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Abstract
We propose methods for auditing multiclass classi-
fiers for fairness under multiclass equalized odds,
by estimating the deviation from equalized odds
when the classifier is not completely fair. We
generalize to multiclass classifiers the measure of
Disparate Conditional Prediction (DCP), origi-
nally suggested by Sabato & Yom-Tov (2020) for
binary classifiers. DCP is defined as the fraction
of the population for which the classifier predicts
with conditional prediction probabilities that dif-
fer from the closest common baseline. We provide
new local-optimization methods for estimating
the multiclass DCPunder two different regimes,
one in which the conditional confusion matrices
for each protected sub-population are known, and
one in which these cannot be estimated, for in-
stance, because the classifier is inaccessible or
because good-quality individual-level data is not
available. These methods can be used to detect
classifiers that likely treat a significant fraction of
the population unfairly. Experiments demonstrate
the accuracy of the methods. Code is provided
at https://github.com/sivansabato/
DCPmulticlass.

1. Introduction
Fairness of classifiers is a crucial property in many real-life
scenarios (see, e.g., Caton & Haas, 2024). In particular,
auditing classifiers for fairness is essential in a wide range
of applications and has been studied in many works (e.g.,
Saleiro et al., 2018; Angwin et al., 2022; Taskesen et al.,
2021; Cherian & Candès, 2024).

While it is desirable that a classifier accurately satisfies the
required fairness criterion, this is in many cases not achiev-

1Department of Computing and Software, McMaster Uni-
versity; Canada CIFAR AI Chair, Vector Institute 2Department
of Computer Science, Ben-Gurion University of the Negev
3Department of Computer Science, Bar-Ilan University. Corre-
spondence to: Sivan Sabato <sabatos@mcmaster.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

able, due to inherent limitations of the distribution (Pleiss
et al., 2017; Kleinberg et al., 2017; Menon & Williamson,
2018; Wang et al., 2024), as well as practical constraints.
It is thus necessary to be able to quantify the deviation
from fairness of a given classifier. In addition, often the
classifier is proprietary (Dastin, 2022; Grandinetti, 2023)
and thus is not directly accessible for auditing. In other
cases, individual-level data that is required for auditing is
missing or insufficient. For instance, a health insurance com-
pany may use a proprietary classifier to decide on coverage
or on premium rates (Kafuria, 2022). Sabato & Yom-Tov
(2020) showed that for binary classifiers, it is possible to
provide fairness auditing without individual-level data, us-
ing only population-level information on the frequencies of
positive predictions and of true positive labels in each sub-
population, where a sub-population is the group of individ-
uals who have the same value of the protected attribute(s).
They considered fairness in the sense of equalized odds
(Hardt et al., 2016), which defines a binary classifier as fair
if its false positive rate and its false negative rate are each
the same across all sub-populations. They proposed to quan-
tify the deviation from equalized odds using a measure that
we will henceforth call Disparate Conditional Prediction
(DCP). DCP is the fraction of the population for which the
classifier predicts with conditional prediction probabilities
that differ from the closest common baseline.

The fairness notion of equalized odds was originally stud-
ied for binary classifiers. However, interest in fairness for
multiclass classifiers has gained traction in recent years (see,
e.g. Alghamdi et al., 2022; Rouzot et al., 2022; Wang et al.,
2024). In multiclass scenarios, the multiclass equalized odds
criterion measures any differences in conditional prediction
probabilities between sub-populations. This includes not
only the difference in the rate of correct predictions as in
the binary case, but also the types of prediction mistakes.
For instance, if a patient’s heart attack is misdiagnosed as
an anxiety attack (which may mean the patient is denied
care), this is significantly different than being misdiagnosed
as a stroke (which may lead to delayed care). If some sub-
populations incur more of a certain type of misdiagnosis
error, this could indicate bias in diagnosis, as well as lead to
undesired differences in treatment.

In this work, we study the auditing of multiclass classi-
fiers for deviation from multiclass equalized odds, using
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a natural generalization of DCP. DCP is different from
other commonly used measures of deviation from equal-
ized odds, such as the difference or ratio of equalized odds
(e.g., Alghamdi et al., 2022; Wang et al., 2024), in that it
has a consistent interpretable meaning as a fraction of the
population, regardless of the number of protected attribute
values, the number of classes, or the degree of class imbal-
ance. Thus, DCP is useful for interpretably auditing and
comparing classifiers. This is contrasted with the standard
use of differences or ratios, which produces undesirable
artifacts, such as discounting differences in rare labels, lack
of normalization or boundedness, and lack of differentiation
between classifiers with different degrees of bias. The quan-
tifiable interpretation of the DCP measure ensures that it
does not suffer from similar issues.

It was shown in Sabato & Yom-Tov (2020) that the DCP of a
given binary classifier can be calculated efficiently using the
confusion matrices of this classifier in each sub-population.
When the confusion matrices are not available as discussed
above, there exists an efficient procedure for deriving a
lower bound on the value of DCP given population-level
frequencies. This lower bound can be used to identify classi-
fiers that treat a high fraction of the population unfairly, with-
out direct access to the classifier. In the case of multiclass
classifiers, efficient procedures for calculating DCP are un-
known, as this may be computationally intractable. Thus,
we propose procedures to upper-bound and lower-bound
the DCP of a multiclass classifier, given the conditional
confusion matrices of the classifier for each sub-population,
as well as given only population-level frequencies.

The upper bounds are obtained using local minimization
procedures. The minimization problems are constrained,
non-smooth and non-convex, and their objective functions
have regions with high gradients, which is challenging nu-
merically. As it is known that non-smooth functions are
challenging for gradient-based algorithms, we first handle
the non-smoothness, caused by a maximum term over sev-
eral concave functions, by splitting the functions into their
smooth parts, and adding more constraints to the existing
ones to account for that. Then, we replace the concave func-
tions in the constraints with linear approximations, and the
minimization is obtained via sequential solutions of standard
linear programming (LP) problems, which have available
and rather efficient solution routines (Hall et al., 2023). The
LP solvers efficiently handle the constrained minimization
at each step, even when the constraint matrices include large
numbers because of the large gradients. As the problem
is highly non-convex, the sequential minimization reaches
local minima.

We report experiments on several data sets, showing that the
gap between the upper and lower bounds, for both scenarios,
are usually quite small, indicating that the optimization

procedures provide useful estimates. These estimates can
be used to identify classifiers that behave differently on
different protected sub-populations.

Paper structure. Section 2 discusses related work. Pre-
liminaries are provided in Section 3. In Section 4, we
present the DCP measure and extend it to multiclass clas-
sifiers. Section 5 provides methods for calculating upper
and lower bounds for DCP for multiclass classifiers when
the conditional confusion matrices for all sub-populations
are known. In Section 6, we consider the case where these
matrices are unknown, using only population-level frequen-
cies. Experiments are reported in Section 7. We conclude in
Section 8. Some technical details are deferred to appendices.

2. Related Work
Fairness for multiclass classification has been gaining inter-
est in recent years. Denis et al. (2024) studied multiclass
fairness with demographic parity. Alghamdi et al. (2022)
use model projection for multiclass equalized odds. Putzel
& Lee (2022) propose post-processing techniques for obtain-
ing fairness in multiclass classification for various fairness
notions. Rouzot et al. (2022) propose fairness scoring sys-
tems for multiclass classification. Wang et al. (2024) study
the fundamental limits of fairness in multiclass classifiers,
under several fairness notions, including equalized odds.

Sabato & Yom-Tov (2020) studied estimating the
(un)fairness of a classifier, a crucial task in many appli-
cations (Bellamy et al., 2019). They proposed the new DCP
measure for binary classifiers, showed that it is easy to cal-
culate using the confusion matrices for each sub-population,
and provided methods for lower-bounding this measure in
the absence of individual label data, using population-level
frequencies. Several other works have studied fairness audit-
ing in the absence of individual information about protected
attributes (e.g., Awasthi et al., 2021; Fabris et al., 2023; Cor-
nacchia et al., 2023). Fairness auditing has also been studied
in specific applications, including tax auditing algorithms
(Black et al., 2022), visual systems (Goyal et al., 2022), and
candidate rankings (Roth et al., 2022).

Many works use some relaxation of equalized odds to al-
low learning or studying near-fair classifiers. However,
there is not a single agreed-upon relaxation, in the binary
or the multiclass case. For instance, Donini et al. (2018);
Jung et al. (2021); Xue (2023); Wang et al. (2024) use a
difference-based formulation, while Calmon et al. (2017)
and Alghamdi et al. (2022) use a ratio-based one. In Xue
(2023), the sum of the differences is used, while in Wang
et al. (2024), the maximum is used. In this work, we study
a natural extension to of the interpretable DCP measure of
Sabato & Yom-Tov (2020) to multiclass classification.
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Our work partly falls within the realm of fairness auditing
using only aggregate statistics, without assuming access
to the classifier. The challenge of auditing fairness using
limited information has received significant attention in
recent years, as evident, for example, in (Pinzón et al., 2024;
Wang et al., 2021). Our work is unique, in that it is the first,
to our knowledge, to address the multiclass setting.

3. Preliminaries
We consider a multiclass classification problem with k pos-
sible labels, in which each individual in the population has
a true label in the label set Y ≡ {1, . . . , k}. Fairness is
considered with respect to some protected attribute, such
as race, state of residence or age. A value of the attribute,
which can be multi-valued, is assigned to each individual.
If there is more than one protected attribute, it can be sub-
stituted for a single attribute which is the Cartesian product
of all protected attributes. A sub-population is the subset
of the population that includes all the individuals with the
same value of the protected attribute.

The object of study is an existing classifier, denote it C,
which maps each individual from the population to a pre-
dicted label, which may be different from its true label. We
do not make any assumptions about the way the classifier is
generated or the classification model. For a given C, denote
by D the uniform distribution over the population of the
triplets of true label, predicted label, and protected attribute
value of individuals. A random triplet drawn according to
D is denoted by (Y, Ŷ , A), where Y ∈ Y is the true label
of the individual, Ŷ ∈ Y is the label predicted by C for this
individual, and A ∈ A is the individual’s protected attribute
value, where A is the set of possible values. Denote the
probability of an event E according to D by P[E].

We define the following notation for properties of D: The
frequency of each sub-population in the distribution is
wa := P[A = a]; The vector of frequencies is w =
(wa)a∈A. The proportion of true label y ∈ Y in sub-
population a ∈ A is πy

a := P[Y = y | A = a]; The vector
of these proportions is πa := (πy

a)y∈Y . The proportion
of predicted label y ∈ Y by classifier C in sub-population
a ∈ A is p̂ya := P[Ŷ = y | A = a]; The vector of these
proportions is p̂a := (p̂ya)y∈Y . The entries in the confusion
matrix of the classifier C on a sub-population a ∈ A are
denoted by ∀y, ŷ ∈ Y, αyŷ

a := P[Ŷ = ŷ | Y = y,A = a].
Throughout this work, the value of a conditional probability
expression in which the probability of the condition is zero
is treated as zero. Denote the confusion matrix of C on a sub-
population a by Ma := (αyŷ

a )y,ŷ∈Y . Denote the indexed
set of all such confusion matrices by MA := {Ma}a∈A.
Denote row y in Ma by αy

a := (αyŷ
a )ŷ∈Y .

Denote the k-simplex by ∆k := {v ∈ Rk
+ | ∥v∥1 = 1}.

The set of matrices whose rows are in the simplex over Y is
∆k×k := {X := (xyŷ)y,ŷ∈Y | ∀y ∈ Y, (xyŷ)ŷ∈Y ∈ ∆k}.
By definition, the classifier C satisfies the following:

∀a ∈ A it holds that Ma ∈ ∆k×k and MT
aπa = p̂a. (1)

The fairness notion of equalized odds (Hardt et al., 2016),
originally defined for binary classification, was later gen-
eralized to multiclass classifiers. We use the term-by-term
multiclass equalized odds criterion (Putzel & Lee, 2022; Al-
ghamdi et al., 2022), which requires that for each y, ŷ ∈ Y ,
αyŷ
a ≡ P[Ŷ = ŷ | Y = y,A = a] is the same across all

a ∈ A. Equivalently, all the matrices in MA are the same.
Note that the same definitions can be used also for relaxed
multiclass equalized odds criteria, such as those that dis-
tinguish sensitive and insensitive labels (see, e.g. Rouzot
et al., 2022). This can be achieved by mapping Ŷ condi-
tioned Y = y to a smaller set of predicted labels, where
the mapping can depend on y, and then recalculating the
distribution properties provided above. All the methods and
results below are valid for the resulting transformation.

4. The DCP Measure for Multiclass Classifiers
Recall that the distribution D is determined by the given
classifier C. Denote the conditional distribution of D given
the attribute value A = a, and the true label Y = y by Dy

a.
The binary DCP measure is based on modeling each Dy

a as
a mixture of two conditional distributions: a global baseline
distribution, which is the same for all sub-populations a and
represents the baseline behavior, and a local nuisance dis-
tribution, which can be different for each a and represents
the deviation from this baseline. For a ∈ A, y ∈ Y , let
ηya ∈ [0, 1] be the probability conditioned on A = a, Y = y
that Ŷ is drawn according to the nuisance distribution.
DCP(C) is defined as the fraction of the population for
which the local nuisance conditional distributions are used
by the classifier instead of the global baseline distribution.
Since the baseline conditional distribution is unobserved, it
is taken to be the one that results in the minimal possible
DCP. Formally, for a given classifier C with the distribution
D, and letting ηa := (ηya)y∈Y ,

DCP(C) = min
{ηa}

∑
a∈A

waπ
T
a ηa, (2)

where the minimum is taken over {ηa}a∈A that are consis-
tent with D; that is, such that there exist a baseline distribu-
tion Dy

b and nuisance distributions {N y
a }y∈Y,a∈A such that

for each y ∈ Y, a ∈ A, Dy
a = (1− ηya)D

y
b + ηyaN y

a . If the
classifier satisfies equalized odds, then the distributions Dy

a

are the same for all a ∈ A, in which case the decomposition
holds by setting ηya = 0 for all y ∈ Y, a ∈ A and setting
the baseline distribution for y to Dy

a for an arbitrary a. This
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Figure 1: The function η(a, b).

gives DCP(C) = 0, as expected. Sabato & Yom-Tov (2020)
show that for binary classifiers, where Y = {0, 1},

DCP(C) = DCP(MA,w,π) := (3)∑
y∈Y

min
α

y(1−y)
b ∈[0,1]

∑
a∈A

waπ
y
aη(α

y(1−y)
b , αy(1−y)

a ),

where MA is determined by C, w,π are the population
properties, and η without subscripts denotes the function:

η(a, b) =


1− b/a b < a,

1− (1− b)/(1− a) b > a,

0 b = a.

(4)

η is illustrated in Figure 1. In the minimization in Eq. (3),
α
y(1−y)
b represent conditional prediction rates for the base-

line distribution. More generally, we denote the conditional
probability of predicting ŷ given true label y under the base-
line distribution by αyŷ

b . Sabato & Yom-Tov (2020) observe
that since a 7→ η(a, b) is piecewise concave on the intervals
[0, b] and [b, 1] (see Figure 1), it suffices to minimize each
of the terms in Eq. (3) over αy(1−y)

b ∈ {αy
a}a∈A ∪ {0, 1}.

We first provide a formulation of DCP(MA,w,π) for mul-
ticlass classifiers.
Theorem 4.1. For multiclass classification, Eq. (2) implies

DCP(C) = DCP(MA,w,π) = (5)∑
y∈Y

min
αy

b ∈∆k

∑
a∈A

waπ
y
a max

ŷ∈Y
η(αyŷ

b , αyŷ
a ),

where αy
b := (αyŷ

b )ŷ∈Y .

Proof. In an analog to the derivation in Sabato & Yom-Tov
(2020), it is easy to see that for a given baseline distribution
with rates {αyŷ

b }y,ŷ∈Y ,

αyŷ
a = αyŷ

b (1− ηya) + νyŷa · ηya,

where νyŷa is the conditional probability of predicting ŷ
given true label y, under the nuisance distribution N y

a . From
Eq. (2), it follows that the optimal solution for νyŷa mini-
mizes ηya subject to

∀ŷ ∈ Y s.t. νyŷa ̸= αyŷ
b , ηya =

αyŷ
a − αyŷ

b

νyŷa − αyŷ
b

,

∀y ∈ Y, a ∈ A, ηya ≥ 0,

∀a ∈ A, (νy1a , . . . , νyka ) ∈ ∆k.

If αyŷ
a = αyŷ

b for all ŷ ∈ Y , then clearly ηya = 0. Otherwise,
the first constraint requires νyŷa = αyŷ

b + (αyŷ
a − αyŷ

b )/ηya .
Summing over ŷ, this implies

∑
ŷ∈Y νyŷa =

∑
ŷ∈Y αyŷ

b +

(
∑

ŷ∈Y αyŷ
a −

∑
ŷ∈Y αyŷ

b )/ηya = 1. Thus, the last constraint
can be replaced by νyŷa ∈ [0, 1] for all ŷ ∈ Y . Since the
derivative of the RHS of the first constraint is never zero,
the minimizer of ηya is obtained when one of the other con-
straints holds. That is, with an assignment of ν ŷya = 1 for
some a, ŷ, y such that αyŷ

a > αyŷ
b , or ν ŷya = 0 for some

a, ŷ, y such that αyŷ
a < αyŷ

b . It follows that there is some
ŷ ∈ Y such that

αyŷ
a > αyŷ

b and ηya =
αyŷ
a − αyŷ

b

1− αyŷ
b

= 1− 1− αyŷ
a

1− αyŷ
b

or

αyŷ
a < αyŷ

b and ηya =
αyŷ
a − αyŷ

b

−αyŷ
b

= 1− αyŷ
a

αyŷ
b

.

Moreover, for all ŷ ∈ Y , if αyŷ
a > αyŷ

b then ηa ≥ 1− 1−αyŷ
a

1−αyŷ
b

and if αyŷ
a < αyŷ

b then ηa ≥ 1− αyŷ
a

αyŷ
b

. It follows that

ηya = max
ŷ∈Y

max(1−1− αyŷ
a

1− αyŷ
b

, 1−αyŷ
a

αyŷ
b

) = max
ŷ∈Y

η(αyŷ
b , αyŷ

a ).

Eq. (5) thus follows.

It is easy to verify that Eq. (5) is equivalent to Eq. (3) for
binary classifiers, since for Y = {0, 1}, αyy

a = 1−α
y(1−y)
a

and the same for αb, and η(a, b) = η(1− a, 1− b).

For simplicity of notation, we henceforth treat w and π
as fixed and write DCP(MA). In the multiclass case,
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DCP(MA) is the solution of a non-convex constrained min-
imization problem. In the next section, we provide methods
for calculating a lower bound and an upper bound for this
quantity.

Note that in practice, in some cases, the properties of the
distribution D for C would be estimated from a limited
data set and so may deviate from the true properties for D.
However, since DCP is interpretable as a fraction of the
population, any inaccuracy in the estimation of D would
map to at most the same amount of inaccuracy in DCP.

5. Bounding the DCP of a Multiclass Classifier
We propose methods for calculating a lower bound and an
upper bound for DCP(MA). The lower bound is a simple
analytical formula. For y ∈ Y , define αy

A := {αy
a}a∈A and

DCPy(α
y
A) := min

αy
b ∈∆k

∑
a∈A

waπ
y
a max

z∈Y
η(αyŷ

b , αyŷ
a ). (6)

Then DCP(MA) =
∑

y∈Y DCPy(α
y
A). A lower bound

on DCPy can be derived as follows:

DCPy(α
y
A) = min

αy
b ∈∆k

∑
a∈A

waπ
y
a max

ŷ∈Y
η(αyŷ

b , αyŷ
a ) (7)

≥ min
αy

b ∈[0,1]k

∑
a∈A

waπ
y
a max

ŷ∈Y
η(αyŷ

b , αyŷ
a )

≥ min
αy

b ∈[0,1]k
max
ŷ∈Y

∑
a∈A

waπ
y
aη(α

yŷ
b , αyŷ

a )

= max
ŷ∈Y

min
x∈[0,1]

∑
a∈A

waπ
y
aη(x, α

yŷ
a ).

Due to the piecewise concavity of a 7→ η(a, b) on [0, b] and
[b, 1], it suffices to minimize each of the terms in Eq. (3)
over x ∈ {0, 1} ∪ {αyŷ

a }a∈A. Thus,

DCP(MA) ≥
∑
y∈Y

max
ŷ∈Y

min
x∈{0,1}∪{αyŷ

a }a∈A

∑
a∈A

waπ
y
aη(x, α

yŷ
a ).

This lower bound can be calculated in time O(|A|2k2).

To upper bound DCP(MA), we propose a local iterative
optimization approach on the objective function in Eq. (6),
which is constrained, non-smooth, and non-convex. One can
randomly initialize using a feasible solution. However, we
propose a more tailored approach at the end of this section.

Our optimization approach utilizes sequential LP solu-
tions, and is as follows. Given y ∈ Y , denote the matrix
H ∈ R|A|×k to include the entries ha,ŷ := αyŷ

a . Note
that the rows of H are in the simplex ∆k. The vector
w̃ ∈ [0, 1]|A| includes the entries w̃a := waπ

y
a . The opti-

mization variables are denoted by the vector α := αy
b ∈ Rk.

Denote the all-one vector of dimension d by 1d and the

Algorithm 1 Local minimization of DCPy via sequential
linear programming

Input: α(0),H, w̃,maxIter, ε
Output: The local minimizer α∗

for t = 0 to maxIter do
Define the LP approximation of Eq. (9) by computing
M1,M2, and v.
Define α̂ as the minimizer of the LP in Eq. (11).
Set α(t+1) = α(t)+µ(α̂−α(t)), where µ is obtained
using line search to ensure a reduction in Eq. (8).
If ∥e∥ < ε, stop.

end for
return the last iterate α(t).

identity matrix of dimensions d× d by Id. Our objective in
Eq. (5) and its constraints, is thus given by:

Minimize
α∈Rk

∑
a

w̃a max
ŷ

{η(αŷ, ha,ŷ)} (8)

s.t. 0 ≤ α ≤ 1,

⟨α,1k⟩ = 1.

To solve the problem, we observe that its structure resem-
bles a linear program (LP). That is, the objective is given
by an inner product, and the constraints are linear. The
only difference between an LP and Eq. (8) is the maximum
term over the η values inside the inner product. Hence,
to solve Eq. (8), we apply the sequential linear program-
ming approach (Nocedal & Wright, 2006), which iteratively
approximates Eq. (8) as a linear program and solves it.

First, we replace the maximum terms in the objective with
another variable vector c and additional constraints, follow-
ing Charalambous & Conn (1978):

Minimize
α∈Rk,c∈R|A|

⟨w̃, c⟩ (9)

s.t. 0 ≤ α, c ≤ 1,

⟨α,1k⟩ = 1,

η(αŷ, ha,ŷ) ≤ ca,∀ŷ ∈ [k],∀a ∈ A.

This problem is equivalent to Eq. (8), but has no maximum
operation. However, now we have non-linear constraints,
thus violating the definition of an LP. To correct this, we use
a local approximation of η (around an iterate α(t)) using the
Taylor series. Note that the function a 7→ η(a, b) is piece-
wise concave, non-negative, and smooth at (0, 1) except at
b, where it is minimized and equals zero. Therefore, we do
not expect the maximum over ŷ in the objective Eq. (8) to
fall on the discontinuity of η at b, except for extreme cases.
Hence, using a linear approximation we expect to get a good
local approximation of η().

The sequential linear programming approach calculates the
new iterate (α(t+1), c(t+1)) by solving an LP problem of an
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approximation of Eq. (9) around (α(t), c(t)). That is, given
an iterate (α(t), c(t)) we first approximate η by a linear
Taylor series in its first argument:

η(α+ϵ, b)−η(α, b) ≈ ∂η(α, b)

∂α
ϵ =


b
α2 ϵ α > b,
−(1−b)
(1−α)2 ϵ α < b,

0 α = b.

We now locally approximate Eq. (9) around an iterate α(t)

via the following LP problem:

Minimize
α∈Rk,c∈R|A|

⟨w̃, c⟩ (10)

s.t. 0 ≤ α, c ≤ 1,

⟨α,1k⟩ = 1,

va + Ja(α−α(t)) ≤ 1kca,∀a ∈ A,

where va ∈ Rk is a vector with the coordinates (va)ŷ =

η(a
(t)
ŷ , ha,ŷ) for all ŷ ∈ [k], and Ja ∈ Rk×k is a diagonal

Jacobian matrix s.t (Ja)ŷŷ =
∂η(a

(t)
ŷ ,ha,ŷ)

∂a . Bringing this
into a canonical form with a variable α = α(t) + e yields

Minimize
α∈Rk,c∈R|A|

⟨w̃, c⟩ (11)

s.t. 0 ≤ α, c ≤ 1,

⟨α,1k⟩ = 1,

M1c+M2α−M2α
(t) + v ≤ 0,

where M1 := −I|A| ⊗ 1k, M2 := [J1;J2; ...;J|A|] is the
stacking of all diagonal Jacobian matrices on top of each
other, and v := [v1; ...;v|A|] is the stacking of vectors.
Eq. (11) is an LP in a canonical form, which is solved itera-
tively. Note that M1 and M2 are highly sparse, which can
be exploited to easily solve large instances of the problem.
The resulting local optimization algorithm is given in Alg. 1.

A note on usage. By definition, the function η in Eq. (4) is
continuous in the open section (0, 1)2, but at the boundaries,
it is easy to see that η(0, 0) = 0, while limδ→0 η(δ, 0) = 1.
Furthermore, the derivatives of η when its first argument is
close to 0 or 1 can be very large, causing numerical difficul-
ties in the LP solvers. Thus, to avoid numerical instability,
we make sure that all entries of H are in [ε, 1− ε] (where
we used ε = 10−5) by replacing any value outside these
boundaries by the relevant boundary value and renormal-
izing. Note that since the input values in H are calculated
in practice based on finite data sets, values in H are al-
ready noisy representations of the true population values,
and so slightly changing them does not negatively affect the
correctness of the method.

Finding an initializing assignment A natural guess for an
initializing assignment α(0) is the weighted average of the
confusion matrices in MA. However, this does not take

the objective function into account. We propose instead
a greedy approach, in which the entries in the baseline
confusion matrix are optimized label-by-label, using the
fact that the binary problem is easy to minimize. In the first
iteration, all labels except for one are treated as the same
label, and optimal confusion matrix values for the first labels
are calculated. In each further iteration, one additional label
is separated, and the assignment for this label is optimized
given the assignments of the previous labels. This approach
is possible because DCP is monotonic under the merging
of labels. The full derivation and procedure are provided in
Appendix C. Our experiments in Section 7 demonstrate that
this method is superior to the averaging approach.

6. Best-case DCP without Confusion Matrices
We next consider the case of a classifier for which the con-
fusion matrices for each sub-population are not available,
either because the classifier is not accessible for testing
or because individual-level ground-truth data is missing or
insufficient. In this case, we assume, as in Sabato & Yom-
Tov (2020), access only to the frequencies of true and pre-
dicted labels in each sub-population, but not the conditional
probabilities. Formally, we do not have MA for the given
classifier C. We only have access to the population-level
frequencies (w, {(πa, p̂a)}a∈A).

If C is fair under multiclass equalized odds, then all the
matrices in MA must be identical. Thus, from Eq. (1),
there exists a single confusion matrix M ∈ ∆k×k such that
∀a ∈ A,MTπa = p̂a. If such a matrix does not exist and
the input frequencies are accurate, then C does not satisfy
the multiclass equalized odds criterion. Nonetheless, given
(w, {(πa, p̂a)}a∈A) for C, we would like to find the best-
case value of DCP for C, denoted minDCP. Formally,

minDCP((w, {(πa, p̂a)}a∈A)) := (12)

min{DCP(MA) | ∀a ∈ A,Ma ∈ ∆k×k,M
T
aπa = p̂a}.

Sabato & Yom-Tov (2020) show that minDCP can be cal-
culated exactly for binary classifiers. In the multiclass
case, we are not aware of an efficient algorithm for cal-
culating the exact value of minDCP. Instead, we pro-
vide below a local-minimization algorithm for DCP(MA)
under the constraints on MA, which results in an upper
bound for minDCP. This, combined with a lower bound
on minDCP, provides a limited range of possible values of
minDCP for the given classifier C.

To calculate the lower bound, observe that

DCP(MA) =
∑
y∈Y

min
αy

b ∈∆k

∑
a∈A

waπ
y
a max

z∈Y
η(αyŷ

b , αyŷ
a )

≥
∑
y∈Y

min
αyy

b ∈[0,1]

∑
a∈A

waπ
y
aη(α

yy
b , αyy

a ). (13)
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Each of the terms in the RHS is of the same form as the
terms in the definition of DCP for binary classification. The
RHS is a constrained minimization problem that can be
solved using the same methodology as in Sabato & Yom-
Tov (2020), providing a lower bound for minDCP.

We now turn to the local optimization algorithm for
minDCP. We use a sequential linear programming ap-
proach, similarly to our solution to Eq. (8) in Section 5.
First, we extend the notation of Eq. (8) to explicitly denote
the value of y ∈ Y: The matrix Hy ∈ R|A|×k is defined
such that hy

aŷ = αyŷ
a ; The vector w̃y ∈ [0, 1]|A| includes

the entries w̃y
a := waπ

y
a; The optimization variables are

denoted by the vectors αy := αy
b ∈ Rk. We replace the

maximum terms in the problem in Eq. (5) with the vectors
cy ∈ Rk, similarly to the transformation from Eq. (8) to
Eq. (9). The variables for the optimization problem are the
collection of the vectors and matrices

x = {α1,H1, c1, ...,αk,Hk, ck}, (14)

which amount to k2 + k2 · |A|+ k · |A| scalar unknowns in
total. We get the following new problem, which is equivalent
to the problem defined in Eq. (5), including its constraints:

Minimize
{αy},{Hy},{cy}

∑
y

⟨w̃y, cy⟩ (15)

s.t. 0 ≤ αy ≤ 1 ∀y ∈ [k],

0 ≤ Hy ≤ 1 ∀y ∈ [k],

0 ≤ cy ≤ 1 ∀y ∈ [k],

⟨αy, 1⟩ = 1 ∀y ∈ [k],

Hy1k = 1|A| ∀y ∈ [k],∑k
y=1 π

y
ah

y
a,ŷ = pŷa ∀ŷ ∈ [k], a ∈ [|A|].

η(αy
ŷ, h

y
a,ŷ) ≤ cya ∀y, ŷ ∈ [k], a ∈ [|A|],

Note that the objective in Eq. (15) is linear, and its con-
straints are linear as well, except the bottom ones involving
η(), similarly to Eq. (9). Also note that all of the linear
constraints are separable in y, except for the last one, which
introduces a coupling between the Hy of different y’s.

To solve the problem we again use the sequential linear pro-
gramming approach, as the structure of the problem again
resembles a linear program. Given the t-th iterate x(t) for
all the variables defined in Eq. (14), we first approximate η
by a linear Taylor series, this time in both of its arguments,
since now both are optimized. The function η(α, b) is linear
in b, hence the Taylor series is exact with respect to b, which
is appealing for our approach. However, minimizing the
objective with respect to both hy

a,ŷ and αy
a leads to the mini-

mal non-smooth points of η. These points are the singularity
points (see Fig. 1), where η is not approximated well by a
linear function. This results in a slow convergence of the
sequential LP algorithm. To solve this, we split η and define

0.15 0.20 0.25 0.30 0.35 0.40 0.45
α

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

η1(α,b)
η2(α,b)
η(α,b) = max(η1(α,b),η2(α,b))
η1(α0,b)
η2(α0,b)
Linear approx. of η1
Linear approx. of η2
Minimum of η
Minimum of linear approx.

Figure 2: The linear approximation of η(α, b) using the split
to η1 and η2 around α0 = 0.35, for a fixed b = 0.25.

it as the maximum between the two smooth functions:

η(α, b) = max {η1(α, b), η2(α, b)} , (16)

where η1(α, b) = 1 − b
α and η2(α, b) = 1 − 1−b

1−α . This
split is an alternative formulation to the definition of η in
Eq. (4), only now the singularity point is replaced with a
maximum, and can be treated in the same way we treat the
maximization over all terms involving η using sequential
LP. Figure 2 shows the independent linearization of the two
terms after the split and the piece-wise linear approximation
of the non-smooth function in our objective. Overall, the
solution of the Eq. (15) is obtained after the split using
sequential LP. More details are given in Appendix D.

7. Experiments
We report experiments demonstrating the performance of
the methods proposed above, for the case of known as well
as unknown confusion matrices (Section 7.1 and Section
7.2), respectively. We show that in most cases, the ratio
between the lower bound and the upper bound, in both types
of experiments, is close to 1, indicating that the methods pro-
duce fairly accurate estimates. Code is provided at https:
//github.com/sivansabato/DCPmulticlass.

7.1. Bounding the DCP with Known Confusion
Matrices

We report the results of calculating an upper bound and a
lower bound on the DCP(MA) of a multiclass classifier
given MA. As discussed above, if the confusion matrices in
MA are known up to some accuracy of D, then DCP(MA)
will have at least the same accuracy, as a direct result of its
definition as a fraction of the population.

We compared our proposed local-optimization approach for
calculating an upper bound, described in Section 5, to other
approaches for finding a feasible low-value assignment for
Eq. (5). We tested the following alternatives: (1) Average:
the weighted average of the sub-population confusion ma-
trices; (2) Greedy: the greedy initialization procedure pro-
posed in Section 5; (3) Average+LM and (4) Greedy+LM:

7
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initializing with the corresponding method, then running the
local optimization procedure. Our results below show that
our approach, Greedy+LM, has the best performance. We
also report the ratio between the best upper bound and the
lower bound, calculated according to Eq. (7). A ratio close
to 1 indicates that in this case, the two bounds are tight.

For these experiments, we selected data sets on individuals,
which are mostly categorical, and which include several
multi-valued attributes that can be used as a predicted label
and as a protected attribute. First, we used the US Census
data set (Dua & Graff, 2019) to generate multiclass classi-
fiers to predict each of the individual attributes that have
between 3 and 10 values. The protected attribute was the
state of work. We tested our methods with three different
types of classifiers: a decision tree and a nearest neighbor
classifier, using standard Matlab libraries, as well as a classi-
fier based on a standard fully connected neural network. The
latter used two layers of size 64 and 32 neurons, with ReLU
activation. The network was implemented in PyTorch, and
trained with the AdamW optimizer, with a learning rate of
0.001, and a batch size of 256, for 4 epochs.

Table 1, as well as Table 3 and Table 5 in Appendix A, list
the DCP lower bound calculated for each of these classifiers
given their confusion matrices, the upper bound obtained
by each of the tested upper bound methods, and the ratio
between the smallest upper bound and the lower bound. In
some of the experiments, the lower bound is equal to the
upper bound, giving the exact value of the DCP of this
classifier. In all of the experiments except for a single case,
our proposed approach provides the tightest upper bound.
The ratio between the upper bound and the lower bound
ranges from 1.00 to 2.53, showing that for these classifiers,
the DCP can be estimated quite well. In most cases, the
DCP for decision tree classifiers obtained better accuracy
ratios.

Second, we used data about births in the United States (CDC,
2017), which provides detailed information about each birth
that occurred during 2017. The data set includes approxi-
mately 3.8 million data points and 50 attributes. Using only
attributes that are known before the labor, we generated
three classifiers that attempt to predict the type of labor out
of the five possible options (e.g., spontaneous, Cesarean): a
decision tree (error 30.8%), a k-Nearest Neighbor classifier,
where k was set to 9 using parameter tuning (error 24.6%),
and a 2-layer neural network (error 22.43%). This allows
studying a high-error regime for the estimation of DCP.
We estimated the DCP of each classifier, with respect to
different protected attributes. Table 1 (bottom), and Table
4, Table 6 in Appendix A, report the DCP lower bound and
upper bounds relative to each of these protected attributes.
Here too, our proposed approach provides the tightest up-
per bounds. The ratio between the upper bound and the

Table 1: DCP with known confusion matrices, decision trees;
US Census (top), Natality (bottom). For US Census, each row
corresponds to a different classifier. Its error is indicated in the
“Error” column. “Lower bound” is the lower bound calculated
for DCP using our method. The upper bounds are the values
obtained by each of the compared methods for minimizing the
DCP objective. “Best ratio” indicates the ratio between the best
(lowest) upper bound and the lower bound. A ratio of 1 indicates
that the bounds are both tight. For Natality, all the rows report
the same classifier, and each row calculates DCP with respect to a
different protected attribute.

# Labels Error Lower Upper Bounds Best
Bound Average Greedy Average+LM Greedy+LM Ratcio

3 12.15% 5.64% 29.14% 9.26% 15.13% 8.27% 1.47
3 5.39% 4.28% 33.44% 7.35% 17.47% 5.47% 1.28
3 4.03% 3.84% 39.16% 5.92% 20.43% 3.84% 1.00
3 4.85% 4.71% 35.83% 6.44% 12.85% 4.74% 1.01
3 3.32% 3.32% 47.23% 5.25% 23.51% 3.32% 1.00
3 1.63% 1.63% 57.34% 6.95% 13.45% 1.63% 1.00
3 1.70% 1.69% 51.85% 6.75% 17.53% 1.70% 1.00
3 1.94% 1.94% 59.66% 4.52% 6.61% 1.94% 1.00
3 14.11% 6.01% 29.91% 10.00% 12.02% 8.09% 1.35
4 3.81% 2.29% 16.97% 10.34% 4.04% 2.29% 1.00
5 5.78% 2.28% 12.33% 42.96% 5.32% 3.95% 1.73
5 11.51% 4.29% 29.05% 32.91% 22.88% 7.47% 1.74
6 0.77% 0.77% 19.66% 28.34% 14.15% 0.77% 1.00
8 22.36% 8.87% 82.06% 40.07% 29.24% 19.74% 2.22
9 22.07% 6.43% 79.64% 15.13% 27.63% 8.12% 1.26

Protected Lower Upper Bounds Best
Attribute Bound Average Greedy Average+LM Greedy+LM Ratio
Attendant 1.91% 14.59% 2.34% 2.10% 2.08% 1.09

Father Race 0.92% 19.75% 1.50% 1.32% 1.28% 1.40
Mother Race 0.65% 13.43% 1.31% 1.14% 1.12% 1.71

Payer 1.74% 24.15% 1.96% 1.97% 1.89% 1.09

lower bound is between 1.00 and 1.58, showing that here
too, DCP is estimated to a high accuracy.

7.2. Bounding minDCP without Confusion Matrices

In the second set of experiments, we used only the
population-level frequencies (w, {(πa, p̂a)}a∈A) to esti-
mate minDCP. We ran the local optimization procedure
provided in Section 6 to find an upper bound on minDCP,
and compared this result to the lower bound Eq. (13), to
provide a range of possible values for minDCP. This range
can indicate whether the population-level frequencies point
to a possible, or definite, large deviation from multiclass
equalized odds, as measured by the DCP.

First, we calculated the local minimizer of minDCP for
the same two labeled data sets that were tested in Section
7.1, this time without access to the confusion matrices. We
then compared the obtained value to the actual ranges of
DCP that were calculated using the confusion matrices in
Section 7.1. Table 2 provides results for the US Census data
set and the Natality data set. In all but a single case the local
optimizer of minDCP was lower than the true DCP range
of the classifier, showing that this value is indeed a relevant
best-case value for DCP with unknown confusion matrices.

Next, we report two experiments for which we do not have
ground truth labels to compare to, to demonstrate how this
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Table 2: Comparing the output of the minDCP local optimizer
(LO) to the DCP range calculated for US Census classifiers (top)
and Natality (bottom). The ranges are derived from the results of
Table 1, Table 3 and Table 4.

US Census Decision tree Nearest Neighbor

# Labels minDCP LO true DCP minDCP LO true DCP

3 1.64% 5.64%− 8.27% 2.70% 6.08%− 10.18%
3 1.01% 4.28%− 5.47% 2.97% 5.76%− 9.28%
3 0.92% 3.84% 2.84% 6.71%− 10.68%
3 1.05% 4.71%− 4.74% 2.78% 6.46%− 8.24%
3 0.76% 3.32% 2.40% 6.30%− 10.08%
3 0.46% 1.63% 2.74% 6.51%− 8.95%
3 0.70% 1.69%− 1.70% 2.50% 6.33%− 9.33%
3 0.58% 1.94% 2.24% 6.63%− 9.49%
3 2.04% 6.01%− 8.09% 2.32% 5.39%− 6.98%
4 2.17% 2.29% 3.74% 3.60%− 9.75%
5 1.79% 2.28%− 3.95% 2.82% 8.95%− 9.57%
5 1.81% 4.29%− 7.47% 3.73% 10.98%− 13.86%
5 – – 6.10% 9.24%− 18.73%
5 – – 5.48% 8.64%− 19.99%
6 3.20% 0.77% 6.80% 10.25%− 20.98%
8 4.24% 8.4%− 19.74% 5.91% 9.66%− 24.47%
9 3.15% 6.43%− 8.12% 5.92% 10.30%− 17.35%

Natality Decision tree k-Nearest-Neighbors

Protected Attribute minDCP LO true DCP minDCP LO true DCP
Attendant 0.75% 1.91%− 2.08% 0.74% 1.80%− 1.82%

Father Race 0.26% 0.92%− 1.28% 0.32% 1.17%− 1.18%
Mother Race 0.12% 0.65%− 1.12% 0.14% 0.61%− 0.62%

Payer 0.05% 1.74%− 1.89% 0.59% 1.73%− 1.75%

method can be used for studying various empirical ques-
tions. In the first experiment, we used data about the general
elections in the UK from 1918 to 2019 (Watson et al., 2020).
We studied the changes in voting patterns between elections
by studying the minDCP value of a hypothetical classifier
that would predict the vote of individuals in one general
election to be the same as their vote in the previous general
elections (ignoring the change in population between elec-
tions). We studied DCP when the protected attribute was
the geographic region of the voters, as reported in the data
set. A high DCP value of such a classifier would indicate
a possibly large difference between voting pattern changes
across regions. Figure 3 shows the value of minDCP by
election year, revealing clear differences between different
periods of the last century.1 The full results are reported
in Table 9 in the appendix. In Appendix B, we report an
additional experiment, on a US education data set.

8. Conclusion
In this work, we provided a definition and bounding meth-
ods for the DCP measure for multiclass classifiers. This
provides a new tool for auditing fairness in multiclass clas-
sification. Because DCP is interpretable as a fraction of the
population, the estimation methods that we proposed can be
used to provide a clear evaluation of classifiers’ deviation

1Note the spike in Figure 3 for Oct. 1974 elections; they were
unusual as they were held in the same year as the previous elections,
and resulted in a significant political change (Roe-Crines, 2021).
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Figure 3: Calculated value minDCP for each election year
in the UK elections dataset, where the value is reported for
the classifier that attempts to predict this year’s election
result using the results of the previous election.

from equalized odds, even when there are many classes,
protected attribute values, or highly imbalanced data sets.

Impact Statement
This paper studies the auditing of classifiers for fairness in
the sense of multiclass equalized odds. Identifying classi-
fiers that may violate fairness criteria is an important task
that can help advance societal desiderata. Nonetheless, such
use must always consider the suitability of the fairness cri-
terion to the specific classification task. In addition, in
some cases the methods that we propose may provide loose
bounds for the studied criterion. These cases can be iden-
tified by observing a large gap between the upper bound
and the lower bound. In such cases, care must be taken
when making operative decisions based on the results of the
methods.
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A. Deferred Experiment Results
Table 3—Table 9 below provide the remaining result of the experiments which are described in Section 7.

Table 3: Bounding the DCP for multiclass classifiers with known confusion matrices; US Census data set with nearest
neighbor classifiers. Table columns as in Table 1.

# Error Lower Upper Bounds Best
Labels Bound Average Greedy Average+LM Greedy+LM Ratio

3 27.61% 6.08% 18.67% 12.27% 11.28% 10.18% 1.67
3 28.66% 5.76% 17.04% 10.57% 10.44% 9.28% 1.61
3 27.15% 6.71% 19.46% 11.49% 12.04% 10.68% 1.59
3 24.80% 6.46% 19.06% 10.71% 10.38% 8.24% 1.28
3 24.81% 6.30% 19.51% 11.28% 12.38% 10.08% 1.60
3 23.93% 6.51% 19.36% 10.56% 11.49% 8.95% 1.38
3 23.75% 6.33% 19.62% 10.40% 12.01% 9.33% 1.47
3 23.84% 6.63% 18.77% 10.58% 11.35% 9.49% 1.43
3 19.51% 5.39% 27.54% 10.11% 11.86% 6.98% 1.29
4 27.33% 6.59% 56.32% 10.87% 30.02% 9.75% 1.48
5 14.09% 8.95% 72.84% 13.10% 33.99% 9.57% 1.07
5 18.66% 10.98% 64.83% 14.09% 30.61% 13.86% 1.26
5 49.69% 9.24% 44.65% 20.90% 28.76% 18.73% 2.03
5 53.58% 8.64% 38.75% 24.09% 27.54% 19.99% 2.31
6 51.59% 10.25% 54.57% 24.56% 34.50% 20.98% 2.05
8 42.84% 9.66% 69.98% 39.24% 46.36% 24.47% 2.53
9 39.41% 10.30% 93.53% 22.68% 34.42% 17.35% 1.69

Table 4: Bounding the DCP for multiclass classifiers with known confusion matrices; Natality data set with a k-Nearest-
Neighbor classifier. Table columns as in Table 1.

Test Lower Upper Bounds Best
Bound Average Greedy Average+LM Greedy+LM Ratio

Attendant 1.80% 28.53% 1.82% 1.82% 1.82% 1.01
Father Race 1.17% 46.54% 1.20% 1.18% 1.18% 1.01
Mother Race 0.61% 21.47% 0.69% 0.62% 0.62% 1.02

Payer 1.73% 54.61% 1.79% 1.76% 1.75% 1.01
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Table 5: Bounding the DCP for multiclass classifiers with known confusion matrices; US Census data set with the neural
network-based classifiers. Table columns as in Table 1.

# Error Lower Upper Bounds Best Ratio
Labels Bound Average Greedy Average+LM Greedy+LM

3 12.76% 2.36% 20.19% 3.46% 3.04% 3.03% 1.28
3 12.12% 1.43% 23.16% 2.06% 2.75% 1.84% 1.28
3 8.95% 1.27% 18.89% 2.05% 1.75% 1.75% 1.38
3 8.96% 1.52% 16.63% 1.94% 1.83% 1.77% 1.16
3 6.04% 2.42% 22.88% 3.52% 2.96% 2.96% 1.22
3 8.26% 0.86% 34.80% 3.53% 2.24% 2.24% 2.60
3 13.31% 0.01% 68.05% 27.12% 0.01% 0.02% 2.45
3 8.07% 0.63% 24.58% 1.41% 0.79% 0.78% 1.23
3 10.39% 1.53% 40.93% 1.56% 2.06% 1.56% 1.02
4 4.08% 0.93% 41.29% 4.07% 2.51% 2.17% 2.33
5 4.09% 0.78% 69.65% 12.97% 1.89% 0.99% 1.28
5 5.40% 2.44% 66.73% 41.57% 3.18% 2.53% 1.04
5 17.48% 3.55% 46.89% 4.35% 4.24% 4.05% 1.14
5 21.35% 6.02% 64.82% 8.01% 8.86% 7.67% 1.27
6 17.76% 2.49% 66.61% 6.01% 4.30% 3.67% 1.47
8 26.69% 2.64% 68.10% 14.22% 5.66% 4.28% 1.62
9 18.19% 2.95% 80.76% 3.13% 4.15% 3.12% 1.06

Table 6: Bounding the DCP for multiclass classifiers with known confusion matrices; Natality data set with the neural
network classifier. Table columns as in Table 1.

Protected Lower Upper Bounds Best
Attribute Bound Average Greedy Average+LM Greedy+LM Ratio
Attendant 1.03% 26.25% 1.05% 1.04% 1.04% 1.01

Father Race 0.67% 50.53% 0.73% 0.67% 0.67% 1.01
Mother Race 0.58% 13.25% 0.58% 0.58% 0.58% 1.01

Payer 1.21% 55.86% 1.21% 1.21% 1.21% 1.00
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Table 7: Comparing the output of the minDCP local optimizer (LO) to the DCP range calculated for US Census classifiers
for the neural network classifiers. The ranges are derived from Table 5.

US Census Neural Network
# Labels minDCP LO true DCP

3 0.97% 2.36% – 3.03%
3 0.63% 1.43% – 1.84%
3 0.68% 1.27% – 1.75%
3 0.53% 1.52% – 1.77%
3 1.23% 2.42% – 2.96%
3 0.56% 0.86% – 2.24%
3 0.01% 0.01%
3 0.26% 0.63% – 0.78%
3 0.90% 1.53% – 1.56%
4 0.47% 0.93% – 2.17%
5 0.70% 0.78% – 0.99%
5 1.36% 2.44% – 2.53%
5 1.09% 3.55% – 4.05%
5 3.16% 6.02% – 7.67%
6 0.80% 2.49% – 3.67%
8 1.77% 2.64% – 4.28%
9 1.63% 2.95% – 3.12%

Table 8: Comparing the output of the minDCP local optimizer (LO) to the DCP range calculated for the Natality data set for
the neural network classifier. The ranges are derived from Table 6.

Natality Neural Network
Protected Attribute minDCP LO true DCP

Attendant 0.15% 1.03% – 1.04%
Father Race 0.24% 0.67%
Mother Race 0.10% 0.58%

Payer 0.13% 1.21%
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Table 9: Calculated minDCP local optimizers for the UK elections data. In each line, the election data from the listed
baseline year was used to predict the vote in the listed prediction year.

Election years

Baseline Prediction # protected attribute values minDCP LO
1918 1922 12 6.36%
1922 1923 13 8.57%
1923 1924 13 3.26%
1924 1929 13 4.92%
1929 1931 13 5.14%
1931 1935 13 3.11%
1935 1945 13 5.69%
1945 1950 12 4.75%
1950 1951 12 3.79%
1951 1955 12 5.54%
1955 1959 12 2.40%
1959 1964 12 2.16%
1964 1966 12 1.37%
1966 1970 12 1.32%
1970 1974 (Feb) 12 2.69%
1974 (Feb) 1974 (Oct) 12 6.28%
1974 (Oct) 1979 12 3.67%
1979 1983 11 3.23%
1983 1987 12 1.43%
1987 1992 12 4.21%
1992 1997 11 5.25%
1997 2001 12 5.25%
2001 2005 12 4.83%
2005 2010 12 5.26%
2010 2015 12 3.96%
2015 2017 12 5.54%
2017 2019 11 5.24%
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B. An Additional Experiment
In this experiment, we studied a data set on US education (USDA Economic Research Service, 2021), which provides the
percentage of various levels of education attainment (e.g., high school, college) in each US state in each decade. Here too,
we calculated minDCP for a hypothesized classifier that predicts the education level to be distributed the same in each state
in each decade. The protected attribute as set to be the state. Table 10 provides our results. Here, we found no significant
differences in the DCP of change patterns in different decades, indicating a fairly constant behavior of this measure of
divergence between states. This type of analysis can be used for exploratory research on social questions.

Table 10: Calculated minDCP upper bounds for the US education data set.

Year

Baseline Predicted minDCP upper bound
1970 1980 2.38%
1980 1990 2.94%
1990 2000 2.22%
2000 2015-2019 2.32%

C. The Greedy Initialization Procedure
We provide here the full details of the greedy initialization procedure presented in Section 5.

Let f := {fy}y∈Y , where fy : Y → Y , be label mappings conditioned on the true label y, which can map some predicted
labels to the same transformed label. For a given classifier C with distribution D, let C[f ] be a hypothetical classifier that
predicts fy(ŷ) whenever the true label is y and C would predict ŷ. For a given distribution P over (Y, Ŷ , A), let P[f ] be the
distribution of (Y, fY (Ŷ ), A). Then, D[f ] is the distribution determined by C[f ]. It is easy to see that DCP(C[f ]) ≤ DCP(C).
This is because the equality Dy

a = (1−ηya)D
y
b+ηyaN y

a implies that also Dy
a[f ] = (1−ηya)D

y
b [f ]+ηyaN y

a [f ]. Thus, minimizing
over ηya for C[f ] can never result in a solution of a higher value than minimizing for C. We use this observation to devise an
iterative greedy optimization procedure.

For i ∈ [k − 1], let fi := (fi,y)y∈Y be an indexed set of label mappings, fi,y : Y → Y , defined as follows. Let yi be
the i’th label in Y that is different from y. Denote Yi = {y, y1, . . . , yi}. Note that Yk−1 = Y . For i ∈ [k − 2], define
fi,y(j) = j · I[j ∈ Yi]+yi · I[j /∈ Yi]. Note that fi,y can be calculated from the image of fi−1,y . Hence, C[fi] is a refinement
of C[fi−1]. In addition, fk−1,y is the identity. Thus, the following monotonicity property holds:

DCP(C[f1]) ≤ DCP(C[f2]) ≤ . . . ≤ DCP(C[fk−1]) = DCP(C).

Moreover, DCP(f1) can be calculated exactly as in case of binary classification, since the range of f1 includes only y
and y1. Based on these observations, we define a greedy procedure for calculating an assignment for αy

b to initialize the
minimization in Eq. (5).

Let αy
A[i] be row y of the confusion matrices of D[fi]. Then coordinates j ∈ Yi−1 of αy

b [i] are the same as those of αy
A,

and coordinate yi has the value α̃yyi
a :=

∑k−1
j=i α

yyj
a . We have

DCPy(α
y
A[1]) ≤ DCPy(α

y
A[2]) ≤ . . . ≤ DCPy(α

y
A[k − 1]) = DCPy(α

y
A).

The greedy procedure first calculates an assignment for αy
b [1] that obtains the value of DCPy(α

y
A[1]). This is a binary

problem, which can be solved exactly following Sabato & Yom-Tov (2020). Then, at each iteration i+ 1 for i ∈ [k − 2], a
local minimum αy

a[i+ 1] for DCPy(α
y
A[i+ 1]) is calculated by constraining αy

b [i+ 1] to have the same coordinates as
αy

b [i] on Yi−1, and minimizing over αyyi

b , α
yyi+1

b such that their sum is equal to coordinate yi in αy
b [i]. This minimization

can be solved exactly, as follows.

Denote the value of coordinate yi in αy
b [i] by γ = 1−

∑
j∈Yi−1

αyj
b . Minimizing the objective of DCPy(α

y
A[i+ 1]) subject
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to the constraints resulting from αy
b [i] is equivalent solving the following problem:

Minimize
α

yyi
b ,α

yyi+1
b

∑
a∈A

waπ
y
a max{max

ŷ∈Yi

η(αyŷ
b , αyŷ

a ), η(α
yyi+1

b , α̃yyi+1
a )}

s.t. αyyi

b , α
yyi+1

b ≥ 0 and αyyi

b + α
yyi+1

b = γ.

Letting va := maxŷ∈Yi−1 η(α
yŷ
b , αyŷ

a ), this is equivalent to

Minimize
α

yyi
b ∈[0,γ]

∑
a∈A

waπ
y
a max{va, η(αyyi

b , αyyi
a ), η(γ − αyyi

b , α̃yyi+1
a )}.

Similarly to the case of binary classification, this objective is one-dimensional, and concave in each of the intervals defined
by the inflection points of the η instances and the values for which any two of the expressions in the maximum are
equal. Denote this set of points by My

i . Then the objective above is minimized by one of the values in the following set:
My

i ∪ {αyyi
a }a∈A ∪ {α̃yyi+1

a }a∈A ∪ {0, γ}. Repeating this procedure until iteration i = k − 1, we obtain an assignment for
αy

b which can be used to calculate an upper bound for DCPy(α
y
A).

Since the ordering of the labels in the greedy procedure is arbitrary, it is possible to attempt several different orderings and
select the one that obtains the smallest DCP value. In our experiments, we tried 10 random orderings in each upper bound
calculation.

D. More Details on the Local Optimization Procedure
Here we provide more details on the minimization of Eq. (15). Given the split in Eq. (16), the last constraint in Eq. (15)
becomes

η(αy
ŷ, h

y
a,ŷ) ≤ cya ⇐⇒

{
η1(α

y
ŷ, h

y
a,ŷ) ≤ cya

η2(α
y
ŷ, h

y
a,ŷ) ≤ cya

,

and now the constraints does not include singularity points, and can be locally approximated by two linear functions, one for
η1 and one for η2 (see Figure 2). Explicitly, the Taylor approximation of ηi for i = 1, 2 are given by:

ηi(α+ ϵa, b+ ϵb) ≈ ηi(α, b) +
∂ηi
∂α

ϵα +
∂ηi
∂b

ϵb,

where ∂η1

∂α = b
α2 , ∂η1

∂b = − 1
α , ∂η2

∂α = −(1−b)
(1−α)2 , and ∂η2

∂b = 1
1−a .

Given the first order Taylor approximations above, we form the LP approximation of Eq. (15) around an iterate x(t) =
{α̃y, H̃y, c̃y}ky=1 as follows:

Minimize
{αy},{Hy},{cy}

∑
y

⟨w̃y, cy⟩ (17)

s.t. 0 ≤ αy ≤ 1 ∀y ∈ [k],

0 ≤ Hy ≤ 1 ∀y ∈ [k],

0 ≤ cy ≤ 1 ∀y ∈ [k],

⟨αy,1k⟩ = 1 ∀y ∈ [k],

Hy1k = 1|A| ∀y ∈ [k],∑k
y=1 π

y
ah

y
a,ŷ = pŷa ∀ŷ ∈ [k], a ∈ [|A|].

ηi(α̃
y
ŷ, h̃

y
a,ŷ) +

∂ηi

∂α (αy
ŷ − α̃y

ŷ) +
∂ηi

∂b (h
y
a,ŷ − h̃y

a,ŷ) ≤ cya, ∀y, ŷ ∈ [k], a ∈ [|A|], i = 1, 2,

Eq. (17) is an LP problem which is solved at each iteration by an LP solver, for which we use the scipy.optimize
library. In addition to the box constraints of [0, 1] for all variables, it includes 2 · k · |A| + k equality constraints, and
2 · k2 · |A| inequality constraints. It can be seen that the number of inequality constraints is rather high, and as a result,
so is the computational complexity of the algorithm if run as is. However, many of these constraints are not active in the
solution, and in any case we limit the step size of our algorithm. Hence, we can ease the difficulty of the LP problem by
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both limiting the search space of the LP solver, and removing the inequality constraints that seem to be inactive in the
solution. To this end, we remove the inequality constraints where ηi(α̃

y
ŷ, h̃

y
a,ŷ) < −1, as we expect these not to be active at

the solution. Furthermore, we use a maximum step size τ so that ∥αy − α̃y∥∞ < τ , and ∥Hy − H̃y∥∞ < τ , where ∥ · ∥∞
is the maximum norm. This condition is trivially incorporated in the box constraints of Eq. (17). Finally, given the LP
approximation above, the solver of Eq. (15) follows the same lines as Alg. 1.

As in Section 6, numerical instabilities arise when αyŷ
a is too close to 0 or 1. Thus, here as well we restrict these values to be

in the segment [ε, 1− ε], this time as optimization variables through the box constraints. Also, we update the values pŷa to be
pŷa = (1− kϵ)pŷa + ϵ to guarantee a solution for Eq. (15) after updating the box constraints for αyŷ

a .

Convergence of Algorithm 1 Our problem contains the non-linear functions η, which are approximated by linear functions.
For a general non-linear programming problem, sequential linear programming (SLP) methods converge linearly if all
functions are smooth. That is because they do not use Hessian information, and their whole purpose is to handle the
constraints efficiently (determine who is active and who is not). If one uses Hessian information, we get sequential quadratic
programming (SQP) and the convergence is asymptotically quadratic once the active set of constraints is identified, similar
to Newton’s method (Nocedal & Wright, 2006). For an SLP method like in Algorithm 1 to converge linearly, we first need
to have smooth constraints, and for that we use the split of presented in Eq. (16) and detailed above. Furthermore, we also
limit the size of the steps to be of size at most τ . This approach is called a Trust Region method, and is commonly used with
sequential quadratic or linear programming methods. The method was analyzed in (Kiessling et al., 2022) for a case that is
similar to ours, where the objective of the constrained problem is linear, like in Eq. (9) and Eq. (15). It is shown that the
convergence of the SLP method is linear, and the rate depends on the radius of the trust region method (τ , in our case). In
Figure 4 we show the convergence of our method for solving Eq. (15) for a convex η, so that the problem is convex and the
solutions that are obtained by the method using all trust regions are equivalent. Specifically, to demonstrate the convergence
we used

ηconvex(a, b) =


a2 − ab b < a,

(1− a)2 − (1− b)(1− a) b > a,

0 b = a,

(18)

instead of Eq. (4), and got the plots in Figure 4 for various maximal step sizes τ , for solving Eq. (15) for the labor dataset.
Here, the plots show that the method is slower as τ is smaller, since the algorithm is constrained to be slower. However, in
some cases, the inner LP solution can result in a stagnate direction, and then decreasing τ as shown in (Kiessling et al.,
2022) can mitigate this. In our original problem, η and the whole problem are non-convex, hence the algorithm can converge
to a different local minimum for each value of τ . For the problems reported in this paper, we used τ = 0.2 which seemed to
work best, and decreased τ when the LP solver failed to converge.
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Figure 4: The convergence of Algorithm 1 for different trust region (maximal step size) parameters τ .
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