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ABSTRACT

We introduce a second-order graph convolution (SoGC), a maximally localized
kernel, that can express a polynomial spectral filter with arbitrary coefficients.
We contrast our SoGC with vanilla GCN, first-order (one-hop) aggregation, and
higher-order (multi-hop) aggregation by analyzing graph convolutional layers via
generalized filter space. We argue that SoGC is a simple design capable of form-
ing the basic building block of graph convolution, playing the same role as 3 × 3
kernels in CNNs. We build purely topological Second-Order Graph Convolutional
Networks (SoGCN) and demonstrate that SoGCN consistently achieves state-of-
the-art performance on the latest benchmark. Moreover, we introduce the Gated
Recurrent Unit (GRU) to spectral GCNs. This explorative attempt further im-
proves our experimental results.

1 INTRODUCTION

Deep localized convolutional filters have achieved great success in the field of deep learning. In
image recognition, the effectiveness of 3 × 3 kernels as the basic building block in Convolutional
Neural Networks (CNNs) is shown both experimentally and theoretically (Zhou, 2020). We are in-
spired to search for the maximally localized Graph Convolution (GC) kernel with full expressiveness
power for Graph Convolutional Networks (GCNs).

Most existing GCN methods utilize localized GCs based on one-hop aggregation scheme as the
basic building block. Extensive works have shown performance limitations of such design due to
over-smoothing (Li et al., 2018; Oono & Suzuki, 2019; Cai & Wang, 2020). In vanilla GCNs (Kipf
& Welling, 2017) the root cause of its deficiency is the lumping of the graph node self-connection
with pairwise neighboring connections. Recent works of Xu et al. (2019); Dehmamy et al. (2019);
Ming Chen et al. (2020) disentangle the effect of self-connection by adding an identity mapping
(so-called first-order GC). However, its lack of expressive power in filter representation remains
(Abu-El-Haija et al., 2019). The work of (Ming Chen et al., 2020) conjectured that the ability to
express a polynomial filter with arbitrary coefficients is essential for preventing over-smoothing.

A longer propagation distance in the graph facilitates GCNs to retain its expressive power, as pointed
out by (Liao et al., 2019; Luan et al., 2019; Abu-El-Haija et al., 2019). The minimum propagation
distance needed to construct our building block of GCN remains the open question. We show that the
minimum propagation distance is two: a two-hop graph kernel with the second-order polynomials
in adjacency matrices is sufficient. We call our graph kernel Second-Order GC (SoGC).

We introduce a Layer Spanning Space (LSS) framework to quantify the expressive power of multi-
layer GCs for modeling a polynomial filter with arbitrary coefficients. By relating low-pass filtering
on the graph spectrum (Hoang & Maehara, 2019) with over-smoothing, one can see the lack of filter
representation power (Ming Chen et al., 2020) can lead to the performance limitation of GCN.

Using the LSS framework, we show that SoGCs can approximate any linear GCNs in channel-wise
filtering. Furthermore, higher-order GCs do not contribute more expressiveness, and vanilla GCN
or first-order GCs cannot represent all polynomial filters in general. In this sense, SoGC is the
maximally localized graph kernel with the full representation power.

To validate our theory, we build Second-Order Graph Convolutional Networks (SoGCN) using
SoGC kernels. Our SoGCN using simple graph topological features consistently achieves state-
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Figure 1: Vertex domain interpretations of vanilla GC, First-Order GC and SoGC. Denote I as the
zero-hop aggregator, A the first-hop aggregator and A2 the second-hop aggregator. Nodes in the
same colored ring share the same weights. (a) I and A of vanilla GC share the same weights. (b)
First-order GC disentangles I from A. (c) SoGC introduces new weights for A2 in addition.

of-the-art performance on the GNN benchmark datasets (Dwivedi et al., 2020), including citation
networks, super-pixel classification, and molecule regression.

To our best knowledge, this work is the first study that identifies the importance of the two-hop
neighborhood in the context of GCNs’ ability to express a polynomial filter with arbitrary coeffi-
cients. Our model is a special but non-trivial case of Defferrard et al. (2016). Kipf & Welling (2017)
conducted an ablation study with GC kernels of different orders but missed the effectiveness of the
second-order relationships. The work of Abu-El-Haija et al. (2019) talked about muti-hop graph
kernels; however, they did not identify the critical importance of the second-order form. In contrast,
we clarify the prominence of SoGCs in theories and experiments.

Our research on graph convolution using pure topologically relationship is orthogonal to those uses
geometric relations (Monti et al., 2017; Fey et al., 2018; Pei et al., 2020), or those with expressive
edge features (Li et al., 2016; Gilmer et al., 2017; Corso et al., 2020), and hyper-edges (Morris et al.,
2019; Maron et al., 2018; 2019). It is also independent with graph sampling procedures (Rong et al.,
2019; Hamilton et al., 2017; Li et al., 2019).

2 PRELIMINARIES

We begin by reformulating spectral GCNs and introducing our notation. We are interested in a finite
graph set G =

{
G1, · · · , G|G|

}
. Assume each graph G ∈ G is simple and undirected, associated

with a finite vertex set V(G), an edge set E(G) = {(u, v) : ∀u ↔ v}, and a symmetric normalized
adjacency matrix A(G) (Chung & Graham, 1997; Shi & Malik, 2000). Without loss of generality
and for simplicity, |V(G)| = N for every G ∈ G. Single-channel features x ∈ RN supported in
graph G ∈ G is a vectorization of function V(G)→ R.

Graph Convolutions (GCs) is known as Linear Shift-Invariant (LSI) operators to adjacency matrices
(Sandryhaila & Moura, 2013). By this definition, GCs can extract features regardless of where local
structures fall. Given parameter space Ω ⊆ R, we write a single-channel GC (Sandryhaila & Moura,
2013; Defferrard et al., 2016) as a mapping fθ : G × RN → RN such that 1:

fθ(G,x) =

K∑
k=0

θkA(G)kx, (1)

where θ = [θ0 · · · θK ]
T ∈ ΩK+1 parameterizes the GC. K reflects the localization of fθ:

a linear combination of features aggregated by A(G)k. Moreover, we reformulate two popular
models, vanilla GC (Figure 1a) and first-order GC (Figure 1b), as below:

f0(G,x) = θ (A(G) + I)x, f1(G,x) = (θ1A(G) + θ0I)x. (2)

The general spectral GCNs stack L layers of GCs (Equation 1) with nonlinear activations. Let f (l)

be GC layers with parameters θ(l) ∈ ΩK+1, l ∈ [L], the single-channel GCNs can be written as:

F (G,x) = g ◦ f (L) ◦ σ ◦ f (L−1) ◦ · · · ◦ σ ◦ f (1)(G,x), (3)
1We can replace the Laplacian matrix L in Defferrard et al. (2016) with the normalized adjacency matrix A

since L = I −A.
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Figure 2: Visualizing output activation in graph spectrum domain for vanilla GCN, SoGCN, and
GRU variants. The test is conducted on a graph from the ZINC dataset. The spectrum is defined
as a projection of activation functions on the graph eigenvectors. SoGCN preserved higher-order
spectrum, while vanilla GCN shows over-smoothing. See Appendix F for more visualizations on
the ZINC dataset.

where σ is an element-wise activation function, the superscripts denote the corresponding layer
number, g is a task-specified readout function (e.g., softmax), the inputs are graph G ∈ G and
signals x ∈ RN . The compositionality principle of deep learning suggests L being large, while K
being small and localized (LeCun et al., 2015).

3 OVERVIEW: SECOND-ORDER GRAPH CONVOLUTION

We are interested in the overall graph convolution network’s representation power of expressing a
polynomial filter (Equation 1) with arbitrary coefficients. A multi-layer GCN approximate a K-
order polynomial filter

∑K
k=0 θkA(G)k, θk ∈ Ω, k = 0, · · ·K, by stacking basic building blocks of

graph convolution (GC) layers (Wu et al., 2019; Ming Chen et al., 2020).

We formally define the second-order GC (SoGC) using the second-order polynomials of adjacency
matrices:

f2(G,x) =
(
θ2A(G)2 + θ1A(G) + θ0I

)
x, (4)

where θi ∈ R, i = 0, 1, 2 are trainable paremeters in the context of machine learning. Its vertex-
domain interpretation is illustrated in Figure 1c. At first glance, it seems that we could stack two
one-hop graph convolution (GC) kernels to approximate a SoGC. However, as shown in Section 4.3,
that is not the case.

The critical insight is that graph filter approximation can be viewed as a polynomial factorization
problem. It is known that any univariate polynomial can be factorized into sub-polynomials of
degree two. Based on this fact, we show by stacking enough SoGCs (and varying their parameters)
can achieve decomposition of any polynomial filters.

In contrast, first-order GCs are not universal approximators; two stacked one-hop GCs cannot model
every two-hop GC. Polynomial filter completeness of SoGC leads to better performance of GCNs.
As shown in Figure 2, networks built with SoGC can overcome over-smoothing and extract features
on high-frequency bands. In the next section, we demonstrate our formal arguments on polynomial
approximation.

4 REPRESENTATION POWER ANALYSIS

4.1 LAYER SPANNING SPACE FRAMEWORK

To illustrate the representation power of GC layers, we establish a Layer Spanning Space (LSS)
framework to study the graph filter space spanned by stacking multiple graph kernels.

First, we present our mathematical devices in Definition 1, 2 with Lemma 1 as below.
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Definition 1. Suppose the parameter space Ω = R. The Linear Shift-Invariant (LSI) graph
filter space of degree K > 0 with respect to a finite graph set G is defined as A ={
fθ : G × RN → RN ,∀θ ∈ RK+1

}
, where fθ follows the definition in Equation 1.

Definition 2. Let spectrum set S(G) = {λ : λ ∈ S(A(G)),∀G ∈ G}, where S(A) denotes the
eigenvalues of A. Define spectrum capacity Γ = |S(G)|. In particular, Γ = (N − 1)|G| if every
graph adjacency matrix has no common eigenvalues other than 1.
Lemma 1. A of degree K > 0 has dimension min{K + 1,Γ} as a vector space.

Proof of Lemma 1 follows from Theorem 3 of Sandryhaila & Moura (2013). The complete version
can be found in Appendix C. Here, we induce a finite-dimension filter space by Lemma 1.

For simplicity, we will model the linear composition of filters to analyze its representation power.
The nonlinear activation effects are beyond the scope of this work. Following Definition 1, let A
be the full filter space of degree Γ− 1 and B be the low-level filter space as a set of polynomials in
adjacency matrices (Equation 1). Denote the GC at l-th layer by f (l) ∈ B, then we yield the LSS of
stacking L layers as below:

BL =

{
f : f(G,x) = f (L) ◦ · · · ◦ f (1)(G,x) =

L∏
l=1

p(l)(A(G))x

}
, (5)

where p(l)(x) varies in a certain class of polynomials. We can assess the expressive capability of
GC layers by comparing the LSS with A. Kernels in B have full representation power if A ⊆ BL.
We are interested in BK , which denotes all localized filters of degree at most K. The LSS of BK is
modeled as:

BLK =

{
f : f(G,x) =

L∏
l=1

K∑
k=0

θ
(l)
k A(G)kx, θ

(l)
k ∈ R

}
, (6)

where the number of layers is bounded by L ≤ d(Γ− 1)/Ke, according to Lemma 1.

4.2 UNIVERSAL REPRESENTATION POWER OF SOGC

In this section, we present Theorem 1 to demonstrate the universal representation power of SoGCs
as claimed in Section 3. Formally, we add superscripts to Equation 4 to indicate the layer number.
Then we leverage a fundamental polynomial factorization theorem to conclude Theorem 1 as below.

Theorem 1. For any f ∈ A, there exists f (l)
2 ∈ B2 with coefficients θ(l)

0 , θ
(l)
1 , θ

(l)
2 ∈ R, l = 1, · · · , L

such that f = f
(L)
2 ◦ · · · ◦ f (1)

2 where L ≤ d(Γ− 1)/2e.

The complete proof is presented Appendix D. Theorem 1 can be regarded as the universal approxi-
mation theorem of linear GCNs, which implies multi-layer SoGCs have full filter expressiveness.

Theorem 1 also demonstrates how GCNs with SoGCs benefit from depth, which coincides with the
view of Dehmamy et al. (2019). Figure 3a verifies our SoGCN can overcome over-smoothing and
successfully utilize depth to attain performance gain.

4.3 REPRESENTATION POWER OF OTHER GRAPH CONVOLUTION

In this section, we show that vanilla and first-order GCs lack expressiveness, while higher-order GCs
reduce compactness and increase fitting difficulty.

Vanilla vs. second-order. Extensive works have shown the performance deficiency of vanilla
GCNs (Hoang & Maehara, 2019; Luan et al., 2019; Oono & Suzuki, 2019; Cai & Wang, 2020).
Based on the LSS framework, we can point out a similar issue but from a novel perspective. Let us
write f (l)

0 (G,x) = θ(l)(A(G) + I)x ∈ B0 as the l-th GC layer2. Then L of them can represent a
LSS as follows:

BL0 =

{
f : f(G,x) = θ

L∑
l=0

(
l

L

)
A(G)lx

}
, (7)

2Notice that we use B0 to denote the filter space with lumping of self-connection with pairwise neighbor
nodes, since the zero-degree ones are too trivial. We assume the renormalization trick can be merged into θ.
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by letting θ = θ(L) · · · θ(1). No matter how large L is or how a optimizer tunes the parameters θ(l),
dimBL0 = 1 which signifies BL0 degenerates to a negligible subspace of A.

First-order vs. second-order. We denote first-order GCs as f (l)
1 (G,x) = (θ

(l)
1 A(G)+θ

(l)
0 I)x ∈

B1. In the spirit of Section 4.1, write the LSS as:

BL1 =

{
f : f(G,x) =

L∏
l=1

(
θ

(l)
1 A(G) + θ

(l)
0 I
)
x, θ

(l)
0 , θ

(l)
1 ∈ R

}
, (8)

which is isomorphic to a polynomial space whose elements split over the real domain. Compared
with BL0 (Equation 7), BL1 represents a much larger subset of A. This highlights the importance of
the first-order term or the identity mapping mentioned in (Xu et al., 2019; Dehmamy et al., 2019;
Ming Chen et al., 2020).

The limitations also become obvious since not all polynomials can be factorized into first-order
polynomials. These polynomials only occupy a small proportion in the ambient polynomial space
(Li, 2011), which indicates first-order GCs are not universal approximators in general.

Higher-order vs. second-order. GCs of degree K ≥ 2 are called higher-order GCs. They
can model multi-hop GCNs such as Luan et al. (2019); Liao et al. (2019); Abu-El-Haija et al.
(2019). Higher-order GCs have equivalent expressive power to SoGCs, since they can be reduced to
SoGCs as long as coefficient sparsity can be achieved. But this by-product–an uncertain sparsity of
coefficients–is not compatible with gradient-based optimization algorithms. Extensive experiments
(Defferrard et al., 2016) have shown the ineffectiveness of learning higher-order kernels, because
eigenvalues of graph adjacency matrices diminish when powered. This results in a decreasing nu-
merical rank ofA(G)k, which prevent higher-order GCs from aggregating larger-scale information.
SoGCs can alleviate this problem by preventing the loss of information due to higher-order powering
operation. Finally, higher-order GC lacks nonlinearity. SoGCN can bring a better balance between
the expressive power of low-level layers and nonlinearity among them.

5 SECOND-ORDER GRAPH CONVOLUTIONAL NETWORKS

In this section, we introduce other building blocks of GCNs and establish our Second-Order Graph
Convolutional Networks (SoGCN) following the fashion of deep learning. First, we promote SoGC
to the multi-channel version analogous to Kipf & Welling (2017). Then we cascade a feature embed-
ding layer, multiple SoGC layers, and append a readout module. Suppose the multi-channel input is
X ∈ RN×D supported in graph G ∈ G, denote the output of l-th layer as X(l) ∈ RN×E , the final
node-level output as Y ∈ RN×F , or graph-level output as Y ∈ RE , we formulate our novel deep
GCN based on SoGC as follows:

X(0) = ρ (X; Φ) , (9)

X(l+1) = σ
(
A(G)2X(l)Θ

(l+1)
2 +A(G)X(l)Θ

(l+1)
1 +X(l)Θ

(l+1)
0

)
, (10)

Y = τ
(
X(L); Ψ

)
, (11)

where Θ
(l)
i ∈ RE×E , i = 0, 1, 2 are trainable weights for linear filters; ρ : RN×D → RN×E

is an equivariant embedder (Maron et al., 2018) with parameters Φ; σ : RN×E → RN×E is an
activation function. For node-level readout, τ : RN×E → RN×F can be a decoder (with parameters
Ψ) or a nonlinear activation (e.g., softmax) in place of the prior layer. For graph-level output,
τ : RN×E → RE should be an invariant readout function (Maron et al., 2018), e.g., channel-wise
sum, mean or max (Hamilton et al., 2017). In practice, we adopt ReLU as nonlinear activation (i.e.,
σ = ReLU), a multi-layer perceptron (MLP) as the embedding function ρ, another MLP for node
regression readout, and sum (Xu et al., 2019) for graph classification readout.

5.1 GATED RECURRENT UNIT

Gated Recurrent Unit (GRU) has been served as a basic building block in message-passing GNN
architectures (Li et al., 2016; Gilmer et al., 2017; Corso et al., 2020). In this subsection, we explore
its application in spectral GCNs.
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According to Cho et al. (2014), GRU can utilize gate mechanism to preserve and forget information.
We hypothesize that a GRU can be trained to remove redundant signals and retain lost features on
the spectrum. This function can be used to alleviate the oversmoothing problem of vanilla GCNs
by maintaining information from previous layer and canceling the dominance of low-frequencies.
By the same means, GRU can also relieve the side-effect of ReLU, which is proved to be a special
low-pass filter (Oono & Suzuki, 2019; Cai & Wang, 2020). Even though piled-up SoGCs attain full
expressiveness, we show by our experiment that GRU can still facilitate SoGCN in avoiding noises
and enhancing features on the spectrum (Figure 2)

Similar to Li et al. (2016); Gilmer et al. (2017), we appends a shared GRU module after each GC
layer, which takes the signal before the GC layer as the hidden state, after the GC layer as the current
input. We note that GRU can cooperate with any spectral GCs (Equation 1). When integrated with
SoGCN, we call this special variant SoGCN-GRU. We formulate its implementation by replacing
Equation 10 with Equation 12 as below.

X(l+1)
conv = A(G)2X(l)Θ

(l+1)
2 +A(G)X(l)Θ

(l+1)
1 +X(l)Θ

(l+1)
0 ,

X(l+1) = GRU
(

ReLU
(
X(l+1)

conv

)
,X(l); Ω

)
,

(12)

whereX(l+1)
conv is the input,X(l) represents the hidden state, Ω denotes parameters of the GRU.

Figure 2 and Figure 6 verify our conjecture. We observe more steady low-frequency component on
the spectrum head and more characteristic bands on the high-frequency tail. Our empirical study in
Table 3 also indicates the effectiveness of GRU for spectral GCNs in general. Hence, we suggest
including this recurrent module as another basic building block of our SoGCNs.

5.2 COMPARISON TO RELATED WORK

Spectral GCNs. Spectral GCN leverages polynomials in the adjacency matrix to represent graph
convolutional layers (Bruna et al., 2014). Many works have been discussing how to design the
polynomial and choose its degree to compose a localized GC layer. ChebyNet (Defferrard et al.,
2016) approximates graph filters using Chebyshev polynomials. Vanilla GCN (Kipf & Welling,
2017; Wu et al., 2019) further reduces the GC layer to a degree-one polynomial with first-order and
constant terms merged. However, these simplifications cause over-smoothing and performance loss.
Our SoGC incorporates only one hop longer but obtains the full representation power. This design
keeps each layer localized, simple, and easy to implement but makes the whole GCN much more
powerful. Our work reveals the critical degree of polynomial filters where kernel size is minimized
while filter representation power is maximized.

Multi-Hop GCNs. To exploit multi-scale information, Luan et al. (2019) devises Snowball GCN
and Truncated Krylov GCN to capture neighborhoods at different distances. To simulate hop delta
functions, Abu-El-Haija et al. (2019) repeat mixing multi-hop features to identify more topological
information. These models exhibit the strength of multi-hop GCNs over one-hop GCNs while leav-
ing the propagation length as a hyper-parameter. Modeling those multi-hop GCNs as our higher-
order models, SoGCN possesses the identical representation power but has fixed size and better
localization, making SoGC more suitable to be the basic building block in GCNs. It is noteworthy
that, although Abu-El-Haija et al. (2019) investigates the two-hop delta function (a Gabor-like filter),
their final proposed solution is only a generic class of multi-hop GCNs. The discussion on two-hop
delta functions cannot attain our theoretical results.

Expressiveness of GCNs. Most of the works on GCN’s expressiveness are restricted to the over-
smoothing problem: Li et al. (2018) first poses the over-smoothing problem; Hoang & Maehara
(2019) indicates GCNs are no more than low-pass filters; Luan et al. (2019); Oono & Suzuki (2019)
demonstrate the asymptotic behavior of feature activation to a subspace; Cai & Wang (2020) ex-
amines the decreasing Dirichlet energy. Unlike them, our established LSS framework can identify
specific issues of GCNs with algebraic and geometric interpretations. The over-smoothing prob-
lem can be formulated as one of our sub-problems (Section 4.3). In this sense, SoGCN solves
a more general expressiveness issue than those relieving over-smoothing problem only (Xu et al.,
2018; Rong et al., 2019; Chen et al., 2020). Ming Chen et al. (2020) introduces identity and initial
mapping to recover filter expressiveness. Their analytic framework is also similar to ours. But we
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generalize their filter space to a graph set, and upper bound its dimension. In the meanwhile, our
SoGCN’s architecture is more lightweight. We investigate the overall expressive power of GCNs
by discussing filter completeness. This direction is orthogonal to those studying message-passing
GNNs (Scarselli et al., 2008) and Weisfeiler-Leman GNNs (Xu et al., 2019; Morris et al., 2019).

6 EXPERIMENTS

Experiments are conducted on the synthetic dataset in Section 6.1 and on the GNN bench-
marks (Dwivedi et al., 2020) in Section 6.2.

6.1 SYNTHETIC GRAPH SPECTRUM DATASET FOR NODE REGRESSION

To validate the expressiveness of SoGCN, and its power to preserve higher-order graph signal, we
build a Synthetic Graph Spectrum (SGS) dataset for the node signal filtering regression task. We
construct SGS dataset with random graphs. The learning task is to mimic three types of hand-crafted
filtering functions: high-pass, low-pass, and band-pass on the graph spectral space (defined over the
graph eigenvectors). There are 1k training graphs, 1k validation graphs, and 2k testing graphs for
each filtering function. Each graph is undirected and comprises 80 ˜ 120 nodes. Appendix E covers
more details of our SGS dataset. We choose Mean Absolute Error (MAE) as the evaluation metric.

Experimental Setup. We compare SoGCN with vanilla GCN (Kipf & Welling, 2017), first-order
GCN, and higher-order GCNs on the synthetic dataset.

To evaluate each model’s expressiveness purely on the graph kernel design, we remove ReLU acti-
vations for all tested models. We adopt the Adam optimizer (Kingma & Ba, 2015) in our training
process, with a batch size of 128. The learning rate begins with 0.01 and decays by half once the
validation loss stagnates for more than 10 training epochs.

Table 1: The performance of graph node signal regression with High-Pass, Low-Pass, and Band-
Pass filters (over graph spectral space) as learning target. Each model has 16 GC layers and 16
channels of hidden layers.

Model #Param Test MAE ± s.d.
High-Pass Low-Pass Band-Pass

Vanilla GCN 4611 0.308±0.006 0.317±0.011 0.559±0.071
Vanilla GCN + ReLU 3 4611 0.466±0.002 0.457±0.002 0.299±0.000
1st-Order GCN 8467 0.036±0.004 0.032±0.002 0.115±0.008
3rd-Order GCN 16179 0.021±0.003 0.022±0.001 0.045±0.008
4th-Order GCN 20035 0.021±0.003 0.022±0.002 0.049±0.006
SoGCN 12323 0.021±0.003 0.023±0.002 0.050±0.004

Results and Discussion. Table 1 summarizes the quantitative comparisons. SoGCN achieves the
superior performance on all of the 3 tasks outperforming vanilla GCN and 1st-order GCN, which
implies that SoGC graph convolutional kernel does benefit from explicit disentangling of the θ0I
(zero-hop) and θ2A

2 (second-hop) terms. Our results also show that higher-order (third-order and
fourth-order) GCNs do not improve the performance further, even though they have many more
parameters. SoGCN possesses a more expressive representation ability and a good trade-off between
performance and model size.

Figure 3 plots MAE results as we vary the depth and channel width of GC layers. Vanilla GCN can
benefit from neither depth nor width. First-order GC, SoGC, and higher-order GC can leverage depth
to span larger LSS. Figure 3a illustrates the corresponding performance for each graph kernel types.
SoGC and higher-order GC both outperform first-order GC as depth increases. Figure 3b shows the

3 This experimental group shows that ReLUs are not always such beneficial on our synthetic dataset.
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Figure 3: Relations between test MAE and depth or width. Experiments of both (a) and (b) are
conducted on synthetic Band-Pass dataset. Each model in (a) has 16 channels per hidden layer with
varying depth. Each model in (b) consists of 16 GC layers with varying width.

benefits of SoGC remain as we move to multi-channel construction. Comparing Figure 3a and 3b,
we find that depth has larger effect on GCNs.

6.2 GNN BENCHMARKS

We follow the benchmarks outlined in Dwivedi et al. (2020) for evaluating GNNs on several datasets
across a variety of artificial and real-world tasks. We choose to evaluate our SoGCN on a real-world
chemistry dataset (ZINC molecules) for the graph regression task, two semi-artificial computer vi-
sion datasets (CIFAR10 and MNIST superpixels) for the graph classification task, and two artificial
social network datasets (CLUSTER and PATTERN) for the node classification task.

Table 2: Results and comparison with other GNN models on ZINC, CIFAR10, MNIST, CLUSTER
and PATTERN datasets. For ZINC dataset, the parameter budget is set to 500k. For CIFAR10,
MNIST, CLUSTER and PATTERN datasets, the parameter budget is set to 100k. Red: the best
model, Green: good models.

Model

Vanilla GCN

Vanilla GCN-GRU

GAT

MoNet

GraphSage

GIN

GatedGCN

3WLGNN

SoGCN

SoGCN-GRU

Test MAE ± s.d.

ZINC
0.367±0.011

0.295±0.005

0.384±0.007

0.292±0.006

0.398±0.002

0.387±0.015

0.350±0.020

0.407±0.028 4

0.238±0.017
0.201±0.006

Test ACC ± s.d. (%)

MNIST CIFAR10 CLUSTER PATTERN
90.705±0.218 55.710±0.381 53.445±2.029 63.880±0.074

96.020±0.090 61.332±0.849 57.932±0.168 70.194±0.216

95.535±0.205 64.223±0.455 57.732±0.323 75.824±1.823

90.805±0.032 65.911±2.515 58.064±0.131 85.482±0.037

97.312±0.097 65.767±0.308 50.454±0.145 50.516±0.001

96.485±0.252 55.255±1.527 58.384±0.236 85.590±0.011
97.340±0.143 67.312±0.311 60.404±0.419 84.480±0.122

95.075±0.961 59.175±1.593 57.130±6.539 85.661±0.353
96.785±0.113 66.338±0.155 68.167±1.164 85.735±0.037
97.729±0.159 68.208±0.271 67.994±2.619 85.711±0.047

Experimental Setup. We compare our proposed SoGCN and SoGCN-GRU with state-of-the-art
GNNs: vanilla GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), MoNet (Monti et al.,
2017), GIN (Xu et al., 2019), GraphSage (Hamilton et al., 2017), GatedGCN (Bresson & Laurent,
2017) and 3WL-GNN (Maron et al., 2019). To ensure fair comparisons, we follow the same training
and evaluation pipelines (including optimizer settings) and data splits of benchmarks. Furthermore,

4 This is the result of 3WLGNN with 100k parameters. The test MAE of 3WLGNN with 500k parameters
is increased to 0.427±0.011.
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Table 3: Results of ablation study on ZINC, MNIST and CIFAR10 datasets. Vanilla GCN is the
comparison baseline and the number in the (↑ ·) and (↓ ·) represents the performance gain compared
with the baseline.

Model Test MAE ± s.d. Test ACC ± s.d. (%)
ZINC MNIST CIFAR10

Vanilla GCN 0.367± 0.011 (Baseline) 90.705± 0.218 (Baseline) 55.710± 0.381 (Baseline)
1st-Order GCN 0.253± 0.012 (↓ 0.113) 96.407± 0.089 (↑ 5.701) 64.993± 0.092 (↑ 9.283)
SoGCN 0.238± 0.017 (↓ 0.129) 96.785± 0.113 (↑ 6.080) 66.338± 0.155 (↑ 10.628)
3rd-Order GCN 0.242± 0.005 (↓ 0.125) 96.367± 0.227 (↑ 5.662) 64.267± 0.182 (↑ 8.557)
4th-Order GCN 0.243± 0.009 (↓ 0.124) 96.167± 0.198 (↑ 5.462) 64.230± 0.212 (↑ 8.520)
Vanilla GCN + GRU 0.295± 0.005 (↓ 0.072) 96.020± 0.090 (↑ 5.315) 61.332± 0.381 (↑ 5.622)
1st-Order GCN + GRU 0.226± 0.015 (↓ 0.141) 96.945± 0.093 (↑ 6.240) 62.372± 0.522 (↑ 6.662)
SoGCN + GRU 0.201± 0.006 (↓ 0.166) 97.729± 0.159 (↑ 7.024) 68.208± 0.271 (↑ 12.498)
3rd-Order GCN + GRU 0.203± 0.001 (↓ 0.164) 97.375± 0.052 (↑ 6.670) 64.242± 0.511 (↑ 8.532)
4th-Order GCN + GRU 0.204± 0.004 (↓ 0.163) 97.304± 0.296 (↑ 6.599) 64.697± 0.341 (↑ 8.987)

we adjust our model’s depth and width to ensure it satisfies parameter budgets as specified in the
benchmark. Note that we do not use any geometrical information to encode rich graph edge rela-
tionship, as in models such as GatedGCN-E-PE. We only employ graph connectivity information
for all tested models.

Results and Discussion. Table 2 reports the benchmark results. Our model SoGCN makes small
computational changes to GCN by adopting second-hop and zero-hop neighborhoods, and it out-
performs models with complex message-passing mechanisms. With GRU module, SoGCN-GRU
tops almost all state-of-the-art GNNs on the ZINC, MNIST and CIFAR10 datasets. Whereas, GRU
does not lift performance on the CLUSTER and PATTERN datasets for node classification task. As
suggested by Li et al. (2018), graph node classification benefits from low-frequency features. That
GRU suppresses low-frequency band will result in a slight performance drop on the CLUSTER and
PATTERN datasets.

Ablation Study on High-Order GCNs. To contrast the performance gain produced by different
orders on the benchmarks, we evaluate 1st-Order GCN, 3rd-Order GCN, 4th-Order GCN as well as
their GRU variants on the ZINC, MNIST and CIFAR10 datasets. Table 3 presents the results of our
ablation study, which are consistent to our experiments on the synthetic datasets (Section 6.1). As
shown by our ablation study, aggregating zero-hop features brings about significant improvements
(Vanilla GCN vs. 1st-Order GCN), and adopting the second-hop features further promotes the per-
formance (1st-Order GCN vs. SoGCN). However, high-order GCNs are not capable of boosting
the performance over SoGCN. On the contrary, high-order GCs can even lead to the performance
decline (3rd-Order GCN vs. 4th-Order GCN vs. SoGCN). On the ZINC and MNIST datasets, we
testify GRU’s effectiveness for each tested model, but the gain brought by GRU is not as significant
as aggregating the second-hop features. On the CIFAR10 dataset, GRU fails to improve performance
for 1st-Order GCN and 3rd-Order GCN.

7 CONCLUSION

What should be the basic building blocks for GCNs? To answer this, we seek the most localized
graph convolution kernel (GC) with full expressiveness. We generalize the filter space to a finite
graph set and establish our LSS framework to assess GC layers functioning on different hops. We
show the second-order localized graph convolutional filter, called SoGC, possesses the full repre-
sentation power than one-hop GCs. Thus, it becomes the most localized GC that we adopt as the
basic building block to establish our SoGCN. Both synthetic and benchmark experiments exhibit
the prominence of our theoretic design. We also make an empirical study on the GRU module
cooperating with spectral GCNs. Interesting directions for future work include analyzing two-hop
aggregation schemes with message-passing GNNs and proving the universality of nonlinear GCNs.
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A REMARK ON DEFINITION 1

Let us rewrite the A of degree K in Definition 1:

A =

{
f : f(G,x) =

K∑
k=0

θkA(G)kx,∀θk ∈ R

}
, (13)

which contains all LSI functions f : G × RN → RN with adjacency matrix as the graph shift. We
show this in the following way. First, all linear transformations H invariant to the shift S should
have HS = SH . Second, specifying arbitrary graph G ∈ G, any filter associated with it can be
written as below:

H(G) =

K∑
k=0

θkA(G)k = U

(
K∑

k=0

θkΛk

)
UT , (14)

where A(G) = UΛUT is the eigendecomposition of A(G). Then we can conclude the shift-
invariance property by the following Lemma 2.

Lemma 2. Diagonalizable matrices A1 and A2 are simultaneously diagonalized if and only if
A1A2 = A2A1.

B RING ISOMORPHISM: A → T

We derive an equivalent form of A, namely construct a tractable space for A. Notice that, this
construction is essential to the proof of Lemma 1 and Theorem 1.

Since G is finite, we can construct a block diagonal matrix T ∈ RN |G|×N |G|, consisting of all
adjacency matrices on the diagonal.

T =

A(G1)
. . .

A(G|G|)

 ∈ RN |G|×N |G|. (15)

Hereby, we stop to explain the big picture of Definition 2 with Equation 15. Obviously, the spectrum
capacity Γ represents the number of eigenvalues of T without multiplicity. Note that, eigenvalues
of adjacency matrices signify graph similarity. The spectrum capacity Γ identifies a set of graphs
by enumerating the structural patterns. Even if the graph set goes extremely large (to guarantee the
generalization capability), the distribution of spectrum provide the upper bound of Γ, so our theories
will not lose generality.

Now we get back to construct a matrix space T from A via a ring homomorphism π : A → T :

π :

K∑
k=0

θkA(G)k 7→
K∑

k=0

θkT
k. (16)

Recall that a ring homomorphism preserves the “summation” and “multiplication”. Concretely, we
write the matrix space T as follows:

T =

{
H : H =

K∑
k=0

θkT
k,∀θk ∈ R

}
. (17)

In the following part, we prove that π is an isomorphism.

Proof. First, the definition of T (Equation 17) basically conclude the surjectivity. Second, for any
f1 6= f2 ∈ A with parameter αk, βk ∈ R where k = 0, · · · ,K, there exists Gj ∈ G,x ∈ RN such
that f1(Gj ,x) 6= f2(Gj ,x). And we have their images H1 = π(f1),H2 = π(f2). By padding x
with zeros like:

x′ =
[
0T
N(j−1) xT 0T

N(|G|−j)

]T
, (18)
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where 0N denote the all-zero vector of length N . We applyH1,H2 to x′:

H1x
′ =

[
0T
N(j−1)

(∑K
k=0 αkA(Gj)

kx
)T

0T
N(|G|−j)

]T
=
[
0T
N(j−1) f1(Gj ,x)T 0T

N(|G|−j)

]T
,

(19)

H2x
′ =

[
0T
N(j−1)

(∑K
k=0 βkA(Gj)

kx
)T

0T
N(|G|−j)

]T
=
[
0T
N(j−1) f2(Gj ,x)T 0T

N(|G|−j)

]T
.

(20)

Hence,H1 6= H2 concludes the injectivity.

C PROOF OF LEMMA 1

We first show A is a vector space, then we leverage the isomorphism to have equality dimA =
dim T . Figuring out the dimension of T is much more tractable.

Proof. By verifying the linear combination is closed or simply implied from the ring isomorphism
π, A is at least a vector space

Then Lemma 1 follows from the Theorem 3 of Sandryhaila & Moura (2013). We briefly conclude the
proof in the following way. Letm(x) denote the minimal polynomial of T . We have Γ = degm(x).
Due to the isomorphism, dimA = dim T .

Suppose K + 1 < Γ. First, dim T cannot be larger than K + 1, because
{
I,T , · · · ,TK

}
is a

spanning set. If dim T < K + 1, then there exists some polynomial p(x) with deg p(x) ≤ K, such
that p(A) = 0. This contradicts the minimality of m(x). dim T can only be K + 1.

Suppose K + 1 ≥ Γ. For any H = h(T ) for some polynomial h(x) with deg h(x) ≤ K. By
polynomial division, there exists unique polynomials q(x) and r(x) such that

h(x) = q(x)m(x) + r(x), (21)

where deg r(x) < degm(x) = Γ. Insert T into Equation 21:

h(T ) = q(T )m(T ) + r(T ) = q(T )0 + r(T ) = r(T ). (22)

Therefore,
{
I,T , · · · ,T Γ−1

}
form a basis of T , i.e., dim T = Γ.

Remark that, we assume each graph contains the same number of vertices only for the sake of sim-
plicity. Lemma 1 still holds when the vertex numbers are varying, since the construction of Equation
15 is independent of this assumption. However, we need the graph set to be finite, otherwise Γ might
be uncountable. We leave the discussion on infinite graph sets for future study.

D PROOF OF THEOREM 1

First, we borrow the concept of T (Equation 17) in place of A. Then we leverage the following
basic yet powerful Lemma 3 to conclude the proof of Theorem 1 straightforwardly.
Lemma 3. Over the field of reals, the degree of an irreducible non-trivial univariate polynomial is
either one or two.

Proof. For any f ∈ A, let us map it to H = h(A) through the isomorphism π (Equation 16) for
some polynomial h(x) with deg h(x) ≤ Γ− 1 (By Lemma 1).

By Lemma 3, factorize h(x) into series of polynomials with the degree at most two, and then merge
first-order polynomials into second-order ones until no paired first-order polynomials remaining.
Finally, we obtain the following equation:

h(x) =

dD/2e∏
l=1

h(l)(x), (23)
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where D = deg h(x). If D is even, deg h(l) = 2 for l = 1, · · · , dD/2e. Otherwise, there exists
some j ∈ [L] such that deg h(j)(x) = 1. Notice that, the remaining first-order polynomials is at
most 1, which indicates the sparsity of coefficients is very low.

Now we obtain filters H(l) = h(l)(T ) for l = 1, · · · , dD/2e. The last step is applying the inverse
of isomorphism π−1 to mapH(l) ∈ T back to f (l) ∈ A as below:

π−1 :

K∑
k=0

θkT
k 7→

K∑
k=0

θkA(G)k. (24)

Recalling Section 4.1, f (l) ∈ B2 for l = 1, · · · , dD/2e. Since π−1 is also a ring isomorphism,
H = H(dD/2e) ◦ · · · ◦H(1) implies f = f (dD/2e) ◦ · · · ◦ f (1).

Remark that Theorem 1 can be considered as the GCN-version of Theorem 3 in Zhou (2020). It
plays a key step in proving the universality of nonlinear CNNs. Our Theorem 1, thus, provides a
strong tool for analyzing nonlinear GCNs.

E SYNTHETIC GRAPH SPECTRUM (SGS) DATASET

Our SGS dataset works for node signal filtering regression tasks. We designed 3 types of graph
signal filters: high-pass (HP), low-pass (LP) and band-pass (BP) filters, as given in Equation 25. For
each type, we generate 1000, 1000 and 2000 undirected graphs with graph signals and groundtruth
response in the training set, validation set and test set, repectively. Each graph approximately has
80 ˜120 nodes and 80 ˜350 edges. Models trained on each sub-dataset are expected to learn the
corresponding filter by supervising the MAE loss.

F ∗HP (x) =
1

1 + exp{−50(x− 1)}

F ∗LP (x) = 1− 1

1 + exp{−50(x− 1)}

F ∗BP (x) =
−1

1 + exp{−100(x− 1.05)}
+

1

1 + exp{−100(x− 0.95)}

(25)

Undirected graphs are randomly sampled through rejection sampling of edges from complete graphs.
In detail, we randomly draw an integerN from [80, 120] as the number of nodes, and then generate a
N×N random matrixB with each element independently sampled from Unif(0, 1). Set a threshold
ε and we can construct an adjacency matrix A by letting ai,j = 1 if bi,j > ε, otherwise ai,j = 0,
where ai,j is the element located at the i-th row and j-th column ofA.

Next, we need to generate spectral signals s for the graph. Independent sampling for each spectrum
from a probabilistic distribution will only generate noises. Hence, we synthesize spectrum by sum-
ming random functions. We notice that pdf of the beta distribution Beta(a, b) is a powerful tool to
construct diverse curves by tuning shape parameters a and b. Also, Gaussian function Norm(µ, σ)
is able to yield diverse bell-shaped curves by tuning µ and σ. We sum 2 discretized beta functions,
4 discretized Gaussian functions with random parameters to generate spectral signals. Equation 26
elaborates the generation process and hyper-parameter choosing in our experiments, where g[x; a, b]
is the pdf of Beta(a, b) distribution, f [x;µ, σ] is the pdf of Norm(µ, σ) distribution.

s[x] =

2∑
i=1

g[x/N ; ai, bi] +

4∑
j=1

cjf [x;µj , σj ] x ∈ [N ]

ai, bi ∼ Unif{0.1, 5} µj ∼ Unif{0, N} σj ∼ Unif

{
N

(j + 1)
,
N

j

}/
9

cj ∼
Unif{0.5, 2}

maxx∈[N ] f [x;µj , σj ]

(26)

14



Under review as a conference paper at ICLR 2021

In most real-world cases, graph signals are usually represented in vertex-domain. With a generated
graph and its spectral signals, we can retrieve the vertex-domain signals by inverse graph Fourier
transformation: perform eigen-decomposition on the normalized adjacency matrix Ã of the graph
to retrieve its graph Fourier basis Ũ , then we can find vertex-domain signals by Ũs.

For supervising purpose, we retrieve the groundtruth of each filter’s response by applying each
filter to the generated spectral signals, namely F ∗k (s), k ∈ {HP,LP,BP}. Figure 4 illustrates an
example of the generated spectral signals and its groundtruth filtering response of the 3 filters.
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Figure 4: An example of graph spectrum in our SGS dataset and its corresponding high-pass, low-
pass and band-pass filtering response using our hand-crafted filters.

F MORE VISUALIZATIONS OF SPECTRUM

We compute spectrum as follows: suppose we have an undirected and unweighted graph with nor-
malized adjacency matrix A and node signal X ∈ RN×D, where N is the number of nodes and
D is the number of signal channels. Since A is symmetric, we perform an eigen-decomposition on
the adjacency matrix A = UΛUT . Then the spectrum of X is computed by S = UTX . More
information about the graph spectrum and graph Fourier transformation can be found in Ortega et al.
(2018).

Figure 5 shows the output spectrum of Vanilla GCN, 1st-Order GCN and SoGCN on the synthetic
Band-Pass dataset. The visualizations are consistent to the Table 1 and Figure 3. Vanilla GCN almost
loses all the band-pass frequency, resulting in a very poor performance. 1st-Order GCN learns
to pass a part of medium-frequency band but still have an obvious distance from the groundtruth
filter. SoGCN’s filtering response is close to the groundtruth response, showing its strong ability to
represent graph signal filters.

Figure 6 gives more spectrum visualizations on the ZINC dataset. We can observe the spectrum
impacts of GRU on Vanilla GCN and our SoGCN. Each curve in the visualization figure represents
the spectrum of each output channel, i.e., we plot each column of S as a curve.
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Figure 5: Visualizations of output spectrum on the SGS Band-Pass dataset.
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Figure 6: More visualizations of output spectrum on the ZINC dataset.
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