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Abstract

While open Large Language Models (LLMs) have made significant progress, they
still fall short of matching the performance of their closed, proprietary counterparts,
making the latter attractive even for the use on highly private data. Recently,
various new methods have been proposed to adapt closed LLMs to private data
without leaking private information to third parties and/or the LLM provider. In
this work, we analyze the privacy protection and performance of the four most
recent methods for private adaptation of closed LLMs. By examining their threat
models and thoroughly comparing their performance under different privacy levels
according to differential privacy (DP), various LLM architectures, and multiple
datasets for classification and generation tasks, we find that: (1) all the methods
leak query data, i.e., the (potentially sensitive) user data that is queried at inference
time, to the LLM provider, (2) three out of four methods also leak large fractions of
private training data to the LLM provider while the method that protects private data
requires a local open LLM, (3) all the methods exhibit lower performance compared
to three private gradient-based adaptation methods for local open LLMs, and (4) the
private adaptation methods for closed LLMs incur higher monetary training and
query costs than running the alternative methods on local open LLMs. This yields
the conclusion that, to achieve truly privacy-preserving LLM adaptations that yield
high performance and more privacy at lower costs, taking into account current
methods and models, one should use open LLMs.

1 Introduction

Recently, there has been the trend of releasing open Large Language Models (LLMs), such as
LLama [21, 60], Vicuna [11], or Mistral [27] as an alternative to their proprietary closed counterparts,
such as GPT from OpenAI [2], Claude from Anthropic [4], or Gemini from Google [57]. Despite the
significant progress in improving open LLMs, they are still outperformed in multiple tasks by closed
LLMs [12], making the latter attractive even for learning tasks from highly private data.

Since it was shown that private data can leak from the adaptations of LLMs [16, 17], in the last
few months alone, an array of new methods for privacy-preserving adaptation of closed LLMs has
been proposed by the machine learning community at multiple conferences (NeurIPS’23 [16] and
ICLR’24 [25, 56, 63]). Given the lack of access to the closed LLMs parameters—which renders
parameter-tuning based adaptations infeasible—they all rely on the generation of privacy-preserving
discrete prompts. We detail their operational setup in Figure 1 (left).

In this work, we ask the simple yet impactful question of whether these efforts actually lead into the
right direction towards the goal of achieving truly privacy-preserving LLM adaptations. Therefore,
we thoroughly analyze the proposed methods both conceptually and empirically and compare them to
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DP-ICL [63] ✕ ✕ ✓ Not Needed
PromptPATE [16] ✕ ✕ ✓ Not Needed
DP-FewShotGen(1) [56] ✕ ✕ ✓ Not Needed
DP-FewShotGen(2) [56] ✓ ✕ ✓ Needed
DP-OPT [25] (✓) ✕ ✓ Needed
Private Local Adaptation ✓ ✓ ✓ Needed

Figure 1: Setup for Privacy Protection with Open vs Closed LLMs. The three parties involved
are (1) an LLM provider who hosts the proprietary LLM, (2) a data curator, such as a company that
curated private data, for example, of their customers’ previous transactions, and (3) a querying party,
i.e., a customer of the company who wants to perform a new private transaction. There are three steps
where privacy leaks: A During the creation of the discrete prompt, the data curator’s private data
leaks to the LLM provider. B The private query of the querying party leaks to the LLM provider. C
Private information from the data curator leaks to the querying party through the returned answers of
the prompted LLM [17]. Prior methods for closed LLMs [16, 56, 63] only provide protection against
C . None of them protects against B . To prevent leakage through A , they require access to a
(powerful) local open LLM. As an alternative (dashed purple lines), the data curator could privately
adapt the open LLM locally and let the querying party interact with this LLM, protecting against A ,
B , C .

alternatives that rely on privately adapting open local LLMs. In particular, we study each approach’s
threat space, assumptions, and methodological limitations and perform extensive experiments using
ten state-of-the-art open and closed LLMs of various sizes, including Vicuna, Llama 3, Open LLaMa,
BERT, RoBERTa, the Pythia suite of models, Claude, two versions of GPT3 (Babbage and Davinci),
and GPT4 Turbo —applied to multiple datasets both for classification and generation tasks. Our
analyses cover the axes of privacy protection, performance in terms of privacy-utility trade-offs, and
monetary costs for training and queries.

Our results provide the following insights: (1) All current methods for adapting closed LLMs leak
private query data (intended for the data owner) at inference time to the LLM provider. (2) Three out
of the four methods studied also leak large fractions of the private training data to the LLM provider.
The approaches that do not, require an additional locally deployed open LLM for prompt engineering.
(3) All methods for closed LLMs yield lower final downstream performance than privacy-preserving
local adaptations on open LLMs—even when the local methods rely on significantly smaller LLMs
than their closed counterparts. (4) The training and query costs of the private adaptations of closed
LLMs (API access costs imposed by the LLM provider) are significantly higher than the costs
for private open LLM adaptations (estimated as the costs of training and querying on cloud-based
hardware). We provide a condensed summary of our results in Figure 1 (right Table above), and
Table 1.

Overall, our results indicate that, from the perspective of effective privacy-preservation, current
adaptations of open LLMs are strictly preferable over their closed LLM alternatives, since they are
more private, more performant, and less expensive. Going beyond the concrete existing methods
studied [16, 25, 56, 63], we then analyze the reasons behind the underwhelming results of privacy-
preserving closed LLM adaptations and discuss potential directions for improvements.

On the way, to further strengthen private adaptations for open LLMs, we demonstrate how to locally
apply privacy-preserving prompt-based methods to train generation tasks with high-performance—
claimed impossible by prior work [35]. In particular, we show for the first time that private prompt
tuning for text generation tasks PromptDPSGDGen can achieve comparable performance to pri-
vate (full) fine-tuning and private low-rank adaptations (LoRA). Additionally, we demonstrate that
ensemble-based few-shot prompts PromptPATEGen can privately generate high-quality text at a
low privacy cost.

In summary, we make the following contributions:
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Table 1: Comparison of privacy protection, performance, and cost between private adaptations
for closed vs open LLMs. We select the top-performing adaptations. For closed LLMs, we use
DP-ICL [63] and leverage PrivateLoRA [64] on open LLMs for both tasks. We consider sentiment
classification on SST2 and the dialog summarization on SAMSum. The training data is denoted by
DT and the test queries by Q. Reveals represents which data are exposed to the LLM provider. The
methods were trained with DP guarantees: ε = 8 and δ = 1/N , where N is the number of examples
in DT . We report the Performance (higher is better) on test data (where Acc denotes the classification
accuracy). The cost (in $) is computed separately for training (Train) and for answering 10k test
queries (Query). Note, the (estimated) number of parameters for closed LLMs is 1.76T for GPT4
Turbo and 175B for GPT3 Davinci, while Llama3 has only 8B and BART-Large is significantly
smaller with 355M parameters. The adaptation of the open LLMs is more expensive on SST2 than
on SAMSum due to the larger training data size for SST2 and a larger model. DP-ICL’s query cost is
high due to the usage of an ensemble of 100 prompts to answer each query. In summary, open local
LLM adaptations are more private, more performant, and less expensive.

Adaptation LLM Type Model Task Reveals Performance↑ Train($) Query($)

DP-ICL [63] Closed GPT4 Turbo SST2 DT +Q Acc=95.9±0.1% 0 138.00
PrivateLoRA [64] Open Llama3-8B(instruct) SST2 None Acc=96.0±0.1% 27.60 0.78

DP-ICL [63] Closed GPT3 Davinci SAMSum DT +Q RougeL=31.8±0.3 0 665.91
PrivateLoRA [64] Open BART-Large SAMSum None RougeL=39.1±0.2 3.63 0.80

1. We perform a thorough conceptual and experimental study on existing privacy-preserving closed
and open LLM adaptations, analyzing their threat space, assumptions, and achieved results.

2. Our extensive experiments on various open and closed LLMs and on multiple classification and
generation tasks show that the local (gradient-based) adaptations outperform their current closed
(discrete prompt-based) counterparts in terms of privacy, performance, and cost efficiency.

3. We propose differentially private prompts for text generation tasks that, for the first time, reach
performance comparable to private LoRA or private fine-tuning.

2 Background and Related Work

Differential Privacy. Differential Privacy (DP) [19] is a mathematical framework that provides
privacy guarantees by implementing the intuition that an algorithm A : I → R, executed on
two neighboring datasets D, D′ that differ in only one data point (we adopted the definition of
neighboring based on addition/removal. [35, 45]), will yield approximately the same output, i.e.,
Pr[A(D) ∈ R] ≤ eϵ · Pr[A(D′) ∈ R] + δ. While ε specifies by how much the output can differ,
δ specifies the probability of failure. There are two prevalent DP algorithms for training machine
learning models. The first one is the differential private stochastic gradient descent algorithm
(DPSGD) [3] where the impact of each private training data point is limited during training through
gradient clipping, and privacy guarantees are integrated through the addition of calibrated amounts of
stochastic noise. The second algorithm is the private aggregation of teacher ensembles (PATE) [50]
where first, an ensemble of teacher models is trained on disjoint subsets of the private data, and then
a noisy knowledge distillation is performed to a student model using public data. Another general
mechanism for implementing DP is the exponential mechanism (EM) [44]. The EM selects an output
r from a set of possible outputs based on a scoring function q(D, r) that measures the quality of r
for dataset D. Let ∆q be the sensitivity of the scoring function. The EM chooses r with probability
proportional to exp

(
ϵq(D,r)
2∆q

)
.

LLM Adaptations. LLMs are pre-trained on large amounts of public data and then adapted to
downstream tasks using private data. We divide existing methods for private LLM adaptations into
private tuning methods that rely on access to the LLM gradients, and private in-context learning
(ICL) which requires only API (black-box) access to the LLM. While private tuning is only applicable
to open LLMs, private ICL can, in principle, be applied to both open and closed LLMs. We note
that all private LLM adaptations rely in their core on the three DP algorithms introduced above and
summarize existing methods, their setup, and their assumptions in Table 2.

Private Tuning for Open LLMs. There exist three main ways for private tuning. 1) Prompt-based
adaptations adds a small number of parameters (usually <1% of the total number of parameters)
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Table 2: Comparison of properties between private LLM adaptations. The in-context learning
(ICL) optimizes instructions and shots (demonstrations). Many privacy techniques include the ones
designed for multi-label PATE (denoted as MLPATE) [67], exponential mechanism (EM) [44], joint
exponential mechanism (JEM) [22], Gaussian Mechanism (GM), Report-Noisy-Max Mechanism
(RNM), Propose-Test-Release (PTR) [20], sample-and-aggregate (SAA) [48], Limited Domain
Algorithm (LDA) [18].

Adaptation
Property Privacy Optimization Privatize Inference RequireAlgorithms Strategy Type

PromptDPSGD [16] DPSGD Gradient-based Soft Prompt/Prefix Multi-task Open LLM
PrivateLoRA [64] DPSGD Gradient-based Added parameters Single-task Open LLM
DP-FineTune [35] DPSGD Gradient-based all LLM parameters Single-task Open LLM

DP-ICL [63] RNM,GM,JEM,PTR,MLPATE ICL Answers Limited Queries None
PromptPATE [16] PATE ICL Shots Multi-task Public Data

DP-FewShotGen [56] GM,RNM,EM ICL Shots Multi-task Public Labels,Open LLM
DP-OPT [25] SAA,LDA ICL Instructions+Shots Multi-task Validation Data,Open LLM

only in the model input space, either on the level of token embeddings (soft prompts [39, 40]), or
also to every LLM layer (prefix-tuning [30, 33]). Duan et al. [16] presented PromptDPSGD, which
adapts the DPSGD algorithm to soft prompts. The main advantage of prompt-based adaptations is
that they enable multi-task batch processing, i.e., many soft prompts for different users and tasks
can be processed in the same mini-batch during LLM training or inference. 2) Parameter efficient
fine-tuning-based adaptations such as LoRA [26] add a relatively small number of parameters
(<10% of total number of parameters) within the model, usually in each block of a transformer
architecture [61]. These added parameters are then tuned while the pre-trained original parameters
remain frozen. PrivateLoRA [64] extends LoRA with DP guarantees by building on the DPSGD
algorithm. 3) Full fine-tuning-based adaptations either fine-tune the whole model or only a few
last layers. The DP-FineTune [35], again based on the DPSGD algorithm, shows that full fine-
tuning with DP optimization can provide strong privacy guarantees and good performance. The
general trend, when choosing an adequate method, suggests that the more difficult the task, the
higher the number of adaptation parameters required [16]. Thus, for simple downstream tasks,
PromptDPSGD [16] is sufficient, while DP-LoRA [64] is recommended for medium-difficulty tasks,
and the full fine-tuning [35] for complex tasks.

Private ICL for Closed LLMs. Recently, many new methods were proposed for private in-context
learning with closed LLMs. All of them leverage discrete (hard) prompts and rely on a voting
mechanism for privacy protection, similar to PATE [49, 50] and CaPC [13]. We divide the existing
methods into the following four categories: (1) Private Question Answering: The work on DP-
ICL [63] proposed to answer queries based on the private dataset. Following the PATE setup, the
private data is divided into non-overlapping partitions and then each partition is prepended with an
instruction to form a private teacher prompt. The prompts form an ensemble of private teachers
(prompted LLMs). Since DP-ICL does not implement the idea of a student model from PATE, all
the teachers (usually 100) are required to answer each query, rendering the method expensive when
executed on a closed LLM. Moreover, each query incurs additional privacy cost, such that the method
can answer only a limited number of queries for a given privacy budget. (2) Private Student Prompt:
PromptPATE [16] tackles the problem of the high costs and the limited number of answered queries
in DP-ICL by creating a student prompt. PromptPATE uses an ensemble of teacher prompts (usually
around 200) to label public data. Then it selects the most performant shots for the student prompt from
these newly labeled examples. (3) Private Prompt Generation: DP-FewShotGen [56] is similar to
PromptPATE but eschews the assumption about the public data for labeling and, in turn, starting from
a public label, generates each output token privately to obtain a private shot. (4) Private Prompt
Engineering: Finally, DP-OPT [25] privatizes prompt engineering based on the Deep Language
Network (DLN) method [54]. While DP-ICL, PromptPATE, and DP-FewShotGen assume a generic
instruction and emphasize the protection of the direct leakage from the shots only, DP-OPT [25]
proposed to privately generate shots and instructions since either can leak information about the
private training set. To overcome the problem that PATE-based approaches face with large output
spaces (here equal to the vocabulary size of around 50k), DP-ICL [63] and DP-OPT [25] incorporate
the EM and its improved versions [18, 22, 67] to privately release a token with the maximum count
based on the voting from teacher prompts.
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3 Prompt-based Private Adaptations for Text Generation

While PromptDPSGD and PromptPATE [16] were designed for classification tasks only, we further
extend them to text generation tasks. Having prompt-based generation holds the advantage that, in
contrast to fine-tuning based approaches, they support mixed-task inference [30, 33, 37], i.e., they
require one frozen model for multiple tasks rather than a separate model copy for each of them. This
reduces storage and offers greater flexibility and efficiency.

PromptDPSGDGen. We observe that an adequate choice of hyperparameters is sufficient for
adjusting PromptDPSGD [16] to generation tasks. This is in line with prior work highlighting that
the challenge of prompt tuning is that it requires experimenting with various hyperparameter choices
to achieve good performance [37]. In particular, we observe that increasing the number of parameters
in the soft prompt from 0.1% of the total LLM parameters, as done for classification [16], to 10%
of total model parameters, by enabling prefix projection, yields a significant increase in generation
performance. Additionally, we observe the need for an increased learning rate, compared to other
tuning methods, to generate more precise outputs. Otherwise, the hyperparameters are dependent on
the data the model is trained on.

PromptPATEGen. Adjusting PromptPATE [16] to generation tasks (where more than one output
token is generated) is challenging due to 1) the large output space (equivalent to the number of
tokens in the vocabulary) and 2) the privacy costs incurred by generating multiple tokens through
the teacher ensemble. To overcome this challenge and support generation tasks with an unlimited
number of queries, we extended PromptPATE by combining the training of the student prompt
from [16] with the privacy techniques used in [63] and call the result PromptPATEGen. In particular,
PromptPATEGen uses the private generation in DP-ICL to obtain longer output sequences for some
public data inputs. The outputs sequences can then be treated as a "label" for the public data and can
be deployed as a form of student prompt, just like in PromptPATE [16].

4 Comparing Open and Closed LLM Adaptations

We perform a thorough conceptual and empirical study to compare the adaptation of both open LLMs
with private tuning (PromptDPSGD [16], PrivateLoRA [64], and DP-FineTune [35]) and closed
LLMs with private ICL (DP-ICL [63], PromptPATE [16], DP-FewShotGen [56], and DP-OPT [25]).
Our comparison spans the axes of privacy protection, performance, and cost.

4.1 Comparing Privacy Protection

All the considered methods offer privacy guarantees according to DP. Thereby, they ensure that the
final prompted LLM’s predictions will not leak more than the specified tolerated privacy budget ε to
any party who queries the LLM or gets access to the final private prompt. Yet, the threat model of
multiple private ICL methods for closed LLMs does not include providing privacy against the LLM
provider. Those methods that do might still occasionally experience leakage. We analyze the result of
this lack of consideration for the goal of truly privacy-preserving LLM adaptations. In our analysis,
we distinguish between the leakage of private training data and the leakage of test data queried at
inference time, which might also be sensitive.

Private Training Data. PromptPATE [16], DP-ICL [63], and DP-FewShotGen [56] (without using
an open LLM) disclose (large parts of) their private training set to the LLM provider in the form
of shots in their teacher prompts and their engineering. This leakage is inherent in their design. To
avoid such leakage, DP-OPT [25] tunes the prompt locally with DP guarantees and then exposes it to
the LLM provider. Thereby, the data that the prompt was generated from is protected towards the
LLM provider with the DP guarantees that also protect against leakage to a querying party. While the
experimental evaluation in [25] suggests that at higher ε, the locally generated DP prompts might
still contain generated data close to the private training data, this is a step towards the right direction.
However, to generate the private prompt, DP-OPT [25] requires a powerful open LLM deployed
locally. Looking at Figure 1, it becomes obvious that any private tuning method executed on that
open LLM would, conceptually, improve privacy protection since the LLM provider would neither be
involved in the adaptation nor in the use of the adapted LLM, yielding absolute privacy against them.
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Private Query Data. DP does not aim at protecting query data. Hence, none of the studied private
ICL methods attempt to protect that data against the LLM provider. While the protection of query
data is often considered as an orthogonal research direction, we note that all the private tuning-based
adaptations of the open local LLMs do naturally prevent leakage of the query data to the LLM
provider. This is because the querying party directly interacts with the data owner (see Figure 1)—
making the use of open models inherently more suited for truly privacy-preserving application than
relying on closed models.

4.2 Comparing Performance

We look at privacy-utility trade-offs to compare the performance of private tuning on open LLMs
vs. private ICL on their closed counterparts. We depart from analyzing the trade-offs and required
assumptions conceptually and then present our thorough experimental evaluation.

Private Tuning Outperforms Private ICL Conceptually. Previous work [37] has shown for the
non-private settings that gradient based tuning methods (used for open LLMs) offer better accuracy
and significanly lower computational costs than ICL (used for closed LLMs) since the adaptations can
leverage the internal behavior of the LLM. This benefit holds also in the privacy regime. Moreover,
the tuning based methods do not make additional assumptions, such as the availability of public
data (required by PATE-based methods, such as PromptPATE [16]), making them inherently more
practical.

Private Tuning outperforms Private ICL Experimentally. To assess the performance of private
tuning vs. private ICL, we perform extensive experimental evaluation. We use various LLM
architectures and multiple datasets for classification and text generation tasks.

4.2.1 Experimental Setup

Text Classification. We follow the setup from [25] and use four datasets for the evaluation: SST2
from the GLUE benchmark [62], Trec [34], Mpqa [42] and Disaster [5]. SST2 and Mpqa are
two-class sentiment analysis datasets. SST2 includes 67.3k training samples and 872 test samples,
while Mpqa contains 8.6k training samples and 2k test samples. Trec is a six-class question-type
classification dataset with 5.4k training samples and 500 test samples. Finally, the Disaster dataset
involves determining whether a sentence is relevant to a disaster scenario or not and includes 4.4k
training and 1000 test samples.

Text Generation. We use three different datasets: SAMSum, a dialog summarization [23] (14732
train, 818 val, and 819 test samples), PFL-DocVQA, question answering [59] (85k train and 10k test
samples), and MIT Movies trivia10k13, movie extraction on directors (MIT-D with 1561 train and
415 test samples) and genre (MIT-G with 2953 train and 780 test samples) [38].

Closed Models. We follow the setup and choice of models originally proposed in the respective
previous papers to evaluate the four private ICL methods for closed LLMs [16, 25, 56, 63]. The
GPT3-Babbage and GPT3-Davinci models cited in [56, 63] were discontinued in early 20242 and
replaced by their second versions (babbage-002 and davinci-002). Therefore, we use the newer
versions here. The (estimated) number of parameters for the closed models is: 1.3B for GPT3
Babbage, 175B for GPT3 Davinci, 1.76T for GPT4 Turbo, and 200B for Claude 2.1.

Open Models. We consider various open LLMs with differing pre-training sets and numbers of
parameters to simulate the choices a data owner can make for their local LLM. We select the following
models: Pythia [6], OpenLLaMA [21], Vicuna [11], Mixtral [28], Bart [31], and RoBERTA [41],
whose sizes vary from 160M to 45B parameters.

4.2.2 Performance of Private Adaptations for Classification

We show that the private adaptations on local open LLMs outperform the private methods for closed
LLMs for classification tasks. In Table 3, we analyze the performance differences. We follow the
evaluation in [25] (Table 2) and average the accuracy across the tasks (denoted as Average). Our
analysis follows the standard practice and sets the privacy budget as ε = 8 and δ = 1/|D| where
|D| is the training size [16, 25]. Among the methods for closed LLMs, DP-OPT was tested on

2https://platform.openai.com/docs/deprecations
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Table 3: Private local adaptations on open LLMs outperform their closed alternatives for
classification tasks. The default privacy budget is set to ε = 8, except for PromptPATE [16], where
the performance plateaus after ε = 0.3. The best result for a given task is bolded, and the 2nd best is
underlined. T($) is training cost while Q($) is query cost for 10k queries (SST2), All($) is total cost.

Method LLM Type Model SST2 Trec Mpqa Disaster Average T($) Q($) All($)

0-shot (ε = 0) [25] Closed GPT3 Davinci 92.4±0.0 51.8±0.2 84.5±0.1 76.4±0.2 76.3 0 6.00 6.00
DP-OPT (original) [25] Closed GPT3 Davinci 92.2±0.8 68.7±6.5 85.8±0.7 78.9±0.3 81.4 2.10 6.00 8.10
ICL (ε = ∞) [25] Closed GPT3 Davinci 94.7±0.4 79.1±0.5 88.8±0.1 69.0±5.9 82.9 0 6.00 6.00
PromptPATE [16](ε = ∞) Closed GPT3 Babbage 93.8 58.7 83.0 64.3 75.0 8.66 1.72 10.38
PromptPATE [16](ε < 0.3) Closed GPT3 Babbage 88.8±2.3 52.8±1.5 79.0±0.5 58.0±0.5 69.6 9.72 1.72 11.44
PromptPATE [16](ε < 0.3) Closed Claude 2.1 95.7±1.4 79.3±1.2 92.1±0.6 71.0±0.8 84.5 48.24 5.36 53.6
DP-FewShotGen(1) [56] Closed GPT3 Babbage 72.8±7.7 51.3±5.8 73.4±8.5 59.2±2.5 64.2 0.86 1.10 1.96
DP-ICL [63] Closed GPT3 Babbage 92.8±0.9 26.3±5.6 80.6±0.9 50.6±1.1 62.6 0 17.2 17.2
DP-ICL [63] Closed GPT4 Turbo 95.9±0.1 16.2±1.7 90.4±0.1 70.3±0.4 68.2 0 138.00 138.00

PromptDPSGD [16] Open RoBERTA Large 92.3±0.5 54.5±2.5 50.0±0.0 77.8±0.6 68.6 7.59 0.40 7.99
DP-FineTune [35] Open RoBERTA Large 93.5±0.3 93.7±0.8 88.2±0.4 82.2±0.3 89.4 5.75 0.40 6.15
PrivateLoRA [64] Open RoBERTA Large 93.6±0.3 93.9±0.6 87.7±0.8 81.8±0.2 89.3 3.45 0.40 3.85

PrivateLoRA [64] Open Vicuna 7B 94.8±0.5 97.3±0.1 87.8±0.5 81.3±0.5 90.3 13.80 0.78 14.58
DP-OPT (local) [25] Open Vicuna 7B 89.5±2.6 65.3±4.3 80.7±3.3 65.6±0.3 75.3 2.10 0.78 2.88

PrivateLoRA [64] Open Pythia 6.9B 92.2±0.5 96.3±0.8 87.2±0.3 82.1±0.2 89.4 13.80 0.78 14.58
PrivateLoRA [64] Open Pythia 160M 80.4±0.7 82.5±3.2 77.9±0.3 73.6±0.2 78.6 1.60 0.50 2.1

PrivateLoRA [64] Open Llama3-8B(Instruct) 96.0±0.1 96.8±0.2 87.3±0.2 80.8±0.1 90.2 27.60 0.78 28.38

the strongest Davinci model (with 175B parameters) from the GPT3 family. Across all the tasks,
DP-OPT is outperformed by both DP-FineTune and PrivateLoRA by a large margin (even >26%
absolute on Trec), even though DP-FineTune and PrivateLoRA were trained on RoBERTa Large
with only 355M parameters (500X fewer than for GPT3 Davinci). Furthermore, we show that
PrivateLoRA outperforms DP-OPT even when using Pythia-6.9B, which guarantees that the open
LLM for PrivateLoRA was not pre-trained on any of the downstream datasets. For a fair comparison,
we also train PrivateLoRA on Vicuna 7B, which was used in DP-OPT as the local model to find the
transferable prompts and show that PrivateLoRA is also significantly better than DP-OPT applied
either directly to Vicuna 7B or when run on GPT3 Davinci. This suggests that the data owners, rather
than using their local LLM to tune prompts for DP-OPT, should privately tune it with PrivateLoRA
(in this case on RoBERTA Large) since it yields stronger performance and privacy at a lower cost.

For PromptPATE, the performance plateaus after around ε = 0.3, since it creates a public prompt
using only a few shots, and the selection of the demonstrations from a large pool of publicly labeled
examples has a negligible gain on the final performance. In the limit, we also show that PromptPATE
even with an infinite privacy budget (ε = ∞) for GPT3 Babbage (with 1.3B parameters) performs
worse than PrivateLoRA or DP-FineTune on RoBERTA Large (3.6X fewer parameters). In the same
setup of models, PrivateLoRA and DP-FineTune on RoBERTA Large also outperform DP-ICL tested
on GPT3 Babbage on all tasks. Additionally, PrivateLoRA adapted on Pythia-160M (with even fewer
parameters) performs much better than DP-FewShotGen on GPT3-Babbage (8X more parameters).

We also run DP-ICL with GPT4 Turbo. The resulting accuracies are high for sentiment classification
with SST-2 and Mpqa. However, it has the lowest accuracy on Trec (with 6 classes), caused by a
small number of output probability tokens released for a query (only 20 vs 100 for GPT3, which
might not contain the correct class label token) while being the most expensive option. Similar trends
are observed for PromptPATE on Claude, however, it has more consistent performance and emerges
as the most performant closed model on the tested tasks (while being the 2nd most expensive one). In
contrast, Private LoRA with Vicuna 7B performs the best on Trec and on average. It is the best of all
tested adaptations while incurring around 3.7 and 9.5 times lower costs than Claude and GPT4 Turbo,
respectively. In general, the open models have the highest average performance at a much lower cost.

We further analyze the privacy-utility trade-off for classification tasks across different privacy budgets
(ε ∈ [0, 8]) in Figure 2. We show that even under tight privacy constraints (ε < 1.0), the privacy-
preserving adaptation for open LLMs performs significantly better than the one for closed LLMs.
Specifically, we analyze the differences between PrivateLoRA for open LLMs vs PromptPATE for
closed LLMs. The performance for PromptPATE plateaus after around ε = 0.3 and only for one
out of four datasets, namely for MPQA, we observe that the crossover point between PromptPATE
and PrivateLoRA (PromptPATE performs better than PrivateLoRA until ε = 0.6). For the smallest
ε = 0.1 values that we analyzed, the performance of PrivateLoRA is better by 0.6% on SST2, by
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Figure 2: Privacy-utility trade-off for classifications tasks. We use PrivateLoRA to adapt Vicuna-7b
to the downstream tasks, PromptPATE, DP-ICL, and DP-FewShotGen with GPT3 Babbage. We
analyze the privacy costs ε in the range [0, 8] (see corresponding Figure 3 for text generation tasks).

Table 4: Evaluation on Dialog Summarization with SAMSum for ε = 8. T($) is training cost
while Q($) is query cost for 10k queries, All($) is total cost.

Method LLM Type Model Rouge-1 Rouge-2 Rouge-L T($) Q($) All($)

DP-ICL [63] Closed GPT3 Davinci 41.2±0.6 16.3±0.4 31.8±0.3 0 665.91 665.91
DP-ICL [63] Closed GPT3.5 Turbo 42.6±0.2 18.9±0.3 33.8±0.5 0 449.16 449.16
DP-ICL [63] Closed GPT4 Turbo 41.8±0.2 17.3±0.3 33.4±0.2 0 3419.42 3419.42
PromptPATEGen Open Vicuna 7B 41.3±0.3 18.0±0.4 32.8±0.2 3.29 2.74 6.03
PromptPATEGen Open OpenLLaMA 13B 43.4±0.3 19.7±0.5 34.2±0.4 18.63 0.80 19.43
PromptDPSGDGen Open BART-Large 46.1±0.4 21.3±0.1 37.4±0.0 1.73 0.40 2.13
PrivateLoRA [64] Open BART-Large 48.8±0.6 23.5±0.5 39.1±0.2 2.90 0.69 3.59
PrivateLoRA [64] Open Pythia 410M 40.4±0.1 16.6±0.3 33.0±0.4 3.45 1.34 4.79
PromptDPSGDGen Open Pythia 1B 41.2±0.2 17.8±0.1 33.7±0.1 4.83 0.95 5.78
DP-FineTune [35] Open Pythia 1B 42.5±0.7 18.4±0.3 33.9±0.3 9.84 1.08 10.92
PrivateLoRA [64] Open Pythia 1B 42.3±0.6 18.4±0.7 34.7±0.5 4.24 1.00 5.24
PrivateLoRA [64] Open Pythia 6.9B 45.6±0.3 21.4±0.3 37.4±0.5 10.18 6.57 16.75
PrivateLoRA [64] Open Vicuna 7B 48.6±3.5 24.8±2.6 40.2±3.4 11.28 6.19 17.47
PrivateLoRA [64] Open OpenLLaMA 13B 48.5±1.1 24.2±0.8 40.1±0.9 19.46 8.05 27.51
PrivateLoRA [64] Open Mixtral 8x7B 52.8±0.4 29.6±0.2 44.7±0.2 57.96 9.99 67.95

Table 5: Evaluation on Question Answering with PFL-DocVQA for ε = 8.
Method LLM Type Model Rouge-1 BLEU Levenshtein T($) Q($) All($)

DP-ICL [63] Open OpenLLaMA 13B 60.7±0.6 23.9±0.5 52.5±1.1 0 641.32 641.32
PromptPATEGen Open Vicuna 7B 31.7±1.5 26.6±0.7 35.7±0.4 2.28 0.57 2.85
PromptDPSGDGen Open Pythia 1B 57.3±0.9 40.1±1.1 66.8±0.7 37.26 0.96 38.22
DP-FineTune [35] Open Pythia 1B 70.2±0.2 55.7±0.3 78.3±0.3 137.06 1.32 138.38
PrivateLoRA [64] Open Pythia 1B 64.2±0.7 43.2±0.8 73.4±1.3 44.16 1.28 45.44
PrivateLoRA [64] Open Pythia 6.9B 64.4±0.1 47.9±0.2 73.3±0.2 293.25 5.80 299.05
PrivateLoRA [64] Open OpenLLaMA 13B 63.1±1.1 22.2±1.3 70.7±2.1 358.80 9.02 367.82

Table 6: Evaluation on information extraction with MIT-D and MIT-G for ε = 8.
Method LLM Type Model MIT-D MIT-G T($) Q($) All($)

DP-FewShotGen [56] Closed GPT3 Davinci 80.6 64.1 0.42 2.36 2.78
PromptPATEGen Open Vicuna 7B 74.1±0.6 41.7±1.6 0.52 0.73 1.25
PromptPATEGen Open OpenLLaMA 13B 70.9±0.5 33.4±1.3 3.11 0.80 3.91
PrivateLoRA [64] Open Pythia 410M 74.3±8.3 64.3±2.8 0.06 0.50 0.56

PromptDPSGDGen Open Pythia 1B 89.8±0.3 69.1±1.7 0.17 0.25 0.42
DP-FineTune [35] Open Pythia 1B 92.2±1.1 71.6±1.1 0.94 0.50 1.44
PrivateLoRA [64] Open Pythia 1B 90.2±0.1 68.8±0.8 0.08 0.31 0.39
PrivateLoRA [64] Open Vicuna 7B 95.0±0.2 74.4±1.2 0.52 5.92 6.44
PrivateLoRA [64] Open OpenLLaMA 13B 94.0±0.8 76.4±0.9 1.04 6.21 7.25
PrivateLoRA [64] Open Mixtral 8x7B 93.0 69.7 1.52 9.47 10.99

4.4% on Trec, and by 3.5% on Disaster. Overall, the private adaptations for open LLMs outperform
the ones for closed LLMs in most privacy regimes.

4.2.3 Performance of Private Adaptations for Text Generation

The evaluation of the three text generation tasks demonstrates superior performance of private
adaptations on open vs closed LLMs. We consider the privacy-preserving ICL methods of DP-ICL
and DP-FewShotGen on closed LLMs, since only these methods were executed for generative tasks.
For the SAMSum datasets in Table 4, the first three adaptations (including our PromptPATEGen)
are based on few-shot in-context learning (using discrete prompts), while the remaining results are
for the private gradient-based adaptations. For the discrete prompts, our PromptPATEGen runs
on local open Vicuna 7B and outperforms other discrete prompt-based methods from closed LLMs.
Our PromptDPSGDGen performs on par with the other private tuning method (PrivateLoRA) run
on Pythia 1B. Note that only PromptDPSGDGen and ICL adaptations (PromptPATEGen and
DP-ICL) support multi-task inference.
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We additionally leverage BART-Large (with 355M parameters) [1] that was fine-tuned on the XSum
summarization task [47] (which does not include SAMSum). This specialized open model out-
performs other LLMs apart from Vicuna with 7B parameters, OpenLLaMA with 13B parameters,
and Mixtral with 45B parameters. Crucially, PrivateLoRA on BART-Large outperforms DP-ICL
run on GPT3 Davinci, despite using the model with around 500X fewer parameters. This further
indicates that we can leverage a large selection of open models to solve a specific task at lower cost
and with better privacy protection without resorting to general-purpose closed LLMs. We also use
PrivateLoRA on larger models from different families (Vicuna 7B, OpenLLama 13B, and Mixtral
8x7B) and observe that its performance and cost steadily increase with more parameters.

The evaluation on PFL-DocVQA in Table 5 shows that PrivateLoRA on open LLMs outperforms
DP-ICL (which was run also only on OpenLLaMA 13B in the original paper [63] due to the cost
constraints). We also evaluate both MIT-D and MIT-G in Table 6 on the accuracy of predicted
vs target labels following the metrics in DP-FewShotGen. The adaptations of open LLMs with
privacy-preserving gradient-based methods outperform DP-FewShotGen on the significantly larger
GPT3 Davinci, for example, on MIT-D by 13.4% and on MIT-G by 22.3% absolute, respectively by
PrivateLoRA on OpenLLaMA 13B.

We also present the privacy-utility trade-off for the SAMSum, MIT-G, and MIT-D datasets with
varying values of ε across the PrivateLoRA, PromptPATEGen, and DP-FewShotGen methods
in Figure 3. We use the Pythia 1B model for MIT-D and MIT-G and the BART-Large model for
SAMSum. The graphs clearly demonstrate a similar trend to that shown previously in Figure 2:
PrivateLoRA for open LLMs significantly surpasses the performance of both DP-ICL and DP-
FewShotGen, which rely on GPT-3 Davinci.
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Figure 3: Privacy-utility trade-off for generation tasks. We analyze the privacy costs ε in the range
[0, 8] for the three generation tasks. PrivateLoRA for open LLMs substantially outperforms DP-ICL
and DP-FewShotGen, which both utilize GPT3 Davinci. PrivateLoRA for MIT-D and MIT-G is
trained on the Pythia 1B model, and for SAMSum on the BART-Large Model. PromptPATEGen
uses Vicuna 7B.

4.3 Comparing Costs

We compare the costs of obtaining a private predictor for a given downstream task using open vs
closed LLMs. We use the wall clock time to capture the running time of methods for local open
LLMs, which we then translate to the monetary cost that would be incurred if we ran the method
on cloud-based hardware. For the adaptations of closed LLMs, we count the number of tokens used
in the queries and obtained outputs from the APIs. The pricing from cloud providers and OpenAI
forms the basis for the cost estimations, and we show the selected values in Table 22 in the Appendix.
Further details on how the costs were calculated for each private ICL methods are presented in
Appendix D. Based on the estimated costs in Tables 1,3,4,5, and 6, the privacy-preserving methods
for open LLMs require much lower costs (and perform better) than for closed LLMs in the considered
scenarios. The costs for classification tasks are relatively low, especially for closed LLMs, since the
tasks are simple and the number of tokens (particularly for outputs) is small. However, the costs
increase substantially for generation tasks, especially for the closed LLMs, where DP-ICL is around
150X more expensive than PrivateLoRA for dialog summarization. While larger models often incur
higher costs, they do not necessarily imply higher performance. For example, smaller models like
RoBERTA Large for classification or BART-Large for dialog summarization can obtain one of the
highest performances at the lowest prices.
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5 Discussion and Future Work

In summary, our results highlight that from the perspective of providing truly privacy-preservation
adaptations, open LLMs are strictly preferable over closed LLMs, since their adaptations are more
private, more performant, and more cost-effective. Going beyond the concrete existing methods
studied in this work [16, 25, 56, 63], in the following, we analyze the general reasons behind the
underwhelming results of privacy-preserving closed LLM adaptations.

Privacy Leakage. The enhanced privacy protection from adapting open LLMs is a major benefit:
users’ private training data and queries to adapted open LLMs are never revealed to third parties. On
the contrary, the leakage of private query data to the LLM provider is to date an inherent problem with
closed LLMs, since no methods to provide formal guarantees for the query data are currently known.
Potential solutions might involve private inference for LLMs, where a model performs inference on
encrypted queries, however, it is still in its nascency [10, 24, 32] for the scale of closed LLMs [7].

Performance. We argue that the lower performance of closed LLM adaptations stems from the
fact that they have to rely on discrete prompts and that engineering such prompts for the closed
LLMs is highly challenging. This is because 1) prompts, in general, have been shown to exhibit
an unstable performance and to require a large number of trials and errors or discrete optimization
while still underperforming gradient-based approaches [37]. Additionally, 2) when the prompts (for
privacy reasons) are not tuned on the closed LLM but on an open LLM surrogate model, additional
performance decrease is incurred through the prompt transfer, since it has been shown that transferred
prompts cannot reach the performance of prompts directly tuned on a given LLM [55]. While the
latter problem might be mitigated through the design of more performant prompt transfer techniques,
the former one seems to be a more fundamental limitation [37].

Costs. The high costs incurred by some closed LLM adaptations result from the fact that they rely
on ensemble-based approaches to yield DP guarantees and the fact that they incur continuous query
costs at inference time. The former one could be solvable by designing more efficient DP schemes
for discrete prompts, however, the latter is inherent to the nature of closed LLMs.

We hope that implementing the above-mentioned solutions will shrink the gap between private adap-
tations of open and closed LLMs. However, it remains unclear whether it is worth the community’s
effort, given the effectiveness of private adaptations for open LLMs.

Broader Impacts

Our comparative study of open and closed LLMs has significant implications for private adaptations:
our research advocates for the use of open LLMs for the private adaptations.

We stress that our goal is not to discredit closed LLMs, but to highlight the potential privacy and
performance benefits as well as cost-effectiveness associated with the use of open LLMs. Through
thorough evaluations, we demonstrated in our paper that adapting open LLMs with private parameter
efficient fine-tuning methods results in higher performance and mitigates open privacy risks of
in-context learning with closed models. This not only leads to better performance but also reduces
costs, making privacy adaptation on open LLMs a more viable option for many applications.

Moreover, our work can serve as a baseline for future private learning methods for LLMs. We believe
that an open dialogue about the strengths and weaknesses of both open and closed LLMs is crucial
for the advancement of privacy-preserving LLMs. We hope that our research will serve as a catalyst
for further investigations into private adaptations of LLMs, ultimately leading to the development of
models that effectively balance the need for both openness and privacy, all while ensuring that user
privacy remains uncompromised.
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A Limitations

Hyperparameter tuning. Due to limited computational resources, we were not able to tune the
hyperparameters for all open LLM private tuning methods. This is especially true for the generation
tasks with longer input length, PFL-DocVQA for example, due to their long training time. Therefore,
we still see the potential for an increase in performance. But, as our results for private tuning
already show that these methods outperform the private in-context learning approaches, the used
hyperparameters suffice for these comparisons.

Pretraining set as privacy risk. Closed models do not provide much information about their
pretraining process. This also includes the non-disclosure of the pretraining set. For this reason, we
purposefully chose open LLMs where the pretraining set is known and can be easily downloaded.
But, even though the pretraining set is available, and a user could check it directly against their own
data for any privacy leakage, we recognize that this process is also costly. This is why, despite having
potential access to the pretraining set, a user might not be able to cover the privacy risk fully.
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Cost estimation. To show the potential cost of running the training of privately tuning an open
LLM, we used the cost of $0.69 per compute hour from RunPod. This represents the average cost
of running such training, and the cost might vary for different users on machines of different cloud
providers. Additionally, we ran our training on our own machines, therefore, do not have the exact
same server setup as the one given by RunPod. This could lead to additional variations in training
time and therefore training costs.

Budgetary limits. In this paper we looked at different closed models (GPT3 Davinci, GPT3
Babbage, GPT4 Turbo, and Claude 2.1) and methods to add private in-context learning. Due to
limitations to our budget, we were not able to look at a higher variety of closed models and also
extend the experiments with GPT4 Turbo.

Limited model sizes. In our experiments for the private tuning of open LLMs, we tried a variety
of different models and model sizes. To handle the models with a higher amount of parameters, we
needed to use 4-bit loading to be able to run the training on our GPUs. Unfortunately, due to some
type-inconsistencies with Opacus, the Python library we use to run DP-SGD, and 4-bit loading from
bitsandbytes, we were not able to do training on our machines for some of the models. This included
13B models for PrivateLoRA for the classification tasks and 7B+ models for PromptDPSGDGen
and DP-FineTune for the text generation tasks.

B Further Details on the Related Work

B.1 Private Adaptations for Closed LLMs

We present the methods for the private adaptations of closed LLMs with a few more details.

PromptPATE [16] prompts an LLM with different prompts containing disjoint examples from the
private training dataset, each prompt corresponding to a teacher. To label the public data for the
knowledge transfer, PromptPATE [16] infers the next token prediction of each teacher on public
text sequences and interprets them as labels. Instead of training a student model from scratch,
PromptPATE [16] creates a student prompt. It utilizes the data efficiency of discrete prompts by
selecting examples for the student prompt from the labeled public sequences.

DP-ICL [63]. For the generation tasks, it proposes the Embedding Space Aggregation(ESA), which
involves mapping each sentence produced by the LLM for a given exemplar-query pair onto the
embedding space and then reconstructing a sentence from the noisy mean of these embeddings.
This process depends on the quality of the text-to-embedding models and the zero-shot examples
employed to map the noisy mean embedding back to the sentence, potentially leading to suboptimal
outputs. The other approach proposed in DP-ICL is keyword space aggregation (KSA). It creates a
keyword space by segmenting each output sentence into keywords to form a histogram. The keywords
with the highest counts are selected privately using either the Propose-Test-Release (PTR) or Joint
Exponential Mechanism (JointEM) [22]. The selected private keywords are then used to create a
prompt and query the LLM.

DP-FewShotGen [56] introduces a method for text generation of public prompts. In this method,
tokens are individually generated using disjoint subsets of the private data and then noisily aggregated
based on the frequency of the generated tokens to predict the next token. The drawback of this
approach is that the generation process is conditioned on the label. Consequently, despite being a text
generation task, it necessitates the assignment of a public label to the private data.

DP-OPT [25] is currently the only private ICL method that uses discrete prompt tranferrability to
create a private prompt on a local open model, which can be used to infer a closed model. Based on
the approach of deep language networks [54], multiple initial prompts with different private examples
are optimized through separate back- and forward passes such that a prompt is created that gives
good performance on the downstream task. To add privacy, they use the exponential mechanism to
sample each generated token from all different initial prompts. Currently, their proposed method is
only shown to work with classification tasks.

B.2 Private Text Generation based on PATE

SeqPATE [58] safeguards the privacy of individual training samples and sensitive phrases in the
training data of a language model. To adapt PATE for text generation, SeqPATE creates pseudo-
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contexts, simplifying the sequence generation task to a next-word prediction problem. To manage the
extensive output space, SeqPATE introduces a candidate filtering strategy that dynamically narrows
the output space and enhances the teacher aggregation in PATE to avoid low agreement caused by
voting among a large number of candidates. Additionally, to further minimize privacy losses, it
employs knowledge distillation to reduce the number of teacher queries.

B.3 Membership Inference Attacks

Threshold based: Carlini et al. (2021) [8] Extracting training data from large language models
Min-K% Prob: Shi et al. (2024) [53] Detecting pretraining data from large language models
Perturbation based: Mattern et al. (2023) [43] Membership inference attacks against language
models via neighbourhood comparison DetectGPT: Mitchell et al. (2023) [46] Detectgpt: zero-shot
machine-generated text detection using probability curvature zlib Ratio: Carlini et al. (2021) [8]
Extracting training data from large language models Reference based: Carlini et al. (2021) [8]
Extracting training data from large language models

C Additional Details on our Setup

In this section, we present the detailed (hyper-)parameters used to evaluate all the tasks that were
used for the different Open and Closed LLMs privacy-preserving training methods.

C.1 Text classification

Detailed information about the datasets. We expose the different statistics of each dataset used
for text classification evaluation in Table 7. For SST2, the validation set was used as the test set, as
the original test set is only provided with unknown labels for each sample.

Table 7: Stastistics of the 4 evaluated tasks related to text classification.
Task #Train #Test #Class Task description
SST2 66,674 872 2 Sentiment analysis on movie reviews

Trec 5,452 500 6 Question type classification

Mpqa 8,603 2,000 2 Sentiment analysis on short ensembles

Disaster 4,430 1,000 2 Relevance of sentence to a disaster

Private Tuning. We detail the hyperparameters used to fine-tune the models with private LoRA in
Table 8, for DP-FineTune in Table 9 and for PromptDPSGD in Table 10. All the experiments were
conducted on 3 different seeds. Note that unlike LoRA or Full-Finetune, PromptDPSGD requires a
precise tuning of hyperparameters. A total of 50 trials over 100 epochs were necessary to tuned them.
For the Mpqa sentiment analysis task, no converging set of hyperparameters was found.
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Table 8: Hyperparameters for PrivateLoRA [64] on evaluated classification datasets for ε = 8.
Hyperparameters Datasets

SST2 Trec Mpqa Disaster
bs 128 128 128 128

lr 1e-3 1e-3 1e-3 1e-3

max grad clip 0.1 0.1 0.1 0.1

epochs 10 40 20 20

lora rank 4 4 4 4

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Table 9: Hyperparameters for DP-FineTune [35] on evaluated classification tasks with Roberta-
Large for ε = 8.

Hyperparameters SST2 Trec Mpqa Disaster
LR 1e-4 1e-4 1e-4 1e-4

BS 128 128 128 128

Epoch 10 40 40 50

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Table 10: Hyperparameters for PromptDPSGD [16]. The hyperparameters for SST2 datasets are
directly extracted from the paper and are evaluated on Roberta-Large for ε = 8. LR = learning rate,
BS = batch size, GRAD = per sample gradient clipping. P-length = length of the prepended prompt in
number of tokens. The trainings are all performed with prefix-tuning and not soft-prompt. Those are
the hyperparameters of the best performing prompt on the test set of each dataset, and the accuracy of
this prompt is reported in the table.

Hyperparameters SST2 Trec Mpqa Disaster
LR 0.01 0.001 - 0.01

BS 32 32 32 32

GRAD 4 0.3 - 1.0

Epochs 22 100 100 100

P-length 1 10 10 10

Best accuracy 92.8 58.0 50.0 78.6

Private in-context learning. The respective set of hyperparameters for DP-FewShotGen, Prompt-
PATE and DP-ICL are listed in Table 11, Table 12 and Table 13. For the used hyperparameters for
DP-OPT, see [25] since the results of Table 3 are directly extracted from the paper. The accuracy
results for DP-FewShotGen were computed for 5 different generated prompts following the method
from the paper. For the PromptPATE method, experiments were only conducted for MPQA and
Disaster datasets as we used already made evaluation from the original paper PromptPATE [16] for
SST2 and Trec datasets on using GPT3-Babbage. All hyperparameters here are extracted directly
from the previous paper.
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Table 11: Hyperparameters for DP-FewShotGen [56] for the evaluation of new datasets with ε = 8
on GPT3-Babbage. M = Number of private prompts used for meta prompt generation. N = number
of private shots per prompt. σ = noise relative to wanted ε using the Gumbel mecanism. Tmax = max
number of tokens of the generate prompt.

Hyperparameters SST2 Trec Mpqa Disaster

σ (ε = [0.1, 1, 3, 8]) [1.0,0.61,
0.48,0.34]

[3.0,0.83,
0.59,0.44]

[2.0,0.77,
0.57,0.41]

[3.5,0.93,
0.64,0.46]

MN 80 80 80 80

M 20 20 20 20

Tmax 50 50 50 50

Table 12: Hyperparameters for PromptPATE [16] for the evaluation of new datasets with ε = 8 on
GPT3-Babbage.Those parameters are common to all 4 tasks.

Hyperparameters Claude GPT3-babbage
train set 400 400

student set 200 300

num shots 2 1

Table 13: Hyperparameters for DP-ICL [63] for the evaluation of the text classification datasets
with ε = 8 on GPT3-Babbage.

Hyperparameters SST2 Trec Mpqa Disaster
num shots 4 4 4 4

Ensemble 10 10 10 10

Queries 872 500 1000 1000

C.2 Text Generation

We analyze the following generative downstream tasks: SAMSum, PFL-DocVQA, and MIT Movies
trivia10k13. As we did for classification tasks, we compare the methods on closed LLMs against
PrivateLoRA [64], PromptDPSGD [16], and DP-FineTune [35] that are run on open LLMs. For the
PrivateLoRA [64] training, we use 4-bit quantization with QLoRA [15] to reduce the occupied GPU
memory, which was implemented for the adaptations of open LLMs with more than 1B parameters
on PFL-DocVQA and SAMSum datasets due to their long input sequences.

Detailed information about the datasets. We show the amount of data that we utilized in the
experiments in Table 14.

Table 14: Overview of the 4 text ge tasks related to text generation.
Task #Train #Test Task description

SAMSum 14,732 819 Dialogue summarization

PFL-DocVQA 85,000 10,000 Question and answering

MIT-G 2,953 780 Extracting genres from movie reviews

MIT-D 1,561 415 Extracting directors from movie reviews

Private Tuning. In Table 15, Table 16, and Table 17, we show the hyperparameters we used
to train the open models with PrivateLoRA, PromptDPSGDGen, DP-FineTune respectively. For
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PrivateLoRA, we were able to use the same hyperparameters for all models for each task. In the
tables, the Max Seq Length refers to the maximum amount of tokens of the sequence the model trains
on. For Schedulers, we chose two different options, a constant scheduler that does not change the
learning rate during training, and a linear scheduler. The linear scheduler is the default scheduler
of the Hugging Face implementation of the Trainer class. It linearly decreases the learning rate
over the whole training. For PromptDPSGDGen, we additionally have Prefix Projection. If enabled,
prefix projection adds two additional linear layers to the prefix encoder. This increases the amount of
trainable parameters, which in turn also increases the capability of the prefix to represent tasks. The
evaluations for MIT-D, MIT-G, and SAMSum were done for 3 different seeds, whereas we used 2
different seeds for PFL-DocVQA.

Table 15: Hyperparameters for PrivateLoRA [64] on evaluated generation tasks for ε = 8. The
hyperparameters are the same for the used models. The tested schedulers for MIT-G and MIT-D does
not make a difference during training

Hyperparameters SAMSum PFL-DocVQA MIT-G MIT-D
LR 8e-4 8e-4 8e-4 8e-4

BS 256 256 256 256

LoRA Rank 8 8 8 8

Max Seq Length 650 1500 128 128

Epoch 20 15 20 20

Scheduler Linear Linear / /

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Table 16: Hyperparameters for PromptDPSGDGen on evaluated generation tasks for ε = 8. The
hyperparameters are the same for the used models. The tested schedulers for MIT-G and MIT-D do
not result in difference in performance.

Hyperparameters SAMSum PFL-DocVQA MIT-G MIT-D
LR 1e-3 1e-3 1e-3 3e-3

BS 256 256 256 256

P-Length 10 25 5 5

Prefix Projection True True True True

Max Seq Length 650 1500 128 128

Epoch 20 15 40 40

Scheduler Linear Linear / /

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 1
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Table 17: Hyperparameters for DP-FineTune [35] on evaluated generation tasks for ε = 8.
Hyperparameters SAMSum PFL-DocVQA MIT-G MIT-D

LR 8e-4 2e-4 2e-4 2e-4

BS 256 256 256 256

Max Seq Length 650 1500 128 128

Epoch 20 15 20 20

Scheduler Linear Linear Constant Linear

δ 1
|D|

1
|D|

1
|D|

1
|D|

GradClip 0.1 0.1 0.1 0.1

Privacy-preserving prompt tuning. In the following, we provide the used hyperparameters for the
methods for Private ICL for Closed LLMs. In detail, for DP-FewShotGen in Table 18, for DP-ICL in
Table 19, and for PromptPATEGen in Table 20.

Table 18: Hyperparameters for DP-FewShotGen [56] on evaluated generation tasks for ε = 8. We
used the hyperparameters given in the original paper for MIT-G and MIT-D.

Hyperparameters SAMSum MIT-G MIT-D
σ 0.384 0.5 0.58

MN 80 80 80

M 20 20 20

Tmax 50 20 20

Table 19: Original hyperparameters for DP-ICL [63] on evaluated generation tasks for ε = 8.
Hyperparameters SAMSum PFL-DocVQA

Model GPT-Davinci OpenLLaMA 13B

Ensemble 100 100

#Queries 10,000 10,000

Table 20: Hyperparameters for PromptPATEGen on generation tasks for ε = 8.
Hyperparameters SAMSum MIT-G MIT-D

Model Vicuna 7B Vicuna 7B Vicuna 7B

Ensemble 100 25 25

#Queries 100 100 100

#Student Prompt 10 4 4

σ 1.15 0.9 0.9

D Cost Calculation

We provide the details on measuring the cost for different methods. The assumed costs for interacting
with the model APIs per 1 million tokens and GPU cost per hour are shown in Table 22. For the open
LLMs, we set the median pricing per hour (based on prices from three GPU cloud providers shown
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in Table 22) which is $0.69 using an A40 GPU with 48GB of memory 3, which is a popular graphics
card, also used in the previous work [16]. We note that we do refrain from using other metrics than
monetary cost. For example, FLOPS are not a direct measurement of real-world computational cost
because latency, power usage, and other costs can vary significantly depending on hardware and other
factors [14].

Costs for private-tuning-based adaptations. The private tuning-based adaptations of open LLMs
require us to adjust the model parameters or the inputs for a given task, thus, we measure the running
time of the training process and then query answering.

Costs for private ICL-based adaptations. DP-ICL does not incur any training cost but uses an
ensemble of teachers for each query (the same as PromptPATE for labeling public examples), which
elevates the cost by the number of teachers, which can be 10 or even 100. For PromptPATE, the
generation of public student prompts is done using an ensemble of teacher prompts, thus labeling
each public data point costs much more (proportional to the number of teachers) than running a query
(with a single prompt). DP-FewShotGen also uses an ensemble of prompts, where the number of
accesses to the API in the training process is equal to the number of tokens in a public prompt. The
cost of training the public prompt for DP-OPT is through the iterative process of instructing the local
model to improve the prompt and obtain better predictions, however, this part is done on a local open
LLM, thus, the cost is relatively low. For ease of approximation and to the benefit of the ICL methods,
we assume that the creation of the teacher prompts and the private aggregation of the outputs have
negligible costs. After preparing the public prompt, PromptPATE, DP-FewShotGen, and DP-OPT,
need a single access to the API to answer a query.

To obtain the cost for closed LLMs, we have to compute the average number of tokens per query.
For the classification task, we can take the example of the DP-OPT method applied on the SST2
dataset. For this dataset, only one token is returned by the API provider, so the cost of the outputs is
negligible. SST-2 inputs have an average length of 12.35 and the best performing prepended prompt
from DP-OPT training has a length of 39 tokens. Thus, for the DP-OPT task, for each query to
the API, 41.35 tokens are sent approximately. This gives a cost of $0.0006 per query for GPT-3
Davinci and the total cost of $6 for 10k queries in Table 1. The cost per query is computed similarly,
depending on the size of the prepended prompt of each ICL method. Regarding the generation
task, we can take the example of the SAMSum dialog summarization dataset, in which the average
token length is 141 for the input and 26 for the output, hence, a single query costs $0.000333 (for
GPT3-Davinci). The cost for a 0-shot inference to Davinci would therefore be $3.33 for 10k queries.
As DP-ICL considers the 1-shot scenario and an ensemble of 100 teachers, we add the average input
and label lengths to the input and multiply this by the size of the ensemble, which results in an overall
cost of roughly $666. The exact average token count for each dataset which we used for the cost
estimations can be found in Table 21.

Table 21: Average token length of different inputs and outputs of the used datasets. The average
does not include instructions.

Dataset SST-2 Trec Mpqa Disaster MIT-D MIT-G SAMSum DocVQA
Input 12.35 11.43 3.88 30.79 25.276 24.314 140.857 924.191

Output 1 1 1 1 3.877 2.301 25.620 6.384

3The pricing is for the RunPod Cloud Service: https://www.runpod.io/gpu-instance/pricing.
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Table 22: Pricing for the models and cloud options (as of May 22nd, 2024).
Model Cost/1M tokens Cost/hour

Input Output

GPT-Babbage 4 $0.40 $0.40 -

GPT-Davinci $2.00 $2.00 -

GPT-3.5-turbo Instruct $1.50 $2.00 -

GPT-4-turbo $10.00 $30.00 -

Claude 2.1 5 $8 $24 -

A40 (RunPod) 6 - $0.69
A40 (Replicate) 7 - $2.07

A40 (Hyperstack) 8 - (starts from)$0.50

E Additional Experiments

PrivateLoRA extensive classification results. Table 23 shows the top1 accuracies at different ε
used to compute the PrivateLoRA graph for each of the 4 text classification tasks in Figure 2.

Table 23: Private LoRA [64] top1-accuracies for the evaluated datasets given different ε.
ε Model SST-2 Trec Mpqa Disaster

8 Vicuna 7B 95.3 97.4 88.4 82.0

3 Vicuna 7B 94.4 96.2 87.6 79.6

1 Vicuna 7B 93.5 93.8 82.1 78.1

0.7 Vicuna 7B 93.4 93.2 79.5 76.4

0.3 Vicuna 7B 91.9 87.6 64.4 73.6

Safety Evaluation of Mixtral-8x7B Instruct with and without differential privacy. We conducted
additional experiments to analyze how fine-tuning a downstream task with and without differential
privacy affects the safety alignment of models. We followed the approach from [66] to evaluate
Mixtral-8x7B-instruct and fine-tuned the model on SAMSum once with ε = 8 and once with
ε = ∞. We selected SAMSum as it does contain conversations with unsafe language (e.g., cursing
or harassment). These results are presented in Table 24. The table is divided into two sections,
“Compliance on Harmful Queries” and “Refusal on Harmless Queries”. The scores were generated
by separately prompting our model with 100 harmful and 100 harmless queries, each repeated 20
times with different safety prompts. Finally, the outputs are categorized as complying or refusing the
input by Llama Guard, giving the percentage of incorrectly handled answers in our table. Therefore,
the lower the score, the better.

First, we observe that fine-tuning of any kind decreases the model’s safety capability. This is easily
identifiable in the table, as the original model has lower scores across the board for compliance with
harmful behavior compared to both fine-tuned models. Similar results were also shown in [29] and
[65], where the authors used a dataset containing unsafe samples to fine-tune safety-aligned models,
which drastically increases compliance with unsafe behavior.

4https://openai.com/api/pricing/
5https://www.anthropic.com/api
6https://www.runpod.io/gpu-instance/pricing
7https://replicate.com/pricing
8https://www.hyperstack.cloud/gpu-pricing
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Second, we can observe that private fine-tuning affects the safeguards less than non-private fine-
tuning. In the non-private case, the influence of individual samples is unrestricted, which can amplify
the impact of unsafe samples, as shown in [29] and [65]. In contrast, differential privacy limits the
influence of any single sample. Consequently, the impact of unsafe examples is minimized, resulting
in a model that retains more of its safe behavior.

Table 24: Safety Evaluations of Mixtral-8x7B Instruct Evaluating the safety of the responses given
by different models. We compare the base instruction fine-tuned model with the same fine-tuned on
SAMSum with and without differential privacy. The model responses were categorized as harmful
and harmless by Llama Guard.

Model % Compliance on Harmful Queries ↓ % Refusal on Harmless Queries ↓

Mixtral-8x7B Instruct short Mistral Llama no prompt short Mistral Llama no prompt

Base model 1 0 0 36 1 0 2 0

ε = ∞ 38 30 39 64 2 2 3 0

ε = 8 9 5 7 48 2 0 1 0

Analysis of PromptPATEGen and DP-ICL [63] across different generation tasks. We observe
that PromptPATEGen is particularly adept at summarization tasks, as shown in Table 4. However,
when we shift focus to other task generation tasks, the performance of PromptPATEGen is not
as impressive compared to DP-ICL [63]. For the MIT datasets, which are entity retrieval tasks,
PromptPATEGen generates results that are semantically similar to the true values, but not identical.
For instance, on the MIT-G dataset, PromptPATEGen generates "sci-fi" whereas the ground truth
movie genre is "sci fi". This pattern of generating semantically similar results is also observed in the
MIT-D dataset, where only one name is given as the movie director rather than the full names.

We further added evaluations using DP-ICL [63] with newer OpenAI models, such as GPT4 Turbo
and GPT3.5 Turbo, for SAMSum and saw that the performance only increases slightly compared
to the original evaluations on GPT3 Davinci (see Table 4). Therefore, we looked through the
summarizations that were given by GPT4 Turbo and compared them to the ground truths. Similarly
to the above-mentioned problem with the MIT-G and MIT-D datasets, we found, that the results
were semantically correct, but not close enough to the ground truth. As an example, we show a
sample generation with the corresponding dialogue and ground truth in Table 25. We can see, that the
generated summary is factually correct, but too extensive compared to the ground truth. In particular,
this example results in a Rouge-1 score of 31.8. Our assumption, as we get more extensive, and
thus, worse samples, is the limited examples in terms of summary structure given by the keywords
provided by DP-ICL [63].

The DocVQA dataset presents a unique challenge for PromptPATEGen. Given the high average
token length in this dataset, only a single example can be used as the in-context example. This
limitation poses a significant challenge, as a single example may not adequately represent the diverse
aspects present in the dataset.

DP-FewShotGen [56] limitations on new GPT models. In addition to running DP-
FewShotGen [56] on GPT Babbage and GPT Davinci, we also adapted the official code to work with
newer OpenAI models, such as GPT4. The code had to be changed, as OpenAI moved from their
Completion API to the new Chat Completion API. During execution, we encountered an issue that
prevents us from running experiments with the Chat Completions API with DP-FewShotGen [56].
The issue arises from the parallel use of logit bias and log-probabilities, as the resulting output
while using both together is unusable for further processing. We assume, this behavior is caused
by a defense mechanism against a new potential model-stealing attack [9], as one of the suggested
defenses was to prohibit the use of both logit bias and log-probabilities at the same time, which would
explain what we have experienced. As the implementation of DP-FewShotGen [56] uses both at the
same time, we are unable to get this private ICL method to work with GPT models that use the Chat
Completions API.
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Table 25: The dialogue, ground truth, and summary generated with DP-ICL [63] on GPT4 Turbo
for a SAMSum sample

Dialogue

Ursula: Haha I got a 93 on my French exam
Bob: Well done girl!
Jana: Wow
Jana: How did u manage to do that
Ursula: I just studied hard for it
Jana: omg
Jana: French is so hard
Vaughn: I got a 65
Vaughn: I didn’t study for it haha
Ursula: At least you passed
Vaughn: Congrats!

Ground truth Ursula got 93 on her French exam. Vaughn got 65, but still passed.

Generated summary

Ursula shares that she got a 93 on her French exam and Jana asks how
she managed to do so well. Ursula says she studied hard for it. Vaughn
admits to getting a 65 without studying and Ursula congratulates him for
passing.

F Generation Metrics

In this section, we briefly discuss the different metrics we use to evaluate the generation tasks.

Rouge [36]. The metrics in the Rouge, short for Recall-Oriented Understudy for Gisting Evaluation,
set describe how many word-wise n-grams match between the predicted and target text. For Rouge-1,
we look at uni-grams whereas for Rouge-2 we calculate the similarity of all 2-grams. Rouge-L refers
to the similarity of the longest common subsequence between prediction and target. Important to
note for Rouge-L, the grams do not need to be consecutive, but have to be in order. The scores lie
between 0 and 100, where 100 is the best score.

BLEU [51]. Similar to the Rouge metric, the BLEU score, which is the abbreviation for Bilingual
Evaluation Understudy, is used to evaluate the similarity of generated and reference text. To calculate
the score, the precision and brevity between the two sentences have to be determined. The precision
is the ratio of n-grams that match exactly between generated and reference text. Usually, n goes
up to 4. Brevity, on the other hand, penalizes the score of the generated text, if it’s shorter than the
reference. Combining brevity and precision results in the BLEU score of the generated text. The
score itself is again between 0 and 100, where higher scores are better. We use the SacreBLEU [52]
version of BLEU.

Levenshtein Distance. Lastly, to evaluate PFL-DocVQA, we also use the Levenshtein Distance.
This metric is used to directly compare strings on a letter by letter basis. The Levenshtein Distance
calculates the minimum amount of substitutions, insertions, and deletions between two sequences.
We use the normalized version to have a score between 0 and 100 independent of sequence length.
As with the other metrics, the higher the score the better.

G Abbreviations

In Table 26, we show the abbreviations we used throughout this paper for the different private in
context learning methods of LLMs.
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Table 26: Abbreviations for ICL papers and their proposed techniques.
Publication
Abbreviation

Publication Name Technique
Abbreviation

Privacy Technique

DP-ICL Privacy-Preserving
In-Context Learning
for Large Language
Models [63]

DP-ICL Classifi-
cation

DP-ICL for text classifica-
tion

ESA Embedding Space Aggre-
gation

KSA Keyword Space Aggrega-
tion

DP-OPT DP-OPT: Make
Large Language
Model Your Privacy-
Preserving Prompt
Engineer [25]

DP-OPT Differentially-Private Off-
site Prompt Tuning

FewShotGen Privacy-Preserving
In-Context Learning
with Differentially
Private Few-Shot
Generation [56]

FewShotGen Differential Private Few-
Shot Generation

PrivatePrompts [16] Flocks of Stochastic
Parrots: Differen-
tially Private Prompt
Learning for Large
Language Models
[16]

PromptDPSGD [16] DPSGD for Private Soft
Prompt Learning

PromptPATE [16] PATE for Privacy-
Preserving Discrete
Prompts

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: In Section 4, we showcase the outcomes of our thorough experiments, which compare
the performance, cost, and privacy protection of open and closed LLMs. Section 3 details our
proposed prompt-based adaptation techniques for text generation tasks.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We presented the limitations of the paper is in the Appendix A.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical proofs. For our theoretical considerations, we
provide a full set of assumptions and detail the setup.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information of all the models, datasets and hyperparameter
configuration used for obtaining our results in Appendix C.
Guidelines:
• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The details of our experimental setup is in Section 4.2.1. For the closed LLMs, the
models can be accessed via their respective API. For the open LLMs, they are publicly available
on the HuggingFace hub. We have included citations and links for both closed and open LLM in
the paper. Throughout our paper, we used standard benchmark datasets which are open-sourced
datasets. The source for the datasets are well referenced in the paper. Our anonymized codes is
included in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
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• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experimental settings is presented in Section 4.2.1. All the hyperparameters
used in the paper is included in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our paper, we consistently provide the mean and standard deviation across multiple
runs of our experiments for comprehensive understanding. However, in certain instances, we
have refrained from including the standard deviation to maintain the readability of the tables.
This is particularly applicable when the inclusion of standard deviation results in tables that are
excessively wide, thereby posing challenges in terms of fitting into the page width and ensuring a
seamless reading experience.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: In Appendix D, we provided details about the compute resources and the costs to
reproduce each experiment. All experiments were conducted on A40 GPUs.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the ethics guideline and adequately anonymized our paper and code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Our paper advocates for the more private, efficient, and cost-effective alternative
of open LLMs which have significant positive societal impact. In Section 5, we summarize
our findings, shedding light on the three pivotal aspects—privacy preservation, performance
optimization, and cost-effectiveness. Moreover, we highlighted the broader impacts of our work
in Appendix 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).
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Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We included citations for all models, datasets and code used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We used publicly available assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve the use of human subject.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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