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ABSTRACT

Large Language Models (LLMs) exhibit remarkable performance across a wide
range of natural language tasks but face limitations in accessing dynamic or domain-
specific knowledge not encountered during pre-training. To address this, recent
research has explored integrating structured external knowledge from Knowledge
Graphs (KGs) into LLMs via in-context learning (ICL). Although KG-augmented
in-context reasoning has shown strong performance on commonsense tasks such as
multiple-choice question answering (MCQA), the extent of LLMs’ dependence on
external knowledge remains poorly understood. Prior work has primarily examined
which knowledge to extract from KGs and how to represent it to optimize prompts
and task accuracy. In this study, we shift the focus to if and when LLMs accept or
disregard injected knowledge. We introduce a confidence-guided framework that
stratifies model predictions into high-, moderate-, and low-certainty bands: high
means the model assigns dominant probability to a single choice, moderate reflects
a few competing options with similar weight, and low corresponds to diffuse distri-
butions with no clear preference. We then examine how knowledge interventions
reshape probability distributions over candidate answers. Interventions include (i)
supportive knowledge reinforcing the model’s initial choice, (ii) opposing knowl-
edge aligned with alternative answers, and (iii) noisy off-topic statements. Our
analysis reveals systematic patterns: highly confident predictions tend to disregard
opposing or noisy evidence, whereas moderate- and low-confidence predictions
are more susceptible to change when exposed to contextual information. In par-
ticular, the model is most likely to switch between answer choices to which it has
previously assigned similar mid-level confidence, while low-confidence options
may gain probability mass but rarely enough to overturn the final decision. Noisy
knowledge, however, induces only minor changes in the confidence distribution
across choices. By moving beyond accuracy to behavioral response, this work
provides a principled view of LLM robustness to knowledge augmentation and
highlights design considerations for effective KG-enhanced question answering.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural
language tasks, yet they face inherent limitations in accessing and utilizing specialized knowledge
not explicitly encoded during training. These models are fundamentally bounded by their parametric
knowledge, information embedded within their weights during pre-training, which may be incomplete,
outdated, or insufficient for domain-specific reasoning tasks Brown et al. (2020). In-context learning
(ICL) has emerged as a promising approach to address these knowledge limitations by embedding
relevant information directly within prompts, allowing LLMs to leverage external knowledge without
requiring model parameter updates Ren & Liu (2025); Liu et al. (2023); Dong et al. (2022). Despite
the effectiveness of this approach, challenges remain in determining which information should (or
not) be included in prompts to maximize performance.

Previous work has demonstrated that injecting external knowledge from knowledge graphs (KGs)
can support the reasoning ability of LLMs in multiple choice question answering (MCQA) tasks.
Many prior studies have focused on developing methods to incorporate such knowledge Yasunaga
et al. (2021b); Luo et al. (2024a); Shen et al. (2020); Wang et al. (2020); Zhang et al. (2019); LUO

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al. (2024); Saxena et al. (2020); Markowitz et al. (2024); Sun et al. (2024); Zhao et al. (2025);
Jiang et al. (2024). KGs provide structured representations of entities and their relationships, offering
factual precision that unstructured text often lacks. By incorporating KG-derived information, LLMs
can reduce incorrect reasoning and hallucinations without the need for costly model updates.

Nevertheless, in some cases, simply injecting knowledge from KGs that are related to the question-
answering task into prompts is insufficient to improve performance. This limitation is particularly
evident in commonsense reasoning tasks, where questions often require information from multiple
KG subgraphs. In such cases, correct responses rarely follow from a single subgraph; instead,
they depend on the combined evidence provided by several moderately relevant subgraphs that
collectively support a coherent answer. Recent studies have shown that these models are sensitive to
the availability, quality and presentation of external knowledge. While prior work has focused on
identifying which knowledge to extract from KGs and how to represent it to improve performance, a
question remains largely unexplored: when does a model actually accept or disregard the injected
knowledge?

In this paper, we investigate model behavior through its preference over answer options. Specifically,
we pursue three main goals. First, we study the confidence–stratified impact by partitioning questions
according to the model’s baseline confidence into low, moderate, and high categories, and quantifying
how injected knowledge modifies the belief distribution over possible answers within each group.
Second, we examine the effects of targeted knowledge by analyzing, for each confidence category, the
influence of (i) supporting knowledge aligned with the model’s initial prediction and (ii) competing
knowledge aligned with alternative answers. This analysis captures both the probability shifts for
individual choices and the frequency with which the top–1 prediction changes. Finally, we assess the
model’s robustness to noise by studying how off–topic or noisy knowledge affects its confidence in
the original prediction, focusing on overall probability drift.

By shifting the focus from accuracy to behavioral response, our study aims to provide a systematic
understanding of how large language models integrate, reject, or ignore external knowledge under
varying levels of certainty. We argue that this perspective is crucial for diagnosing model limitations,
guiding knowledge injection strategies, and ultimately informing the design of more robust and
effective KG-augmented question answering systems.

2 RELATED WORK

LLM-based QA methods fall into two broad paradigms: those that rely solely on the model’s internal
knowledge Liu et al. (2022); Kojima et al. (2022); Wang et al. (2023), and those that incorporate
external sources, notably KGs, to compensate for parametric limitations. Knowledge Graph Question
Answering (KGQA) enhances factual accuracy and reasoning by combining textual and structured
knowledge from KGs. Existing approaches to integrating KGs with LLMs can be grouped into four
main categories:

Knowledge Injection during Pre-training or Fine-tuning These methods encode KG information
into the model weights Shen et al. (2020); Wang et al. (2020); Zhang et al. (2019). Models like
KGT5 Saxena et al. (2022) and RoG LUO et al. (2024) fine-tune on KG-grounded QA data, aligning
outputs with KG structures.
Embedding-based Methods These represent KG entities and relations in latent space, using archi-
tectures tailored for reasoning. Early efforts like KV-Mem Miller et al. (2016) evolved into models
like EmbedKGQA Saxena et al. (2020), QA-GNN Yasunaga et al. (2021b), GreaseLM Zhang et al.
(2022), and TransferNet Shi et al. (2021). Though effective, these methods often require rigid,
task-specific designs with limited flexibility.
Semantic Parsing (SP) SP-based approaches translate questions into logical forms (e.g., SPARQL)
that are executed over the KG Sun et al. (2020); Lan & Jiang (2020). These enable precise symbolic
reasoning but depend heavily on annotated data Das et al. (2021).
Retrieval-Augmented Methods These retrieve relevant KG subgraphs during inference and append
them to the input prompt Yang et al. (2024); Li et al. (2023); Baek et al. (2023). PoG Tan et al.
(2025) constructs multi-hop paths and prunes irrelevant facts; GCR Luo et al. (2024b) integrates KG
structure via graph-constrained decoding. Some methods frame LLMs as agents that explore KGs
iteratively Markowitz et al. (2024); Sun et al. (2024); Zhao et al. (2025); Jiang et al. (2024), though
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this introduces latency Dehghan et al. (2024). While retrieval-based methods are model-agnostic and
computationally efficient, their success depends on retrieving semantically relevant and complete
facts. Poor retrieval can inject noise, harming answer quality.

3 PROBLEM DEFINITION

We formalize the multiple-choice question answering (MCQA) task as follows. Let each instance be
represented as a tuple (q, C), where q denotes the question stem and C = {c1, . . . , c5} is the set of
five answer candidates. Given a text prompt Π presenting q with the five labeled choices, the model
produces a normalized probability distribution p ∈ ∆4 over the candidate set.1

We define the base distribution as p(0) = (p
(0)
1 , . . . , p

(0)
5 ), the base top-1 prediction as ŷ(0) =

argmaxi p
(0)
i , and the corresponding base confidence as κ(0) = maxi p

(0)
i . For each MCQA

instance, the model’s probability assignment induces a preference ordering from the most preferred
(rank 1) to the least preferred (rank 5) candidate.

3.1 KNOWLEDGE GRAPH STRUCTURE AND EXTRACTION

A knowledge graph (KG) is defined as G = (V,E), where V is the set of entities and E is the set
of relations. Each edge (h, r, t) ∈ E, connecting a head entity h to a tail entity t via a relation r,
represents a knowledge statement. The KG can thus be interpreted as a collection of structured
statements encoding factual information about entities and their relationships.

Given a question q and answer candidates C, we ground entities from both the question and each
candidate to the KG. Following prior work Yasunaga et al. (2021a), let Q(q) denote the set of
grounded question concepts (QCs) and A(ci) the answer concepts (ACs) for choice ci. For each
candidate i ∈ {1, . . . , 5}, we extract all 1-hop and 2-hop paths connecting any QC in Q(q) to any
AC in A(ci):

Pi = {paths of length ≤ 2 from Q(q) to A(ci)}.
These paths form our candidate knowledge statements. For noisy knowledge, we sample random
2-hop paths anywhere in the graph, unconstrained by question or answer concepts.

3.2 PROMPTING AND AGGREGATION

Each subgraph is linearized into textual form using edge labels and inverse labels when necessary.
For example, a single edge might be rendered as revolving door (AtLocation) bank, while a two-hop
path becomes security (RelatedTo) vault (AtLocation) bank. These linearizations serve as knowledge
statements for prompting.

We employ two prompt templates. The base template presents the question q followed by five
labeled choices: (A) c1, (B) c2, (C) c3, (D) c4, (E) c5. The knowledge-augmented template prepends
knowledge statements before the question and choices. Given a single knowledge statement k,
the model yields a posterior distribution p(k). For a set of M statements K = {k1, . . . , kM}, we
aggregate responses by simple averaging:

p̄ =
1

M

M∑
m=1

p(km), ŷ = argmax
i

p̄i.

Unless stated otherwise, all post-knowledge quantities are computed with respect to p̄.

3.3 ANALYSIS FRAMEWORK

Following knowledge injection, we analyze how the probability distribution evolves: specifically,
how probability mass is redistributed across candidates and whether the top-ranked choice changes.
Since a model’s receptiveness to new information depends on its initial certainty, we stratify instances

1We interpret the model’s five-way distribution as confidence allocation over the answer choices, not over the
entire vocabulary.
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by base confidence κ(0) into three bands: high (κ(0) > 0.85), moderate (0.65 ≤ κ(0) ≤ 0.85), and
low (κ(0) < 0.65). We then examine behavioral trends across these confidence strata.

This confidence-guided analysis enables us to investigate whether and to what extent LLMs incor-
porate KG information in augmented prompts. The stratification allows us to test whether highly
confident predictions exhibit greater resistance to contradictory evidence and whether low-confidence
predictions show increased susceptibility to perturbations or noise.

We evaluate three types of knowledge interventions. Supportive knowledge (or evidence) consists
of statements from Pŷ(0) that reinforce the model’s initial top choice (rank 1), regardless of its
correctness. Rival knowledge comprises statements from Pr for ranks r ∈ {2, 3, 4, 5} that challenge
the base prediction by providing evidence for lower-ranked options. Finally, noisy knowledge includes
random 2-hop paths sampled from the KG that are unconstrained by question or answer concepts and
should ideally be disregarded by a robust model.

For every instance, knowledge condition, and confidence bin, we observe the full post-knowledge
distribution p̄, per-choice probability shifts ∆p = p̄− p(0), and the switch indicator I{ŷ ̸= ŷ(0)}.
Aggregating these measurements at the bin and condition level allows us to quantify three key
behaviors as functions of the model’s initial certainty: acceptance (increases for aligned choices and
adoption of rivals when warranted), resistance (stability of the base prediction under rival evidence),
and robustness to noise (limited drift of p̄ and low spurious switch rates).

4 EXPERIMENTAL SETUP

We conduct experiments on the COMMONSENSEQA development split, which contains 1,221
multiple-choice questions with five answer options each (Talmor et al., 2019). As our external
commonsense knowledge source, we use CONCEPTNET (English, pruned) (Speer et al., 2018).
Following QA-GNN Yasunaga et al. (2021a), we ground question and answer concepts to the KG
and induce per-question subgraphs, computing connectivity features from direct (1-hop) and 2-hop
relation paths between question and answer concepts.

We evaluate four instruction-tuned encoder–decoder LLMs without fine-tuning: Flan-T5-small,
Flan-T5-large, Llama-2-7b, and MISTRAL7B. These models produce per-choice probabilities via
a deterministic, decoding-free scoring procedure using teacher-forced negative log-likelihood over
the full answer text, enabling direct comparison across knowledge conditions.

4.1 SCORING METHODOLOGY

Given a question q and labeled choices (A) c1, . . . , (E) c5, we first obtain a base belief vector
p(0) ∈ ∆4 over the five choices by scoring the fixed prompt listing q and all choices. The base
prediction is ŷ(0) = argmaxi p

(0)
i with base confidence κ(0) = maxi p

(0)
i . We stratify items into

three bins by κ(0): low (< 0.65), moderate (0.65–0.85), and high (> 0.85).

Within each bin, we create knowledge sets per item: supportive statements drawn from the subgraph
of the current top-1 choice, rival statements drawn from the subgraphs of the rank-2 through rank-5
choices, and noisy statements sampled as random 2-hop KG paths (ten per item). For each condition,
we prepend each statement k ∈ K to the same multiple-choice prompt and re-score the five answers,
producing p(k).

Scoring is performed in teacher-forcing mode without decoding. Each candidate answer ci is mapped
to a fixed target sequence, tokenized and padded to length T with pad token p. For a batch of size B,
let y ∈ NB×T be the padded targets and L ∈ RB×T×V the logits over vocabulary size V . The token-

wise loss for item i at time t is ℓi,t = − log
exp

(
Li,t,yi,t

)
∑V

j=1 exp(Li,t,j)
. Pad positions are excluded via masking

where mi,t = 1 if yi,t ̸= p and mi,t = 0 otherwise. The sequence loss is Li =
∑T

t=1 mi,t ℓi,t, and
the unnormalized candidate score is si = −Li. Scores for the five candidates are normalized with
softmax to obtain the probability distribution: pi =

exp(si)∑5
j=1 exp(sj)

. Because teacher forcing contains

no sampling or search, pi is deterministic given (q, C) and the prepended knowledge text.
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4.2 EVALUATION METRICS

We quantify how injected knowledge reshapes a model’s belief over the five answer choices. For a
question q with candidates C = {c1, . . . , c5}, and the base distribution p(0) ∈ ∆4, when we inject a
targeted set of K statements for choice ct, the model returns a posterior p(k) per statement k, which
we aggregate by averaging:

p̄(K) =
1

K

K∑
k=1

p(k).

Let ŷ(0) = argmaxi p
(0)
i be the base top-1 choice and rank

(0)
i (q) ∈ {1, . . . , 5} the base rank of

option ci. For targeted knowledge (supportive or rival), we measure ACCEPTANCE as the post-
injection belief in the targeted answer candidate:

A(q, t) = p̄
(K)
t .

We quantify probability LIFT as the change relative to the base probability:

∆(q, t) = p̄
(K)
t − p

(0)
t .

We track ADOPTION via the indicator

Top1(q, t) = I
[
argmax

i
p̄
(K)
i = t

]
,

which measures retention for supportive knowledge and conversion for rivals. For noisy (untargeted)
knowledge, we measure ROBUSTNESS via the confidence the model assigns to its base top–1 ranked
answer candidate before/after injecting K random statements.

In addition, we report multiple–choice ACCURACY for each condition (base and post–injection),
defined as the fraction of questions answered correctly:

Acc =
#{ q ∈ Q : argmaxi πi(q) = y⋆(q) }

|Q|
,

where π is the relevant distribution (e.g., p(0) for the base condition or p̄(K) after targeted/noisy
injection) and y⋆(q) is the gold label.

5 RESULTS

5.1 TARGETED KNOWLEDGE: SUPPORT AND RIVAL EVIDENCE

We analyze how injected knowledge reshapes the model’s belief distribution by grouping predictions
into three confidence levels (low, moderate, and high) and evaluating five intervention settings:
SupportRank1, where knowledge aligns with the model’s original top prediction, and RivalRank2–5,
where it supports alternatives originally ranked second to fifth. We report three metrics to capture the
model’s response: ACCEPTANCE, the post-injection probability assigned to the supported answer
candidate; LIFT, the change in that probability relative to its baseline value, showing the direct
influence of knowledge; and ADOPTION, the proportion of cases where the supported candidate
becomes the new top-1 prediction, indicating a complete change in the model’s decision.

Figure 1 visualizes the full ACCEPTANCE distribution (post-knowledge probability assigned to the
targeted choice) for each model, stratified by base confidence (low, mid, high) and knowledge
target (SUPPORT@RANK1, RIVAL@RANKk, k∈{2, 3, 4, 5}). Two main patterns can be observed.
First, supportive evidence consistently amplifies the model’s prior: for most models and strata the
SUPPORT@RANK1 boxes are concentrated high on the 0–1 scale, often with upper quartiles near 1.0
for the T5 variants. Second, rival acceptance is strongly ordered by rank: RIVAL@RANK2 typically
has the highest median and tightest spread among rivals, with acceptance declining progressively for
ranks 3, 4, and 5. Across base-confidence strata, rivals are accepted most in the low bin and least in
the high bin, indicating greater resistance when the model is initially confident.

The width of the boxes reflects this pattern. At low and moderate base confidence, the interquartile
ranges (IQRs) are wider because there is more room to shift probability mass, leading to greater
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Figure 1: ACCEPTANCE distributions by base confidence and knowledge target. Each panel cor-
responds to a model, and boxplots show the acceptance (post-injection probability assigned to the
supported answer candidate) under SUPPORT@RANK1 and RIVAL@RANKk conditions. Supporting
the original top prediction consistently increases confidence in that choice, while rival acceptance
follows the base ranking order and decreases as base confidence grows.

variation across items. At high base confidence, rival distributions become narrower and shift
downward, indicating consistent resistance to change, while SUPPORT@RANK1 distributions become
more concentrated upward, showing stable reinforcement of the original choice. Across models, the
T5 variants show the strongest support amplification and the clearest rank ordering. Llama-2 exhibits
lower rival acceptance, while Mistral falls in between but follows the same overall trend.

Figure 2 summarizes the results using median ACCEPTANCE, highlighting two main effects: (i) a
clear ranking pattern (RIVAL@2 > RIVAL@3 > RIVAL@4 > RIVAL@5), and (ii) a confidence
effect, where acceptance of rival candidates decreases as base confidence increases from low to
medium to high. These results confirm what the box plots suggest: LLMs strengthen the option they
already prefer when given supporting evidence, and they shift toward alternative options based on
how competitive those alternatives were and how uncertain the model was initially.

Across all models and confidence strata, knowledge injection produces consistent patterns in both
LIFT and ADOPTION. Detailed per-model, per-bin results for LIFT and ADOPTION are provided
in the Appendix tables. Supportive evidence reliably increases the model’s belief in its original
top choice, resulting in positive LIFT in all bins. Median gains are largest for low and moderate
confidence predictions, while high-confidence predictions show smaller increases due to ceiling
effects. ADOPTION rates are highest for confident base predictions and decline for moderate and
low-confidence items, indicating that supportive knowledge primarily reinforces existing preferences
rather than overturning decisions. Rival knowledge shows a clear rank-dependent effect on both
LIFT and ADOPTION. Rank-2 rivals achieve the largest post-injection values, with values decreasing
monotonically through ranks 3–5. This pattern reflects the base probability distribution over non-top
options and demonstrates that models are most responsive to evidence supporting options that were
already competitive. Deeper distractors (rank-4/5) rarely gain enough probability to become the
top choice. Initial confidence strongly modulates both LIFT and ADOPTION for rival knowledge:
low-confidence predictions are most susceptible, moderate-confidence predictions show smaller
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Figure 2: Median ACCEPTANCE trends. Median ACCEPTANCE is shown by base-confidence bin for
each rival rank (RIVAL@2–5). The curves decrease as rival rank increases and as base confidence
grows, indicating that resistance to updating depends on both factors.

effects, and high-confidence predictions are largely resistant. This aligns with the intuition that
confident predictions are anchored and require stronger contradictory evidence to be overturned.

All three evaluated models exhibit the same qualitative trends: supportive knowledge amplifies
belief and retention for the base answer, rival knowledge produces rank-ordered effects with rank-2
dominating, and higher base confidence increases robustness against rival interventions. Absolute
magnitudes differ by model and confidence bin, but the relative patterns remain consistent.

5.2 NOISY KNOWLEDGE: ROBUSTNESS TO UNTARGETED INFORMATION

Figure 3 shows the global noise ROBUSTNESS, for each model and confidence level (low, medium,
high), the median probability assigned to answers by their original rank (1 = top) before and after
injecting K=10 unrelated statements. Three main patterns appear. First, the rank-1 curve drops
slightly after noise, but the two lines stay nearly parallel, indicating a small reduction in confidence
rather than a change in ranking. Second, lower-ranked options gain only a small amount of probability,
and these gains are rarely enough to overtake the top choice. Third, the size of the effect depends on
initial confidence: high-confidence items show the smallest decrease, mid-confidence items a slightly
larger one, and low-confidence items the largest, although the top answer usually remains unchanged.
Overall, off-topic text has little influence on the models’ predictions; it behaves more like a weak
regularizer on probability distribution than a cause of rank changes.

To examine whether noise can weaken the effect of useful evidence, we start with correct supporting
knowledge (1–2 hop chains linking the question concepts to the correct answer candidate) and
gradually add unrelated statements at 1

4×, 1
2×, 1×, 2×, 3×, and 5× the number of support statements.

Figure 4 shows ACCURACY, separating answer candidates based on whether each model’s initial
prediction was correct. For candidates that were already correct, using only support keeps accuracy
near its maximum, while adding noise causes a smooth and steady decline, indicating signal dilution
rather than active misdirection. For initially incorrect candidates, support alone produces the largest
improvements (many predictions flip to the correct label). As noise increases, accuracy decreases

7
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Figure 3: Global noise ROBUSTNESS (K=10). Median probability assigned to each answer as a
function of its base rank (1 = top) for all models and base–confidence strata (low/mid/high). Blue
= base (no KG), orange = with 10 untargeted (global) statements. Noise slightly lowers the top–1
confidence while largely preserving the rank ordering; attenuation is smallest at high base confidence.

steadily toward the no-KG baseline: when irrelevant text dominates the prompt, the model tends
to ignore it, but its weight reduces the influence of helpful evidence, limiting corrections. Across
models (Flan-T5-small/large, Llama-2-7b, Mistral-7B), these trends are stable: untargeted noise
rarely induces top-1 changes by itself, yet in aggregate it dilutes the benefits of targeted support as its
volume eclipses the signal. Complete tables summarizing median base confidence under different
noise levels (K=10, 20, 30) as well as full accuracy breakdowns for all models and confidence strata
are provided in the Appendix (Tables 2–3).

Overall, these analyses reveal clear behavioral regularities: LLMs amplify their priors when given
supportive evidence, update most readily toward rival options that were already competitive (rank–2),
and resist or disregard rival evidence proportionally to their initial confidence. These trends hold
consistently across model families and confidence strata, offering practical guidance for knowledge
curation in KG-augmented question answering. With untargeted global noise, models typically retain
their base choice and exhibit only modest median drops in confidence. However, when correct
support is paired with increasing amounts of added noise (from 1/4× up to 5× the support size),
accuracy declines monotonically: the injected noise progressively washes out the benefit of the
support, especially on instances the model initially mispredicted.

6 CONCLUSION

We analyze the effect of knowledge based on two factors: the model’s base confidence and the
rank of the supported answer candidate. Three types of knowledge are considered. Supportive
evidence consists of KG statements that reinforce the model’s original top choice (rank 1), regardless
of correctness. Rival knowledge provides evidence for lower-ranked options, challenging the base
prediction, while noisy knowledge consists of random 2-hop paths from the KG that are unrelated
to the question or answer candidates and should ideally be ignored by the model. Supportive
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Figure 4: ACCURACY with correct support plus increasing untargeted noise. Items are split by each
model’s initial correctness. Starting from correct supporting knowledge (1–2 hop QC→AC paths),
we add global noise at 1

4×, 1
2×, 1×, 2×, 3×, 5× the support count. Accuracy declines smoothly as

noise grows: untargeted text is mostly ignored in isolation, but in aggregate it dilutes the influence
of the supportive evidence, reducing conversions on initially incorrect items and slightly lowering
accuracy on initially correct items.

evidence almost always increases the probability of the top-1 choice, with minimal additional gain
when confidence is already high, showing a ceiling effect. Rival knowledge is most effective for
near alternatives: rank-2 and rank-3 candidates gain the most probability and have the highest
switch rates at low to moderate confidence, whereas rank-4 and rank-5 candidates show smaller,
inconsistent gains and are rarely adopted. Acceptance decreases with lower internal preference
(rank1 > rank2 > rank3 > rank4 > rank5) and increases as base confidence decreases. Untargeted
noise has a small effect, slightly lowering the top probability for uncertain candidates. When mixed
with supportive evidence, the impact depends on the signal-to-noise ratio: correct top choices remain
stable, while initially incorrect candidates are more affected.

These results support a confidence-aware intervention approach. For high-confidence predictions,
provide short confirmatory evidence or do not intervene, as re-ranking is unlikely to succeed. For
moderate or low-confidence predictions, focus on near alternatives (rank-2 or rank-3) with concise
supportive statements and avoid distant options (rank-4 or rank-5). Noise should be limited and
relevant; when combined with support, maintain a high signal-to-noise ratio to preserve the effect on
initially incorrect candidates.

This paper focuses on confidence response rather than overall accuracy to understand how knowledge
changes predictions and which interventions are effective. The findings suggest that providing concise,
relevant evidence to near alternatives, only when the model’s confidence is low or moderate, is the
most reliable strategy for improving KG-augmented question answering.

7 FUTURE WORK

Future work includes several directions. First, we will explore rank-aware confidence control that
penalizes probability gains based on a rival’s base-rank distance (e.g., per-rank temperatures, prior
gates, or calibration losses). Second, we plan a systematic noise taxonomy and ablation study i.e.,
covering off-topic facts, near-miss rivals, and paths that start from random neighbors but reach answer
candidates, to quantify their differential effects. Third, we will tune prompts and decoding (instruction
variants, temperature/nucleus settings, self-consistency) to improve robustness and calibration. In
parallel, we will refine evidence selection and weighting to adapt K per instance, detect contradictions,
and balance support versus rival signals. We also aim to incorporate richer calibration and diagnostics
(ECE, Brier score, counterfactual acceptance) and to extend coverage across additional model families
and datasets to evaluate transfer under domain shift.
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A APPENDIX

This appendix compiles the full quantitative tables that underpin our analyses. Table 1 reports
targeted–knowledge outcomes (Support@Rank1 and Rival@Rank2–5) for each model and confidence
stratum, including Acceptance, Lift, Adoption, and the Base Confidence (Median [Q1–Q3]). Table 2
summarizes robustness to untargeted noise by showing the base top–1 confidence and its post-injection
value under K∈{10, 20, 30} random statements. Table 3 presents multiple-choice accuracy when
correct-support knowledge is mixed with increasing amounts of random noise.

Reporting conventions. Unless noted otherwise, Acceptance, Lift, and Base Confidence are
reported as Median [Q1–Q3], while Adoption is Mean ± SD. Confidence strata are defined by the
base top–1 probability κ(0): low < 0.65, mid 0.65–0.85, high > 0.85. For each (model, bin), N is
the count of items with usable extractions under all required conditions.

Table 1 summarizes targeted-knowledge effects across models and confidence strata. Support@Rank1
consistently amplifies the model’s prior—its post-injection Acceptance exceeds the Base Confidence
median and Lift is positive in every bin— with the biggest gains in low/mid confidence and smaller
gains at high confidence (ceiling effects). Rival evidence follows a strict rank ordering: Rival@Rank2
yields the highest Acceptance and Adoption among rivals, declining monotonically through ranks
3–5, mirroring the base probability mass on those distractors. Susceptibility is confidence-dependent:
rival Lift/Adoption is largest in the low bin, smaller in the mid bin, and smallest in the high bin,
indicating that strongly confident base predictions are hardest to overturn.

Table 2 shows that injecting random facts reduces confidence in the base top–1 choice, but the drop
is generally modest and tightly governed by initial certainty. In the high bin, Flan-T5 models are
notably robust (e.g., small median declines from 95−100% to ≈ 98%), Mistral degrades more, and
Llama shows the largest high-bin dip. In the low and mid bins, medians fall more substantially across
all models, yet remain well above chance (20%), indicating that models mostly discount off-topic
content rather than collapsing their belief. Increasing noise volume from 10 to 20 to 30 statements
yields little additional degradation in the medians (often accompanied by wider IQRs), suggesting a
saturation effect where extra random facts are further down-weighted.

Table 3 separates items the model initially gets correct vs. incorrect (under “No KG”) and tracks
accuracy as we add the correct-support knowledge and then mix in increasing amounts of random
noise. On the Corrects split, adding the correct-support alone leaves accuracy essentially unchanged
(all models ≈98–100%), and even substantial noise produces only modest erosion: by 5× noise,
Flan-T5-small drops from 99.8%→ 96.8%, Flan-T5-large 99.0%→ 95.8%, Mistral 99.4%→ 95.5%,
while Llama2 shows a non-monotonic path but remains high overall (98.7%→96.9%). This indicates
that when the base prediction is already correct, supportive evidence is robust to untargeted facts until
the noise-to-signal ratio becomes extreme.

On the Incorrects split, providing only the correct-support substantially rescues many cases (e.g.,
Flan-T5-large: 0%→86.8%; Mistral: 0%→89.5%), confirming that targeted, on-graph evidence can
overturn initial mistakes. However, as random noise grows, these gains collapse sharply: at 5×
noise, accuracy falls to 12.0% (Flan-T5-small), 12.6% (Flan-T5-large), 7.9% (Llama2), and 21.2%
(Mistral). In short, when the base decision is wrong, support can correct it, but heavy off-topic content
progressively washes out that signal; when the base decision is right, accuracy remains high and
degrades only gradually under the same noise levels.
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Table 1: Knowledge intervention effects. Base Confidence is Median [Q1–Q3]. Acceptance/Lift are
Median [Q1–Q3]; Adoption is Mean ± SD.

Model Conf. Bin N
Base %

(Med [Q1–Q3]) Scenario Acceptance %
(Med [Q1–Q3])

Lift %
(Med [Q1–Q3])

Adoption %
(Mean ± SD)

T5-SMALL low 423 52.27[45.65–59.08]

Support@Rank1 95.86 [83.48–99.08] 38.68 [29.03–47.78] 99.29 ± 8.4
Rival@Rank2 92.93 [76.37–97.96] 57.77 [43.41–65.77] 89.6 ± 30.56
Rival@Rank3 86.1 [60.07–97.21] 71.67 [47.98–83.45] 83.69 ± 36.99
Rival@Rank4 67.12 [30.84–92.36] 62.76 [27.11–87.62] 70.21 ± 45.79
Rival@Rank5 33.35 [7.64–78.69] 32.29 [7.38–76.82] 47.75 ± 50.01

T5-SMALL mid 342 75.42 [70.1–80.84]%

Support@Rank1 97.56 [93.3–99.4] 20.5 [14.87–26.29] 99.12 ± 9.34
Rival@Rank2 86.55 [58.76–96.36] 66.04 [40.06–77.33] 82.46 ± 38.09
Rival@Rank3 73.72 [35.64–93.14] 67.88 [29.58–86.92] 72.51 ± 44.71
Rival@Rank4 51.56 [17.99–85.9] 50.34 [15.41–82.74] 57.02 ± 49.58
Rival@Rank5 23.58 [1.53–70.26] 23.56 [1.24–70.15] 40.35 ± 49.13

T5-SMALL high 456 95.47 [90.66–98.47]

Support@Rank1 99.56 [98.54–99.91] 3.1 [0.47–7.17] 100.0 ± 0.0
Rival@Rank2 69.64 [30.68–93.07] 65.39 [26.55–87.75] 64.47 ± 47.91
Rival@Rank3 54.69 [14.3–85.02] 53.24 [13.74–83.49] 55.04 ± 49.8
Rival@Rank4 33.14 [6.69–74.53] 32.49 [6.36–73.72] 42.11 ± 49.43
Rival@Rank5 11.63 [0.69–55.6] 11.63 [0.66–55.58] 29.82 ± 45.8

T5-LARGE low 97 55.92 [49.76–59.71]

Support@Rank1 95.36 [81.5–99.58] 37.36 [22.02–43.81] 94.85 ± 22.23
Rival@Rank2 97.34 [66.55–99.46] 54.18 [31.69–62.08] 86.6 ± 34.24
Rival@Rank3 90.71 [46.01–97.91] 77.97 [37.64–91.7] 75.26 ± 43.38
Rival@Rank4 65.98 [19.65–92.82] 61.35 [19.35–91.38] 61.86 ± 48.83
Rival@Rank5 35.42 [2.38–85.81] 35.42 [2.37–85.09] 45.36 ± 50.04

T5-LARGE mid 97 76.94 [71.7–81.09]

Support@Rank1 97.14 [89.92–99.56] 17.74 [13.48–23.01] 96.91 ± 17.4
Rival@Rank2 94.62 [74.89–99.27] 70.82 [55.06–79.36] 84.54 ± 36.34
Rival@Rank3 70.94 [17.05–94.77] 70.39 [13.79–90.63] 62.89 ± 48.56
Rival@Rank4 51.68 [13.45–93.64] 51.58 [11.07–93.64] 55.67 ± 49.94
Rival@Rank5 18.35 [1.2–65.75] 18.33 [1.2–65.64] 38.14 ± 48.83

T5-LARGE high 1027 99.89 [98.52–99.99]

Support@Rank1 99.88 [99.0–99.98] 0.0 [-0.15–0.22] 99.03 ± 9.82
Rival@Rank2 63.62 [5.58–96.81] 61.42 [4.96–92.82] 55.6 ± 49.71
Rival@Rank3 35.16 [1.24–85.62] 35.05 [0.96–85.0] 44.3 ± 49.7
Rival@Rank4 18.5 [0.25–75.62] 18.5 [0.23–75.62]% 36.22 ± 48.09
Rival@Rank5 8.42 [0.06–61.78] 8.39 [0.05–61.78]% 31.06 ± 46.3

LLAMA2-7B low 617 50.66 [42.33–57.56]

Support@Rank1 57.59 [36.72–80.63] 3.07 [-10.35–26.37] 74.88 ± 43.41
Rival@Rank2 39.55 [20.14–69.55] 10.42 [-3.83–40.41] 49.92 ± 50.04
Rival@Rank3 24.69 [10.94–52.36] 12.01 [0.0–40.24] 35.66 ± 47.94
Rival@Rank4 13.18 [4.79–31.73] 7.53 [0.0–25.23] 22.53 ± 41.81
Rival@Rank5 8.39 [2.66–22.42] 6.12 [0.86–20.79] 15.88 ± 36.58

LLAMA2-7B mid 333 73.92 [69.36–79.52]

Support@Rank1 78.0 [57.9–91.9] 1.31 [-14.65–15.78] 87.09 ± 33.58
Rival@Rank2 46.84 [21.52–75.37] 31.99 [1.32–55.06] 55.86 ± 49.73
Rival@Rank3 19.85 [6.55–45.62] 14.64 [0.0–40.77] 29.73 ± 45.78
Rival@Rank4 10.72 [3.96–34.13] 8.47 [0.77–30.58] 21.62 ± 41.23
Rival@Rank5 6.92 [2.41–20.62] 6.04 [1.5–19.87] 15.92 ± 36.64

LLAMA2-7B high 271 92.94 [89.68–95.85]

Support@Rank1 92.84 [83.83–97.29] -0.24 [-7.8–2.99] 97.05 ± 16.96
Rival@Rank2 23.66 [5.92–58.95] 18.76 [1.19–53.76] 35.06 ± 47.8
Rival@Rank3 10.51 [2.74–29.48] 8.66 [0.61–27.25] 16.61 ± 37.28
Rival@Rank4 7.23 [1.98–21.9] 6.5 [1.2–21.8] 13.65 ± 34.4
Rival@Rank5 3.35 [0.67–8.64] 3.07 [0.46–8.61] 6.27 ± 24.29

MISTRAL7B low 390 52.23 [45.56–58.11]

Support@Rank1 60.9 [4.88–95.24] 0.0 [-39.56–32.26] 62.56 ± 48.46
Rival@Rank2 33.69 [5.14–86.96] 0.0 [-18.38–54.85] 44.36 ± 49.74
Rival@Rank3 23.3 [2.06–80.52] 11.3 [-5.68–70.2] 42.82 ± 49.55
Rival@Rank4 18.05 [1.94–70.55] 15.79 [0.0–66.66] 39.49 ± 48.95
Rival@Rank5 14.41 [1.26–62.88] 12.84 [0.0–61.79] 35.64 ± 47.96

MISTRAL7B mid 320 75.91 [70.5–80.18]

Support@Rank1 96.51 [76.16–99.5] 15.87 [0.0–29.23] 85.94 ± 34.82
Rival@Rank2 60.77 [5.99–93.92] 41.78 [-3.31–70.33] 55.0 ± 49.83
Rival@Rank3 28.24 [2.63–78.65] 23.97 [-0.42–73.85] 41.25 ± 49.31
Rival@Rank4 14.36 [1.61–66.75] 12.55 [0.0–59.7] 35.31 ± 47.87
Rival@Rank5 12.28 [1.14–59.57] 11.35 [0.11–57.71] 31.87 ± 46.67

MISTRAL7B high 511 95.43 [91.0–98.58]

Support@Rank1 99.46 [96.0–99.89] 2.9 [0.03–10.92] 96.67 ± 17.95
Rival@Rank2 48.44 [5.3–86.91] 41.43 [0.0–76.36] 50.49 ± 50.05
Rival@Rank3 14.5 [0.96–63.7] 12.98 [0.0–59.98] 34.64 ± 47.63
Rival@Rank4 8.8 [0.64–57.0] 8.52 [0.06–55.24] 31.12 ± 46.34
Rival@Rank5 6.13 [0.4–45.79] 5.81 [0.18–45.17] 26.81 ± 44.34
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Table 2: Impact of random noisy knowledge on the model’s base-prediction confidence. Values are
Median [Q1–Q3].

Model Confidence Bin N Base Conf. (Median [Q1–Q3]) Post@10 Noise Post@20 Noise Post@30 Noise

Flan-T5-small
low 422 52.43 [45.37–58.59]% 46.82 [29.13–63.16]% 46.23 [28.32–63.25]% 47.07 [28.07–62.69]%
mid 344 74.78 [69.85–80.44]% 69.85 [52.61–83.07]% 69.81 [53.02–82.96]% 68.85 [53.38–82.63]%
high 455 95.45 [90.67–98.52]% 95.11 [88.19–98.79]% 94.7 [87.46–98.82]% 94.56 [87.66–98.82]%

Flan-T5-large
low 99 56.5 [50.28–60.25]% 44.77 [13.92–72.34]% 43.51 [16.72–72.46]% 43.66 [14.73–72.48]%
mid 98 77.63 [72.43–80.68]% 51.46 [29.66–81.92]% 59.1 [26.55–82.34]% 56.39 [26.12–82.31]%
high 1024 99.89 [98.5–99.99]% 97.97 [84.93–99.79]% 97.98 [84.27–99.78]% 97.77 [83.99–99.77]%

Llama-2-7b-chat-hf
low 617 51.09 [43.06–59.48]% 33.87 [17.21–55.74]% 34.42 [17.53–56.28]% 34.4 [17.16–56.46]%
mid 333 73.43 [67.25–80.51]% 44.94 [25.08–67.91]% 44.21 [24.07–70.35]% 46.12 [24.84–69.46]%
high 271 93.28 [89.14–96.13]% 70.69 [49.85–86.86]% 70.64 [49.03–86.64]% 71.14 [50.9–86.43]%

Mistral-7B-Instruct-v0.3
low 390 54.09 [45.88–64.28]% 26.39 [8.74–58.34]% 27.41 [10.2–57.8]% 27.97 [10.61–55.55]%
mid 320 71.32 [60.28–81.96]% 53.65 [23.47–75.9]% 52.09 [24.05–75.14]% 50.32 [22.98–75.08]%
high 511 93.27 [83.82–97.82]% 85.04 [58.54–96.44]% 85.35 [56.48–96.08]% 84.24 [56.84–96.16]%

Table 3: Accuracy with correct-support knowledge mixed with increasing random noise.

Model Question type No KG Corrects only + 1
4 noise + half noise + same noise + double noise + triple noise + 5× noise

T5-Flan-small Corrects 100.0% 99.80% 99.60% 99.60% 99.60% 99.40% 98.20% 96.80%
T5-Flan-large Corrects 100.0% 99.00% 99.38% 99.38% 99.10% 97.80% 96.69% 95.80%
Llama2-7b Corrects 100.0% 98.70% 97.10% 97.50% 96.80% 91.72% 90.4% 96.94%
Mistral-7b Corrects 100.0% 99.43% 99.24% 99.23% 99.05% 97.32% 95.90% 95.52%
T5-Flan-small Incorrects 0.0% 81.90% 74.10% 70.00% 56.32% 26.60% 17.00% 12.00%
T5-Flan-large Incorrects 0.0% 86.80% 79.70% 76.24% 64.30% 32.40% 16.50% 12.60%
Llama2-7b Incorrects 0.0% 60.65% 52.39% 47.73% 38.64% 24.43% 11.20% 7.90%
Mistral-7b Incorrects 0.0% 89.50% 83.84% 79.7% 69.2% 43.13% 33.7% 21.2%
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