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Figure 1: Scalar-field representations in our study: a table of digits (Digits), a red-blue static diverging color scale (Color), a color
scale with digits (DigitsColor) and FatFonts. An interactive technique (Tooltip) not shown. The examples are excerpts from larger
fields (see supplementary materials for all complete fields).

ABSTRACT

2D scalar data fields are often represented as heatmaps because
color can help viewers perceive structure without having to interpret
individual digits. Although heatmaps and color mapping have re-
ceived much research attention, there are alternative representations
that have been generally overlooked and might overcome heatmap
problems. For example, color perception is subject to context-based
perceptual bias and high error, which can be addressed through rep-
resentations that use digits to enable more accurate value reading.
We designed a series of three experiments that compare five tech-
niques: a regular table of digits (Digits), a state-of-the-art heatmap
(Color), a heatmap with an interactive tooltip showing the value
under the cursor (Tooltip), a heatmap with the digits overlapped over
it (DigitsColor), and FatFonts. Data analysis from the three experi-
ments, which test locating values, finding extrema, and clustering
tasks, show that overlapping digits on color (DigitsColor) offers a
substantial increase in accuracy (between 10 and 60 percent points of
improvement over the plain heatmap (Color), depending on the task)
at the cost of extra time when locating extrema or forming clusters,
but none when locating values. The interactive tooltip offered a poor
speed-accuracy tradeoff, but participants preferred it to the plain
heatmap (color) or digits-only (Digits) representations. We conclude
that hybrid color-digit representations of scalar data fields could be
highly beneficial for uses where spatial resolution and speed are not
the main concern.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

Whenever scalar measurements are collected spatially in two+ di-
mensions over a defined spatial area, these are commonly stored
and represented as scalar data fields (SDF). Scalar data fields are
pervasive in scientific and engineering applications ranging from
measurements of infrared radiation over a patch of the night sky
to the density of probabilities of electrons around an atom. Visu-
alization of SDFs using color-based representations (heat maps) is
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common, and generally considered to help viewers perceive dif-
ferent aspects of the SDF efficiently. For example, color can help
viewers to pre-attentively direct their attention to areas of interest
(e.g., areas with high or low values) or grasp the general structure
of value distribution. A large corpus of research on color scales has
tried to maximize accurate perception of color [42] while sometimes
trying to minimize the appearance of artefacts that are due to the rep-
resentation (e.g., color bands). However, even the best and newest
proposed color scales present challenges for the representation of
SDFs. For example, viewers can find it difficult to accurately map
a perceived color to a specific value of a continuous (or finely dis-
cretized) variable, even when there is a good legend. Consider also
that the color around a specific value, which itself depends on the
surrounding values, can bias the perception of that value (this effect
is called simultaneous contrast [31, 47]). Finally, it is difficult to
hold arbitrary colors accurately in memory.

In many cases and domains these problems will affect the use-
fulness of the visualization and determine whether the viewer will
require further access to the underlying data. For example, certain
scalar values might be semantically important, even if differences
with similar values are very small (e.g., energy thresholds of dif-
ferent levels in atomic physics), or if it is a matter of fairness (e.g.,
finding the precise location of the maximum when there are several
competing local maxima).

Available techniques to address the problems of heat maps include
a cursor-controlled tooltip that renders the corresponding value’s
digits (if the media is interactive [30]). Alternatively, if the spatial
resolution of the data is not very large or if the spatial subsampling
is not very important, the data can be doubly encoded with static
digits overlaid on a heat map, or through a property of the digits
themselves (i.e., the amount of ink of the digit, in FatFonts [35]).
The final alternative is to just go back to the data table to read and
compare values represented as digits.

Despite the potential impact of these alternative techniques to
display SDFs, there is only sparse research on them (e.g., [30]).
Moreover, there is an implicit assumption that color-based repre-
sentations are better than plain tables with digits; yet, there is no
empirical evidence of this, or of the magnitude of the differences.

In this paper we provide new evidence from a controlled lab study
that compares four techniques: a popular state-of-the-art color scale,
conditional formatting (digits on top of that same scale), an interac-
tive tooltip, and Fatfonts to a baseline table-of-digits representation.
The study addresses three common tasks that are relevant for scalar
data fields: locating values, finding extrema, and delimiting clusters
of values. The study was carried out on a large display. The main



contribution of the paper is the trade-off emerging from the analy-
sis, which allows designers to make evidence-informed decisions
when choosing a suitable visual representation for SDFs. The results
show that heatmaps can be dramatically improved in accuracy by
adding digits, at the cost of additional time in two of the tasks. The
results also refute earlier results that claim superiority of FatFonts
for several tasks and measures [30]. Additionally the results confirm
the lack of accuracy of tooltips despite the added extra time due to
interaction, and quantify the accuracy cost of using color only and
the time cost of using digits only.

2 RELATED WORK

Our research draws from work in the areas of color scales and
mappings, text-based graphical representations and tabular data
visualizations.

2.1 Color Scales
Researchers have long sought to enhance our understanding of color
scales [34, 42]. Among different color scales, Brewer et al. [12]
empirically compared diverging, spectral and sequential schemes
and found that diverging schemes produce more accurate retrieval
than both spectral and sequential schemes and are better for clus-
ter perception than sequential schemes. Moreland’s blue-white-red
diverging colormap [33] has been used in many visualization appli-
cations e.g. [23]. Empirical studies of color maps provide evidence
that blue-red continuous diverging colormaps decrease misinterpreta-
tions [44] and is the best color choice when utilizing red to highlight
the regions of greatest interest [7]. Limitations of color scales have
also been identified. First, color and greyscales are limited in the
number of levels that viewers can reliably distinguish [47]. Second,
for large data sets that require an accurate identification of exact
values, color scale visualization can be cumbersome. This can be
addressed combining color scales with legends or an interactive
tooltip (e.g., as in 1) [49].

Despite these limitations, color scales are still commonly used for
scalar data visualization. We selected for our experiment a best-of-
class color scale compatible with the current understanding of color
mappings discussed above: a continuous red-blue diverging color
scale.

2.2 Text-Based Graphical Representation
Text-based graphical representations employ both text and numbers
to represent data [10]. For example, Brath et al. [9] extend stem
and leaf plots with font attributes. TopeText [50] uses text position
to visualize text data for multi-scale spatial aggregates. Other tech-
niques such as tag-clouds [5] and Wordtree [48] encode frequency
data with font size and weight. But none of above approaches focus
on quantitative scalar fields.

FatFonts [35] double-encode quantitative data through digits,
which can be read, and by varying the amount of ink that each
digit takes. The amount of ink (or black pixels) of each number is
proportional to its numeric value which, due to visual aggregation
(similar to stippling), allows the viewer to use the visualization in
two different ways: as a global image and as a table of digits. A
hybrid technique related to this was presented by Isenberg et al. [25].
Much more common, but also related in approach, is the conditional
formatting feature of most modern spreadsheets, which allows to
change the color of a cell according to their values.

Very few studies have examined the efficacy of this approach.
Chang et al. [14] conducted a controlled study comparing eight
encoding techniques to represent edge weights in adjacency matrices.
The results show that in an edge-weight comparison task FatFonts are
fastest and most accurate, and slowest in a cluster-weight comparison

1https://developers.google.com/chart/interactive/docs/

gallery/geochart

task. Note, however, that adjacency matrices are not exactly like
scalar data fields, since proximity of cells does not represent spatial
sampling of values as in SDFs. Additionally, the study only tested
six levels and did not compare color scales.

Manteau et. al [30] empirically compared FatFonts with other
color scale representations for small scalar data fields. They found
that FatFonts offer better speed and accuracy for reading and value
comparison, and higher accuracy for the extrema finding task. They
also found that interactive tooltips were neither fast nor accurate
compared with FatFonts. Our work complements this work in several
ways. First, their study did not compare other double encoding
techniques (e.g., Excel’s conditional formatting); Second, they did
not include a digits-only baseline condition to measure the effect
of color; Third, the color scales that they used were not designed
for continuous data and are not currently considered state-of-the-art;
and Fourth, they tested at least one task (reading a highlighted value)
where the spatial nature of the field is not very important. In our
study we share one of the tasks with their design (extrema finding)
but add a value location and a cluster delimiting task that offer a
better coverage of realistic atomic tasks.

2.3 Tabular Data Visualization
In our study we compare heat maps and other representations of
SDFs to a static spatial tabular arrangement of digits. Although we
did not include sophisticated interactive tabular techniques in our
study (partially because they often apply to categorical rather than
SDF-like spatial distributions), we acknowledge that there is much
work in this area that might be applicable to SDFs in the future, and
therefore provide a brief sample of work.

Early research on tabular data visualization focused on interaction
techniques. For example, Table Lens [39] uses a fisheye to visualize
and explore large tables, where numerical rows and columns can
be interactively compressed into visualizations. FOCUS [43] lets
users collapse adjacent table cells with the same values. Other recent
work has explored the visual encoding of tabular data. For example,
BERTIFIER [36] implements eight types of visual encodings: text,
grayscale, circle, dual bar chart, bar chart, line, black and white
bar chart, and average bar chart. Chang et al. [14] compared eight
similar encoding techniques for adjacency matrices.

3 EMPIRICAL STUDY

We designed, executed, and analyzed an empirical study to find out
evidence-based answers to the following questions:

Q1 Which SDF representations work best and for which tasks?

Q2 What is the cost of not using visual variables?

Q3 What is the cost of not using symbolic representations (digits)?

Q4 Can interactivity (a tooltip), provide the benefits of symbolic
representations without the drawbacks?

To keep the scope manageable, we selected a set of representative
techniques and tasks, described by the following sections. Further,
we describe the elements common to all sub-experiments.

Although screens with similar pixel counts are available in much
smaller sizes, we decided to test different techniques on a large
screen because we consider it the state-of-the-art of display for scalar
data due to the large physical size. Previous research has shown that
physical navigation of a large display has benefits [26, 27]. This has
implications for the generalizability of the research that we discuss
further in Section 9 (Limitations).

3.1 SDF Representations
We consider four SDF representations that we judged representative
of current practice and the state-of-the-art, and additional baseline
(digits). We refer to these as “techniques” from here on.
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https://developers.google.com/chart/interactive/docs/gallery/geochart


3.1.1 Digits

The scalar field is represented only by a grid arrangement of the
digits representing the value under their location (see Figure 1, left).
Because scalar values are represented exclusively through digits
(purely symbolic), it does not afford overview (it is difficult to
extract a general distribution of values at a glance, since every data
point has to be interpreted individually) and there are no pop-out
effects [46].

Despite of the obvious drawbacks, this representation is not un-
common because it requires no translation from raw data other than
the appropriate arrangement of its rows and columns. This technique
represents the default position of not adding any visual elements to
the scalar field.

Tables in our experiments are displayed with two digits per cell
and with thin lines separating each cell. Digits that form the same
two-digit number are closer together, although the thin lines between
cells might also somewhat facilitate grouping.

3.1.2 Static Diverging Color Scale (Color)

Adding color variation that depends on the value of the scalar field
is likely the most common way of representing scalar fields. The
mapping between values and colors is determined by the range of the
data and a choice of color scale. The merits of different scales are
discussed in Section 2.1 above. Diverging scales have been recently
found to be among the best for accuracy [7, 12, 44]. In our study, we
used the blue-red diverging color scale implemented in D32 [8] (see
Figure 1, second from left). D3 uses uniform one-dimensional b-
splines to interpolate in RGB color space to convert a discrete color
scale into a continuous one3, which ensures perceptual uniformity
of the color. The discrete color schemes being converted are from
ColorBrewer4 [21]. ColorBrewer color scales (including diverging
color schemes) have been used in previous studies [7, 12]. This
choice also has the advantage that it is not significantly impacted by
the most common non-typical vision anomalies.

3.1.3 Diverging Color Scale with Tooltip (Tooltip)

When the scalar field is represented through interactive media such
as a touch screen, a tooltip could be added to provide viewers with
a digital representation for a particular point in the field at their
request. In our implementation, the number tooltip appears directly
above and left of the tip of the pen. For comparability, the digits
have the same size as in the Digits technique.

3.1.4 Diverging Color Scale with Digits (DigitsColor)

Instead of showing digits on demand, it is possible to simply overlay
digits on top of a field represented using a color scale. This approach
makes the image look busier but the digits are still legible, and
the color is still visible behind the digits. This is commonly used
to represent confusion matrices and is easy to reproduce through
the conditional formatting feature of spreadsheet software such
as Microsoft Excel. Our implementation of this technique simply
overlaps the numbers of the Digits technique over the color of the
Color technique.

3.1.5 Fatfonts

The FatFont technique relies on a manipulation of the digits so that
they double-encode the number underneath through the graphical
parameter of amount of ink (see description in the Related Work).
Like DigitsColor, this approach is a hybrid that uses both symbolic
and graphical elements to encode the scalar field’s values, with
the difference that in Fatfonts the two aspects are integrated into

2https://d3js.org/
3https://github.com/d3/d3-scale-chromatic
4http://colorbrewer2.org

Figure 2: Numbers 90, 81, 72, etc. in the study’s FatFont variant.

the same visual object (the digit), whereas in DigitsColor the two
mappings simply overlap.

We selected a state-of-the-art FatFont variant that is slightly dif-
ferent from the original versions by Nacenta et al. [35]. Instead of
putting the second digit (second order of magnitude) inside the first
one as in the original versions of FatFonts, in this variant the second
digit, which is still 1/10th of the area, appears to the right of the first
one (see Figure 2). This might make the reading of FatFonts more
familiar because the reading of a two-digit number proceeds from
left to right (instead of from outside to inside) and is, otherwise, very
similar to the original one.

3.2 Task Selection
The visualization literature is rich in task taxonomies (e.g., [11, 22,
41]). We selected three tasks that are likely to underline a large
number of other more complex tasks; to be relevant for this kind of
data and to be informative about the differences between the different
technique alternatives described above. The tasks that we selected
are also commonly used in evaluation of color scales [7, 12].

3.2.1 Locate Value (locate)
A viewer might be interested in locating where a specific scalar
value appears. This is important when particular scalar values have
specific significance (e.g., critical values or boundaries), or when the
existence or absence of particular values is important. The task can
be formulated precisely as follows: given a particular value in the
scale (the input), locate a position in the 2D plane where the scalar
field has that specific value (the output).

This task appears as searching in Sedig and Parson’s classifica-
tion [40]. Brehmer and Munzner [11] also identify this as a common
visualization task. It also relates to the concept of reference and
characteristics in Natalia and Gennady Andrienko’s book [3]: “Lo-
cate is a search task when the identity of search target is known but
location unknown.”

3.2.2 Extrema Finding (extrema)
A viewer might be interested in finding one or two of the limits
of the range of values that a scalar field covers (i.e., the extrema).
This might be important when maximizing or minimizing outputs
or when the dynamic range of a scalar field is valuable information
itself. This task only requires as input whether the sought value is
the maximum or the minimum.

Finding extrema is one of Amar and Stasko’s low-level visualiza-
tion tasks [2] and was used as a benchmark also by Manteau et al’s
characterization of small scalar fields [30].

3.2.3 Cluster
A viewer might be interested in regions based on the properties of the
scalar values, rather than only on specific points. For example, areas
of the field where values are above or below a certain threshold.
Speed and accuracy in this type of task might be important for
applications where identifying regions of interest is relevant; for
example, topographic locations below a certain height (which might
get flooded), or areas of a scan representing a different kind of tissue.

In this task, participants have to trace a contour that delimits a
region of values above or below a certain threshold (the input). This
task serves as proxy for the perception of such areas in scalar fields.
Several taxonomies include related tasks, such as ”cluster” in Amar
et al.’s [2] and ”identify clusters” in Lee et al. [29].

https://d3js.org/
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3.3 Participants
We recruited 30 participants from the local university. Five partici-
pants were discarded due to problems in the data transfer (2 partici-
pants) and due to an error in the counterbalancing (3 participants).
The analysis therefore includes 25 participants (9 female, mean age
25). Participants were self-screened for non-typical color vision.
Participants were volunteers who did not receive compensation for
their participation and provided written consent as specified by the
local ethics committee, which approved the study in advance. Re-
sponses from a demographic questionnaire indicated that they had a
variety of backgrounds (finance, physics, art-history, administrative
staff).

3.4 Apparatus
All tasks took place in an indoor area with controlled noise and
illumination. A vertically mounted Surface Hub 84” display with
UHD (3840 x 2160 pixels) resolution was used for input and output.
The display is 46.12” x 86.7” (117.15cm x 220.29cm) in external
physical size and is mounted on a stand that keeps the lower edge of
the display 50 cm from the floor. We discuss the consequences of
choosing a large display as apparatus in Section 9 (Limitations).

Participants used the display’s pen and touch input (depending
on the tasks). The experiment’s software is custom-built in node.js
for the Google Chrome browser and uses D3.js to display the visual-
izations. Participants stood in front of the display and were free to
move or kneel in its proximity (see Fig. 3).

Figure 3: Experimental apparatus

In all experiments, the display showed scalar fields of 190 (hori-
zontal) by 108 (vertical) scalar values. Each data point was repre-
sented with a square of 20x20 pixels in size. This guaranteed the
legibility of digits while retaining a large enough data field (see
further discussion about resolution vs. accuracy in Section 8). We
generated synthetic data fields for each experiment (see Section 3.6).

3.5 Common Procedure
All participants carried out three sub-experiments, one for each of the
tasks selected (locate, extrema, cluster), in the same order. Within
each experiment they saw the five techniques always in the same
order, assigned to each participant in advance and counterbalanced
across all participants using a Latin square. The first time partici-
pants encountered a technique (during the locate task), they received
a live demonstration of the technique. For each task they received
training on how to perform the task. Participants were encouraged
to ask questions.

In all experiments there were training trials, which we do not
include in the analysis. At the end of each experiment participants
completed 7-point Likert scales on their perceived speed and accu-
racy with the techniques and ranked them in terms of preference. The
experiment took approximately two hours to complete; participants
took short breaks between tasks and techniques.

In each trial, participants first saw a blank screen with the instruc-
tions for the trial (e.g., “Locate target value: 93”), then the field

was loaded, although not yet visible, and participants tapped on a
button to start before they saw the visual representation of the SDF.
Then they carried out the trial task.5 Completion time was always
measured between the last button tap (when participants first saw
the full SDF) and the completion of their answer. Techniques that
involve color displayed a large vertical legend along the full left and
right sides of the data fields. To avoid noise due to participants for-
getting the exact task, the display also showed the instruction at the
top of the scalar data field during the trial. If the experimenter noted
confusion or an unintended error (e.g., unintended tap on the screen),
the experimenter marked the trial as invalid, which automatically
added a new identical trial at the end of that trial’s block.

3.6 Data Fields

We simulated SDFs for the study using MATLAB and R. We sought
to simulate fields that: a) are near continuous6, which is the case
for most examples of use that we have encountered (e.g., in Astron-
omy)7; b) span most of the visualization range; c) contain noise; d)
are sufficiently complex (i.e., are relatively dense in features) and; e)
are comparable to those use in previous studies (e.g., [30]). Fields
were created by adding and subtracting 2D Gaussian features from a
blank field, shifting and scaling the ranges, and adding white noise
at the end. Depending on the experiment, we also selected SDFs
that would make the task unambiguous (e.g., fields with a single
maximum in the extrema task). The generating and filtering code, as
well as the actual data fields used are provided in the supplementary
materials.

3.7 Data Analysis Approach

We take a Bayesian analysis approach with suitably naive priors
for each of the fitted parameters. We ran Markov-Chain Monte
Carlo (MCMC) simulations through the JAGS 4.2.0 sampler [37]
programmed in the R 3.6.0 programming environment [38] (the
scripts are provided in the supplementary materials). The number of
simulations was adapted for each test to yield always an Effective
Sample Size (ESS) above 10,000. These analyses allow us to calcu-
late approximations of the probability that each comparison between
techniques reflects an actual—non-random—difference, based on
the data. We do not report omnibus tests, but instead report the
calculated posterior probability p that one technique has a higher
value than the other, for all pairs. Note that this p is not exactly the
same as the more familiar one used in Null-Hypotheses Statistical
Testing; for example, when we report a p > .999 this means that,
based on the data and the model chosen, the likelihood of technique
B having a higher average than technique A is almost 100% (i.e.,
p > .999 is a very conclusive result, just as p < .001).

We chose statistical models that correspond to the measure and the
task. Those that vary are reported separately in each experimental
Section. In all experiments, time is logarithmically transformed
prior to fitting a Student-t distribution, which provides an alternative
to Gaussian models that is robust to outliers [28]. Time averages
in seconds report exponentiation (logarithm’s inverse) of the log-
transformed averages. Our models do not assume equal variances
on either participants or techniques. We do not model interaction
between the participant and technique factors (not of interest). As
recommended in the literature [28] we used Gamma distribution

5Screenshots are available in the supplementary materials.
6Strictly speaking, our data and representations are discretizations of a

continuous scale (100 levels), not truly continuous. This level of discretiza-
tion is well above the discriminability that most color scales have. For
practical reasons we refer to the data and scales in this paper as continuous,
even though they are really discretized at a reasonably high granularity.

7The techniques that we study are applicable to less continuous types of
value grids, such as confusion matrices or Perceptual Kernels [16], but in
this paper we consider only fields. See Limitations Section



Figure 4: Main measures by techniques for all three experiments: Locate, Extrema, and Cluster (organized by column). Error bars represent 95%
Highest Density intervals (HDI) of the estimation of the median, which is displayed also with numeric values at the top of each chart. The colored
violins are smoothed representations of the distribution of measured values. Higher values are worse for time measures and error SDs, but best
for correctness and F1 scores (the bottom chart in each column). Note that some vertical axes do not start at 0 (for space and clarity).

priors for variance parameters and exponential distributions for the
“degrees of freedom” parameter (ν) in the Student-t distribution.

Although this Bayesian approach to analysis is currently more
time consuming to design and implement; requires more computing
resources to run and is less familiar to readers and other researchers,
we chose it over the traditional frequentist approach for multiple
reasons: a) it is less prone to some of the serious reliability and
interpretation problems that have led to the replicability crisis in
Psychology and other areas [15, 17, 24]; b) it allows more adaptable
and easier to interpret statistical model fitting than the frequentist
alternative (e.g., ANOVA); c) it circumvents the problem of mul-
tiple comparisons, and; d) it provides additional information to
researchers who want to assess by themselves how the data supports
specific claims and use our results in meta-analysis or as priors for
their own analysis.

Despite its significant advantages, the output from a Bayesian
analysis is, to achieve some of the advantages named above, more
verbose. For this reason we ask for additional patience and effort
from the reader to read the result table summaries of figures 5 and 6,
and the unusually long caption of Figure 5, which guides the reader
on how to interpret the results.

For a small but relevant sample of the issues of p-values and
frequentist statistics, see Cumming’s [15] and Dragicevic’s [18]
work. Arguments for the use of Bayesian statistics appear in many
text books (e.g., [20, 28]).

4 EXPERIMENT 1: LOCATE

This experiment measures viewers’ ability of finding locations on
the screen with a specific value. Participants saw the value (scalar)
to search for, tapped on a button, and then provided their answer
directly on the screen through finger touch. Participants carried out
15 trials for each technique. Of these, the first 5 were considered
training.

4.1 Measures, Analysis and Models
For each trial we analyze differences in task completion time, error
magnitude (the size of the errors, calculated as the deviation of the
answer value from the correct answer value — in output units), and
whether the answer was perfectly accurate or not (correctness).

For the statistical analysis of Error, we model the standard devia-
tion of a Student-t distribution as the main parameter of interest, and
fit the participant and technique contribution independently. We do
not model interaction (see also 3.7). Because some participants made
no errors with some techniques, this presents a problem for fitting
the models per participant (a Gaussian curve cannot be reliably esti-
mated when its variance is zero). Thus we added a marginal amount
of error (1 unit) to every participant’s first trial with a technique.
This means that our error signal power is very slightly overestimated.

The correctness signal (whether a trial is perfectly correct or not)
is modelled as a Bernoulli distribution, where the main parameter θ ,
fitted per technique and participant, indicates the chance (between 0
and 1) that a given trial is perfectly correct.



Figure 5: Summary of statistical analyses for Experiment 1: locate. The last figure of the right is a legend to help interpret the conventions of the
tables. In each table, which represents a specific measurement within the experiment named at its bottom, each diagonal cell shows the estimated
median value of the measurement (top) and the standard deviation of the Bayesian estimation of the measurement that corresponds to that row
and column (i.e., a measure of the uncertainty of the estimation). For example, (A) shows that the median for the Digits technique is 28.3, with a
standard deviation (SD) of 1.1, all in the same units the measurement (typically seconds for time, proportion for correctness, and output units for
error). The background of the diagonal cells is black for the technique with the highest median, white for the lowest and with an interpolated level
of gray for the rest (e.g., the values in cell (B)–Tooltip–are a light gray, because the value is somewhere between Digits (A), which is the highest,
and Color, in white, which is the lowest). Darker means higher, which is worse for time and error, but better for correctness and accuracy. The cells
in the upper-right triangle contain the probability that the row technique (blue) measurement value is larger than the column’s (red). Blue shading
of these cells indicates that the row technique’s value is very likely to be larger than the column technique’s value (p > 0.975), such as in (D)–Digits
>Tooltop, and red shading the opposite (p(row > col)< 0.025), such as in (E). This is a proxy for the traditional “p-value” for those unfamiliar with
Bayesian statistics, although they are not equivalent. Comparisons not showing strong evidence of the superiority of either technique (i.e., zero is
in the 95% high-density interval–HDI–of the difference of plausible values) are left with a white background (e.g., (C)). Cells in the bottom-left
triangle (e.g., (F)) show density probability functions of the compared techniques (row technique in blue, column’s technique in red). Significant
overlap of the curves correspond to probability values in its symmetric cell close to 0.5, i.e., inconclusive comparisons.

4.2 Results

Figure 4, left column, displays the main measurements by technique
for this experiment. The results of the Bayesian statistical compar-
isons are summarized in the tables of Figure 5. Digits and Tooltip
are similarly slow, requiring more than twice the time as Color and
DigitsColor, which are similarly fast (around 6 seconds). FatFonts is
slower than the fast techniques using color (about 38% extra time),
but closer to them than to the worse performers.

In terms of accuracy, Color’s standard deviation is expectedly
large, and the rest of the techniques are similarly accurate (although
mostly still statistically distinguishable), with levels of noise just
approximating one unit. In terms of correctness, participants hit
the exact value very rarely with Color, only about 17% of the time
on average. Digits, DigitsColor and FatFonts show correctness
of between 83% and 85% and indistinguishable from each other;
Tooltip lags behind at 69%.

The subjective participant ratings (Figure 8) indicate that partic-
ipants are able to perceive the objective differences in speed and
accuracy, with one exception: Tooltip compares more favorably to
Digits, Digits, and FatFonts than would correspond from the objec-
tive measurements. Preference rankings show that DigitsColor is
most preferred, Digits and Color least and, in the middle, Tooltip is
preferable to FatFonts.

4.3 Experiment 1 Discussion

For this task, Digits is accurate but slow and Color is fast but inac-
curate. DigitsColor is both fast and accurate, and Fatfonts is also
accurate, but somewhat slower than DigitsColors. The Tooltip has
no redeeming qualities, since it joint slowest and not as correct (by
16% points). The clear winner for this task is therefore DigitsColors.

The results offer several applicable findings. First, the error
measure of the Color technique gives us a useful approximation of
the expected error magnitude when only color is used to represent a
scalar field. Even with the selected state-of-the-art scale, the error is
large; our direct measurement indicates that only 18% of the time

the selection is accurate with 1
100th unit precision. If we assume a

nearly-gaussian model, our fit values indicate that the average error
(the absolute difference between the value of a selected pixel and
the sought value) will be 4.7 units, close to 5% of the full output
space. However, this measurement should be taken only as an initial
approximation, since error magnitude is likely to depend on the
region of the scale and the distribution of errors might be irregular
close to the boundaries, due to floor and ceiling effects.

Second, the interactive Tooltip performs poorly in speed because
introducing interactivity increases the expected delays. In our task
and setup, Tooltip’s performance is equivalent to having no color
to guide viewers to the region where the sought value might be
(i.e., with Digits only). However, the equivalence in speed between
these two techniques is probably just an artifact of our setup, since
the additional required time comes from two different sources: in
Tooltip from interacting with a region to get the right value, and in
Digits from scanning the overall table to find areas where the value
might be.

Third, DigitsColor and Color are equivalently fast. This suggests
that the overlay of digits does not interfere with the initial search,
which is good news for the integrated use of color and digits in
visualizations. However, it will be important to validate the result
with different fields and screen sizes in future studies, since the
sub-tasks performed with both techniques have slight differences
(e.g., Color requires looking at a legend).

Fourth, FatFonts shows a slowdown compared to DigitsColor. We
have considered several possible non-exclusive explanations for this:
a) FatFonts might be unfamiliar and require extra effort to decode
compared to the regular numbers in DigitsColor; b) Amount of ink
might not be as effective at conveying the spatial distribution of the
values as color, and; c) The shapes of the digits, which sometimes
form visual artefacts, might interfere with the reading or the general
search of regions of interest.

Fifth, preference rankings seem to penalize techniques that are
clearly worse at either speed or accuracy (Digits and Color, respec-
tively), and select the objectively fast and accurate DigitsColor as
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Figure 1. Summary of statistical analyses for Experiment 1: locate.
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Figure 6: Summary of statistical analyses for Experiment 2 (extrema)

most preferred, as expected. Perhaps surprisingly, there is a slight
preference for Tooltip over FatFonts despite the clear time and cor-
rectness advantages of the latter.

5 EXPERIMENT 2: FIND EXTREMA

This experiment is designed to measure viewers’ ability to find
the global maximum or minimum within a SDF. Participants saw
an indication of whether they had to search for the maximum or
the minimum, tapped on a button, and then provided their answer
through finger touch. Participants carried out 14 trials for each
technique (half maxima and minima). Of these, the first 4 were
considered training. SDFs used in this task only had one correct
answer (a global maximum or minimum) but multiple local extrema.

5.1 Measures, Analysis and Models
We followed the same analysis as in Experiment 1, except that
minima and maxima errors were analyzed separately due to their
asymmetry. Since maxima and minima errors can only go in one
direction, we fit a half Student-t distribution (truncated at the mean)
instead of the regular two-tailed one. This is also the reason why
Figure 4, middle column charts do not show violin plots for the Error
measurements.

5.2 Results
Figure 4, middle column, shows the aggregated values of the mea-
surements for the extrema experiment. Figure 6, bottom row, sum-
marizes the statistical comparisons. In terms of speed, the Color
technique is fastest (6 seconds), followed by DigitsColor (more than
twice as slow), with Tooltip and FatFonts next (at the 20 seconds
mark) and with Digits last (28 seconds).

Accuracy measurements follow almost the same pattern, except
that Digits has a severely inflated error for maxima that is not so
for minima. DigitsColor, FatFonts and Tooltip are most accurate for
maxima, with Color somewhat behind, and then Digits, with accu-
racy many times worse. For minima, DigitsColor and FatFatfonts
are most accurate (although statistically indistinguishable from each
other), followed by Digits and Tooltip, with Color being the noisiest.

A clearer picture emerges with the correctness measure, where
DigitsColor has the greatest correctness (76%), followed by Fatfonts
almost 10 percent points behind, with Tooltip and Digits around 55%
(and indistinguishable from each other), and Color as worst, with
44% correctness.

The subjective measurements in Figure 8 indicate that, consistent
with the objective measurements, participants identified Color and
DigitsColor as fastest and DigitsColor as most accurate. Preference
rankings follow logically from there, with DigitsColor as top, Fat-
Fonts as second, Digits and Color as worst, and Tooltip squarely in
the middle.

5.3 Experiment 2 Discussion

The extrema task shows a similar pattern as in the locate experiment
but with several important differences. The best technique is again
DigitsColor, which is substantially slower than Color only, but is
correct almost twice as often. Color might be acceptable if correct-
ness and error are not an issue and speed is paramount. FatFonts is
reasonably close in accuracy and speed to DigitsColor, but worse in
both. Digits and Tooltip are both at the bottom of the list, since they
are neither fast nor accurate compared to the best.

Unlike in the locate experiment, the accuracy of DigitsColor
comes at a cost in time, as evidenced by the substantial difference
in completion time compared with Color. The extrema task takes
about the same time as the locate task when only color is available,
but much longer when digits are available. This is probably because
finding extrema with numbers requires keeping a temporary high-
est/lowest number in memory, and comparing each number to decide
whether to update it. In contrast, the locate task only needs to decide
whether each scanned value matches the sought value or not, until a
match is found. Our data provides a first approximation of this cost:
twice the time.

The results also show that digits and color (or ink) are comple-
mentary. The Digits technique is less accurate because participants
are likely to be stuck in a local extremum; without the ability to see
the overall image, jumping between areas of interest is very costly.
The Color technique is less accurate for two reasons. Although the
overall areas of extremum candidates are easy to access and jump
between, the colors in distant areas are difficult to compare because
it is hard to keep an accurate color in memory and the surround-
ing colors are likely to distort perception through the simultaneous
contrast effect [31, 47] and possibly other top-down perceptual ef-
fects [1]. Even within the same region, it is difficult to ascertain
small differences in color between contiguous locations (e.g., 1 or 2
units, which correspond to 1 and 2% of the perceptual space.)

We also see the disadvantage for Fatfonts compared to Digits-
Color in speed, but here also in accuracy/correctness. The source of
this differences might be the same as speculated in the dicussion of
Experiment 1. It is also possible that the smaller second digits in the
FatFont variant that we used are harder to read and therefore cause
some additional errors.

Except for the Digits high error for maxima, we observe that
error standard deviations are higher (double) for finding minima
than maxima. This asymmetry replicates results from a previous
study [30] and might be caused by non-linearity in perception (e.g.,
Weber’s Law [19] or Steven’s law [4]). This issue might be of
relevance for future study.

A close look at the maxima trials indicates that sometimes errors
were extremely large in the task of finding the maximum, with
discrepancies of over 60 units. Since this anomaly only appeared
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Figure 1. Summary of statistical analyses for Experiment 1: locate.
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Figure 7: Summary of statistical analyses for Experiment 3 (cluster)

for the Digits technique and technique order was randomized, it
is unlikely due to participant confusion of the minimum with the
maximum subtask. Another possiblity is that participants, searching
for high numbers, confused the first digit 9 in the number with
number 0, which are morphologically similar. We suspect that the
anomaly does not correspond to a real-world effect, but future study
should rule this out. Finally, the subjective preference measurements
do not offer any surprise for this task.

6 EXPERIMENT 3 CLUSTER

This experiment represents a task where a group of contiguous data
points need to be separated from the rest based on their values.
Participants were shown instructions of what values form a cluster
(e.g., “Inside values above or equal to 73”), then tapped on a button
to start the task, and then used the pen to draw a contour consistent
with the instruction.

6.1 Measures, Analysis and Models
In this experiment we measured the overall completion time of each
trial, but also split the trial time between decision time (time between
start of trial and first contact of the pen) and interaction time (time
spent drawing the contour). We measured error using the F1-score
according to the following formula:

F1score =
precision∗ recall

(precision+ recall)×2
, (1)

where precision is the proportion of the pixels in a participant’s
answer that are part of the correct answer, and recall is the proportion
of pixels of the correct solution that are part of the participant’s
answer. The F1 score provides an appropriate balance between
precision and recall. Due to an error in the pixel-counting algorithm
we introduced a small error of up to 7 pixels (which were counted
twice); due to this error the results are slightly more conservative
than they would have been. However, since the error applies to all
techniques and is an upper bound, the comparisons made with this
data are still valid.

Times were modelled as in previous experiments. To be able
to fit the F1 scores (which have a ceiling at 1.0) with Student-t
distributions, we transformed the F1 scores using the following
formula:

F1trans f ormed =− log10(−F1+1). (2)

6.2 Results
The three time measurements and the accuracy of this task are dis-
played in Figure 4, right column, and the statistical tests appear in
Figure 7, bottom row. For overall speed, Color is again fastest (14
seconds on average), followed by Tooltip (22 s), DigitsColor (28

s) and with Digits and FatFonts last, but very close by (and statisti-
cally indistinguishable from each other). The decomposition of task
time shows that decision times are fairly similar across techniques
although there are two statistically defined groups: DigitsColor,
Tooltip and Color are fastest (between 6.6 and 7.1 s), and FatFonts
and Digits form the slower group (above 8.3 seconds). Interaction
time tracks fairly closely the overall completion time, of which it is
the dominant component.

The F1 accuracy measures shows Digits and DigitsColor as most
accurate (F1 scores of 0.87), with Fatfonts closely following (0.85),
and Tooltip and Color about 10% points lower. The subjective rat-
ings of speed are surprisingly close to each other, with Color and
DigitsColor rated very close to each other, whereas the accuracy
ratings correspond to the objective measurements. Subjective pref-
erence penalizes Color and Tooltip and highlights DigitsColor as
best.

6.3 Experiment 3 Discussion
As in Experiment 2, techniques that took longer to complete were
also more accurate, and vice versa. Therefore there is a clear trade-
off: If speed is the most important criterion, then Color by itself
is best; If accuracy is important, then one can get an improvement
of 10 percent points in exchange for doubling the time with the
DigitsColor technique.

The Digits and Fatfonts techniques follow DigitsColor fairly
closely in accuracy and speed, but do not beat DigitsColor in either.
The reason for the small advantage in time can be explained by the
overall shorter decision time of DigitsColor. This time reflects how
long it took participants to be confident enough to start drawing
the contour, and is shorter for the three techniques that use color.
This indicates that FatFonts, despite using a visual variable to form
an image, does not seem to help much with the visual overview,
since it showed decision times close to those of the Digits technique
(between 1 and 2 seconds slower than the color-based techniques).
The exact reason for this difference is difficult to guess from our
measurements only. We can speculate that amount of ink might
simply be harder to process by the perceptual-cognitive system, or
that the perceptual and symbolic aspects of the FatFonts digits might
interfere with each other. However, further research is needed to
elucidate this, and the size of the SDF might also play a role here.

The Tooltip is, again, not a justifiable compromise. It is a few
seconds faster than DigitsColor, Digits and Fatfonts, but slower than
Color by about 7 seconds on average and with an equivalently low
performance, about 10% lower than the others. This is partially
explainable by the somewhat awkward requirement to trace a line
while a number appears next to the tip of the pen. We did not
implement pen-and-touch input for this because most displays do
not allow this double interaction style. Furthermore, having to
control two inputs simultaneously adds additional difficulty.



Figure 8: Subjective results and preference rankings for all experiments and global preference (left). Summary of quantitative and qualitative (grey
background) results (right). Readings are transformed so that 1 (in saturated blue) means best (first in rankings, most favourable Likert ranking for
Speed and Accuracy), and 5 means worse (in saturated red).

Participants preferred techniques that they saw as accurate for this
task, leaving Color and Tooltip at the bottom, perhaps also affected
by the problems of interactive control discussed above.

7 SUBJECTIVE RESULTS

The global subjective preference rankings at the end of the experi-
ment (Figure 8, left table, rightmost column) place the techniques
in three clear groups. DigitsColor is most preferred, followed by
Tooltip and Fatfonts, and with Digits and Color last.

8 GLOBAL DISCUSSION

When considering the three experiments together, the emerging
theme is of a clear trade-off. The first six columns of the right table
in Figure 8 summarize the quantitative results and the left table sum-
marizes the subjective ratings and ranks. The summary shows that
in all tasks DigitsColor was best, or equivalent to best in accuracy
and correctness, and shortest, or close to shortest in completion time
if we discount the fastest technique (Color). If accuracy is important
for the specific application, the DigitsColor representation, which
combines static digits and color, is both objectively superior to the
rest and preferred by our participants (Q1). However, accuracy
comes at a cost in the extrema finding and clustering tasks: about 8
and 13 extra seconds respectively compared to Color, which is al-
ways the fastest or equivalent to the fastest technique. This amounts
to roughly doubling the task completion time.

Double-encoding the values in the amount of ink of a digit (Fat-
Fonts) offered advantages in accuracy over using either color or
digits only for the first two tasks, but is not better than using digits
and color in combination. This supersedes the results from Manteau
et al. [30], which found FatFonts to be the best representation; we
now know that this is because they did not compare FatFonts to
a hybrid digit+color approach. Overall the FatFonts approach is
second to DigitsColor (also known as conditional formatting with a
color scale in spreadsheet jargon).

Manteau et al. [30], as all other previous literature that we are
aware of, have also hitherto neglected to compare SDF represen-
tations to a plain table (Digits). This comparison is useful since
it quantifies the time benefit of supporting overview by encoding
values through visual variables in data fields. We found that the
digits only representation is always the slowest (or equivalent to
slowest), and that the differences in times are substantial (5 times
slower than Color for extrema finding, and almost double for the
other two tasks) (Q2).

Additionally, we provide first estimations of the high perceptual
noise of using color alone. Compared with the best digit-based
technique, it multiplies by seven the magnitude of the error in the
Locate task; increases it by about 50% when finding extrema; results
in F1 scores of about 12 fewer percentual points for clustering; and
much less likely perfect answers for both the Locate (50 percentual
points lower) and Extrema tasks (33 percentual points lower). This
answers Q3 and supports long-held beliefs about the interference of

simultaneous contrast effects [47] and the difficulty of using legends
for detailed reading of univariate scalar fields. Although these are
valuable first steps, the hybrid serial and parallel nature of the tested
tasks necessarily imply that varying SDF size and, perhaps, spatial
frequency of the scalar data, will also influence completion times
and accuracy of the techniques differently. Future experiments will
model these dependencies to support better choice representation for
SDF data depending on the specific situation.

Our results do coincide with those of Manteau et al. in how poorly
the interactive tooltip performed. As they also discuss, one might
think that showing digits on demand is, a priori, an efficient way
to add precision and protect from the issues of using color only.
However, our results show that the interactive tooltip is typically
much slower than color, and less accurate and correct than other
digit-based representations (Q4). Despite this, participants preferred
Tooltip above Digits and Color, and on par with FatFonts, only after
DigitsColor in their overall ranks. We speculate that Tooltip’s inter-
activity might allow viewers to engage more directly with the data,
in a more “constructive” fashion, which has been shown to increase
sense of control and authorship in visualization creation [32].

Despite the clear results for our experiments, we should highlight
that there are still situations in which the best performing techniques
might not be desirable. Some of these are summarized in the right-
most four columns of the right table in Figure 8. For example,
techniques using color might be more affected by variable color
perception in the population, and techniques with static digits have
limits in the spatial resolution of the underlying SDF that they can
enrich8.

9 LIMITATIONS AND FUTURE WORK

Here we make the reader aware of limitations of our results con-
cerning their applicability and generalizability. First, as we detailed
in the Empirical Study and Apparatus sections, we decided to run
this study on a large display. Our main motivation was to give all
techniques the best chance; there is a growing body of evidence
that large displays are beneficial in terms of physical navigation and
memory (e.g., [6, 26, 27]). Additionally, a larger display — which
typically has larger resolution — enabled us to display larger scalar
fields. This covers a wider number of use cases for the digits-based
techniques because they depend on displays with high pixel counts.

In exchange, our experiment became less representative of the
more common analysis situation where analysts sit in front of their
laptop or monitor to look at scalar field representations. Nevertheless,
we found no obvious reasons to believe that the results would vary
much across different display sizes of similar retinal resolutions.

A second related, but distinct, issue is the maximum
size/resolution of SDF representations. Digit-based representations
require multiple pixels to represent a single scalar value, whereas
a color scale can represent a scalar value with a single one. This

8Nacenta et al. [35] and Manteau et al. [30] provide extended discussions
of issues with spatial resolution.



is clearly a limitation for digit-based techniques (also extensively
discussed in [30,35]). However, maximizing spatial resolution might
not be the only priority, and the perception of color through the small
area of single pixel, especially in a modern high-resolution display,
is likely to result in further perceptual issues (e.g., [13]). We suspect
that in many SDF use cases spatial resolution is not the dominant
factor in their usefulness; yet, this question can only be answered
through a systematic investigation of the purpose and usage of SDFs
in real scenarios, of which existence we are not aware and which
falls outside the scope of this work.

Third, our experiment only tested SDFs which, although very
common, exclude similar data types such as confusion and adjacency
matrices [14, 45], perceptual kernels [16] and other similar data
arrangements. In those, the categorical nature of the data means
that values in spatially close cells can vary much more abruptly,
resulting in higher spatial frequencies overall that are different from
the typically softer variations from spatial data. Although there is
already some evidence that digit-based representations are useful for
this kind of data as well (e.g., [14]), Future study should verify that
the differences that we observed also apply to these other types of
data.

Fourth, although we chose techniques that we believe are the best
representatives available, the design space of techniques is vast. For
example, there might be color scales that can be optimized for some
of the tasks that we tested, or alternative tooltip designs that offer a
better overview-detail balance. The design space of FatFonts is also
large, and we chose a variant different from that in Manteau et al.’s
study [30]. Although this could potentially introduce a confound and
reduce the comparability of both studies, we have no strong reason
to suspect such problem. We actually think that the version that we
used is more familiar and likely to have an advantage (perhaps only
marginal) over the one used by Manteau et al [30].

10 CONCLUSION

Two-dimensional data fields are common and are often represented
through heatmaps. Although there exists a large body of research
on color mappings and how they support different tasks when rep-
resenting univariate scalar data fields, these comparisons usually
ignore the possibility of using digits to represent the values. In this
paper we describe a series of three studies that tested five different
representations of scalar data fields in three corresponding tasks:
locate values, finding extrema, and clustering regions. We found
that using a state-of-the-art color mapping without digits resulted
in the fastest performance, but also the largest errors. Overlapping
digits (the DigitsColor technique) offers more precise results, but
increased completion time in two of the three tasks that we tested.
Other representations with digits, such as FatFonts, or adding an
interactive tooltip that shows the digits “on demand” were either
slower or less accurate than the DigitsColor technique. Comparisons
with the color-only and the digits-only representations provide a first
quantification of the contribution of color and digits to performance
when reading scalar data fields. Overall, the results indicate that
digit-based representations combined with color can substantially
increase accuracy at a relatively small cost in time, and should there-
fore be seriously considered by designers of visualizations of SDF
data where spatial resolution is not the dominant concern.
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