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Abstract

Although there is a vast amount of data available for training Large Language Models
(LLMs), data privacy concerns can limit centralized data aggregation, therefore limiting
the learning capacity of LLMs on data from distributed sources. Federated Learning (FL)
has emerged as a dominant framework for distributed training. The objective of FL is to
preserve privacy while improving the performance of participating clients. However, the
non-IID nature of participating clients can degrade model performance. Parameter Efficient
Fine-Tuning (PEFT) enables adapting LLMs to downstream tasks with minimal parameter
additions and updates to their existing parameters. Preserving performance while learning
from data in a distributed setting warrants the need for efficient training frameworks that
can enable LLMs to learn from disparate data. In this paper, we design and propose a novel
FL aggregation algorithm, Divergence Reduction in Federated Training (DRIFT), which
accounts for the divergence between clients during model aggregation and disseminates
custom aggregated parameters back to each client. DRIFT measures the degree to which
the PEFT parameters of the participating clients diverge and takes advantage of the graph-
based structure implied by this divergence. We design two variants of DRIFT and, through
extensive experimentation, show how DRIFT outperforms well-established baselines. Our
training data and code are available at: https://anonymous.4open.science/r/drift-240F.

1 Introduction

The diversity of tasks performed by Large Language Models (LLMs) makes them an appealing tool for build-
ing intelligent applications capable of performing mundane to more specialized tasks. In particular, LLMs
have been shown to simulate reasoning as a chained sequence of outputs leading to a desired outcome (Raj
et al.| 2025} [Liu et al.| [2024a} |Grattafiori et al.) [2024; [Yang et al., 2024} [Team et al.l [2023; |Achiam et al.|
2023; (Wei et al.) 2022; Brown et al., |2020). LLMs can range in size from a few million to billions of pa-
rameters. Consequently, training and fine-tuning LL.Ms can be computationally prohibitive and expensive.
Low-Rank Adaptation (LoRA) (Wang et al. 2024a; Kwon et al., [2024} |Chen et al., 2024b; |Guo et al. 2024;
Hu et al| |2022)) has emerged as a compelling paradigm to efficiently fine-tune LLMs. LoRA injects trainable
low-rank weight matrices into the existing layers of the LLM architecture. This significantly reduces the cost
of training while improving performance on downstream tasks. Federated Learning (FL) has proven to be a
useful privacy-preserving framework for distributed model training (Wu et all [2025; [Ye et al.l [2024; Zheng
et al.), 2024; |Che et al.| [2023)). Without sharing data, participating clients only perform local model updates
and share updated parameters with a centralized server. The server performs aggregation and distributes
a global model to the clients (Reddi et al.l 2021} [Li et al., [2020; [McMahan et al.l 2017)). FL is particularly
useful when data sources are distributed and disparate, and privacy preservation is paramount. However, for
LLMs, due to the inherent difference in logic, the task of reasoning varies by domain (Lee et al., 2025} |Sun
et all |2023)). Therefore, aggregating models under centralized FL can cause performance degradation due
to divergence in reasoning chains that can result from the domain specificity of different clients (Kyllonen,
2020; [Elsabbagh & Karmiloff-Smith| 2006} [Liang et al., [2024).

Motivated by this phenomenon, we propose a client aggregation mechanism that allows participating clients
to benefit from each other while maintaining their local characteristics. Specifically, our framework trains
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Figure 1: A client benefits from other less divergent participating clients. The connections in the figure show
the degree of similarity between a client and other clients.

LLMs in an FL setting so that they benefit from less divergent participating clients, mitigating the per-
formance decline that can result from client heterogeneity. As shown in Figure [T} a given client benefits
the most from another client with similar characteristics. For centralized FL aggregation, we design a novel
server-side aggregation algorithm, Divergence Reduction In Federated Training (DRIFT). DRIFT measures
the degree of divergence and builds graph-like structures between participating clients. Then it uses graph
search algorithms to perform custom server-side aggregation for each participating client. At the end of an
FL round, each client receives aggregated parameters specific to its characteristics. We design two variants of
DRIFT, based on Shortest Path (SP) and Minimum Spanning Tree (MST) graph search problems, DRIFT
SP and DRIFT MST, respectively, and use Chain of Preference Optimization (CPO) (Zhang et al., [2024)
in conjunction with LoRA for local training. Furthermore, we conduct model training and evaluation across
a diverse range of reasoning tasks/domains covered through 8 datasets. We posit that, through custom ag-
gregation, each client benefits as long as the parameters of the aggregated clients do not drastically diverge
from each other. The main contributions of our paper are:

e Design and implementation of a novel server-side centralized FL aggregation algorithm, for LLM
training.

o Integrating our algorithm with cutting-edge training methods for LLMs and extending FL aggrega-
tion to graph-search algorithms.

o Extensive experiments on a diverse set of 8 different natural language datasets with established FL
baselines using Llama 3.1 8B and Qwen 2.5 7B as base models.

2 Preliminary

2.1 Federated Learning (FL)

In FL multiple clients participate in distributed training and share model parameters or gradients with the
server. The server implements an aggregation algorithm and distributes the aggregated parameters to the
clients. Formally given K clients and the total dataset as Dy = {Dy, Da, .., D}.} where Dy, = {z(®) y@}N |
denotes the local dataset for a client, weighting each client by its local sample size, the FL objective (McMahan
let all [2017} |Li et all [2020) is:

min f*(w) £ By, [fi(w)] (1)
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Here, w represents local model parameters, pr = i'g;' the proportion of client samples, and fx(w) =

|D71k|£k (w, Dy,) the empirical loss of the client. Table

provides the notational symbols used in the paper.

2.2 Preference Optimization

Direct Preference Optimization (DPO), through the construction of preference pairs, further enables the
fine-tuning of an LLM by aligning it with preferred responses (Rafailov et al.,|2023)). Given a language model
gy, parameterized with 6, prompt x and a labeled human preference dataset D = {m(i),yg),yl(i)}éio, the
DPO objective, given in Equation |2 is to implicitly learn a reward function such that it maximizes the

probability of preferred generations.

We(yw‘fﬂ) _ 7Tg(y1|$) (2)

Lopo (T, Tref) = —E(z y.u)~pllog o (B
! (@w.t0) 7"-re‘f(yw|q") Trref(yl|x)

Chain of Preference Optimization (CPO) (Zhang et al. [2024)) uses an LLM (mg) and Tree of Thoughts
(ToT) [Yao et al.| (2023) to generate a final response by reasoning with intermediate thoughts [21, 22, .., 2;].
Subsequently, it builds preference pairs from the intermediate thoughts for DPO. Each intermediate thought,
zi, is generated such that z; = mg(z|s;—1), where x is the prompt and s;_1 = z1, 22, .., ;—1 represents the
previously generated thoughts. Through pruning, preference pairs are created such that mg(z|z, s ;) is the
probability of generating preferred thoughts and mg(2!|x, sl_;) is the probability of generating dispreferred
thoughts. The CPO objective is defined as:
mo (2|, 57 ) mo (24|, si_y)

ECPO(W977T’I‘€ ) = —E(g yw 4t s s ~D[loga<ﬁ o o - B )] (3)
! () Trep (2P, 570) U mper (Al st_y)

3 Problem Setup

We apply our proposed method to LLMs, particularly in the context of Parameter Efficient Fine-Tuning
(PEFT) (Han et al., 2024). Low-rank Adaptation (LoRA) (Hu et al. [2022)) is a PEFT method that enables
training LLMs on downstream tasks with minimal additions to existing parameters. Given a fixed weight
matrix Wy € R™*" LoRA constrains the update Wy = Wy + AW by introducing two reduced rank matrices
B € R™" and A € R™. Here AW = BA and r << min(m,n) is the rank of LoRA. For a given LLM
parameterized with ®, LoRA learns a set of parameters O such that |©] << |®|. Our method exploits this low-
dimensional property to distinctly aggregate parameters for each client by minimizing the divergence to all

Table 1: Summary of main notational symbols.

Notation Definition
K Number of total clients.
Dy : {z®,yD}N = Local dataset for the k*" client.
z(® Prompt for the LLM.
z?“;zé;s;.ﬂ_l Preferred thoughts under CPO; Dispreferred thoughts under CPO; Set of preferred thoughts leading
up to 2.
0; 0 Set of LoRA parameters for a given set of clients; LoRA parameters for the k" client.
w Model parameter weights.
L Empirical loss of the kt client
ds,¢ Divergence between a pair of clients, connecting a source (s) client to a target (t) client.
P; Pi;p A set of shortest paths for a given client; ! shortest path; a single path containing a set of divergences
between adjacent clients.
g Graph generator function.
ol L1 Norm of the weight vector p.
p Normalized weight vector containing weights assigned to each client.
G(V,E) Client graph with V vertices and E edges, representing all clients.
é Divergence threshold.
B;b A set of batches for local training; 1 training batch.
n Local learning rate.
E;e Number of local epochs; 1 local epoch.
ds_t1 Multiplicative inverse (2—) of ds,.

ds,t
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Figure 2: Traditional vs. DRIFT FL aggregation. In DRIFT, the server measures divergence between clients
and distinctly aggregates models for each client.

other clients. Formally, given a client k € K, let the subset of least divergent client parameters for the current
FL round be denoted as © = {©1,04,03,---,0,}, where s C K. Furthermore, let p = {p1, p2, p3, - ,ps}
be the set of weights assigned to each client in ©. Then the local objective for client k is given in Equation [4]
and the parameter update, in a given FL round, is given in Equation [f]

1
&H&{f(@k) D4l Ly (O, Dy) (4)
Okisr = POK + Y piO; ()
1€s

Here, Dy, = {x, 2, 2}, s¥ |} is the chain of preference thoughts dataset created using CPO and Ly, is the
empirical local loss of the client.

4 Proposed Method

As shown in the workflow diagram in Figure [2] in our
framework, each client receives distinctly aggregated Client Divergence

LoRA parameters based on the divergence from other 0-005
participating clients. In each FL round, the server mea-

sures the degree of divergence between each pair of par- 0004 B
ticipating clients, creating a graph-like structure be- 0.003;}3
tween them, as shown in Figure 3] The graph G(V, E) 8
representing k clients is created such that V' is a set 0.002 %0
of vertices representing each client, where |V| = k is &
the total number of clients in the current FL round. 0.001
The weight function d : E — RT maps the edges to

real-valued weights that determine the degree of diver- 0.000

gence between clients. Given an edge e € E, a source

client, and a target client vertex, s,t € V, we define Figure 3: Client divergence graph. Fach node repre-

the divergence between two distinct clients as: sents a client with its own distinct dataset, and edge
dst = SKL(O4||0:) (6) weights represent the divergence between clients.

Here, SKL is the Symmetric KL divergence (Huang et all [2015; [Pu et al [2017; [Chen et al) [2018} [Andria-|
[manalimanana et al., [2019; Ruiz & Titsias| [2019; [Yao & Liul, [2025) defined as:

SKL(O:|[0:) = KL(O,][0:) + KL(6:]|6,) (7)
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Figure 4: DRIFT MST minimum spanning tree of participating clients and immediate neighbors.
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Figure 5: DRIFT SP. The client graph shows divergences between all clients. Shortest path plots show client
(MEDQA) aggregation with different divergence thresholds (¢). Higher § corresponds to aggregation with
more clients.
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The KL divergence (Goodfellow et al., |2016)), from a source client to a target client, with model parameter
weights w and probability distribution p, is further defined as:

10,100 = Y logpe, (w)Pe:) (8)

WP (w)

KL divergence has a property of non-negativity, but it is non-symmetric from a source distribution to a
target distribution. However, Symmetric KL divergence is symmetric from a source distribution to a target
distribution (Kullbackl [1997). Given these properties, we can ensure that the edge weights between the client
vertices are non-negative and symmetrical. Using Equations[f] [7 and [8] we compute the divergence between
each source and target client pair in the current FL round as:

{d1,27 dl,sv o 7dk—s,k—t+17dk,k} s.t. d&t = R+,V8,t €k (9)

Following the convention in |Cormen et al.| (2022)), we formulate client aggregation, under DRIFT, as a
Minimum Spanning Tree (MST) and a Shortest Path (SP) problem and propose two aggregation schemes,
DRIFT MST and DRIFT SP, respectively. Shortest Path (SP) and Minimum Spanning Tree (MST) lend
particularly well to our framework as the objective of each graph search problem enables finding a path of
least divergence between a set of clients.
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4.1 DRIFT MST

Given a client graph G(V, E), we find a subset of edges T" C E, connecting all clients, that minimizes the
total divergence between clients given by:

mind(T) = Y d(s,t) (10)

(s,t)eT

The client-specific aggregation under DRIFT MST is done by aggregating a given source client with the
target clients that are its immediate neighbors (Chen et al |2002)). This is shown in Figure

4.2 DRIFT SP

Given a client graph G(V, E) and a path, s - ¢, let p = {dy,da,ds, - - ,dy} be a set of weights of constituent
edges from a source client to a target client. The shortest path between a source client and a target client is
a path with minimum total divergence given by:

k

min d(p) = Zd(vi,hvi) (11)

=1

Since, G(V, E) is a fully connected graph of participating clients, Equation [11| gives a set of shortest paths
between each source and target client. To select a desired path and to facilitate the exploration vs. exploitation
dilemma, we implement a divergence threshold term, ¢, that selects the desired path based on the fraction of
clients to be included in a given shortest path. Formally, given a set of shortest paths, P = {p1,p2, - ,pt},
from a source client, the normalized path lengths are given as:
P:{Ji:PieP} (12)
> i1 [Pl

The selected shortest path is defined as:
P,:={P,eP:P, <6 andé € [0,1] —» R} (13)

As shown in Figure [5] for selected paths of equal length, we select the shortest path with the least total
divergence.

4.3 Weighting Clients

Using Equations we can apply well-known minimum spanning tree and shortest path algorithms
to get a set of edge weights, p = {d1,ds,- - ,di}, representing the divergence between adjacent clients.
Since the magnitude of divergence is analogous to the dissimilarity between a source and a target client;
during aggregation, each client is weighted with the normalized multiplicative inverse of its corresponding
divergence. This ensures that clients that are less divergent from a source client are assigned higher weights.
Given that the source client has the least divergence from itself, we assign it the minimum divergence from
the given set of edge weights. Let dy* = m and p = [dy' di'---d; '] be the weight assigned to the
source client and the final set of weights assigned to each client, respectively. The weights used for aggregating
clients are then computed as:

p= (14)
l[pl]1

5 Analysis

Given that a source client is aggregated with the least divergent clients in a given path, our analysis aims
to answer questions regarding the performance bound induced by the number of clients in this path, as
well as the nature of the clients contained in the shortest path. Our analysis is based on data heterogeneity
assumptions with respect to Non-IID clients, common in FL (Mishchenko et al., 2025; Hamidi & YANG,
2024; |[Vardhan et al.l |2024; [Li et al., [2020). Specifically, our objective is to answer the following questions:
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I. Is there a performance bound based on the number of clients that exist in the selected path used for
aggregation?

II. Does the shortest path to a given client determine less divergent clients to aggregate with?

5.1 Performance Bound

Assumption 1. In a Non-IID setting, client aggregation can degrade model performance.

Proposition 2. Let P = {p1,p2, - ,pt} be the set of shortest paths from a source client to all other clients,
and let P be the normalized path lengths. Using Equation we have:

pZ|Pi|:{\Pi\iPi€P}
The path with the maximum number of clients is given as:
max(P) )" |P;| = max{|P;| : P, € P}
Similarly, the path with the minimum number of clients is given as:
min(ﬁ)Z|Pi| = min{|F;| : P; € P}

Theorem 3. Given a divergence threshold § € [0,1] — R, the performance bound for a client is determined
by the length of the selected path used for aggregation, where Q@ = max{|P;| : P; € P} denotes the mazimal
path and w = min{|P;| : P; € P} denotes the minimal path.

w<dY [PI<Q

Proof. Let Q = max{|P)| : P, € P}, w = min{|P;| : P, € P}, and P, be the normalized path length of the
selected path, then:
max{|P;|: P, € P} > 45 |P| V6 <P,
min{|P;| : P, € P} <46 |P| V5> P,
min{|P;|: P, € P} <6 |P;| < max{|P;| : P, € P}
w<dY |PI<Q
O

This shows that as § increases, the length of the path selected for aggregation increases, presenting an
exploration vs. exploitation dilemma. In a Non-IID setting, a lower § corresponds to a client aggregating
with fewer distinct clients. However, a higher § would lead to aggregation with more clients having distinct
characteristics and potentially degrade model performance. We conducted a parameter study for § and
validated our analytical findings through experimental results in Table [}

5.2 Client Aggregation

Assumption 4. Aggregating a source client with fewer Non-IID/divergent clients improves model perfor-
mance.

Theorem 5. The shortest path aggregates a source client with fewer divergent clients.

Proof. Let d(i, k) be the divergence of client k from client i. Then for any edge (v, k) connecting clients v
and k, by the triangle inequality we have the following:

di,k < di,v + dv,k

Using the shortest path, a source client aggregates only with those clients that form the least divergent
set. O
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Algorithm 1: DRIFT

Inputs: E (local train epochs), B (local batch size), T' (FL rounds), K (total clients), C' (ratio of clients
participating in each round), Dk : {Ds,---, Dy} (client datasets), G (graph generator), M ST (minimum
spanning tree algorithm), SP (shortest path algorithm), § (divergence threshold), variant (M ST or SP).
Server:

1: initialize ©q > Initialize parameters
2: for round ¢t =1,2,---,7 do

3: O« 0,00 > Initialize parameter sets
4: S; < sample C * K clients

5: for k € S; in parallel do

6: Oy 141 < ClientUpdate(k, ©;)

T 0« 0U {G)k,t+1}

8: if variant = M ST then

9: G(V,E)! < MST(G(©))
10: if variant = SP then
11: G(V,E)? < SP(G(©))
12: G(V,E) + Compute using and &
13: for k €V do > For each client
14: p < Compute using Equation
15: Ok, = POk + e, PiOi > S C K neighbors of client k
16: éeéu{@km}

ClientUpdate(k, ©y,): > for k" client

1: B + {Create batches of size B € Dy}
2: fore=1,2,3--- in F do

3: for b in B do

4 O @k — UVEk(@k;b)

5: return Oy to server

aCreate client graph using Equations |6} [7] (S}
bCreate client graph using Equations [6] [7] [8]

This shows that, in a Non-IID setting, the shortest path enables client aggregation with least divergent
clients, allowing it to preserve its parameter distribution.

6 Algorithm

The DRIFT algorithm is presented in Algorithm [I] Our algorithm follows a standard FL setup in terms of
communication between the server and the clients. Using LoRA parameters initialized at the server, each
client performs an update on its local dataset D} and communicates the updated parameters to the server.
During aggregation, the server creates a client graph G(V, E) based on the divergence between each client.
Furthermore, it implements graph search algorithms to identify clients to aggregate with a source client
and performs aggregation. The aggregated client-specific LoRA parameters are then communicated to each
participating client.

7 Experiments

Our experimental setup consisted of 8 datasets, covering commonsense reasoning - CSQA (Talmor et al.,
2019), COSE (Rajani et al., [2019), physical commonsense reasoning - PIQA (Bisk et al., 2020), medical
reasoning - PUBMEDQA (Jin et al., [2019), MEDQA (Jin et al., |2021), MEDMCQA (Pal et al. 2022)), and
mathematical reasoning - AQUA (Ling et al. 2017), MATHQA (Amini et al. 2019)). For each question,
we generated reasoning trees based on Tree of Thoughts (ToT) (Yao et al) 2023), with depth 3 and 2
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Table 2: Best rewards by FL method.

Reward
AQUA COSE CSQA MATHQA MEDMCQA MEDQA PIQA PUBMEDQA
FedAvg + LoRA 4.14 £ 1.12 11.23 £ 0.83 10.70 £ 1.12 3.37 + 2.66 5.55 £ 0.24 1.14 £0.12 9.66 £ 0.22 12.23 £ 0.87
FedProx + LoRA 4.08 + 1.22 10.65 £ 1.75 10.01 £ 2.15 3.20 + 3.43 5.10 +£ 0.77 1.15 £ 0.17 9.31 £ 0.01 12.02 £ 1.46
Llama 3.1 8B FedOPT + LoRA 3.42 +1.43 11.79 £ 0.80 11.21 £ 1.05 3.80 + 2.36 5.50 &+ 0.06 1.08 £ 0.12 9.40 £+ 0.53 12.33 £ 0.76
FedCDA + LoRA  43.45 + 1.03  13.89 4 0.37 13.15 £ 1.00 15.74 £ 3.93 7.24 + 0.84 1.37 + 0.49 12.35 + 0.85 14.13 £ 1.47

Model Method

DRIFT SP 1791 £1.03 1410+ 021 13.90 + 0.87 23.35 £3.64 752+ 138  126+017 1241+0.76  15.14 £ 0.99
DRIFT MST 3526+ 140 14.37 £ 0.01 13.86 £ 0.55 32.23 +1.22 8.35 £ 0.58 125+0.38 12.70 +£2.26  15.04 + 1.84
" FedAvg + LoRA  235+001 1307001 13574001  097+011  7.37+001  020+004  975+004 10974002
FedProx + LoRA  2.32£0.04  1272£0.05  13.26£0.04  0.01=0.06 7274008  0.11+£001  9.45+0.01 10.82 +0.20
Qwen 2.5 7B FedOPT + LoRA 254001  13.19+£0.04  13.74£0.02  1.07+ 0.01 755+0.00  0.13+£001  9.83+0.25 11.07+0.71

FedCDA + LoRA  10.70 £1.63 14.14 £0.03 15.22 £0.23 12.74 £2.63 8.26 + 0.06 0.48 +0.01 10.96 £ 0.25 13.10 £0.71
DRIFT SP 39.13 + 6.44 15.84£0.03 17.59 £0.31 14.36 £ 0.02 10.58 £ 0.40 0.2140.01 12.52 £ 0.30 14.16 + 0.55
DRIFT MST 31.244 3.61 16.53 + 0.54 18.48 £+ 0.49 17.76 £+ 0.23 10.91 £+ 0.82 2.24 + 0.74 12.82 + 0.34 13.91+ 0.12

child nodes. As our node evaluator model, we used Deepseek R1 32B (DeepSeek-All [2025) and created
preference datasets using CPO (Zhang et al., [2024)). In addition to the two DRIFT variants, DRIFT MST
and DRIFT SP, we used four well-established FL baselines FedCDA (Wang et al., |2024b), FedOPT (Reddi
et all 2021), FedProx (Li et al [2020), and FedAvg (McMahan et al., 2017)). However, we augmented each
baseline strategy to be its LoRA (Hu et al. [2022)) equivalent. We used Llama 3.1 8B (Grattafiori et al.,
2024) and Qwen 2.5 7B (Yang et al., |2024) as our base models and conducted 50 FL rounds, in which each
client was assigned its own dataset. To find the Shortest Path, we used Dijkstra’s algorithm (Dijkstray [1959),
and for Minimum Spanning Tree we used Kruskal’s algorithm (Kruskal, |1956). Note that these algorithms
can be easily substituted for other graph-search algorithms. All experiments were conducted using three
random seeds with 3 Nvidia-A100 GPUs. Details on hyperparameters, datasets, and prompts are provided

in Appendix [A] [B] and

7.1 Evaluation Methods

We used three evaluation approaches to assess the quality of outputs generated by the models. Using the
N sample strategy, we sampled N generations from trained models and measured the Success Rate with
the detailed explanation of the solution provided in the test set. The objective behind using Success Rate
is to demonstrate the effectiveness of each client’s ability to generate high quality outputs, as each client
is trained on high quality intermediate thoughts using CPO (Zhang et al., |2024). Second, we measured
the Accuracy between the answer generated by the model and the final answer in the test set. Lastly, we
evaluated the best Reward achieved by the trained model under each FL method. The choice of model reward
is driven by our training objective, which is to optimize model performance on high-preference generations,
sy =2y, 2%, .., 2} 1, without drastically deviating from the base models. Specifically, in DPO (Rafailov
et al. 2023) the reward is defined as r(z,z) = Slog ::f((zz!ﬁ?) + Blog Z(z). As CPO is an extension of DPO,
the reward provides a signal on the model’s ability to align its generation with the high preference thoughts.
Therefore, an increasing reward reflects how well the model is able to align its generations with high preference
generations compared to low preference generations.

7.2 Results and Discussion

Table 2] Figure[6] and Figure[7] summarize the best rewards achieved by DRIFT, on the evaluation datasets,
compared to the baseline methods. On average, for Llama 3.1 8B, one of the two variants of DRIFT outper-
formed the baseline methods on 6 out of 8 datasets. On CSQA and PUBMEDQA, DRIFT SP on average
generated 23% and 19% higher rewards. For COSE, MATHQA, MEDMCQA, and PIQA, DRIFT MST on
average generated 21%, 3.2x, 36%, 6% higher rewards, respectively. On AQUA and MEDQA, FedCDA -+
LoRA produced the best performance. Similarly, for Qwen 2.5 7B, DRIFT outperforms other baselines across
all datasets. Specifically, on AQUA and PUBMEDQA, DRIFT SP generated 6.8x and 22% higher rewards,
whereas on COSE, CSQA, MATHQA, MEDMCQA, MEDQA, and PIQA, DRIFT MST on average produced
22%, 29%, 3.3x, 41%, 4.3x, 27% higher rewards, respectively.

Table [3] summarizes the success rate of each FL method. DRIFT consistently outperformed on all eight
datasets. Specifically, compared to the baseline methods, on COSE, CSQA, MATHQA, MEDQA, and PIQA,
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; ; £ £ 6.0
& 60 = ~ &
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DRIFT SP on average has a 3.1% higher success rate, whereas on AQUA, MEDMCQA, and PUBMEDQA,
DRIFT MST has a 3.4% higher success rate. Similarly, we measured accuracy on the test sets of COSE,
CSQA, MEDMCQA and PIQA and present the results in Table [df DRIFT outperforms the baselines on
all four datasets with DRIFT SP producing the best accuracy, closely followed by DRIFT MST. Relative
to baselines, DRIFT SP, on average, produced 12.3%, 19.4%, 7.7%, and 11.2% higher accuracy on COSE,

CSQA, MEDMCQA, and PIQA, respectively.

Both DRIFT variants enable clients to maintain their local characteristics while benefiting from custom
aggregation with other clients. This allows each client to enhance its performance on the local data distribu-
tion by producing high-preference outputs resulting in improved success rate and accuracy. We illustrate this
through a case study on the PUBMEDQA dataset in Figure[§] An additional case study on the CSQA dataset

is provided in Appendix [C} Figure [I1] It is also evident from the results that higher rewards correspond to
improved generation quality coinciding with improved success rate and accuracy.

Medical Reasoning Question
Does patient position during liver surgery influence the risk of
venous air embolism?

Answer Options: Yes, No

Correct Answer: No

Figure 8: Case Study: green and yellow clouds show the
PUBMEDQA.

10

During surgical procedures
involving liver, even minor
alterations in body posture

could potentially increase intra-

thoracic pressures.

output generated from a client model trained on

Careful monitoring of
respiratory parameters with
adjustments to ventilation strategies
might prove beneficial in mitigating
risks related to increased
thoracocervical venous congestion
rather than merely relying on patient
repositioning alone.
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Table 3: Success rate by FL method.

Model Method Success Rate%

AQUA COSE CSQA MATHQA MEDMCQA  MEDQA PIQA PUBMEDQA
FedAvg + LoRA  42.09 £ 0.16  90.35 = 1.39  75.80 £ 3.04  42.26 & 0.11  51.27 + 0.18  78.76 £ 0.74  82.08 £ 020  46.74 £ 0.29
FedProx + LoRA  42.10 & 0.77  89.74 &£ 2.27 76454+ 1.64 4264 £0.80  50.87 & 1.40  80.81 + 1.10  84.41 £ 0.94  46.69 % 0.51
Llama 3.1 8B FedOPT + LoRA  40.58 + 428  89.04 + 0.22 7534 + 247  39.51 £ 659  51.05+£ 476  79.63 £0.95  84.12 % 0.81 46.62 % 0.47
FedCDA + LoRA  40.40 + 0.30  89.86 + 0.58  74.97 + 1.77  41.55 + 0.46  51.81 + 1.93  74.81 + 1.67  79.35 £ 254  46.81 + 0.21
DRIFT SP 4213 £0.12 92.34 £ 0.91 77.31 & 0.32 43.29 £ 0.81 5248 + 023 81.07 + 2.36 84.86 + 1.56  47.21 & 0.44

DRIFT MST  42.55 £ 0.28  90.51 £3.05  76.66 £ 1.44 4240+ 0.72 54.23 £ 3.03 7791 +1.18 8177 + 148  47.40 £ 0.28

T FedAvg + LoRA  40.30 £ 0.01  94.60 £ 0.03 8143+ 040  40.71 £ 031 5222+ 0.67 8258 £0.15 8671+ 0.04 4658 = 0.04
FedProx + LoRA  41.12 £ 0.66  94.87 £0.02  80.43 + 043 4091 £ 045 5210 £0.62  82.01 £2.00  86.51 £ 0.44  46.74 %+ 0.30
Qwen 2.5 7B FedOPT + LoRA  40.47 +£0.78 9472 £0.17  80.77 £0.72 4140 £ 0.04  51.80 £ 0.41 8270 £1.14  87.80 + 042  46.80 £ 0.41
FedCDA + LoRA 4110 + 044 9470 +£0.02  80.30 £0.20  41.70 £ 0.80 5120 £ 0.64  81.75+ 1.70  92.24 & 1.40  46.77 + 0.29
DRIFT SP 41.21 + 0.56 95.54 + 0.16  81.80 + 1.13  41.71 £ 0.58  53.00 £ 0.28 8247+ 1.12  87.30 + 146  47.41 + 0.28
DRIFT MST 4091+ 0.49 9530 £0.33  82.21 + 0.74 41.30 £ 0.31  53.50 + 0.78 83.19 &£ 0.19  88.50 = 041  47.36 & 0.05

Table 4: Accuracy by FL method.

Method Accuracy%
COSE CSQA MEDMCQA PIQA
FedAvg + LoRA 77.34 55.17 71.80 59.97
FedProx + LoRA 74.97 48.58 71.87 59.85
FedOPT + LoRA 76.81 51.79 74.55 66.67
FedCDA + LoRA 75.17 44.38 67.92 54.63
DRIFT SP 85.42 59.67 77.03 67.02
DRIFT MST 78.81 57.44 73.58 56.97

7.3 Parameter Study

To analyze the impact of divergence threshold (0) for DRIFT SP, we scaled the number of clients to 16, and
for varying values of § (6 € {0.0,0.2,0.4,0.6,0.8,1.0}), conducted 25 FL rounds each. Table Figure@ and
Figure [L0] summarize the best rewards achieved for each ¢. In our analysis, we find that a lower § generally
leads to higher performance. Specifically, for Llama 3.1 8B, on COSE, MATHQA, PIQA, and PUBMEDQA,
0 = 0.0, on average, generated a 3.2% higher reward compared to other § values. This is attributed to
the fact that, at a lower 4, a source client only merges with the least divergent clients, allowing it to
maintain its parameter distribution. This experimental result verifies our analytical findings. For MEDQA
and MEDMCQA, § = 0.8, achieves the best rewards, however, only marginally better than the rewards
achieved using lower ¢ values. A similar pattern holds for Qwen 2.5 7B, where a lower ¢ (6 € {0.0,0.2,0.4})
outperforms a higher § on 7 out of 8 datasets. On COSE, CSQA, MEDMCQA, MEDQA, PIQA, and
PUBMEDQA, § = 0.0 and 0 = 0.2, on average generated 33.3% and 14.2% higher rewards from the lowest
and second best performing ¢ values.

7.4 Computational Analysis

To aid the analysis of computational burden, we conducted experiments on a varied number of clients using
both DRIFT SP and DRIFT MST. Table [6] presents the average wall clock time required for local training
and server aggregation. The server aggregation time includes the time needed for graph creation, graph
search, and parameter aggregation. Our findings show that the computational burden borne by the server is
marginal compared to the clients’ local training; however, the computational cost increases almost linearly
as the number of clients increases.

8 Related Works

Traditional centralized FL aims to minimize the aggregate loss among all clients based on full model training;
it updates all parameters of a neural network. To balance computational demands and privacy concerns, FL
has been extended to training foundation models, particularly LLMs (Wang et al.l |2025; Zhang et al., |2025a;
Tran et al., |2025; [Mahmoud et al. |2025; Rao et al., |2024; [Hou et al.| |2024; [Panchal et al.l 2024} Peng et al.|
2024a; |[Pan et al., [2024; [Sun et all [2024). However, client heterogeneity causes Non-IID clients to degrade
global model performance (Huang et al., 2025; Mishchenko et al., 2025 [Yashwanth et al., |2024; Wang et al.
2024b; [Makhija et al., 2024; Dai et al.| [2024; Huang et al., |2024b} |[Fani et al., 2024; [Huang et al., |2024al).
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Table 5: Parameter study for divergence threshold (). Each row shows the best rewards, for each dataset,

achieved by DRIFT SP for varying . Legend: Best Medium Low.
Model Divergence Threshold (6) 0.0 0.2 0.4 0.6 0.8 1.0
AQUA 3.22 £ 0.71 2.46 £+ 0.63 2.82 + 0.55 2.39 £ 0.67 2.25 £ 0.51 2.85 £ 0.66
COSE 15.87 £ 2.83 15.27 £+ 3.12 15.04 £ 2.72 14.95 £ 2.91 14.83 + 3.22 14.91 + 3.24
CSQA 15.30 £ 2.85 15.15 £ 3.00 15.19 + 2.89 15.24 £+ 3.17 14.56 + 3.34 14.65 £ 2.94
Llama 3.1 8B MATHQA 16.23 £ 0.79 15.15 £ 0.72 15.84 £ 0.77 14.88 £ 0.63 15.35 £ 0.72 15.61 £ 0.75
MEDMCQA 544 + 1.35 5.73 + 1.40 5.68 + 1.42 5.72 £ 1.41 5.74 £ 141 5.29 £+ 1.43
MEDQA 1.44 + 0.39 1.41 £ 0.37 1.04 + 0.27 0.86 £ 0.23 1.52 + 0.43 1.49 + 0.39
PIQA 10.53 + 2.45 10.60 + 2.31 10.47 £ 2.44 10.23 £ 2.61 10.59 + 2.35 10.51 + 2.41
PUBMEDQA 12.07 + 2.99 12.35 £ 3.02 12.17 £ 3.22 12.11 + 3.01 12.17 £ 3.23 12.02 £ 3.06
AQUA 3.61 + 0.64 3.47 £+ 0.64 3.71 + 0.68 2.12 £ 0.42 2.03 £ 0.42 2.12 £+ 0.40
COSE 14.43 £+ 3.23 14.13 + 3.36 11.41 £ 2.89 10.24 £+ 2.48 11.12 + 2.75 10.12 £+ 2.55
CSQA 12.91 £ 3.27 13.02 £ 3.20 11.85 £ 3.17 10.83 £ 2.50 10.16 £ 2.68 9.77 £ 2.53
Qwen 2.5 7B MATHQA 1.49 £ 0.50 1.40 £ 0.62 1.50 £ 0.56 1.50 + 0.52 1.58 £ 0.29 1.38 £0.25
MEDMCQA 5.05 £ 1.35 6.36 + 1.55 5.55 + 1.36 4.48 + 1.10 4.24 +1.26 4.81 + 1.36
MEDQA 0.24 + 0.08 0.17 £ 0.10 0.20 + 0.08 0.15 + 0.11 0.19 £ 0.11 0.10 £ 0.13
PIQA 9.93 £+ 2.23 10.79 + 2.35 8.38 + 1.91 7.05 + 1.68 711+ 1.71 7.41 £ 1.92
PUBMEDQA 9.63 + 2.22 10.43 £ 2.29 9.21 £ 2.17 8.34 £ 1.97 7.81 £ 1.84 8.97 £+ 2.12
PIQA MEDQA AQUA MEDMCQA
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Figure 9: Best rewards by divergence threshold (§) for Llama 3.1 8B.
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Figure 10: Best rewards by divergence threshold (§) for Qwen 2.5 7B.

While many of the recent centralized FL. methods address heterogeneous client and data settings, they still
rely on the assumption that aggregating all clients can potentially improve performance. In contrast, our
method is an extension of recent developments and is a server-side implementation of an FL algorithm
that aggregates the LoRA parameters of clients in a heterogeneous setting, primarily driven by the goal of
minimizing divergences between clients. To highlight the relationship of our method with related work, we
provide a brief overview of relevant FL. methods and their application on foundation models, particularly in
the context of privacy-preservation and distributed learning among Non-IID clients.

8.1 Federated Foundation Model Training

Federated training of Foundation Models (FMs) is motivated by privacy-preservation, distributed data
sources, or resource-constrained environments. |Beitollahi et al| (2025) extract features from foundation
models to train parametric models and share these models with the server in a one-shot FL setup, primarily
to reduce communication cost in resource-constrained settings. |JianHao et al.| (2024) devise FedLPP, as
a method to only quantize and integrate LoRA parameters for efficient fine-tuning. FlexLoRA Bai et al.
(2024) synthesizes full LoRA weights using SVD and dynamically adjusts LoRA ranks. MPFT |Zhang et al.

12
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Table 6: Wall clock time (in seconds) for different numbers of clients.

Method # Clients 4 8 16

Aggregation 4.4 s 10.2 s 22.2s
DRIFT SP

Aggregation 4.4 s 10.3 s 22.1s
DRIFT MST

Local Training 68.3 s 70.8 s 72.6 s

(2025b)) is an FL fine-tuning framework that enhances in-domain and out-of-domain performance by gener-
ating client-specific prototypes used to train a global adapter; the global adapter is further fine-tuned during
a local adaptation phase. FedDAT |[Chen et al.| (2024a) uses knowledge distillation to fine-tune foundation
models without centralizing data. FedPFT [Peng et al.| (2024b]) enhances the adaptation of foundation models
by compressing and aligning sub-models for improved gradient accuracy. FedAPT (Su et al 2024)) achieves
strong performance in diverse domains while using considerably less data through adaptive prompt tuning.

8.2 Data and Model Heterogeneity

Various works address data and model heterogeneity by defining custom training objectives (Jiang et al.|
2024; Xiang et al.l 2024} Xie et all 2024} [Liu et all 2024b)). A seminal work addressing client heterogeneity
is FedProx (Li et al., |2020), which adds a proximal term which acts as a regularizer on the local objective.
FedCDA (Wang et al., [2024b) addresses this issue in a cross-round setting by selecting and aggregating
local models that minimize divergence from the global model, whereas FedSAK (Liao et al.l [2024) addresses
heterogeneity in a multitask setting. |Gao et al.[(2024]) achieves improved computational efficiency with fewer
communication rounds. InCo Aggregation (Chan et all|2024) uses internal cross-layer gradients to improve
similarity, while FedCompass (Li et all [2024) reduces model staleness and straggler delays with data and
device heterogeneity.

9 Conclusion

In this paper, we devised a novel server-side centralized FL aggregation algorithm, DRIFT, which measures
divergence from a source client to other participating clients, building a graph-based structure. DRIFT uti-
lizes graph search algorithms to find a set of least divergent clients and aggregates them with a source client.
Using LLMs and PEFT, we applied DRIFT to the problem of preference optimization for language gener-
ation on a diverse set of domains. Our experimental results showed a significant performance improvement
from other FL baselines. In addition, we conducted a parameter study supplemented by analytical findings to
analyze how varying the divergence from a source client to other clients impacts performance. Experimental
results on computation burden indicate that the computational cost of aggregation, primarily incurred by
the server, is marginal compared to the local training of clients, but increases almost linearly as the number
of clients increase. In our future work, we aim to further improve this method by incorporating graph parti-
tioning to lower the computational cost of graph search. We hope that our work encourages further research
in leveraging the graph properties of clients in FL.
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A Model Parameters

We use 8-bit quantization for both Llama 3.1 8B and Qwen 2.5 7B with LoRA (r = 16). The training
and evaluation batch sizes are both set to 4 per device, for improved memory-management. The model
is trained using the AdamW 8-bit optimizer Dettmers et al.| (2021)), which is a memory-efficient variant of
AdamW, and it utilizes float 16 precision for faster computation with lower memory usage. Gradient clipping
is applied with a maximum gradient norm of 1 to stabilize training and prevent exploding gradients. The
learning rate is set at 5e — 4, however, we experiment with lower rates (2e —6, 2e — 7). A cosine learning rate
scheduler is employed and the warm-up is configured for 4 steps, allowing the model to ease into full learning.
We set 5 = 0.2, representing the strength of the KL-divergence regularization term that balances reward
maximization with staying close to a reference policy. Finally, the input sequence is bounded with a maximum
length of 512 tokens and a separate constraint on the prompt portion set to 256 tokens, optimizing memory
and performance during both training and inference. A complete setup of model training and parameters is
provided in our code base.

B Datasets

Our experiments are based on 8 different datasets, including CSQA [Talmor et al.| (2019), COSE [Rajani et al.
(2019), AQUA [Ling et al| (2017), MATHQA [Amini et al| (2019)), PIQA Bisk et al (2020), PUBMEDQA |Jin/
et al.| (2019), MEDQA |Jin et al.| (2021)), and MEDMCQA |Pal et al.| (2022]). These datasets cover common-
sense reasoning, physical commonsense reasoning, medical reasoning, and mathematical reasoning. Table [7]
provides details regarding each dataset used for model training and evaluation. From each dataset, we take
approximately 300 questions. For each question, we further generated reasoning trees, using ToT
7 with 2 child nodes and a depth of 3. Through pruning, preference datasets are created for model
training as described in CPO |Zhang et al.| (2024). All of our training data is released within our code base.

C Model Output

Figure [T1] shows another example output on the COSE dataset. The output is generated from a client model
specific to the COSE dataset. The question along with its answer choices are shown at the top. Model
response shows the output generated by the model followed by the final answer. The correct answer is the
label associated with the question in the dataset.

Commonsense Question
Dan wondered where those ball bearings came
from. Ball bearings are used in what sort of thing?

Ball bearing's usage implies
. . . achinery echanical devices
Answer options: Support axial loads, Can allow movement, Machines fAachinery or mectariea; (evices
so they're commonly found in

Correct Answer: VIachines engines such machines like cars.

Ball-bearing machinery
frequently contains moving
components like gears and
shafts found commonly in

industrial equipment.

Figure 11: Case Study: output generated from a client model trained on COSE.
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Table 7: Dataset details.

Dataset Reasoning Task Description

AQUA Mathematical Reasoning Algebraic word problems, each with natural language rationales. Each
problem includes a question, five answer options (A-E), a rationale,
and the correct answer.

~ COSE Commonsense Reasoning ~ CoS-E contains human-provided explanations for commonsense rea-
soning tasks. These explanations include both natural language de-
scriptions and highlighted text annotations.

CocsQA < Commonsense Reasoning ~ Commonsense Reasoning tasks with complex multi-hop inference. -
Each question has 5 potential answer choices.

© MATHQA | Mathematical Reasoning ~ Diverse mathematical questions requiring symbolic and quantitative
reasoning. The dataset is created by annotating the AQuA-RAT
dataset using a newly introduced representation language.

~ MEDMCQA Medical Reasoning Multiple-choice questions (MCQs) covering medical knowledge. This
dataset contains high-quality MCQs from AIIMS and NEET PG ex-
ams, spanning 2.4k healthcare topics across 21 medical subjects.

~ MEDQA Medical Reasoning This dataset comprises Multiple-choice questions (MCQs) sourced
from the USMLE, reflecting professional medical board exam content.

o 7151CEA7 o 7P¥1y§i5afCSrr?m?)rfse?15€ lieajsoini;xgi 7”[Tes¥sip1;ysiic;1 qn;e;acjci(;n7ar:d71117tuiiti;eik;lo;vlgdgeiofi pihyisigs.i This
dataset was created to test the physical knowledge of models in Natural
Language Processing.

" PUBMEDQA Medical Reasoning Biomedical question answering based on PubMed abstracts. The goal -
of this dataset is to answer questions based on the three answer choices

(yes, no, maybe) based on the given abstract.

D Client Graphs

Figure[12] shows client graphs from different FL rounds. Each edge weight shows the divergence between two
adjacent clients. Shortest path plots show the shortest paths from a source client to target clients. Minimum
spanning tree plots show the minimum spanning tree of a client graph, as well as edges connecting a source
client with its immediate neighbors.

D.1 Sample Prompts

This section provides an example prompt, shown in Figure The Data Generation Prompt provides a
scenario in which the model must generate plausible and coherent responses to open-ended commonsense
questions posed in CSQA. The goal is to simulate the reasoning process needed to answer these questions.
Several example responses are provided for the initial question to illustrate the expected style and depth.
Additionally, the Value Prompt is used for evaluation. It asks an evaluator model to score a generated
thought from 1 to 10 based on how well it helps answer the question. This two-part structure helps both
train and assess the model’s ability to generate meaningful, contextually appropriate reasoning for common
sense questions. Prompts with the same structure were used to generate data to create preference pairs for
model training across all datasets used in our paper. For brevity, we provide one example. However, our code
base includes prompts for each dataset.

E Environment and Libraries

We used Python as our main programming language along with NumPy Harris et al.| (2020) and SciPy |Vir-
tanen et al.| (2020)) for array manipulation and scientific computing, Flower Beutel et al.[(2020) for federated
learning and for DRIFT implementation, Transformers [Wolf et al.| (2020)) for working with Llama 3.1 8B and
Qwen 2.5 7B, PEFT Mangrulkar et al.| (2022)) and TRL [von Werra et al| (2020) for LoRA fine-tuning and
preference optimization, PyTorch |Paszke et al.| (2019)) for modeling, Matplotlib [Hunter| (2007)) for generating
figures, Pandas |McKinney| (2010) for data wrangling, and NetworkX Hagberg et al.| (2008)) for generating
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Figure 12: Client graphs from different FL rounds shows divergences between different clients.

graphs, saving graph data, and for conducting graph search. Specific versions for each library and framework
along with additional requirements and their associated version numbers can be found in our code repository.
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Data Generation Prompt (CSQA):

Commonsense Question Answering focuses on developing systems capable of answering questions that
require a deep understanding of everyday knowledge and human-like reasoning.

Generate a thought to answer to a Commonsense Question.

The current question (Human) and the thoughts (System) you have already generated are:
Human: Why does grooming require careful consideration?

System: Grooming requires careful consideration so personal appearance reflects positively upon one-
self or others due to societal norms.

Grooming requires careful consideration so one doesn’t present oneself unacceptably or poorly when
interacting socially.

Grooming requires careful consideration since maintaining good hygiene promotes social acceptance
and respect from peers and society through their perceptions about one’s cleanliness.

Grooming requires careful consideration so one maintains personal hygiene and presents oneself ap-
propriately in various social situations. System

Grooming requires careful consideration due to its impact on first impressions and social interactions.
Grooming requires careful consideration so one looks presentable before meeting others or attending
special events like weddings and parties.

Human: The golfer was great at keeping a calm exterior as he finished up his final shots, but inside
he was what because he knew he had won?

System: Winning can be thrilling and can result in exhilarating feeling.

Human: There are usually four strings on what popular instrument?

System: Instruments with strings can imply musical instruments. Some examples of musical instru-
ments which contain strings include violins, banjos, guitars.

Human: You can read a magazine where while waiting for your transportation on rails to arrive?
System: If the mode of transportation involves rails then it could be a train.

Human: Why does grooming require careful consideration?

System:

Value Prompt:

Your task is to Score a Thought (between 1-10) which can help solve a Question. 1 being Worst and
10 being Best.

Question: {question}

Thought: {thought}

It is very important that your Score is a single integer value. Do not give me your reasoning. Only
return an integer Score.

Score:

Figure 13: Example data generation prompt.
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