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ABSTRACT

Efficient fine-tuning of vision-language models (VLMs) like CLIP for specific
downstream tasks is gaining significant attention. Previous works primarily focus
on prompt learning to adapt the CLIP into a variety of downstream tasks, how-
ever, suffering from task overfitting when fine-tuned on a small data set. In this
paper, we introduce an orthogonal fine-tuning method for efficiently fine-tuning
pretrained weights and enabling enhanced robustness and generalization, while a
self-regularization strategy is further exploited to maintain the stability in terms
of zero-shot generalization of VLMs, dubbed OrthSR. Specifically, trainable or-
thogonal matrices are injected seamlessly into the transformer architecture and
enforced with orthogonality constraint during the training, benefiting from the
norm-preserving property and thus leading to stable and faster convergence, while
keeping the pre-trained weights frozen. To alleviate deviation from fine-tuning, a
self-regularization strategy is further employed to retain the generalization of the
model during the training within a bypass manner. In addition, to enrich the sample
diversity for downstream tasks under the small dataset scenario, we first explore
attentive CutOut data augmentation to boost the efficient fine-tuning, leading to
better model fitting capacity for specific downstream task. Then we support the
theoretical analysis on how our approach improves the specific downstream perfor-
mance and maintains the generalizability. For the first time, we revisit the CLIP
and CoOp with our method to effectively improve the model on few-shot image
classficiation scenario on par with the elaborated prompt learning methods. We
conduct extensive experiments to demonstrate that our method explicitly steers
pretrained weight space to represent the task-specific knowledge and presents com-
petitive generalizability under base-to-base/base-to-new, cross-dataset transfer
and domain generalization evaluations.

1 INTRODUCTION

Large-scale pre-trained vision-language models (VLMs) have been emerging as prevalent corner-
stones in a wide spectrum of downstream vision and vision-language tasks, including few-shot image
recognition [90; 91; 88; 22; 38; 92; 70; 57; 12; 77], object-detection [21; 25; 3; 85] and segmen-
tation [18; 6; 67; 79]. Leading models like CLIP [66] and ALIGN [36] demonstrate remarkable
generalizability by training with aligning image-text pairs from large web corpora using contrastive
loss, thereby encoding open-vocabulary concepts within a joint vision-language embedding space.
Despite the effectiveness of these VLMs in zero-shot recognition, fine-tuning them for specific
downstream tasks while preserving their strong zero-shot capabilities remains a significant challenge.
Designing manual text prompts for different tasks requires substantial human effort and expert
knowledge, which is often infeasible for achieving optimal performance in data-efficient settings [8].

Recently, prompt learning [91; 90] serves as an exceptional paradigm to achieve this objective,
however, tending to prioritize task-specific knowledge and resulting in task overfitting issues [61; 39],
where the fine-tuned model struggles to generalize well to new/unseen tasks under data-efficient
settings. To address this dilemma, alternative approaches must be explored. Drawing inspiration from
empirical observations that hyperspherical similarity effectively encodes semantic information [9;
53; 51] and that hyperspherical energy [52] can characterize the pairwise relational structure among
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Figure 1: The pipeline comparison for tuning or adapting VLMs into downstream tasks. Our
contribution is to introduce a new fine-tuning pipeline by orthogonal tuning, that boost the CLIP and
CoOp with competitive base/novel accuracy performances when compared with existing methods
(results are computed by average 11 datasets).

neurons, we hypothesize that well-pretrained models like CLIP should maintain consistent levels of
hyperspherical energy even after fine-tuning. An intuitive approach is to use a suitable regularizer
to preserve hyperspherical energy levels during the fine-tuning phase. However, ensuring that the
difference in hyperspherical energy is minimized remains a challenge. Inspired by recent orthogonal
transformation methods [65; 54], we propose that the pretrained pairwise hyperspherical energy can
be preserved by leveraging orthogonal transformation for all neurons with the same operation. This
approach utilizes the invariance property of orthogonal transformation, meaning norm-preserving
during fine-tuning, to maintain consistent hyperspherical energy levels.

Motivated by the preservation of hyperspherical energy through orthogonal transformation, we
introduce Orthogonality Learning to adapt pretrained VLMs (e.g., CLIP) to specific downstream
tasks (e.g., few-shot image recognition) without altering their hyperspherical energy, thanks to the
norm-preserving property during fine-tuning. This approach differs from common methods that
heavily rely on prompt learning. Furthermore, previous works [48; 52; 54] have shown that small
hyperspherical energy leads to better generalization, and orthogonal transformation is a suitable and
flexible solution for achieving this, especially in classification task. Our main idea is to apply the same
orthogonal transformation to neurons so that pairwise angles are maintained within the hypersphere
of CLIP. Although prevalent adaptation methods for pretrained weights, such as LoRA [33], achieve
fine-tuning by adding small component matrices, they still suffer from low training convergence and
generalizability degradation.

In this paper, we propose a novel and efficient fine-tuning method using Orthogonality Learning,
motivated by the preservation of hyperspherical energy through orthogonal transformation, shown
different paradigm with exisitng works in Fig. 1 (a). To mitigate deviation from orthogonal constraint
during training, we introduce a Self-Regularization strategy using the initial pretrained weights as an
anchor point, thus dubbed OrthSR. Our method keeps the pretrained weights frozen while applying
orthogonal fine-tuning and regularization simultaneously. In the dual-branch transformer architecture
of the CLIP model, we inject trainable orthogonal matrices and enforce orthogonal constraints (such
as using Cayley parameterization [29; 43]). This ensures each injected layer matrix is orthogonal with
a determinant of 1. We investigate orthogonal fine-tuning in both image and text encoder of CLIP
to demonstrate training efficiency and generalizability preservation of our method, distinguishing
it from prompt tuning and low-rank matrix decomposition methods. The norm-preserving property
of orthogonal transformations helps maintain hyperspherical energy levels, benefiting of stable
convergence, robustness, and generalization. This enables seamless integration of task-specific
knowledge into pretrained VLMs, allowing the trainable matrices to be merged with frozen weights
during deployment without adding inference latency, while we shows evaluation superiority over
previous methods in Fig. 1 (b). To prevent significant deviations from the pretrained model, we employ
a Self-Regularization strategy that guides the model to stay close to the anchor point, supported by
the pretrained model within a bypass manner. This simple yet effective approach sustains orthogonal
fine-tuning with initial anchor regularization, avoiding deviations from the zero-shot generalizability
manifold severely. Besides, we utilize attentive CutOut data augmentation to enrich the data diversity,
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enhancing the task-specific knowledge of fine-tuned model (e.g., few-shot image recognition) under
data-efficient setting. This leads to better model fitting capacity for specific downstream task, serving
as implicitly increasing the sample diversity. Unlike previous works [65; 54], we focus on adapting
VLMs to high-level task-specific scenarios (e.g., recognition) rather than fine-tuning generative
models. Additionally, we devise a suitable regularization strategy to retain the strong generalizability
that elucidates the training efficiency and generalizability preservation of our method.

Extensive experiments demonstrate the effectiveness of our OrthSR by evaluating on representative
benchmarks: base-to-base/base-to-new, cross-dataset transfer and domain generalization. In the
base-to-base/base-to-new setting, our method improves the new class of baseline model by 13.3% on
average across 11 datasets, by 0.95% for cross-dataset setting and 1.80% on average across the four
datasets for domain generalization setting, all of which presents competitive performance over the
existing SoTAs. In summary, our contributions can be summarized as follows:

• We introduce a novel and efficient orthogonal fine-tuning method to adapt the VLMs
into task-specific knowledge while maintaining strong generalizability. Due to the norm-
preserving property, this fine-tuning leads to stable and faster convergence and exhibits
superiority over the prompt tuning methods.

• To further mitigate the deviation from the pretrained model, we design a Self-Regularization
strategy to enforce the fine-tuned model distilling informative zero-shot generalization
information of the pretrained logits.

• Attentive CutOut data augmentation is employed to enhance the task-specific knowledge
when fine-tuning the VLM under data-efficient setting.

• Extensive experiments are conducted to validate the effectiveness and effciency of our
method, for the first time, we boost the CLIP and CoOp with weight decomposition tuning
to obtain on par or even superior performances over existing methods.

2 RELATED WORKS

Vision language models. Recently, with a significant upsurge of large-scale pretrained vision-
language models (VLMs) [84; 89; 36; 13; 66; 74], text and image embeddings have been trained
jointly to be aligned with the large-scale image-text pairs corpora. Driven by contrastive loss in a self-
supervised manner, VLMs like CLIP [66], ALIGN [36], LiT [87], FLIP [47] and Florence [84] have
elucidated remarkable performance. For instance, CLIP [66] and ALIGN [36] utilize approximately
400 million and 1 billion image-text pairs, respectively, to accomplish their multi-modal alignment
training, benefiting a wide spectrum of downstream vision and vision-language tasks, including few-
shot image-level recognition [90; 91; 88; 22; 38; 92; 70; 57; 12; 77], object detection [21; 25; 3; 85]
and segmentation [18; 6; 67; 79]. Despite strong generalizability towards zero-shot recognition tasks
of these VLMs, effectively transferring them to downstream tasks without degrading their inherent
generalization ability remains a challenging problem.

Efficient tuning for vision language models. With the emergence of VLMs, efficiently adapting
these models to specific downstream tasks with limited data samples has garnered significant interest.
Prompt Tuning is firstly proposed in the NLP field [49; 23; 46; 42], which attempts to learn task-
specific prompt templates. Recently, in the computer vision community, CoOp [91] pioneers the study
by tuning the contextual tokens in text branch of CLIP into a set of learnable tokens to few-shot image
recognition, which is further improved by CoCoOp [90] through a Meta-Network [58] paradigm
to address the overfitting issue on base classes while generalizing better on unseen classes. To
efficiently adapt large pretrained Vision Transformers, VPT [37] and Visual Prompting [2] both insert
trainable tokens into the input space of transformer model. To leverage additional prompt learning
for dual-branch models like CLIP, a plethora of works [38; 39; 14; 86; 61; 92; 55; 77] have been
proposed to learn these prompts towards a way that treats them as continuous learnable vectors while
keeping the original model parameters frozen to retain the strong generalizability. Very recently, Test-
Time Prompting [71; 70] emerges with the objective of enforcing consistency regularization between
multiply views of a test sample by minimizing their averaged entropy. Another line of work [8; 17; 27]
focuses on tuning VLMs over the pretrained weights. Adaptation methods [32; 33; 63] have become
increasingly ubiquitous. The LoRA series [33; 50; 16] is widely used to finetune pretrained model
weights using low-rank matrix optimization. Our method shares a similar principle with LoRA for
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adapting pretrained model weights, but introduces a novel Orthogonality Learning approach. This
not only enhances performance for specific downstream tasks (e.g., few-shot recognition) but also
improves robustness and generalization with more efficient convergence.

Orthogonality regularization. Orthogonality has been commonly adopted to introduce orthogonal
regularization to improve the robustness of Deep Neural Networks [51; 7; 35; 83; 34; 43; 1; 80; 64;
45], that norm-preserving property can avoid exploding or vanishing gradients during training [4;
24], leading to faster convergence and encouraging robustness and generalization. This objective
can be reached by a simple Cayley parameterization [29; 43]. Recently,OPT [54] introduces an
orthogonal transformation applied to the neural weights to maintain the minimum hyperspherical
energy. Furthermore, OFT [65] extend this orthogonal paradigm to finetune the text-to-image
diffusion models by employing Cayley parameterization constraint during the finetuning. In this
paper, we further explore the utilization of orthogonal finetuning on CLIP for specific downstream
tasks while proposing different regularization strategies to enhance generalizability on novel/uneen
classes.

3 METHODOLOGY

3.1 PRELIMINARIES

Contrastive Language-Image Pre-training (CLIP). CLIP consists of two parallel encoders, image
and text encoders, represented by θCLIP = {θv, θt}. The image encoder Fv can be either a
CNN [26] or a ViT [75; 19] for mapping input image into a image embedding, and the text encoder
Ft is a Transformer [17] for mapping input text into a text embedding, respectively. During pre-
training, CLIP utilizes two parallel encoders to separately encode image and text into corresponding
vectors in jointly aligned embedding space, and then adopts contrastive loss to pull together the
cosine similarities of the correct image-text vector pairs while pushing away the cosine similarities of
incorrect pairs. After pretrained on large-scale image-text pairs corpora, CLIP is capable of computing
the text-image similarity and can be generalized to downstream tasks, like zero-shot image recognition,
without fine-tuning. Specifically, the input image X is first divided into M patches and then projected
into patch tokens, and a global class token [CLS] is prepended to the patch token sequence, obtaining
X0 = {CLS, e1, e2, ..., eM} where ei standds for the ith patch. Those patch tokens will be encoded
by transformer blocks inside the image encoder Fv by fv = Fv(X0 : θv). Given the labels
{[class]c}Cc=1 for the C categories for classification where [class]c represents the class name of the
cth class, a hand-crafted text prompt like ‘a photo of a [CLS]’ will be embedded within the class
label [class]c This results in Y0 = {SOS, t1, t2, ..., tL, ck, EOS} where SOS and EOS denote the
start and end token embeddings while ti and ck are specific word embedding corresponding to the
text prompt and the class label, respectively. The text encoder Ft will encode Y0 via transformer
blocks to produce text feature embeddings as ft = Ft(Y0 : θt). During zero-shot inference, the
prediction probability on image X will be computed as p(yi|X) = exp(sim(ft·fv)/τ)∑C

i=1 exp(sim(ft ·fv)/τ)
, where τ

is a learned temperature coefficient and sim denotes the cosine similarity computation, respectively.

Context Optimization (CoOp) [91] proposes to leverage tunable text prompt by replacing the
cumbersome and fixed hand-crafted prompt, that can be learnt from data. Now, the tunable prompt
is constructed with M learnable continues context vectors as w = {w1, w2, ..., wM , ck}, where wi

represents the ith tunable vector and ck denotes the cth class name [class]c. The finally fine-tuned
training objective of CoOp is to optimize the contextual vectors wi only by minimize the cross-entropy
loss between the ground-truth ŷ and the model prediction y as:

p(yi|X) =
exp(sim(ft(: w) · fv)/τ)∑C
i=1 exp(sim(ft(: w) · fv)/τ)

, Lce = − log p(ŷ = y|X) (1)

3.2 ORTHOGONAL FINE-TUNING

Traditionally, fine-tuning VLMs into specific downstream scenarios typically embraces small learning
rate with gradient descent optimizer to update the model, This scheme implicitly constrains risky
deviation from pretrained model, aiming to finetune the model via implicitly minimizing ∥M−M0∥
where M is the fine-tuned model weights and M0 is the pretrained model weights. Towards this
strategy, there are still various ways to finetune a pretrained VLM. For example, LoRA [33] employs
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Figure 2: Overview of our proposed pipeline, OrthSR. The top shows our fine-tuning pipeline
by applying orthogonal tuning into the Feed-Forward-Network of both image and text encoder
(Fv and Ft) of CLIP model which is trained with Self-Regularization strategy. On the left of
bottom, orthogonal matrix injection is explained by injecting orthogonal matrix into the pretrained
weights with orthogonalization constraint (such as Cayley parameterization). On the right of bottom,
pretrained CLIP is utilized to highlight the most-discriminative image regions and then apply cutout
operation to obtain cutout image Xcutout which will be input to the fine-tuned model together with
original X .

an additive low-rank matrix with constraint for model weights update, i.e., rank(M−M0)=r′

where r′ is set to be relatively smaller number than the pretrained ones. Differently, Orthogonal
transformation targets at inducing a constraint for the pairwise similarity between neurons [54; 65]:
∥HE(M)−HE(M0)∥=0 ,where HE(·) denotes hyperspherical energy of a weight matrix. In this
paper, we draw attention to the Feed-Forward-Networks (FFN) within the transformer architecture
of CLIP, shown in Fig 2. Suppose a fully-connected layer with W ={w1, · · · ,wn}∈Rd×n where
wi ∈ Rd is the ith neuron (W0 is the pretrained weights). We expect to acquire the output vector
z∈Rn by z=W⊤x where x∈Rd is the input vector. When introducing the orthogonal fine-tuning
as minimizing the hysperical energy difference between the fine-tuned and pretrained model:

min
W

∥HE(W )− HE(W0)∥ ⇔ min
W

∥∥∥∥∑
i ̸=j

∥ŵi − ŵj∥−1 −
∑
i ̸=j

∥ŵ0
i − ŵ0

j∥−1

∥∥∥∥ (2)

where ŵi=
wi

∥wi∥ is the ith normalized weight, and the hyperspherical energy of a fully-connected
layer W is defined as HE(W ) :=

∑
i ̸=j ∥ŵi−ŵj∥−1. This objective can be optimally minimized

to be zero. To achieve this target, we introduce the orthogonal transformation into the pretrained
weights, W =AW0 in which A∈Ad×d is an orthogonal matrix, meaning that the determinant is 1
or −1 of the initial matrix by imposing rotation or reflection, respectively. Now we can formulate the
forward pass of FFN from z=(W0)

⊤x to:

z = W⊤x = (A ·W0)
⊤x, s.t. A⊤A = AA⊤ = I (3)

where W denotes the fine-tuned weight matrix and I is an identity matrix. During the fine-tuning,
we optimize the added A while keeping the pretrained weights W0 frozen. To finetune the model
from W0, we initialize the orthogonal matrix A to be identity matrix I , sharing similar principle
with LoRA to set zero initialization of the additive matrices. Moreover, this allows us to gradually
inject task-specific knowledge into the fine-tuned model driven by cross-entropy loss.

Motivated by previous works [54; 43; 29] discussing about differential orthogonalization methods, we
focus on taking utilization of Cayley parameterization. The Cayley transform produces a representa-
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tion of orthogonal matrices without −1 eigenvalues using skew-symmetric matrices (i.e., C⊤ = −C)
as follows:

A = (I +C)−1(I −C),C = (I +A)−1(I −A) (4)

wherein we find this special orthogonal group is able to obtain competitive performances when
adapting CLIP for downstream tasks (e.g., few-shot image recognition). Based on the orthogonal
fine-tuning above to adapt the VLM into downsream scenario, we find there exists a potential risky
error bounding such that the fine-tuned model presents inferior generalizability on new/unseen
classes, shown in our experimental part. After applying the Neumann series to analyze: A =
(I + C)−1(I − C) can be written as: A ≈ I + 2C + O(C2), We empirically observe that this
approximation results in instability of the fine-tuning [72], which degrades the zero-shot generalization
of the pretrained model, showing different phenomena with previous work [65] on fine-tuning
generative models.

3.3 SELF-REGULARIZATION

This inspires us to investigate the regularization strategy to carefully constrain the fine-tuned model
not deviating far away from the pretrained one. Therefore, we further design a Self-Regularization
strategy to regularize the fine-tuned model through pretrained model with a bypass manner since
the pretrained weights are frozen. As shown in Fig 2, the text prompts are processed by frozen text
encoder Ft to obtain text embedding ft, while we can also compute new text embedding ft(:, At)
which is encoded by orthogonal tuning text encoder after injecting orthogonal matrix to each FFN
layer, Ft +At. Here, we want to optimize the additive At for the text encoder. At the same time, we
input original image to the image encoder, and obtain fv encoded by frozen Fv and fv(:, Av) from
Fv + Av, enabling Av tunable only. Further, the pretrained and fine-tuned logit are computed as
follows:

fzs_logit = sim(ft · fv), flogit = sim(ft(:, At) · fv(:, Av)) (5)

Then, we adopts the cross-entropy loss to train the model given the class label ŷ as:

p(yi|X) =
exp(sim(ft(:, At) · fv(: Av))/τ)∑C
i=1 exp(sim(ft(:, At) · fv(:, Av))/τ)

, Lce = − log p(ŷ = y|X) (6)

To further impose regularization from the pretrained anchor point,Then Kullback-Leibler loss Lkl is
used to distill informative zero-shot knowledge from the anchor point so as to alleviate deviation far
away from the pretrained mainfold wthin a bypass manner, as follows:

Lkd = Dkd(flogit, fzs_logit) (7)

where Dkd(flogit||fzs_logit) =
∑
x∈X

(g(flogit)log
g(flogit)
g(fzs_logit

)), g(·) denotes softmax function.

3.4 CUTOUT AUGMENTATION

As shown in Fig 2, we utilize the pretrained model to infer the similarity map by computing the
cosine similarity between image patch tokens and [CLS] text token, named as attentive CutOut. Then
it produces a map that each patch responses to [CLS] text token and then reshape them into the same
shape of the input image. During the training, we randomly select a cutout region size to zero the
top-K image patches, where K ranges from [l, L]. To enforce randomness to image encoder so that
the model can pay more attention to other less-discriminative image regions, we generate random and
different erasing size for each training iteration. Specifically, let Xcutout be the cutout image. We
input it into the image encoder with Fv +Av and obtain fv_cutout(:, Av). After that, following the
aforementioned way, we then calculate the cutout logit fcutout_logit as:

fcutout_logit = sim(ft(:, At) · fv_cutout(:, Av)) (8)

Similarly, we acquire the cutout classification and Kullback-Leibler loss in terms of the cutout image
X_cutout as:

Lcutout_ce = − log p(ŷ = y|Xcutout), Lcutout_kd = Dkd(fcutout_logit, fzs_logit) (9)
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In this way, we enforce the fine-tuned model pay more attention to other less-discriminative image
regions that response weak to the text embedding but still contains informative cues to help model
learn task-specific knowledge under the data-efficient setting, which serves as diversifying samples.

3.5 TRAINING OBJECTIVE

Overall, the training losses of our method consist of two parts, one for the image classification loss
including global image classification loss and cutout image classification loss, while the other one
includes two corresponding distillation loss. We expect that introducing orthogonal tranformation
into CLIP model fine-tuned for specific downstream tasks is able to retain strong generalizability
preservation. Hence, the overall loss Lfinal can be written as:

Lfinal = λ1(Lce + Lcutout_ce) + λ2(Lkd + Lcutout_kd) (10)

where λ1 and λ2 are loss balancing hyper-parameters, weighting the task-agnostic and task-specific
knowledge learning.

3.6 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis for the generalization error bound of OrthSR.

We define the following optimization objectives according to Eq. 10:

min
Θ∈R

1

N

∑N
i=1L

(
ŝSi (Θ) , ygti

)
︸ ︷︷ ︸

LCE

+ λL
(
ŝS (Θ) , ŝT

)︸ ︷︷ ︸
LKD

, (11)

where Θ represents learnable orthogonal matrices {Av, At} of the proposed method, and we use S
and T here to denote the fine-tuned model and pre-trained anchor model. Now we further analyze
the effectiveness of OrthSR by computing the generalization error bound. This bound computes
the bias between the generalization error ε (Θ) := E(ŝS ,ygt)∼DL

(
ŝS (Θ) , ygt

)
and empirical error

ε̄χ (Θ) := 1
N

∑N
i=1L

(
ŝSi (Θ) , ygti

)
, where D is the real data distribution and E (·) denotes the

expectation function.

Theorem 1. Assume that Θ∗ is the solution to Eq. equation 11. Then we have that for any 0 < ϵ < 1
with probability 1− ϵ,

ϵ(Θ∗)− ϵ̄χ(Θ
∗) ≤ X∗

√
2 ln(1/δ)

N
+

C ′′

λ2α
√
N

.

where X∗ = maxr∈NN

∣∣L (
ŝSr (Θ) , ygtr

)∣∣ and α > 0.

The first term of the upper bound converges with the increasing of the number of training data N ,
that can be achieved by our proposed attentive CutOut data augmentation instead of using extra data.
We can also find that the second term converges to 0 with the increasing of λ, which means the our
self-regularization LKD within a bypass manner effectively improves the generalization ability of
our method.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets: For evaluation in terms of both base-to-base and base-to-new class generalization, we
conduct our method on publicly available 11 image recognition datasets: ImageNet [69] and Cal-
tech101 [20] for generic objects classification, Oxford_Pets [62], StanfordCars [40], Flowers102 [60],
Food101 [5] and FGVCAircraft [56] for fine-grained classification, SUN397 [82] for scene recog-
nition, DTD [15] for texture classification, EuroSAT [28] for satellite imagery recognition and
UCF101 [73] for action recognition. Following the existing methods [90; 38; 39; 14; 86; 61; 92;
55; 77], we also evaluate our method on cross-dataset transfer and domain generalization. For
cross-dataset transfer, we adopt ImageNet as the source and the remaining 10 datasets as target
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Table 1: Performance for base-to-base/base-to-new on 11 datasets. We train our model with a subset
of the classes (base classes) in a 16-shot setting and evaluate on the test set including base classes
and new classes, while HM denotes the harmonic mean of base and novel performance to show
the generalization trade-off [81], HM=(2 × base × new )/(base + new). The highest results are
highlighted in Bold.

Dataset CLIP CoOp CoCoOp MaPLe RPO PLOT PromptSRC UNIGRAM VPT IVLP OrthSR Gain
[66] [91] [90] [38] [41] [10] [39] [44] (Base) (Base) (Ours) ∆

Average on
11 datasets

Base 69.34 82.69 80.47 82.28 81.13 77.20 84.26 80.34 80.81 81.83 84.16 +1.47
New 74.22 63.22 71.69 75.14 75.00 60.38 76.10 75.92 70.36 73.63 76.55 +13.3
HM 71.70 71.66 75.83 78.55 77.78 67.76 79.97 78.07 74.68 77.10 80.02 +8.36

ImageNet
Base 72.43 76.47 75.98 76.66 76.60 75.97 77.60 76.60 70.93 76.80 78.10 +1.63
New 68.14 67.88 70.43 70.54 71.57 69.23 70.73 70.69 65.90 70.40 70.35 +2.47
HM 70.22 71.92 73.10 73.47 74.00 72.44 74.01 73.53 68.32 73.46 74.02 +2.10

Caltech
101

Base 96.84 98.00 97.96 97.74 97.97 96.53 98.10 98.07 97.86 97.53 98.17 +0.17
New 94.00 89.81 93.81 94.36 94.37 82.86 94.03 95.11 93.76 93.57 94.03 +4.22
HM 95.40 93.73 95.84 96.02 96.03 89.17 96.02 96.57 95.77 95.51 96.06 +2.33

Oxford
Pets

Base 91.17 93.67 95.20 95.43 94.63 93.45 95.33 94.94 94.81 95.50 95.60 +1.95
New 97.26 95.29 97.69 97.76 97.50 79.76 97.30 97.94 96.00 97.97 97.70 +2.41
HM 94.12 94.47 96.43 96.58 96.05 86.06 96.30 96.42 95.40 96.72 96.64 +2.17

Stanford
Cars

Base 63.37 78.12 70.49 72.94 73.87 61.41 78.27 73.50 72.46 73.27 79.40 +1.28
New 74.89 60.40 73.59 74.00 75.53 42.69 74.97 75.38 73.38 74.17 73.87 +13.4
HM 68.65 68.13 72.01 73.47 74.69 50.37 76.58 74.43 72.92 73.72 76.54 +8.41

Flowers
102

Base 72.08 97.60 94.87 95.92 94.13 95.62 98.07 95.20 95.39 96.47 97.60 +0.00
New 77.80 59.67 71.75 72.46 76.67 56.03 76.50 76.21 73.87 72.90 75.53 +15.8
HM 74.83 74.06 81.71 82.56 84.50 70.56 85.95 84.65 83.26 83.04 85.16 +11.1

Food101
Base 90.10 88.33 90.70 90.71 90.33 88.45 90.67 90.84 89.88 90.47 90.50 +0.40
New 91.22 82.26 91.29 92.05 90.83 85.28 91.53 92.12 87.76 91.97 91.17 +8.91
HM 90.66 85.19 90.99 91.38 90.58 86.84 91.10 91.48 88.81 91.21 90.83 +5.64

FGVC
Aircraft

Base 27.19 40.44 33.41 37.44 37.33 29.63 42.73 32.25 33.10 34.20 41.93 +1.49
New 36.29 22.30 23.71 35.61 34.20 16.17 37.87 38.00 30.49 34.00 36.87 +14.5
HM 31.09 28.75 27.74 36.50 35.70 20.92 40.15 34.89 31.74 34.10 39.24 +10.4

SUN397
Base 69.36 80.60 79.74 80.82 80.60 78.56 82.67 80.43 79.66 81.00 82.47 +1.87
New 75.35 65.89 76.86 78.70 77.80 72.34 78.57 77.91 72.68 78.40 79.33 +13.4
HM 72.23 72.51 78.27 79.75 79.18 75.32 80.52 79.15 76.01 79.68 80.87 +8.36

DTD
Base 53.24 79.44 77.01 80.36 76.70 69.87 83.37 73.62 79.15 79.50 82.40 +2.96
New 59.90 41.18 56.00 59.18 62.13 53.63 62.97 62.38 50.76 50.10 65.33 +24.1
HM 56.37 54.24 64.85 68.16 68.61 60.68 71.75 67.56 61.85 61.47 72.88 +18.6

EuroSAT
Base 56.48 92.19 87.49 94.07 86.63 87.39 92.90 86.26 93.01 91.30 93.27 +1.08
New 64.05 54.74 60.04 73.23 68.97 67.63 73.90 71.38 54.89 68.53 79.00 +24.2
HM 60.03 68.69 71.21 82.35 76.79 74.30 82.32 78.12 69.04 78.29 85.54 +16.8

UCF101
Base 70.53 84.69 82.33 83.00 83.67 72.71 87.10 82.00 82.67 84.13 86.33 +1.64
New 77.50 56.05 73.45 78.66 75.43 41.51 78.80 78.06 74.54 77.90 78.87 +22.8
HM 73.85 67.46 77.64 80.77 79.34 52.84 82.74 79.98 78.39 80.90 82.43 +14.9

variants, while for domain generalization, we also use ImageNet as source and ImageNetV2 [68],
ImageNet-Sketch [78], ImageNet-A [31] and ImageNet-R [30] as targets.

Implementation details: For all the experimental settings, we follow the common strategy of
CoOp [91] and CoCoOp [90] for the fair comparison, including the dataset splits, default data
augmentation, training schedule, shot of samples, backbones, length of context tokens (i.e., M is
16 in this paper), etc. The K is set to be 3 and averaged for all the experiments, reporting base and
novel class accuracy and their harmonic mean (HM), respectively. We apply CLIP-ViT-B/16 as our
pretrained backbone model to train for 5 epochs with a batch size of 4, and a learning rate of 1e-5 via
SGD optimizer on a single Nvidia-A100-GPU, unless other stated. The hyper-parameters λ1 and λ2

are set to be 1.5 and 1.2 by default, left for hyper-parameters sensitivity ablations in Appendix A.

Baseline: To validate the effectiveness of proposed OrthSR, we compare our approach against the
following methods, including: (1) zero-shot CLIP [66], which provides the basic baseline model for
comparison without any prompt learning or adaptation finetuning; (2) commonly used single-modal
prompt tuning methods to demonstrate superiority of our novel finetuning method, such as CoOp [91]
which constructs another baseline model for us using tunable context vectors for the input text prompt,
CoCoOp [90], PLOT [10] and UNIGRAM [44], and VPT [37]; and multi-modal prompt tuning
methods: MaPLe [38] and PromptSRC [39]. Note that the original paper of PLOT [10] adopts a
weaker backbone model ResNet-50 [26], here we change it to ViT-B/16 to implement for a fair
comparison. Moreover, we also implement VPT which applies prompt tuning for image encoder,
IVLP which applies independent prompt tuning for both image encoder and text encoder, all of which
establish the basic comparisons.
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Table 2: Performance comparison on the domain
generalization.

Source Target
ImageNet -V2 -S -A -R

CLIP 66.73 60.83 46.15 47.77 73.96
LoRACLIP 69.70 62.67 38.70 39.67 69.93
CoOp 71.51 64.20 47.99 49.71 75.21
CoCoOp 71.02 64.07 48.75 50.63 76.18
VPT 70.72 58.22 44.67 43.00 71.86
UPT 72.63 64.35 48.66 50.66 76.24
MaPLe 70.72 64.07 49.15 50.90 76.98

OrthSR 70.83 63.8 49.3 51.37 77.4

Table 3: Ablations of our proposed components.
Results are averaged over 11 datasets. HM refers
to harmonic mean.

Method Base Acc. Novel Acc. HM

1: Final OrthSR 84.16 76.55 80.02
2: ✓ Image Encoder 81.76 75.41 78.46
3: ✓ Text Encoder 80.70 76.19 78.38
4: - Lkl 83.52 75.09 79.08
5: - cutout 81.75 76.55 79.06

4.2 COMPARISON WITH OTHER METHODS

Base-to-base/base-to-new generalization. In this section, we compare the results of our approach
over the ones that commonly use prompt learning or LoRA finetuning. As can be seen in Table 1, our
approach obtains 84.16% , 76.55% and 80.02% Acc. for the averaged 11 datasets in terms of validation
on base, new and HM. More importantly, our method surpasses the comparative LoRACLIP with
2.74%, 6.15% and 4.95% of base, novel and HM evaluation, which further demonstrates the OrthSR
is capable of not only efficiently adapting to task-specific task but also leading to generalizability
preservation, thanks to the norm-preserving property of orthogonal finetuning. And these results
further presents the prevalent LoRA method potentially tends to prioritize task-specific knowledge
and results in task overfitting issues while ours has no such issues, especially for the few-shot image
recognition task. Meanwhile, our approach reports consistent superorities beyond the conventional
prompt learning methods, VPT and IVLP, better illustrate the effectiveness of our approach. When
compared with competing MaPLe [38] and PromptSRC [39] which utilize complex strategies to
enhance prompt tuning, our method still behaves better generalizability, obtaining highest accuracy
on evaluation with 76.55% for new classes and 80.02% for HM.

Cross-dataset transfer. For evaluating the cross-dataset tranfer, we train our approach on Ima-
geNet [69] and then directly evaluate it on the other datasets without any domain-specific finetuning
or adaptation. We compare cross-dataset performance with existing methods in Table 4. In com-
parison with CoOp [91] and CoCoOp [90], our proposed OrthSR presents better generalization
performance in 9/10 and 5/10 datasets, respectively. Importantly, our approach exceeds LoRACLIP

in 9/10 datasets and shows obvious advantages among these dataset, which further demonstrates
that our methods retains stronger zero-shot generalizability. Meanwhile, compared with the prompt
tuning methods MaPLe [38] and PromptSRC [39], we obtain 7/10 and 6/10 better generalization
performance while not introducing any tunable parameters after training (0 v.s. 3.55MB and 0 v.s
46KB, respectively) and no complicated training strategy tailored to struggle with the generalizability
preservation.

Domain generalization. Table 2 reports the results of OrthSR and other methods on out-of-
distribution datasets. Following the common methods, we train our model and directly evaluate on
other datasets. We can observe that our method consistently surpasses LoRACLIP on all datasets,
while obtaining 3/4 superiority with CoOp and CoCoOp. Interestingly, prompt-based VPT illustrates
inferior performance in 4/4 datasets to ours, while ours gains 2/4 better generlization evaluation
beyond MaPLe [38]. This suggests that our orthogonal tuning with simple yet effective cross-
regularization enables the finetuned model favor better generalization for datasets with domain
shifts.

4.3 ABLATIONS AND ANALYSIS

Orthogonal tuning choice of encoder. In Table 3, we conduct experiments to to showcase which
encoder, i.e., image encoder or text encoder, should be introduced with the proposed orthogonal tuning.
As can be observed that only utilizing single encoder of CLIP model presents lower performance on
both base, novel and HM metrics while both encoders equipped with orthogonal finetuning obtain the
best result, compared among row1/2/3.

Loss ablation. Compared among row 1/4/5 in Table 3, we found that removing logits distillation loss
causes significant degradation on the Novel/New classes and HM metrics, which illustrates that there

9
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Table 4: Performance comparison on the cross-dataset transfer setting.
Source Target

ImageNet

Caltech101

Oxford_Pets

StanfordCars

Flowers1
02

Food101

FGVCAircraft

SUN397
DTD

EuroSAT

UCF101

LoRACLIP 69.70 91.70 89.13 59.53 68.77 82.13 23.80 65.03 44.83 45.53 65.83
CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69
PromptSRC 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75

OrthSR 70.83 94.07 89.63 65.63 71.40 86.53 24.13 67.23 46.73 42.33 69.17

Table 5: Complexity analysis over various methods. We report the number of trainable parameters
(#Params) and frames per second (#fps).

Methods CoOp CoCoOp VPT PLOT MAPLE OrthSR
#Params 2,048 35,360 13,824 8,192 3,555,072 43450368
#fps 645 37 152 583 282 645

are some kind of deviation away from the pretrained model, proving that necessitates regularization
to guide the finetuning. After using logits distillation, Lkl, we get improved on both the Base and
Novel classes, by 0.64% and 1.46%, respecitvely. Note that we derive such distillation guidance from
the pretrained model only in a bypass manner, instead of seeking for extra data synthesis or heavy
large-language model prior knowledge auxiliary.

Complexity analysis. Since our proposed orthogonal tuning method shares similar idea with LoRA
adapting VLMs into downstream scenarios via pretrained weights finetuning, it is necessary to
demonstrate the computation cost during the training and inference phases. We therefore test and
summarize the number of trainable parameters (#Params) and inference latency (#fps) in Table 5. We
can see that though our approach needs the most number of trainable parameters since we leverage
both two encoders to be injected with orthogonal tuning matrices for each fully-connected layer within
Feed-Forward-Network, our approach needs the same inference latency with the baseline, CoOp,
achieving the fastest 645 fps while having significantly better few-shot recognition and generalization
performance. More ablative studies please refer to our Appendix A.

5 CONCLUSIONS

This paper proposes a novel and efficient method for adapting pretrained VLM weights, OrthSR,
for specific downstream tasks (e.g., few-shot image recognition). To explore an effective fine-
tuning approach not suffering from task overfitting issues under a data-efficient setting, we propose
an orthogonal fine-tuning method for efficiently updating pretrained weights. Optimized by the
constraint with Cayley parameterization during training, the fine-tuned CLIP model is capable of
maintaining minimal and same-level of hyperspherical energy as the pretrained model owing to
norm-preserving property, leading to better robustness and generalizability for task-specific scenarios.
Meanwhile, a self-regularization strategy is designed to enforce the model not to deviate far away
from the pretrained one within a bypass manner. Additionally, we first explore attentive CutOut data
augmentation to enable the fine-tuned model to learn better task-specific knowledge on a small data set.
Finally, extensive experiments demonstrate the training efficiency and generalizability preservation
of our approach and showcase competitive performance on three generalization evaluations, shedding
new light on the future works for this few-shot tuning task.

Limitations and future improvements. Despite the competitive generalization performance our
approach obtains, there are still several limitations to be further delved into exploration. First, our
method presents marginal advantages on cross-dataset transfer or domain generalization evaluations,
although we exhibit competitive performance under base-to-base/base-to-new setting. Moreover,
there are still future improvements on how to efficiently lower the tunable parameters during the
training phase, and remaining an interesting direction on how to leverage theoretical analysis to
decompose or disentangle the VLMs to seek out the potential manifold space that allows us to inject
task-specific knowledge without sacrificing zero-shot generalizability.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 MORE IMPLEMENTATION DETAILS

Besides the implementation details in our main paper, we provide more details in Table 6.

Table 6: Hyperparameter setting used in our experiments.

Hyperparameters Values
Batch Size 4
Input Size 224× 224
Input Interpolation "Bicubic"
Input Pixel Mean [0.48145466, 0.4578275, 0.40821073]
Input Pixel STD [0.26862954, 0.26130258, 0.27577711]
Transforms ["random resized crop", "random filp", "normalize"]
Optimizer SGD
Learning Rate 0.00001
LR Scheduler "cosine"
Warmup Epoch 1
Warmup Type "constant"
Warmup LR 1e-6
Backbone ViT-B/16
Number of Textual Prompts 4
Number of Visual Prompts 4
Learnable Prompt Length 2
Fixed Prompt Length 2
weight of cross-entropy loss λ1 1.5
weight of Kullback-Leibler loss λ2 1.2
patch number for Cutout inference (ViT-B/16) randomly sample one from [5, 6, 7, 8, 9]
Prompt Initialization "a photo of a"
Precision "fp16"

A.2 EVALUATION METRICS

Among all our experiments, we report top1 accuracy for each dataset. In base-to-base/base-to-
new generalization, the top1 accuracy is measured on base classes and new classes, respectively.
We then calculate the harmonic mean (HM) between the base and new class accuracy to show the
generalization trade-off [81], using HM = 2×base×new

base+new . In domain generalization, and cross-dataset
transfer settings, we measure top − 1 accuracy on the test set of each dataset with the same split
provided by CoOp [91] following other related works.

A.3 MORE DATASET DESCRIPTIONS

We throughly conduct our method on publicly available 15 image recognition datasets across 4
common generalizability evaluation settings: ImageNet [69] and Caltech101 [20] for generic objects
classification, Oxford_Pets [62], StanfordCars [40], Flowers102 [60], Food101 [5] and FGVCAir-
craft [56] for fine-grained classification, SUN397 [82] for scene recognition, DTD [15] for texture
classification, EuroSAT [28] for satellite imagery recognition and UCF101 [73] for action recognition;
datasets with apparent domain shifts ImageNetV2 [68], ImageNet-Sketch [78], ImageNet-A [31] and
ImageNet-R [30]. We make a summary in terms of data statistics in Table 7.

A.4 LOSS BALANCING HYPER-PARAMETERS SENSITIVITY ABLATIONS

In our main paper, the overall training loss Lfinal is:

Lfinal = λ1(Lce + Lcutout_ce) + λ2(Lkl + Lcutout_kl) (12)
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Table 7: Summary of all 15 datasets. N/A denotes that we do not use the corresponding training or
validation sets, which will be used to conduct generalizability evaluation only.

Dataset Domains #Classes #Train #Val #Test
ImageNet generic classification 1000 1.28M N/A 50,000

Caltech101 generic classification 100 4,128 1,649 2,465
OxfordPets fine-grained classification 37 2,944 736 3,669

StanfordCars fine-grained classification 196 6,509 1,635 8,041
Flowers102 fine-grained classification 102 4,093 1,633 2,463

Food101 fine-grained classification 101 50,500 20,200 30,300
FDVCAircraft fine-grained classification 100 3,334 3,333 3,333

SUN397 scene recognition 397 15,880 3,970 19,850
UCF101 action recognition 101 7,639 1,808 3,783

DTD texture recognition 47 2,820 1,128 1,692
EuroSAT satellite recognition 10 13,500 5,400 8,100

ImageNetV2 generic classification 1000 N/A N/A 10,000
ImageNet-Sketch sketch classification 1000 N/A N/A 50,889

ImageNet-A generic classification 200 N/A N/A 7,500
ImageNet-R generic classification 200 N/A N/A 30,000

(a)	fix 𝜆6 = 1.2 (b)	fix 𝜆7 = 1.5

Figure 3: Ablations in terms of λ1 and λ2.

In this section, we conduct ablative studies on hyper-parameters, λ1 and λ2 in Fig 3. The figure
shows that the overall training is robust to both the hyper-parameters, λ1 and λ2.

B THEORETICAL PROOF

Following previous works [11; 59], this section provides detailed proofs for the Theorem in Sec. 3.6.
Notably, we propose to utilize attentive CutOut data augmentation to implicitly increase the sample
number and make use of pre-trained model as generalization anchor to maintain the generalization
error bound, which is different from [11]. We introduce the following lemmas for proving our
Theorem.

Lemma 1(McDiarmid’s Inequality [76]). Consider independent random variables v1, v2, · · · , vn ∈
V and a function ϕ : Vn → R. Suppose that for all v1, v2, · · · , vn and vi

′ ∈ V (i = 1, 2, · · · , n), the
function satisfies

|ϕ (v1, · · · , Vi−1, Vi, Vi+1, · · · , Vn)− ϕ (v1, · · · , Vi−1, vi
′, Vi+1, · · · , Vn)| ≤ ci, (13)

and then it holds that

P {ϕ (v1, v2, · · · , vn)− Ev1,v2,··· ,vn (ϕ (v1, v2, · · · , vn)) > µ} ≤ e
− 2µ2∑n

i=1 c
2
i . (14)
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The proof of Theorem 1. is given as follows.

Theorem 1. Assume that Θ∗ is the solution to OrthSR. Then we have that for any 0 < ε < 1 with
probability 1− ε,

ϵ(Θ∗)− ϵ̄χ(Θ
∗) ≤ X∗

√
2 ln(1/δ)

N
+

C ′′

λ2α
√
N

.

where ϵ(Θ∗) is the true error. ϵ̄χ(Θ
∗) is the empirical error. X∗ is the upper bound of the loss

function L. N is the number of training samples. λ is our introduced regularization parameter.
α > 0. δ is a probability parameter. C ′′ encompasses constants from the Rademacher complexity
bound.

Proof. The generalization error is defined as:

ϵ(Θ) = E(x,y)∼D [L(sΘ(x), y)]

where Θ represents the model parameters, L(sΘ(x), y) is the loss function, and D is the true data
distribution.

The empirical error is:

ϵ̄χ(Θ) =
1

N

N∑
i=1

L(sΘ(xi), yi)

where χ = {(xi, yi)}Ni=1 is the training set, and N is the sample size.

We use McDiarmid’s inequality to control the deviation between empirical error and true error. The
inequality states:

P (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] > t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
where X1, X2, . . . , Xn are independent random variables, and f(X1, . . . , Xn) is a function of these
variables. When one sample in the training set changes, the maximum change in the empirical error
is:

∆ = ϵ̄χ(Θ)− ϵ̄χ′(Θ)

The change in empirical error is bounded by c
N , where c is the upper bound on the difference in the

loss function:
|L(sΘ(x), y)− L(sΘ(x

′), y′)| ≤ c

Applying McDiarmid’s inequality with the bound c
N , we obtain the following bound:

P (ϵ(Θ)− ϵ̄χ(Θ) > t) ≤ exp

(
−2Nt2

c2

)
We introduce the Rademacher complexity RN (L), which measures the complexity of the model:

RN (L) = Eσ,χ

[
sup
Θ∈H

1

N

N∑
i=1

σiL(sΘ(xi), yi)

]
The generalization error bound becomes:

ϵ(Θ) ≤ ϵ̄χ(Θ) + 2RN (L) +X∗

√
2 ln(1/δ)

N

where: ϵ̄χ(Θ) is the empirical error. 2RN (L) is the Rademacher complexity term. X∗
√

2 ln(1/δ)
N is

the variance term that decreases as the sample size N increases. To further reduce the generalization
error, we introduce the regularization term LKD (Knowledge Distillation Loss) in Eq. 10, which
limits the complexity of the model. The objective function of our OrthSR is:
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min
Θ

(LCE + λLKD)

where LCE is the cross-entropy loss for measuring the fit of the model. LKD is the knowledge
distillation loss, reducing the difference between student and teacher models. λ controls the trade-
off between the two losses. To understand why the Rademacher complexity RN (L) is reduced
under the regularization term, we analyze how regularization influences the hypothesis space H and,
consequently, the complexity of the loss function class.

The Rademacher complexity RN (L) measures the richness of the loss class L = {L(sΘ(x), y) :
Θ ∈ H} by evaluating how well it can fit random noise. It is defined as:

RN (L) = Eσ,χ

[
sup
Θ∈H

1

N

N∑
i=1

σiL(sΘ(xi), yi)

]
,

where σi are independent Rademacher variables taking values ±1 with equal probability.

Regularization introduces a penalty term λLKD in the objective function:

min
Θ

(LCE + λLKD) .

This penalty discourages complex models by imposing a cost on large parameter values or deviations
from the teacher model in knowledge distillation. As a result, the effective hypothesis space Hλ

becomes smaller or more restricted because models with high complexity are penalized.

Mathematically, stronger regularization (larger λ) enforces tighter constraints on Θ, effectively
reducing the norm or other measures of complexity of the model parameters. We assume that through
regularization, the model parameters satisfy the following constraint:

∥Θ∥ ≤ C

λβ
,

where C and β > 0 are constants.

Under this constraint, and assuming that the loss function L is Lipschitz continuous with Lipschitz
constant L0, the Rademacher complexity can be bounded as:

RN (L) ≤ L0C
′

λβ
√
N

,

where C ′ is another constant.

Substituting this bound into the generalization error bound, we have:

ϵ(Θ∗)− ϵ̄χ(Θ
∗) ≤ X∗

√
2 ln(1/δ)

N
+

1

λα
·RN (L) ≤ X∗

√
2 ln(1/δ)

N
+

L0C
′

λα+β
√
N

.

To ensure consistency in the exponents of λ, we set:

α = β > 0.

Therefore, the generalization error bound becomes:

ϵ(Θ∗)− ϵ̄χ(Θ
∗) ≤ X∗

√
2 ln(1/δ)

N
+

C ′′

λ2α
√
N

,

where C ′′ = L0C
′ is a constant.

This inequality shows that RN (L) decreases as λ increases, since α > 0. By reducing RN (L)
through regularization, we tighten the generalization error bound:
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ϵ(Θ∗)− ϵ̄χ(Θ
∗) ≤ X∗

√
2 ln(1/δ)

N
+

C ′′

λ2α
√
N

.

In summary, the regularization term reduces the Rademacher complexity RN (L) by limiting the
capacity of the hypothesis space H. This reduction leads to better generalization performance by
preventing overfitting and tightening the generalization error bound.
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