive force application in some cases, particularly with the toaster where the agent occasionally
rips it off rather than interacting with it properly.

B.3 Generalization Experiments

Finally, we evaluate FLOWER against the best baseline in several generalization experiments. In
these experiments, we test the models under conditions that introduce variations not encountered
during training. Table 15 reports the performance of the different methods on tasks such as “Move
Pot from Right Stove to Sink”, “Open Oven”, and “Pull Oven Tray” under three scenarios: Novel
Object, Flashlight, and Background Distractors. For instance, in the Novel Object condition, new
object instances are introduced, while the Flashlight and Background Distractors settings simulate
changes in illumination and environmental clutter. These settings collectively challenge the models
to generalize beyond their training distribution.

In particular, our experiments also examine the models’ abilities to manipulate novel objects—those
not present in the initial training distribution. The objects that are new to the model are highlighted
in bold in Table 15. As shown, FLOWER consistently achieves higher success rates and lower ranks
when manipulating these unfamiliar items, demonstrating robust performance even under significant
distribution shifts. Figure 8 provides visual examples of these novel objects and the scene with
various background distractions. This additional analysis underscores the strength of our approach
in adapting to unseen variations in both object appearance and environmental context.

B.3.1 Novel Task Compositions

To further evaluate our method’s capacity for compositional generalization, we designed a set of
novel task compositions that require the agent to combine multiple subtasks into a coherent, long-

22

horizon plan. Each task is defined as a sequence of actions that must be executed in a specific order.
For instance, the Sequence: Open and Close All Appliances task comprises the following subtasks:
“Open the Microwave”, “Open the Oven”, “Open the Ice”, “Close the Ice”, “Close the Oven”,
and “Close the Microwave”. This sequence challenges the model to manipulate various kitchen
appliances in a coordinated manner, ensuring that the prescribed order of operations is maintained
under varying conditions.

In addition, we introduced two other sequence tasks to test different aspects of compositionality.
The Sequence: Move Items Between Stovetop and Sink task requires the agent to transfer items
between workstations, with subtasks including “Move Banana from Right Stove to Sink”, “Push
the Toaster Lever”, “Move Pot from Left Stove to Right Stove”, “Pick Up Toast and Place it at the
Sink”, “Move Pot from Right Stove to Left Stove”, and “Move Banana from Sink to Right Stove”.
Finally, the Sequence: Operate the Oven task focuses on oven manipulation and is composed of the
subtasks “Open the Oven”, “Pull the Oven Tray”, “Move Banana from Right Stove to Oven Tray”,
“Push the Oven Tray”, and “Close the Oven”. These novel task compositions simulate realistic,
multi-step scenarios and provide a rigorous benchmark for evaluating the ability of our approach to
integrate learned sub-skills into coherent, long-horizon behaviors.

(a) Unseen Objects for Generalization Experi-
ments (b) Cluttered Scene with Distractors

Figure 8: Generalization Experiments: Examples of unseen objects (left) and cluttered scenes
(right) used to test the adaptability of the policies in our real-world setting. All the tested objects are
not included in the training dataset.

C Extended Related Work

Cross-Embodiment Learning A core challenge in robotics is learning a unified policy for heteroge-
neous embodiments with distinct action and sensor spaces. Early approaches often applied modular
policies [57] or hardware-conditioned representations [58], and some leveraged graph-based repre-
sentations to generalize across different robot hands [59, 60]. However, these efforts tended to focus
on smaller datasets or simplified environments. Recent work on large-scale cross-embodiment in-
cludes RoboCat [14] and PolyBoT [60], which use action tokenization or hierarchical controllers,
respectively. Liu et al. [8] propose a unified 258-dimensional action space (RDT-1B) with fixed
action prediction length of 64 for all action spaces, while CrossFormer [41] employs separate action
heads with a continuous action prediction head for different embodiments but lacks a pretrained
vision-language component for generalization to diverse instructions. By incorporating an action-
type Global AdaLN conditioned Flow Transformer with a pretrained VLM, FLOWER efficiently
handles multiple embodiments while maintaining both action expressiveness and semantic under-
standing.

Rectified Flow and Diffusion Models in Robotics. Diffusion models [61, 62, 63] have become
widely used for generating continuous robot actions from visual inputs [39, 3, 64, 38], offering
multi-modal behavior [65] and good scaling with large datasets [3, 8, 10]. More recently, Rectified
Flow [45, 66, 28] has emerged as a promising alternative, enabling a straight-line probability path for

23

Task SR/R Octo OpenVLA CrossFormer FLOWER

Pot from right stove to sink SR 0.0% 60.0% 100.0% 80.0%
R 4 3 1 2

Pot from sink to right stove SR 0.0% 0.0% 0.0% 20.0%
R 2 2 2 1

Open oven SR 40.0% 0.0% 0.0% 60.0%
R 2 3 3 1

Pull oven tray SR 0.0% 40.0% 0.0% 100.0%
R 3 2 3 1

Open microwave SR 40.0% 100.0% 40.0% 100.0%
R 3 1 3 1

Close microwave SR 20.0% 80.0% 40.0% 100.0%
R 4 2 3 1

Banana from right stove to sink SR 10.0% 40.0% 40.0% 100.0%
R 4 2 2 1

Banana from sink to right stove SR 0.0% 0.0% 20.0% 60.0%
R 3 3 2 1

Push toaster lever SR 0.0% 100.0% 0.0% 0.0%
R 2 1 2 2

Pickup toast and put to sink SR 0.0% 20.0% 80.0% 40.0%
R 4 3 1 2

Open Ice SR 0.0% 0.0% 0.0% 100.0%
R 2 2 2 1

Banana from right stove to oven tray SR 0.0% 0.0% 0.0% 40.0%
R 2 2 2 1

Pot from sink to left stove SR 0.0% 0.0% 0.0% 0.0%
R 1 1 1 1

Pot from left stove to right stove SR 40.0% 0.0% 20.0% 80.0%
R 2 4 3 1

Banana from tray to right stove SR 0.0% 0.0% 0.0% 0.0%
R 1 1 1 1

Close oven SR 40.0% 100.0% 20.0% 80.0%
R 3 1 4 2

Pot from right stove to left stove SR 30.0% 0.0% 0.0% 40.0%
R 2 3 3 1

Push oven tray SR 0.0% 20.0% 40.0% 20.0%
R 4 2 1 2

Pot from left stove to sink SR 0.0% 80.0% 40.0% 100.0%
R 4 2 3 1

Close Ice SR 0.0% 0.0% 0.0% 100.0%
R 2.0 2 2 1

Overall Performance SR 10% 31% 22% 61%
R 2.70 2.10 2.20 1.25

Table 14: Detailed Results for all tested Real Robot Tasks in the Kitchen Environment. Each
task has two rows: the first (SR) reports success rate (%), and the second (R) reports rank within
that task (lower rank = better performance). The best results per task are highlighted in bold.

24

Figure 9: Example generalization rollouts. First two rows show rollouts with background distrac-
tors, rows 3 and 4 show rollouts with only a flashlight as a light source, and the last 3 rows showcase
novel objects.

25

Task Novel Object Flashlight BG Distractors
FLOWER OpenVLA FLOWER OpenVLA FLOWER OpenVLA

Move the black donut from sink to right stove 33.3 0.0 - - - -
Move the tennis ball from right stove to sink 66.7 33.3 - - - -
Move the tennis ball from sink to right stove 0.0 0.0 - - - -
Move the black donut from right stove to sink 33.3 0.0 - - - -
Move the red cup from right stove to sink 33.3 66.7 - - - -
Move the glove from sink to right stove 33.3 0.0 - - - -
Move the carrot from right stove to sink 33.3 0.0 - - - -
Move the glove from right stove to sink 100 0.0 - - - -
Move the carrot from sink to right stove 0.0 0.0 - - - -
Move the red cup from sink to right stove 0.0 0.0 - - - -

Open the microwave - - 100 100 100 100
Pull the oven tray - - 100 0.0 100 66.7
Move banana from right stove to sink - - 100 33.3 66.7 66.7
Close the oven - - 33.3 66.7 66.7 0.0
Push down the toaster lever - - 0.0 0.0 33.3 100
Move pot from right stove to sink - - - 0.0 66.7 33.3
Open the ice box - - 0.0 0.0 66.7 0.0
Open the oven - - 100 0.0 100 0.0
Close the microwave - - 100 100 100 66.7
Move pot from left stove to sink - - 0.0 0.0 33.3 66.7
Close the ice box - - 0.0 0.0 100 0.0
Pick up toast and put it in the sink - - 0.0 0.0 0.0 0.0

Average 33.3 10.0 50.0 25.0 69.5 41.7

Table 15: Generalization experimental results for novel objects, distractions and new lighting
conditions. The table reports the success rate (in %) of the corresponding policy evaluated un-
der three different generalization scenarios: Novel Object, Flashlight, and Background Distractors
(evaluated 3 times for each setting). The best score for each test is highlighted in bold. A dash (-)
indicates that the task was not evaluated in that scenario.

Task Method 1 2 3 4 5 Avg. Seq. Len.

Seq: Stovetop + Sink FLOWER 66.7% 66.7% 66.7% 33.3% 33.3% 2.67
OpenVLA 66.7% 33.3% 33.3% 0.0% – 1.33

Seq: Open Close All FLOWER 100% 100% 100% 100% 100% 5.00
OpenVLA 33.3% 0.0% – – – 0.33

Seq: Oven FLOWER 0.0% – – – – 0.00
OpenVLA 0.0% – – – – 0.00

Overall Performance (FLOWER) 51.1% — — — — 2.56
Overall Performance (OpenVLA) 16.7% — — — — 0.55

Table 16: Long Horizon Task Composition Results. For each sequence task, the per-instruction
success rates (in %) are shown for the first 5 instructions (if applicable) along with the average
sequence length. “–” indicates that no instruction was successfully solved at that index. The Overall
Performance rows report the average success rate (computed over all available instructions) and the
average sequence length across tasks for each method.

action sampling that requires few discretization steps. In robotic policy learning, ActionFlow [67],
π0 [7] and others [68, 69] showed rectified flow can generate actions more rapidly than standard
diffusion. Such fast inference is crucial for high-frequency robot setups like Aloha [70]. Yet, these
works are typically confined to a single embodiment or a single action space. By contrast, FLOWER
is the first completely open-source policy to apply rectified flow as a generalist policy component,
unifying expressive and multimodal flow-based action generation with diverse vision-language con-
texts. While π0 published their weights for finetuning, the code for pretraining and their dataset
remains closed source.

26

	Introduction
	Related Work
	Method
	Intermediate Modality Fusion Vision-Language-Action-Models
	Cross-Action Space Flow Transformer
	Rectified Flow for Action Generation
	FLOWER: Efficient Flow-based Vision-Language-Action Models

	Evaluation
	Evaluation of Critical Design Decisions for Efficient Flow VLAs
	Simulation Experiments
	Real-World Evaluation and Generalization

	Conclusion
	Limitations
	Acknowledgments
	Pretraining Details
	Pretraining Ablation Experiences
	Language Prompt for the VLA
	Custom Learning Rate Scheduler
	Details for Cross-Action Space Flow Transformer

	Detailed Experiments
	SIMPLER Benchmark Tasks
	LIBERO Benchmark.
	Aloha Benchmark.

	Real Kitchen Play Dataset.
	Pretraining Details for Baselines for the Real World Kitchen
	Failure Cases for different Policies

	Generalization Experiments
	Novel Task Compositions

	Extended Related Work

