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ABSTRACT

Embedding physical intuition into network architectures allows the learning of
dynamics that enforce fundamental properties, such as energy conservation laws,
thereby leading to physically-plausible predictions. Yet, scaling these models to
intrinsically high-dimensional dynamical systems remains a significant challenge.
This paper introduces Geometric Reduced-order Hamiltonian Neural Network
(RO-HNN), a novel physics-inspired neural network that combines the conserva-
tion laws of Hamiltonian mechanics with the scalability of model order reduction.
RO-HNN is built on two core components: a novel geometrically-constrained
symplectic autoencoder that learns a low-dimensional, structure-preserving sym-
plectic submanifold, and a geometric Hamiltonian neural network that models
the dynamics on the submanifold. Our experiments demonstrate that RO-HNN
provides physically-consistent, stable, and generalizable predictions of complex
high-dimensional dynamics, thereby effectively extending the scope of Hamilto-
nian neural networks to high-dimensional physical systems.

1 INTRODUCTION

Learning the unknown governing equations of dynamical systems is of fundamental importance to
model physical processes. In this context, generic neural models lack built-in physical intuition,
thus resulting in limited explainability and poor generalization beyond the data support. Embedding
fundamental physical properties, such as conservation laws and boundary conditions, into neural
networks has been shown to drastically improve their performance. Various models incorporate
physical intuition as soft constraints via penalty terms in the loss function (Saqlain et al., 2023). This
often leads to suboptimal enforcement of physical properties and to stiff optimization (Wang et al.,
2021), motivating the embedding of domain-specific priors as hard constraints in specialized neu-
ral architectures. This allowed recent methods to learn dynamics that preserve energy (Greydanus
et al., 2019; Cranmer et al., 2020; Lutter & Peters, 2023), conserve mass and momentum (Jnini
et al., 2025), and strictly enforce general conservation laws (Liu et al., 2024b), thereby improving
performances, generalization, and stability while yielding physically-consistent predictions.

Hamiltonian mechanics, introduced by Hamilton (1834) as a reformulation of Lagrangian me-
chanics, describe the evolution of a broad range of dynamical systems in robotics (Duong &
Atanasov, 2021), fluid dynamics (Salmon, 1988), quantum mechanics (Schrödinger, 1926), and
biology (Duarte et al., 1998), among others. Hamiltonian systems evolve on a phase space with
symplectic structure, naturally enforcing energy conservation (Abraham & Marsden, 1987). Com-
pared to Lagrangian mechanics, Hamiltonian mechanics provide a first-order formulation of dy-
namics that describes a broader range of physical systems. Hamiltonian neural networks (HNNs)
are gray-box models that embed the Hamiltonian structure as hard constraints in specialized deep
learning architectures. HNNs either directly learn the Hamiltonian function, ensuring conservation
laws by construction (Greydanus et al., 2019; Lutter & Peters, 2023), or learn symplectomorphisms
that preserve the invariants of interest via symplectic flows (Jin et al., 2020). HNNs were enhanced
by including dissipation (Zhong et al., 2020a) and contact (Zhong et al., 2021) models, and utilized
for model-based control (Duong & Atanasov, 2021; Zhong et al., 2020b). While most HNNs con-
sider Hamiltonians characterized by a canonical symplectic form — exhibited at least locally for
all Hamiltonian systems — few works proposed architectures handling non-canonical forms (Chen
et al., 2021) and more general Poisson systems (Jin et al., 2021; Šı́pka et al., 2023). Although HNNs
yielded drastic performance improvements over generic black-box models, their application remains
limited to low-dimensional systems with 2-5 dimensions.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Learning the dynamics of high-dimensional physical systems, such as robots, continua, or fluids,
is arguably a difficult problem due to the increasing complexity and nonlinearity of their govern-
ing equations. Several approaches combine data-driven sparse identification of nonlinear dynamics
(SINDy) and dimensionality reduction to discover high-dimensional governing equations (Brunton
et al., 2016; Champion et al., 2019). However, they disregard the apriori-known structures of phys-
ical systems. In contrast, Sharma & Kramer (2024); Friedl et al. (2025) took inspiration from model
order reduction (MOR) to learn high-dimensional Lagrangian dynamics. MOR addresses the com-
plexity of nonlinear high-dimensional governing equations, so-called full-order model (FOM), by
finding a reduced-order model (ROM), i.e., a computationally-cheaper yet accurate low-dimensional
surrogate model (Schilders et al., 2008). While MOR techniques are typically intrusive, i.e., they
assume entirely-known FOM dynamics, Sharma et al. (2024) presented a novel non-intrusive MOR-
based approach that learns the parameters of a high-dimensional Lagrangian system in a linear
structure-preserving subspace. In a similar line, Friedl et al. (2025) adopted a Riemannian per-
spective on the problem and introduced a physics-inspired neural architecture that jointly learns
a non-linear embedded submanifold via a biorthogonal Autoencoder (AE) and its associated low-
dimensional conservative dynamics via a geometric Lagrangian neural network (LNN). A different
line of works leverage Koopman operator theory to model nonlinear, e.g., Hamiltonian, dynamics
via a learned surrogate linear dynamic model embedded in a higher-dimensional latent space (Lusch
et al., 2018; Zhang et al., 2024).

This paper proposes a novel physics-inspired geometric deep neural network to learn the dynam-
ics of high-dimensional Hamiltonian systems. In contrast to previous works that learn dynamics
from high-dimensional observations such as images (Greydanus et al., 2019; Chen et al., 2021;
Botev et al., 2021), we consider systems with intrinsically high-dimensional phase spaces. Tak-
ing inspiration from (Sharma & Kramer, 2024; Friedl et al., 2025), we build on recent advances
in Hamiltonian MOR (Peng & Mohseni, 2016; Buchfink et al., 2024) and adopt a differential geo-
metric perspective to embed the high-dimensional Hamiltonian structure as hard constraints in our
architecture. Our first contribution is a geometrically-constrained symplectic AE that learns a
low-dimensional symplectic submanifold from trajectories of a high-dimensional Hamiltonian sys-
tem. Unlike soft-constrained symplectic networks (Buchfink et al., 2023), our AE guarantees the
preservation of the symplectic structure of the FOM, including its conservation laws and stability
properties (Lepri et al., 2024), with increased expressivity compared to linear and quadratic symplec-
tic projections (Bendokat & Zimmermann, 2022; Sharma et al., 2023). Our second contribution is
a geometric HNN that models conservative and dissipative Hamiltonian dynamics while accounting
for the Riemannian geometry of its parameters, and resorts to symplectic integration (Tao, 2016)
for accurate long-term dynamics simulation. Our third contribution is a geometric reduced-order
Hamiltonian neural network (RO-HNN) that jointly learns a low-dimensional symplectic submani-
fold with a geometrically-constrained symplectic AE and the dynamics parameters of the associated
Hamiltonian function with a geometric HNN. We validate our approach on three high-dimensional
Hamiltonian systems: a pendulum, a thin cloth, and a particle vortex. Our experiments demonstrate
that, due to its embedded geometries, RO-HNN predicts accurate, stable, and physically-consistent
trajectories, outperforming traditional HNNs and state-of-the-art reduction approaches.

2 BACKGROUND

We provide a short background on Hamiltonian dynamics, structure-preserving Hamiltonian MOR,
and related neural networks. Preliminaries on Riemannian and symplectic geometry are in App. A.

2.1 HAMILTONIAN DYNAMICS ON SYMPLECTIC MANIFOLDS

A symplectic manifold (M, ω) is a 2n-dimensional smooth manifoldM equipped with a symplec-
tic form ω, i.e., a closed (dω = 0), non-degenerate, differential 2-form represented by a skew-
symmetric matrix ω in coordinates. We slightly abuse notation, equivalently denoting symplectic
manifolds as (M,ω). A Hamiltonian system (M,ω,H) is a dynamical system evolving on a sym-
plectic manifold (M,ω) according to a smooth Hamiltonian function H :M→ R. The Hamilto-
nian vector field XH = ω−1dH is uniquely defined and preserves H. Trajectories γ : I → M of
the system over a time-interval I = [t0, tf] are solutions of the initial value problem (IVP)

d
dtγ|t = XH|γ(t) ∈ Tγ(t)M, with γ(t0) = γ0 ∈M. (1)

A diffeomorphism f : (M,ω) → (N ,η) between symplectic manifolds is a symplectomorphism
if it preserves the symplectic form, i.e., f∗η = ω with f∗η denoting the pullback of η by f .
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Following Darboux theorem, there exists a canonical chart (U, ϕ), x ∈ U for each point x ∈ M in
which the symplectic form is represented as ω = J⊺2n via the canonical Poisson tensor

J2n =

(
0 In
−In 0

)
, for which J⊺2n = J−1

2n = −J2n. (2)

In other words, every symplectic manifold is locally symplectomorphic to (R2n, J⊺2n). A system
(R2n, J⊺2n,H) is called a canonical Hamiltonian system.

In this paper, we consider Hamiltonian systems (M,ω,H), on M globally valid canonical sym-
plectic form ω = J⊺2n. In this case, the phase space M can be modeled on the cotangent bundle
T ∗Q of a smooth n-dimensional manifold Q (Weinstein, 1971) with canonical coordinates (q,p)
with position q ∈ Q and conjugate momenta p ∈ T ∗

q Q. The Hamiltonian vector field simplifies to
(q̇⊺, ṗ⊺) ⊺ = XH = J2n dH⊺ = ( ∂H

∂p ,− ∂H
∂q ) ⊺. Moreover, the Hamiltonian system (T ∗Q, J⊺2n,H)

relates to a Lagrangian function L : T Q → R via the Legendre transform, which takes L to
H = q̇⊺p − L with p = ∂L

∂q̇ and q̇ ∈ TqQ. Mechanical systems often display a quadratic kinetic
energy structure, where the configuration manifold Q is a Riemannian manifold endowed with the
kinetic-energy metric equal to the system’s mass–inertia matrix M(q). In this case, the Hamilto-
nian function is given by the sum of the system’s kinetic T (q,p) and potential V (q) energies as
H = T (q,p) + V (q) = 1

2p
⊺M−1(q)p+ V (q) and the momenta is p = M(q)q̇.

2.2 STRUCTURE-PRESERVING MODEL-ORDER REDUCTION OF HAMILTONIAN SYSTEMS

Given the known parametrized dynamic equations of a high-dimensional system, i.e., a FOM, MOR
aims to construct a low-dimensional surrogate dynamic model, i.e., a ROM, that accurately and ef-
ficiently approximates the FOM trajectories. Structure-preserving MOR preserves the underlying
geometric structure of the FOM, ensuring that its properties, e.g. stability and energy conserva-
tion, are maintained in the ROM. For Hamiltonian systems (M,ω,H), the symplectic structure is
preserved by constructing a reduced Hamiltonian (M̌, ω̌, Ȟ) with dim(M̌) = d ≪ dim(M) = n,
whose vector field X̌H approximates the set of solutions S = {γ(t) ∈M | t ∈ I} ⊆M of (1).

Following the geometric perspective of Buchfink et al. (2024), the reduced Hamiltonian (M̌, ω̌, Ȟ)
is derived by identifying the submanifold M̌ via a smooth embedding φ : M̌ →M such that

ω̌ = φ∗ω = dφ⊺ωdφ, (3)

is non-degenerate. This implies that (M̌, ω̌) is a symplectic manifold and φ is a symplectomor-
phism (Buchfink et al., 2024, Lemma 5.13). Note that structure-preserving Hamiltonian MOR typi-
cally considers a canonical FOM (R2n, J⊺2n,H) reduced to a canonical ROM (R2d, J⊺2d, Ȟ) (Peng &
Mohseni, 2016; Sharma et al., 2023; Buchfink et al., 2023). The Hamiltonian structure is preserved
by constructing Ȟ via the pullback of the embedding as Ȟ = φ∗H = H ◦ φ. Trajectories γ̌(t)
of the reduced-order system are then obtained from the ROM d

dt γ̌
∣∣
t
= X̌Ȟ

∣∣
γ̌(t)
∈ Tγ̌(t)M̌, with

X̌Ȟ = ω̌−1dȞ. The reduced initial value γ̌0 = ρ(γ0) ∈ M̌ is computed via the point reduction
map ρ :M→ M̌ associated with φ, which must satisfy the projection properties

ρ ◦ φ = idM̌ and dρ|φ(x̌) ◦ dφ|x̌ = idTx̌M̌, ∀x̌ ∈ M̌. (4)

Trajectories of the original system are finally obtained as the approximation γ(t) ≈ φ(γ̌(t)).

The embedding φ and point reduction ρ are key for MOR as they determine the ROM trajectories.
Accurately approximating the FOM requires the minimization of the reconstruction error

ℓrec =
1

N

N∑
i=1

∥φ ◦ ρ(xi)− xi∥2. (5)

Exact reconstruction requires dρ to be the symplectic inverse of dφ, i.e., dρ = dφ+ = ω̌−1dφ⊺ω.
In this paper, we introduce a geometrically-constrained AE that fulfills (3) and (4) by design.

2.3 HAMILTONIAN NEURAL NETWORKS

While MOR reduces the dimensionality of systems with known dynamics, HNNs aim to learn the
unknown dynamics of typically low-dimensional systems while ensuring energy conservation. Most
HNNs assume canonical Hamiltonian systems or Hamiltonian systems with canonical symplectic
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Figure 1: Flowchart of the forward dynamics of the geometric RO-HNN. The geometrically-
constrained symplectic AE (in blue) is built as the cotangent lift of a constrained AE (top right).
The geometric HNN (in brown) is composed of two SPD networks for the inverse mass-inertia and
damping matrices and one MLP for the potential energy.

form (2). In this paper, we build on two HNN variants that (1) learn the Hamiltonian function as
a single network Hθ(q,p) with parameters θ (Greydanus et al., 2019), or (2) learn the kinetic and
potential energy as two distinct networks, i.e.,Hθ(q,p) = TθT(q,p) + VθV(q) (Zhong et al., 2020b;
Lutter & Peters, 2023). Given a set of N observations {qi,pi, q̇i, ṗi}Ni=1, the networks are trained
to minimize the prediction error of the Hamiltonian vector field via the loss

ℓHNN = ∥∂Hθ

∂p
(qi,pi)− q̇i∥2 + ∥

∂Hθ

∂q
(qi,pi)− ṗi∥2. (6)

3 GEOMETRIC REDUCED-ORDER HAMILTONIAN NEURAL NETWORKS

We present the geometric reduced-order Hamiltonian neural network (RO-HNN) that learns the un-
known dynamics of high-dimensional Hamiltonian systems. We focus on systems (M, J⊺2n,H)
evolving on a phase spaceM with canonical symplectic form J⊺2n for which the solutions γ(t) of
the FOM (1) can be accurately approximated by a substantially lower dimensional surrogate model.
Our goal is to learn a reduced Hamiltonian system (M̌, ω̌, Ȟ) via non-intrusive structure-preserving
MOR, where we set M̌ as a phase space with ω̌ = J⊺2d. Given a set of high-dimensional observations
{qi,pi}Ni=1, we identify low-dimensional dynamics by jointly learning a reduced symplectic mani-
fold (M̌, J⊺2d) via a smooth embedding φ and a reduction ρ, and a latent Hamiltonian function Ȟ.

The proposed RO-HNN ensures the preservation of the Hamiltonian structure by fulfilling three
necessary conditions by design: (1) the embedding φ is a symplectomorphism, or equivalently

ω̌ = J2d = dφ⊺J2ndφ; (7)

(2) the embedding φ and reduction map ρ satisfy the projection properties (4); and (3) Ȟ is a valid
Hamiltonian function, thus preserving the reduced energy Ě = E ◦ φ. The RO-HNN fulfill (1)-
(2) via a novel geometrically-constrained symplectic AE (Sec. 3.1), while (3) is guaranteed by a
reduced-order geometric HNN (Sec. 3.2), whose trajectories are obtained via symplectic integration
(Sec. 3.3). Accurate modeling of the high-dimensional dynamics is achieved by jointly training the
AE and the HNN (Sec. 3.4). The proposed RO-HNN is illustrated in Fig. 1.

3.1 GEOMETRICALLY-CONSTRAINED SYMPLECTIC AUTOENCODER

Preserving the geometric structure of the original Hamiltonian FOM is crucial for the learned ROM
to display similar dynamics. We introduce a geometrically-constrained symplectic AE that projects
a high-dimensional Hamiltonian system (M, J⊺2n,H) onto a low-dimensional nonlinear symplectic
manifold (M̌, J⊺2d) such that the reduced system strictly retains the Hamiltonian structure of the
FOM. We parametrize the point reduction ρ : M → M̌ and embedding φ : M̌ → M as the
encoder and decoder of an AE designed to satisfy symplecticity (7) and projection properties (4) by
construction. To do so, we leverage the cotangent bundle structure of the phase spaceM = T ∗Q.

4
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Given a smooth embedding φQ : Q̌ → Q and associated point reduction ρQ : Q → Q̌ satisfying (4),
we define the cotangent-lifted embedding φ and point reduction ρ in canonical coordinates as

φ(q̌, p̌) =

(
φQ(q̌)

dρQ|⊺φQ(q̌)p̌

)
and ρ(q,p) =

(
ρQ(q)

dφQ|⊺ρQ(q)p

)
, (8)

where the pullbacks dρQ|⊺φQ(q̌)p̌ and dφQ|⊺ρQ(q)p are computed using the Jacobian of ρQ and φQ.

Proposition 1. The reduction map ρ(q,p) (8) satisfies the projection properties (4).
Proof. It is clear that the cotangent-lifted map ρ fulfills (4) as ρQ satisfies (4) by assumption.

Proposition 2. The embedding φ(q̌, p̌) (8) satisfies the symplecticity property (7).

Proof. Proving the statement is equivalent to show that the differential dφ =

(
dφQ 0

∂(dρ
⊺
Qp̌)

∂q̌ dρ⊺
Q

)
be-

longs to the symplectic Stiefel manifold Sp(2n, 2d) =
{
U ∈ R2n×2d |U⊺J2nU = J2d

}
. A block

matrix U = (A B
C D ) belongs to Sp(2n, 2d) if its block elements satisfy the condition

U⊺J⊺2nU =

(
A⊺ C⊺

B⊺ D⊺

)(
0 −In
In 0

)(
A B
C D

)
=

(
C⊺A−A⊺C C⊺B −A⊺D
D⊺A−B⊺C D⊺B −B⊺D

)
=

(
0 −Id
Id 0

)
,

i.e., the differential dφ must satisfy

dφ⊺J⊺dφ =

(
C⊺dφQ − dφ⊺

QC −dφ⊺
Qdρ

⊺
Q

dρQdφQ 0

)
=

(
0 −Id
Id 0

)
with C =

∂(dρQ|⊺φQ(q̌)p̌)

∂q̌
.

(9)
By assumption, ρQ fulfills the projection properties (4), so that dρQdφQ = dφ⊺

Qdρ
⊺
Q = Id holds

by construction. It remains to prove C⊺dφQ − dφ⊺
QC = 0. We denote the elements of the

canonical and reduced canonical coordinates as qi, pi and q̌α, p̌α, respectively. By definition, we
have (dφQ)

i
α = ∂qi

∂q̌α and (dρQ)
α
i = ∂q̌α

∂qi and the projection properties hold by assumption, i.e.,
(dρQ)

α
i (dφQ)

i
β = δαβ ∀q̌ ∈ Q̌, with δαβ = 1 if α = β and δαβ = 0 otherwise. Therefore, we have

pi = (dρQ)
α
i p̌α, and Ciγ = ∂pi

∂q̌γ = ∂
∂q̌γ ((dρQ)

α
i p̌α) =

∂(dρQ)αi
∂qj

∂qj

∂q̌γ p̌α =
∂(dρQ)αi

∂qj (dφQ)
j
γ p̌α.

We aim to show that C⊺dφQ is symmetric, i.e., (dφQ)
i
βCiγ = (dφQ)

i
γCiβ . Using the projection

properties, we can write p̌β = (dφQ)
i
β(dρQ)

α
i p̌α. Differentiating with respect to q̌γ yields

0 =
∂

∂q̌γ
(
(dφQ)iβ(dρQ)αi p̌α

)
=

(dφQ)iβ
∂q̌γ

(dρQ)αi p̌α + (dφQ)iβ
(dρQ)αi
∂qj

∂qj

∂q̌γ
p̌α

=
(dφQ)iβ
∂q̌γ

pi + (dφQ)iβCiγ =
∂qi

∂q̌β∂q̌γ
pi + (dφQ)iβCiγ .

As the Hessian in the first term is symmetric, the equality implies the symmetricity of the second
term, i.e., (dφQ)

i
βCiγ = (dφQ)

i
γCiβ , and thus (9) holds.

Note that dρJ2ndρ⊺ = J2d is shown to hold on φ(M̌) with similar arguments. Moreover, a similar
proof is presented by Sharma et al. (2023) in the context of quadratic symplectic projections.

In practice, we learn the embedding φQ and point reduction ρQ via the constrained AE architecture
from Otto et al. (2023), and compute their differentials analytically to construct the cotangent-lifted
maps (8) (see App. D for details). The encoder and decoder are given as a composition of feedfor-
ward layers ρQ=ρ

(1)
Q ◦. . .◦ρ

(L)
Q and φQ=φ

(L)
Q ◦. . .◦φ

(1)
Q with ρ

(l)
Q :Rnl→Rnl−1 , φ(l)

Q :Rnl−1→Rnl ,
and nl−1≤nl. The key to fulfill the projection properties (4) is the construction of the layer pairs as

ρ
(l)
Q (q(l)) = σ−

(
ΨT

l (q
(l) − bl)

)
and φ

(l)
Q (q̌(l−1)) = Φlσ+(q̌

(l−1)) + bl, (10)

where (Φl,Ψl) and (σ+, σ−) are pairs of weight matrices and smooth activation functions such
that ΨT

l Φl = Inl−1
and σ− ◦ σ+ = id, respectively, and bl are bias vectors. Therefore, each

layer pair (10) satisfies ρ(l)Q ◦ φ
(l)
Q = idRnl−1 and the constrained AE fulfills (4). Following (Friedl

et al., 2025), we ensure that the pairs of weight matrices adhere to the biorthogonality constraint
ΨT

l Φl = Id by accounting for the Riemannian geometry of biorthogonal matrices (see App. B.2
for a background). Specifically, we consider each pair (Φl,Ψl) as an element of the biorthogonal
manifold Bnl,nl−1

={(Φ,Ψ) ∈ Rnl×nl−1 ×Rnl×nl−1 : ΨTΦ = Inl−1
} and optimize them to min-

imize the reconstruction error (5) via Riemannian optimization (Absil et al., 2007; Boumal, 2023)

5
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(see. App. F). Note that this Riemannian approach was shown to consistently outperform the over-
parametrization proposed by Otto et al. (2023), achieving lower reconstruction errors (Friedl et al.,
2025). The constraint σ− ◦σ+ = id is met by utilizing the smooth, invertible activation functions
defined in (Otto et al., 2023, Eq. 12), see also App. D.

As will be shown in Sec. 4, the resulting geometrically-constrained symplectic AE provides in-
creased expressivity compared to linear and quadratic symplectic projection approaches (Peng &
Mohseni, 2016; Sharma et al., 2023), while guaranteeing the symplectic structure of the latent space
in constrast to weakly-symplectic AEs based on soft constraints (Buchfink et al., 2023). In the intru-
sive case, i.e., if the FOM is known, we construct the reduced Hamiltonian function via the pullback
of the cotangent-lifted embedding as Ȟ = φ∗H, which yields the Hamiltonian ROM. Instead, in
this paper, we consider the case where the high-dimensional dynamics are unknown, and learn the
reduced-order Hamiltonian function Ȟ with a geometric HNN, as explained next.

3.2 CONSERVATIVE AND DISSIPATIVE HAMILTONIAN REDUCED-ORDER MODELS

Conservative dynamics. We propose to learn the reduced Hamiltonian dynamics in the embed-
ded symplectic submanifold (M̌, J⊺2d) via a HNN. For general systems, we encode the reduced-
order Hamiltonian function as a single neural network Ȟθ(q̌, p̌) with parameters θ, akin to (Grey-
danus et al., 2019). However, additional prior knowledge on the structure of the Hamiltonian is
often available. For instance, the Hamiltonian function of mechanical systems sums a quadratic
kinetic energy and a potential term. Leveraging that the learned symplectic submanifold pre-
serves the original system structure, we propose to model the reduced Hamiltonian function as
Ȟθ(q̌, p̌) = 1

2 p̌
⊺M̌−1

θŤ
(q̌)p̌ + V̌θV̌

(q̌) via two neural networks M̌−1
θŤ

and V̌θV̌
with parameters

θ = {θŤ ,θV̌ }. Existing HNNs (Lutter & Peters, 2023; Zhong et al., 2020a) enforce the sym-
metric positive-definiteness of the inverse mass-inertia matrix via a Euclidean network encoding its
Cholesky decomposition L, i.e., M−1 = LL⊺. However, as for LNNs (Friedl et al., 2025), this
parametrization leads to flawed measures of distances in the space of symmetric positive-definite
(SPD) matrices and ultimately results in inaccurate dynamics predictions. To overcome this issue,
we parametrize M̌−1

θT
via the SPD network from Friedl et al. (2025) that accounts for the Rieman-

nian geometry of the SPD manifold Sd++ (see Apps. A, C). The network M̌−1
θT

(q) = (gExp◦gR)(q) is
composed of (1) a standard Euclidean multilayer perceptron (MLP) gR : Rd → Rd(d+1)/2 that maps
the input configuration to the elements of a symmetric matrix U ∈ Symd, and (2) an exponential
map layer gExp that interprets U as an element of the tangent space TPSd++, and maps it onto Sd++.
Dissipative dynamics. While classical Hamiltonian dynamics conserve energy, dissipation and
external inputs often appear in real-world systems. Both can be modeled in HNNs by com-
plementing the Hamiltonian vector field with a force field XF , so that the total vector field is
X = XH + XF (Sosanya & Greydanus, 2022; Zhong et al., 2020a). We propose to leverage
the structure-preserving symplectic submanifold and model dissipation and external inputs as a
reduced-order force field X̌F on (M̌, J⊺2d). Specifically, we consider high-dimensional systems
with observed external inputs τext and viscous damping following a Rayleigh dissipative function
D(q, q̇) = 1

2 q̇
⊺D(q)q̇ with unknown positive semi-definite dissipation matrix D(q). The resulting

force field is XF =
(

0
τext+τd

)
with damping force τd = ∂D(q,q̇)

∂q̇ = D(q)q̇.

Proposition 3. The reduced vector field X̌=φ∗X obtained via the pullback of the cotangent-lifted
embedding φ (8) preserves the structure of the total vector field X=XH+XF with XF =

(
0

τext+τd

)
.

Proof. The reduced vector field decomposes as X̌ = φ∗X = φ∗XH + φ∗XF = X̌Ȟ + X̌F̌ with
X̌Ȟ= ω̌−1dȞ (see Sec. 2.2) and X̌F̌ is obtained by pulling back the external and damping terms.
Since generalized forces belong to the cotangent bundle T ∗Q, they are embedded and reduced
via the cotangent-lifted maps (8) as φ(q̌, τ̌ ) and ρ(q, τ ), leading to the reduced external inputs
τ̌ext = dφQ|⊺q̌ τext. The reduced Rayleigh dissipative function is obtained via the pullback of the
tangent-lifted embedding φT Q(q̌, ˙̌q) = (φQ(q̌)

⊺, (dφQ|q̌ ˙̌q)⊺)⊺ as Ď = φ∗
T QD = 1

2
˙̌q⊺Ď(q̌) ˙̌q with

positive semi-definite reduced damping matrix Ď(q̌)=dφ⊺
QD(q)dφQ. The reduced damping force

is then τ̌d = ∂Ď(q̌, ˙̌q)

∂ ˙̌q
= Ď(q̌) ˙̌q. Therefore, the reduced force field is X̌F̌ =

(
0

τ̌ext+τ̌d

)
.

We propose to model the reduced Rayleigh dissipative function ĎθĎ
(q̌, ˙̌q) = 1

2
˙̌q⊺ĎθĎ

(q̌) ˙̌q via a
neural network ĎθĎ

. Dissipative HNNs (Zhong et al., 2020a) constrain the dissipation matrix to
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be positive semi-definite through its Cholesky decomposition, i.e., D=LL⊺, thus overlooking its
intrinsic geometric structure. Instead, we utilize a second SPD network ĎθĎ

(q̌) = (gExp ◦ gR)(q).
Note that the dissipative dynamics no longer preserve a symplectic structure. However, Proposition 3
shows that the RO-HNN latent space still preserves the structure of high-dimensional dissipative dy-
namical systems characterized by a Rayleigh dissipative function. It is worth noting that these sys-
tems are equivalent to Port-Hamiltonian systems with energy dissipation matrix R(q,p)=

(
0 0
0 D(q)

)
and input G(q,p)u=τext, and to contact HamiltoniansHc(q,p, s) with ṡ=D.

Predicting dynamics. The geometric HNN predicts conservative and dissipative dynamics as

˙̌qp =
∂Ȟθ

∂p̌
and ˙̌pp = −∂Ȟθ

∂q̌
−ĎθD

(q̌)
∂Ȟ
∂p̌

+ τ̌ext, (11)

where the predictions of the dynamic model are denoted via the subscript p. Note that ĎθD
=0 and

τ̌ext=0 in the conservative case. The architecture is illustrated in Fig. 1-middle.

Predicting system trajectories according to the learned reduced-order Hamiltonian dynamics in-
volves (1) integrating the latent predictions ( ˙̌qp, ˙̌pp) (11), and (2) decoding the obtained reduced-
order position and momentum (q̌p, p̌p) into the high-dimensional coordinates of the original system
with the lifted point embedding φ (8), i.e., (q̃p, p̃p) = φ(q̌p, p̌p). In this paper, we propose to
integrate the learned reduced-order Hamiltonian flow via symplectic integration, as explained next.

3.3 TRAJECTORY PREDICTION VIA SYMPLECTIC INTEGRATION

Symplectic integrators are particularly well suited to integrate Hamiltonian dynamics as they pre-
serve the geometric structure and invariants of the Hamiltonian flow (Leimkuhler & Reich, 2005).
Symplectic integrators were shown to be key to accurately integrate learned HNNs dynamics, thus
preventing long-term drifting of numerical solutions (Chen et al., 2020; Xiong et al., 2021).

The Hamiltonian dynamics learned in Sec. 3.2 are nonseparable, thus prohibiting the usage of stan-
dard explicit integration schemes, e.g., leapfrog (Leimkuhler & Reich, 2005). Instead, we integrate
the reduced-order Hamiltonian flow (11) using the second-order symplectic integrator of (Tao, 2016)
based on Strang splitting, akin to (Xiong et al., 2021). In a nutshell, the integrator considers an aug-
mented Hamiltonian H̄(q,p,x,y) = H(q,y) +H(p,x) + 1

2w(∥q,x∥
2 + ∥p,y∥2) with extended

phase space, for which high-order separable symplectic integrators with explicit updates can be con-
structed. A numerical integrator approximating H̄ is obtained by composing the obtained explicit
flows, which we refer to as Strang-symplectic integrator. Additional details are provided in App. E.

3.4 MODEL TRAINING

Finally, we propose to jointly learn the parameters {Φl,Ψl, bl}Ll=1 of the AE and {θŤ ,θV̌ ,θĎ}
of the latent geometric HNN. As the learned dynamics are expected to predict multiple steps, we
consider a loss that numerically integrates the latent predictions ( ˙̌qp, ˙̌pp) (11) via H forward Strang-
symplectic integration steps before decoding. Given sets of observations {qi(Ii),pi(Ii), τi(Ii)}Ni=1
over intervals Ii = [ti, ti +H∆t] with constant integration time ∆t, the resulting multi-step loss is

ℓRO-HNN =
1

HN

N∑
i=1

H∑
j=1

∥q̃i(ti,j)− qi(ti,j)∥2 + ∥p̃i(ti,j)− p(ti,j)∥2︸ ︷︷ ︸
ℓAE

+λ∥q̌p,i(ti,j)− q̌i(ti,j)∥2︸ ︷︷ ︸
ℓHNN,d

(12)

+ λ∥p̌p,i(ti,j)− p̌i(ti,j)∥2︸ ︷︷ ︸
ℓHNN,d

+ ∥q̃p,i(ti,j)− qi(ti,j)∥2 + ∥p̃p,i(ti,j)− pi(ti,j)∥2︸ ︷︷ ︸
ℓHNN,n

+γ ∥θ∥22,

where q̌p,i(ti,j) =
∫ ti,j
ti

˙̌qp,idt and p̌p,i(ti,j) =
∫ ti,j
ti

˙̌pp,idt with ti,j = ti + j∆t, and loss scaling
λ ∈ R>0. Note that initial conditions to the latent IVPs are given by the encoded observations
at the initial timestep q̌p,i(ti) := q̌i and p̌p,i(ti) := p̌i. We optimize the network parameters via
Riemannian Adam (Becigneul & Ganea, 2019).

4 EXPERIMENTS

We evaluate the proposed RO-HNN to learn the dynamics of three simulated high-dimensional
Hamiltonian systems: a 15-degrees-of-freedom (DoF) pendulum, a 600-DoF thin cloth, and a 90-
DoF particle vortex. Our experiments showcase that RO-HNNs accurately predict long-term tra-
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Table 1: Mean and standard deviation of prediction errors (↓) over 10 test pendulum trajectories.
H∆t (s) RO-HNN 15-DoF HNN 3-DoF HNN HNKO

∥q̃p−q∥
∥q∥

0.25 (1 .66 ± 1 .38 )× 10−1 (5.33± 6.02)× 10−1 (1.22± 0.92)× 10−1 (5.64± 4.41)× 10−1

5 (7 .08 ± 7 .56 )× 10−1 — (5.44± 6.93)× 10−1 (1.32± 0.94)× 100

∥p̃p−p∥
∥p∥

0.25 (5 .33 ± 5 .23 )× 10−2 (1.76± 2.40)× 10−1 (2.50± 2.96)× 10−2 (5.93± 10.73)× 10−1

5 (1 .98 ± 2 .67 )× 10−1 — (1.85± 3.94)× 10−1 (1.23± 2.08)× 100

Table 2: Mean and standard deviation of reconstruction, prediction, and symplecticity errors (↓) of
intrusive symplectic dimensionality reduction approaches over 10 test pendulum trajectories.

Linear SMG Quadr. SMG Weakly-sympl. AE Geom. Sympl. AE (ours)

∥q̃ − q∥/∥q∥ (2.21± 1.17)× 10−1 (2.84± 4.23)× 100 (1.43± 0.68)× 10−1 (8.84± 6.22)× 10−2

∥p̃− p∥/∥p∥ (4.43± 3.99)× 10−1 (2.75± 1.60)× 10−1 (1.57± 1.55)× 10−1 (4.09± 3.99)× 10−2

∥q̃p − q∥/∥q∥ (2.58± 2.33)× 10−1 (3.53± 5.18)× 100 (7.10± 7.02)× 10−1 (1.13± 0.92)× 10−1

∥p̃p − p∥/∥p∥ (2.16± 1.89)× 10−1 (8.68± 1.04)× 10−1 (2.16± 1.89)× 10−1 (4.68± 4.32)× 10−2

∥J2d − dφ⊺J2ndφ∥ 0.0± 0.0 0.0± 0.0 (1.67± 0.35)× 10−2 0.0± 0.0
∥dρ− dφ+∥ 0.0± 0.0 0.0± 0.0 (5.32± 1.45)× 100 (9.53± 5.35)× 10−1

jectories of high-dimensional Hamiltonian systems, highlighting the importance of embedding ge-
ometric inductive biases as hard constraints in the AE and HNN. Details about datasets, network
architectures, and model training are provided in App. G. Additional results are provided in App. H.

4.1 COUPLED PENDULUM (15 DOF)
We consider a 15-DoF augmented pendulum whose nonlinear dynamics are specified from the sym-
plectomorphism of a latent 3-DoF pendulum augmented with a 12-DoF mass-spring mesh. As the
mesh oscillations are small, the system dynamics are approximately reducible to 3 dimensions.

Learning high-dimensional dynamics. We train a RO-HNN with latent dimension d = 3
and a conservative geometric HNN with Strang-symplectic integration on 3000 observations
{qi,pi} (see App. G.1 for details). We compare our RO-HNN with a 15-DoF geometric HNN
that directly learns high-dimensional dynamic parameters, and with a Hamiltonian neural Koop-
man operator (HNKO) that learns a discrete linear predictor embedded in a 100-dimensional
lifted space. For completeness, we also consider a 3-DoF geometric HNN trained on ob-
servations of the latent system. Notice that this model would not be deployable in practice
as it requires ground truth information, i.e., latent observations, that would not be available.

Figure 2: Median and quar-
tiles of relative error and re-
constructed trajectories of the
RO-HNN ( ), 3-DoF HNN
( ), and HNKO ( ) vs.
ground truth ( ) for a horizon
H∆t= 5s. The 15-DoF HNN
diverges and is not shown.

Short- and long-term relative prediction errors over H∆t =
{0.25, 5}s are reported in Table 1. The RO-HNN outperforms the
15-DoF HNN and the HNKO, leading to significantly lower pre-
diction errors. Due to the high dimensionality, the 15-DoF HNN
was difficult to train and did not lead to stable long-term predic-
tions. As also shown in Fig. 2, the HNKO learns stable, but inaccu-
rate long-term predictions. In contrast, the RO-HNN achieves sim-
ilar long-term predictions as the 3-DoF HNN, which is expected
to perform best as trained directly on the low-dimensional system
(see also Figs. 7-8 in App. H.1). This validates the RO-HNN abil-
ity to jointly learn a latent symplectic submanifold and associated
dynamics. Table 5 in App. H.1 shows that the RO-HNN is robust
to observation noise, consistently outperforming the HNKO.

AE architecture. The quality of the learned symplectic submani-
fold is crucial for learning accurate dynamics, as they may system-
atically deviate from the ground truth if the submanifold does not
accurately capture the solution space of the high-dimensional sys-
tem. We analyze the influence of the reduction method in the RO-HNN and compare the proposed
geometrically-constrained symplectic AE with linear and quadratic symplectic manifold Galerkin
(SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023) which preserve the symplectic
structure by construction, and a weakly-symplectic AE (Buchfink et al., 2023) which encourages
structure preservation via a penalty term in the loss (see App. G.1 for details). We train each
approach on 3000 observations of the 15-DoF pendulum. Here, we consider an intrusive MOR
setup and project the known FOM dynamics onto the learned submanifold to predict new trajecto-
ries (H∆t = 0.25s). Table 2 shows that, due to their increased expressivity, the AEs outperform
the linear and quadratic projections, with the geometrically-constrained symplectic AEs achieving
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Figure 3: Ablation of the latent HNN architecture (left) and latent integrator (middle, right) of the
RO-HNN to learn the dynamics of a 15-DoF pendulum.

Figure 4: Predicted ( , , ) vs ground truth ( , , ) positions of the particle vortex. Times beyond
10s are out of the training data distribution.

the lowest reconstruction and prediction errors (see also Fig. 9 in App. H.1). Note that only the
geometrically-constrained AE yielded stable longer-term predictions (see Fig. 2). Moreover, only
the weakly-symplectic AE results in an error on the symplecticity condition (7), which is expected
as both SMG projections and geometrically-constrained symplectic AE fulfill it by construction.
Both SMG projections also ensure by design that the differential dρ is the symplectic inverse of
dφ, while the geometrically-constrained AE leads to a lower error than the weakly-constrained one.
Note that jointly training the AE with the geometric HNN in the RO-HNN further reduces this error
to (7.42± 1.21)× 10−1, showcasing the benefit of joint training.

Latent HNN architecture. We compare the performance of our geometric HNN to learn the
low-dimensional dynamics of the latent 3-DoF pendulum against (1) a non-geometric variant that
parametrizes the inverse mass-inertia matrix via a Cholesky network, and (2) two HNNs encoded
as a single black-box network Hθ, where we consider two MLPs of 64- and 256-neurons width.
As shown in Fig. 3-left, the geometric HNN achieves the lowest reconstruction error, followed by
the Cholesky HNN (see also App. H.1). This showcases the importance of considering both the
quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices.

Latent integrator. We compare the Strang symplectic integrator against a symplectic leapfrog that
disregards that the Hamiltonian is non-separable, and a Runge-Kutta of order 4 that overlooks its
symplectic structure. Fig. 3-middle, right show that the Strang symplectic integrator achieves the
lowest reconstruction error and conserves energy best during integration (see also App. H.1).

4.2 PARTICLE VORTEX (90-DOF)

Next, we learn the dynamics of a particle vortex composed of n = 90 particles with uniform in-
teraction strengths. As the particle vortex dynamics are purely determined via the logarithmic in-
teraction, its Hamiltonian function does not separate into kinetic and potential energies. We train
RO-HNNs with d = {6, 10} and (1) a geometric HNN and (2) a black-box HNN Ȟθ, both with
Strang-symplectic integration (see App. G.2 for details). Fig. 4 depicts the predicted particle po-
sitions and momenta for a prediction horizon of H = 100, showing that the RO-HNN accurately
predicts the particle vortex dynamics and generalizes beyond the data support (t > 10s). As shown
in Table 3 and Fig. 13 in App. H.2 , the geometric HNNs outperform the black-box HNNs despite the
lack of structure of the ground truth Hamiltonian. This suggests that the AE learns a symplectomor-
phism to a latent space where the Hamiltonian can be decomposed into two energy terms, thereby
taking advantage of the additional structure of the geometric HNN. Moreover, the 6-dimensional
models slightly outperform the 10-dimensional ones, showing that the choice of latent dimension
trades off between the latent space expressivity and the limitations of HNNs in higher dimensions
(see App. H.2 for more results).

Table 3: RO-HNN prediction errors (↓) for different latent HNNs over 10 particle vortex trajectories.
d = 6 d = 10

HNN ∥q̃p − q∥/∥q∥ ∥p̃p − p∥/∥p∥ ∥q̃p − q∥/∥q∥ ∥p̃p − p∥/∥p∥
Black-box (6.73± 2.83)× 10−1 (6.28± 2.18)× 10−1 (7.34± 3.03)× 10−1 (7.04± 2.27)× 10−1

Geometric (4.00± 2.01)× 10−1 (4.33± 0.14)× 10−1 (4.44± 0.60)× 10−1 (4.60± 0.32)× 10−1
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Figure 5: Predicted positions of the damped cloth with a RO-HNN with d = 10 for a 625× longer
horizon than during training. Times beyond 0.3s are out of the training data distribution.
Table 4: Mean and standard deviation of RO-HNN reconstruction and prediction errors (↓) for
different parametrization of the latent dissipation matrix Ď over 10 test cloth trajectories.

DoF Ď ∥q̃p − q∥/∥q∥ ∥p̃p − p∥/∥p∥ ∥q̌p − q̌∥/∥q̌∥ ∥p̌p − p̌∥/∥p̌∥

6
Cholesky (4.21± 1.07)× 10−2 (4.11± 2.93)× 10−1 (3.45± 1.13)× 10−2 (6.90± 10.90)× 10−2

SPD (4.15± 2.10)× 10−2 (3.58± 3.03)× 10−1 (3.11± 1.86)× 10−2 (8.42± 10.40)× 10−2

Ground truth (3.18± 0.74)× 10−2 (3.45± 3.99)× 10−1 (2.58± 0.94)× 10−2 (4.77± 5.36)× 10−2

10
Cholesky (2.62± 0.74)× 10−2 (3.39± 3.01)× 10−1 (1.86± 0.69)× 10−2 (3.90± 4.36)× 10−2

SPD (3.21± 1.25)× 10−2 (3.33± 2.88)× 10−1 (3.45± 1.13)× 10−2 (1.96± 1.10)× 10−2

Ground truth (2.31± 0.70)× 10−2 (3.44± 3.05)× 10−1 (1.37± 0.63)× 10−2 (4.26± 4.58)× 10−2

4.3 CLOTH (600-DOF)
Next, we learn the dynamics of a high-deformable damped system, namely a simulated 600-DoF
thin cloth falling onto spheres of different radius, akin to (Friedl et al., 2025). The system is in-
trinsically damped due to external dissipation forces τd. We train two RO-HNNs with d = {6, 10}
and a dissipative geometric HNN with Strang-symplectic integration on 20 trajectories of 3000 ob-
servations {qi,pi, τi} each, where τ = τc are measured external constraint forces (see App. G.3
for details). Fig. 5 depicts the predicted cloth configurations for a horizon H∆t = 0.5 s, show-
ing that the RO-HNN accurately predicts the high-dimensional dissipative dynamics of the cloth,
generalizing beyond the data support (t > 0.3s) (see App. H.3 for additional results and ablations).

Latent damping. We compare the performance of the dissipative RO-HNN against (1) a conserva-
tive RO-HNN, where the dissipation forces τd are not learned but provided as ground truth in the ex-
ternal input τ =τc +τd, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized
via Cholesky decomposition. Note that the mass-inertia matrix is parametrized via SPD networks
in all cases. Table 4 shows that both dissipative RO-HNNs successfully learn the dissipation forces,
achieving similar prediction errors as the conservative RO-HNN (see also Fig. 14 in App. H.3). The
geometric HNN slightly outperforms its Cholesky counterpart, showing the importance of consid-
ering geometry. However, the effect is less pronounced as when learning the inverse mass-inertia
matrix, which we attribute to the reduced influence of damping compared to inertia in the over-
all dynamics. As the dissipative dynamics do not preserve the symplectic structure, we compare
the Strang symplectic integrator, which assumes a symplectic structure, against a non-symplectic
Runge-Kutta integrator of order 4. Fig. 20 in App. H.3 shows that, despite the dissipative struc-
ture, the Strang symplectic integrator outperforms the Runge-Kutta one. We hypothesize that this
is due to the fact that the evolution of this dissipative system is mostly governed by its Hamiltonian
function, especially over the short timesteps taken by the integrators.

5 CONCLUSIONS

This paper proposed a novel physics-inspired neural network, RO-HNN, for learning the dynamics
of high-dimensional Hamiltonian systems from data. Our model provides physically-consistent, ac-
curate, and stable predictions that generalize beyond the data support. To achieve this, our model
systematically integrates geometric inductive bias by defining structure-preserving symplectic em-
beddings, considering the geometry of the dynamics parameters within the model and for opti-
mization, and leveraging structure-preserving symplectic integrators. We showed that the structural
incorporation of these priors in the architecture is essential to learn high-dimensional dynamics,
whereas Euclidean and soft-constrained approaches consistently underperformed. Future work will
extend RO-HNN to Hamiltonian systems with non-canonical symplectic forms. To do so, we plan to
leverage Darboux theorem and explore the development of local RO-HNNs. We will also generalize
the RO-HNN to learn more general dynamics of Port-Hamiltonian and contact Hamiltonian systems.
Finally, we will investigate model-based control strategies within the RO-HNN latent space.
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A RIEMANNIAN AND SYMPLECTIC GEOMETRY

In this section, we provide a short background on Riemannian and symplectic geometry, which
compose the theoretical backbone of the RO-HNN. We refer the interested reader to (Abraham &
Marsden, 1987; Lee, 2013) for more details.

As Riemannian and symplectic manifolds are smooth manifolds with special structures. A smooth
manifoldM of dimension n can be intuitively conceptualized as a manifold that is locally, but not
globally, similar to the Euclidean space Rn. The smooth structure of M allows the definition of
derivative of curves on the manifold, which are tangent vectors. The set of all tangent vectors at
a point x ∈ M defines the tangent space TxQ which is a n-dimensional vector space. Tangent
vectors can be represented on an ordered basis of TxQ as v = vi ∂

∂xi |x. The tangent bundle TM is
the disjoint union of all tangent spaces onM and is 2n-dimensional smooth manifold.

The cotangent space T ∗
xM at x ∈ M is the dual of the tangent space TxQ, i.e.,

T ∗
xM = {λ|λ : TxQ → R linear}. Cotangent vectors can be represented on an ordered basis of
T ∗
xM as λ = λidx

i|x. The cotangent bundle T ∗M is the disjoint union of all cotangent spaces on
M and is 2n-dimensional smooth manifold, similarly as the tangent bundle.

A smooth mapping f between two smooth manifolds M̌ andM with dim(M̌)=d≪ dim(M)=n
is an immersion if the differential df |x̌ : Tx̌M→ Tf(x̌)Q. An embedding is an immersion that is
also a homeomorphism onto its image, i.e., it is an injective and structure-preserving map. In this
case, M̌ is an embedded submanifold ofM. The pullback of a function h :M→ R by a smooth
mapping f : N →M between two smooth manifolds N andM is a smooth function f∗h with

f∗h(x) = h(f(x)) = (h ◦ f)(x). (13)

A.1 RIEMANNIAN GEOMETRY

A Riemannian manifold (M, g) is a smooth manifoldM endowed with a Riemannian metric g, i.e.,
a smoothly-varying inner product gx : TxQ × TxQ → R. In coordinates, a Riemannian metric is
represented by a SPD matrix. The Riemannian metric defines the notion of distance on the manifold,
as well as the so-called geodesics, which are length-minimizing curves on the manifold.

Learning and optimization methods involving Riemannian data typically take advantage of their
Euclidean tangent spaces to operate. Specifically, the exponential map Exp:TxQ → M and log-
arithmic map Exp:M → TxQ, derived from the Riemannian metric, allows us to map back and
forth between the Euclidean tangent space and the manifold. Moreover, the parallel transport
PTx→y : TxQ → TyQ move tangent vectors across tangent spaces such that their inner product is
conserved.

A Lagrangian system (M, g,L) is a dynamical system evolving on a Riemannian manifold (M, g)
according to a smooth Lagrangian function L : TM→ R.

A.2 SYMPLECTIC GEOMETRY

A symplectic manifold (M, ω) is a 2n-dimensional smooth manifoldM equipped with a symplectic
form ω, i.e., a closed, non-degenerate, differential 2-form gx : TxQ× TxQ → R, which satisfies

ω(u,v) = −ω(v,u), ω(u,v) ∀v ⇒ u = 0, and dω = 0 (14)
for all u,v ∈ TxQ. In coordinates, a symplectic form is represented by a skew-symmetric matrix
ω. We slightly abuse notation, equivalently denoting symplectic manifolds as (M,ω). Notice that
the non-degeneracy of ω implies that all symplectic manifolds are of even dimension.

A diffeomorphism f : (M,ω) → (N ,η) between symplectic manifolds is a symplectomorphism
if it preserves the symplectic form, i.e., f∗η = ω with f∗η denoting the pullback of η by f . The
Hamiltonian flow ϕt : (M,ω) → (M,ω) induced by XH is a symplectomorphism, as it maps
points x ∈M along the integral curves of the manifold thus preserving the symplectic form.

Following Darboux’ theorem, there exists a canonical chart (U, ϕ), x ∈ U for each point x ∈M in
which the symplectic form is represented as ω = J⊺2n via the canonical Poisson tensor

J2n =

(
0 In
−In 0

)
, for which J⊺2n = J−1

2n = −J2n.
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In other words, every symplectic manifold is locally symplectomorphic to (R2n, J⊺2n). A system
(R2n, J⊺2n,H) is called a canonical Hamiltonian system. Moreover, the cotangent bundle T ∗Q any
n-dimensional smooth manifold Q carries a canonical symplectic structure, making it a symplectic
manifold (T ∗Q, J2n).
A Hamiltonian system (M,ω,H) is a dynamical system evolving on a symplectic manifold (M,ω)
according to a smooth Hamiltonian functionH :M→ R.

B RIEMANNIAN MANIFOLDS OF INTEREST

This section provides a brief overview of the Riemannian manifolds of interest for this paper, namely
the manifold of SPD matrices Sn++ (App. B.1), and the biorthogonal manifold Bn,d (App. B.2).

B.1 THE MANIFOLD OF SPD MATRICES

We denote the set of n× n symmetric matrices as Symn = {S ∈ Rn×n|S = S⊺}. The set of SPD
matrices Sn++ = {Σ ∈ Symn |Σ ≻ 0} forms a smooth manifold of dimension dim(Sn++) =

n(n+1)
2 ,

which can be represented as the interior of a convex cone embedded in Symn. The tangent space
TΣSn++ at a point Σ ∈ Sn++ is identified with Symn.

The SPD manifold can be endowed with various Riemannian metrics, resulting in different theoret-
ical properties and closed-form operations. We utilize the widely-used affine-invariant metric (Pen-
nec et al., 2006), which places symmetric matrices with non-positive eigenvalues at infinite distance
from any SPD matrix and prevents the well-known swelling effect (Feragen & Fuster, 2017). The
affine-invariant metric defines the inner product g : TΣSn++ × TΣSn++ → R given two matrices T1,
T2 ∈ TΣSn++, as

⟨T1,T2⟩Σ = tr(Σ− 1
2T1Σ

−1T2Σ
− 1

2 ). (15)

The corresponding geodesic distance, exponential map, logarithmic maps, and parallel transport are
computed in closed form as

dM(Λ,Σ) = ∥ log(Σ− 1
2ΛΣ− 1

2 )∥F, (16)

ExpΣ(S) = Σ
1
2 exp(Σ− 1

2SΣ− 1
2 )Σ

1
2 , (17)

LogΣ(Λ) = Σ
1
2 log(Σ− 1

2ΛΣ− 1
2 )Σ

1
2 , (18)

PTΣ→Λ

(
T
)
= AΣ→Λ T AT

Σ→Λ, (19)

where exp(·) and log(·) denote the matrix exponential and logarithm functions, and AΣ→Λ =

Λ
1
2Σ− 1

2 . These operations are key for the SPD networks encoding the mass-inertia and damping
matrices in geometric HNNs (see Sec. 3.2), and for the on-manifold parameter optimization of SPD
parameters of the network when training the model (see Sec. 3.4).

B.2 THE BIORTHOGONAL MANIFOLD

The biorthogonal manifold is the smooth manifold Bn,d = {(Φ,Ψ) ∈ Rn×d × Rn×d |ΨTΦ = Id}
formed by pairs of full-row-rank matrices Φ,Ψ ∈ Rn×d, with n ≥ d ≥ 1 satisfying the biorthog-
onality condition ΨTΦ = I (Otto et al., 2023). The biorthogonal matrix manifold Bn,d is an em-
bedded submanifold of the Euclidean product space Rn×d × Rn×d with dimension dim (Bn,d) =
2nd− d2. The tangent space at a point (Φ,Ψ) ∈ Bn,d is given by

T(Φ,Ψ)Bn,d =
{
(V ,W ) ∈ Rn×d × Rn×d : W TΦ+ΨTV = 0

}
. (20)

A pair of matrices (X,Y ) ∈ Rn×d×Rn×d can be projected onto the tangent space T(Φ,Ψ)Bn,d via
the projection operation Proj(Φ,Ψ) : Rn×d × Rn×d → T(Φ,Ψ)Bn,d defined as

Proj(Φ,Ψ) (X,Y ) =
(
X −ΨA,Y −ΦAT

)
, (21)

where A is a solution to the Sylvester equation A(ΦTΦ) + (ΨTΨ)A = Y TΦ+ΨTX .
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When optimizing the parameters of the geometrically-constrained symplectic AE presented in
Sec. 3.1, it is crucial to account for the biorthogonal geometry of the pairs of weight matrices (Friedl
et al., 2025). Therefore, we train the model by optimizing pairs of weight matrices via Rieman-
nian optimization on the biorthogonal manifold (see Sec. 3.4). Riemannian optimization algorithms
utilize the exponential map and the parallel transport operations, which are difficult to obtain in
closed form for the biorthogonal manifold. Therefore, we leverage a first-order approximation of
the exponential map, i.e., a retraction map R(Φ,Ψ) : T(Φ,Ψ)Bn,d → Bn,d, defined as

R(Φ,Ψ) (V ,W ) =
(
(Φ+ V )

(
(Ψ+W )T(Φ+ V )

)−1
, (Ψ+W )

)
. (22)

Moreover, we use a first-order approximation of the parallel transport operation defined via the
successive application of retraction and projection as

PT(Φ1,Ψ1)→(Φ2,Ψ2) = Proj(Φ2,Ψ2)
◦ R(Φ1,Ψ1). (23)

C SPD NETWORK

As explained in Sec. 3.2, we learn reduced Hamiltonian dynamics in the embedded symplectic sub-
manifold via a latent geometric HNN that parametrizes the inverse mass-inertia and damping matri-
ces via SPD networks that account for their intrinsic geometry. We use a SPD network introduced
in (Friedl et al., 2025) composed of (1) Euclidean layers gR), and (2) an exponential map layer gExp,
which we detail next.

Euclidean Layers gR. The SPD network leverages classical fully-connected layers to model func-
tions that return elements on the tangent space of a manifold. The output of the l-th Euclidean layer
x(l) is given by

x(l) = σ(Alx
(l−1) + bl), (24)

with Al ∈ Rnl×nl−1 and bl ∈ Rn(l) the weight matrix and bias of the layer l, and σ a nonlinear
activation function of choice.

Exponential Map Layer gExp. The exponential map layer is used to map layer inputs X(l−1) ∈
Symn from the tangent space onto the manifold Sn++. The layer output is given by

X(l) = ExpP (X(l−1)), (25)

with P ∈ Sn++ denoting the basepoint of the considered tangent space. Following the results of the
ablation conducted in (Friedl et al., 2025), we define P as equal to the identity matrix I, so that the
layer input is assumed to lie in the tangent space at the origin of the cone.

Note that Friedl et al. (2025) additionally consider SPD layers mapping SPD matrices to SPD ma-
trices, analogous to fully-connected Euclidean layers. However, the SPD networks with additional
SPD layers were shown to achieve similar performances as those employing solely Euclidean and
exponential-map layers. Therefore, we do not integrate such layers in the SPD networks of the
RO-HNN.

D ADDITIONAL DETAILS ON THE GEOMETRICALLY-CONSTRAINED
SYMPLECTIC AUTOENCODER

D.1 CONSTRAINED AUTOENCODER

The geometrically-constrained symplectic AE presented in Sec. 3.1 builds on the constrained AE
architecture introduced in (Otto et al., 2023). Specifically, we learn the embedding φQ and associ-
ated point reduction ρQ via a constrained AE with layer pairs (10), and compute their differential to
construct the tangent-lifted maps (8), as explained in Sec. 3.1. To guarantee the projection proper-
ties, the constrained AE architecture from (Otto et al., 2023) leverages pairs of biorthogonal weight
matrices, which are described in Sec. 3.1, and pairs of invertible activation functions, which we
introduce next.
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The nonlinear activation functions σ− and σ+ employed in the encoder and decoder network must
satisfy σ− ◦ σ+ = id. To do so, they are defined as

σ±(xi) =
bxi

a
∓

√
2

a sin(α)
± 1

a

√√√√( 2xi

sin(α) cos(α)
∓
√
2

cos(α)

)2

+ 2a, (26)

with {
a = csc2(α)− sec2(α),

b = csc2(α) + sec2(α).
(27)

The activations then resemble smooth, rotation-symmetric versions of the common leaky ReLu ac-
tivations. The parameter 0 < α < π

4 sets the slope of the activation functions. Throughout our
experiments, we set α = π

8 .

Otto et al. (2023) proposed to incorporate the biorthogonality of the weight matrices by consider-
ing an overparametrization of the biorthogonal weights along with a soft constraint in the form of
additional penalty losses. However, this approach does not guarantee the biorthogonality condition,
in contrast to the Riemannian approach we use in this paper. Moreover, as shown in (Friedl et al.,
2025), the overparametrized model leads to higher reconstruction errors compared to constrained
AE trained on the biorthogonal manifold.

D.2 COMPUTATION OF THE COTANGENT-LIFTED MAPS

We construct the cotangent-lifted maps (8) by differentiating the outputs of the encoder ρQ and
decoder φQ networks with respect to their inputs. To avoid the computational cost related to
the automatically-differentiated transposed Jacobian-vector product, our implementation computes
layer-wise analytical derivatives and obtains the full differentials via the chain rule. The derivatives
of the nonlinear activations σ± are given by

σ′
±(xi) =

d

dxi
σ±(xi) =

b

a
± 2

a sin(α) cos(α)

2xi

sin(α) cos(α) ∓
√
2

cos(α)√(
2xi

sin(α) cos(α) ∓
√
2

cos(α)

)2
+ 2a

, (28)

thus fulfilling the inverse-derivative property σ′
−(σ+(xi))σ

′
+(xi) = 1 by construction.

The pullbacks dρQ|⊺φQ(q̌)p̌ and dφQ|⊺ρQ(q)p are computed analytically as a composition of trans-

posed layer derivatives dρ⊺Q = dρ
(L)
Q

⊺
◦ . . . ◦ dρ(1)Q

⊺
and dφQ = dφ

(1)
Q

⊺
◦ . . . ◦ dφ

(L)
Q

⊺
, with

dρ
(l)
Q ∈ Rnl−1×nl and dφ

(l)
Q ∈ Rnl×nl−1 . From the definition of the layer pairs (10), the transpose

of the layer derivatives are given as

dρ
(l)
Q |

⊺
q(l−1) = Ψldiag(σ′

−(q
(l−1))) and dφ

(l)
Q |

⊺
q̌(l−1) = diag(σ′

+(q̌
(l−1)))Φ⊺

l , (29)

with diag(v) =

(
v1 ... 0

...
. . .

...
0 ... vd

)
.

The computation of the layer derivatives requires storing the intermediate reduced and reconstructed
positions q̌(l−1) and q(l−1) for each layer, which are obtained during the forward pass through the
position encoder ρQ and decoder φQ. During the momentum forward pass, we store each inter-
mediate p(l−1) = dρ

(l)
Q

⊺
p(l) and p̌(l) = dφ

(l)
Q

⊺
p(l−1). This allows the computational cost of one

momentum forward pass to roughly be equal to that of one forward pass of the position projec-
tion, scaling constantly through the matrix-multiplication of weights with system dimensionality
dim(Q). We provide wall-clock evaluation times of our geometrically-constrained symplectic AE
on the 600-DoF cloth dataset in App. G.3 .

E STRANG-SYMPLECTIC INTEGRATOR

As explained in Sec. 3.3, we integrate the learned reduced-order Hamiltonian flow (11) using the
second-order symplectic integrator of (Tao, 2016), which we refer to as Strang-symplectic integrator.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The Strang-symplectic integrator approximates the flow of a non-separable Hamiltonian function
H(q,p) by considering an augmented Hamiltonian function

H̄(q,p,x,y) = HA(q,y) +HB(p,x) + wHC(q,p,x,y), (30)

in an extended phase space, where HA(q,y) and HB(p,x) are two copies of the original system
with mixed-up positions and momenta, andHC = 1

2 (∥q,x∥
2+∥p,y∥2) is an artificial restraint with

parameter w controlling the binding of HA(q,y) and HB(p,x). The dynamics of the augmented
Hamiltonian H̄ are

q̇ =
∂

∂p
H̄(q,p,x,y) = ∂

∂p
H(x,p) + w(p− y) (31)

ṗ =
∂

∂q
H̄(q,p,x,y) = ∂

∂q
H(q,y)− w(q − x) (32)

ẋ =
∂

∂y
H̄(q,p,x,y) = ∂

∂y
H(q,y) + w(y − p) (33)

ẏ =
∂

∂p
H̄(q,p,x,y) = ∂

∂p
H(x,p)− w(x− q) (34)

and leads to the same exact IVP solutions as the original function H(q,p). High-order symplectic
integrators can be construct for each of the component of the augmented Hamiltonian H̄ as

ϕδ
HA

=


q

p− δ ∂
∂qH(q,y)

x+ δ ∂
∂yH(q,y)

y

 , ϕδ
HB

=


q + δ ∂

∂pH(x,p)

p
x

y − δ ∂
∂xH(x,p)

 , (35)

ϕδ
wHC

=
1

2


(
q + x
p+ y

)
+R(δ)

(
q − x
p− y

)
(
q + x
p+ y

)
−R(δ)

(
q − x
p− y

)
 , with R(δ) =

(
cos(2wδ)I sin(2wδ)I
− sin(2wδ)I cos(2wδ)I

)
.

(36)

Tao (2016) proposed to construct a numerical symplectic integrator that approximates the flow of H̄
by composing these maps according to Strang splitting as

ϕH̄ = ϕ
δ/2
HA
◦ ϕδ/2

HB
◦ ϕδ/2

wHC
◦ ϕδ/2

HB
◦ ϕδ/2

HA
. (37)

The obtained Strang-symplectic integrator preserves the symplectic volume like the exact Hamilto-
nian flow.

The scalar parameter w ∈ R, binding the two augmented Hamiltonians during the integration pro-
cess, is obtained as optimization parameter during training. To enforce w ≤ 0, we do not learn w
directly. Instead, we learn it using the SoftPlus function with a small numerical offset for stability
as log(1 + eθw) + 10−4, as part of the HNN network parameters θw ∈ θ.

F NETWORK TRAINING VIA RIEMANNIAN OPTIMIZATION

Training a neural network corresponds to finding a solution to an optimization problem

min
x∈M

ℓ(x), (38)

where ℓ is the loss we aim to minimize, and x ∈ M is the optimization variable, a.k.a the net-
work parameters. For the RO-HNN, we train the network by minimizing the loss ℓRO-HNN (12). In
this case,M is defined as a product of Euclidean, SPD, and biorthogonal manifolds to jointly op-
timize the parameters {Φl,Ψl, bl}Ll=1 of the AE and {θŤ ,θV̌ ,θĎ} of the latent geometric HNN.
To account for the curvature of the non-Euclidean parameter spaces, we leverage Riemannian opti-
mization (Absil et al., 2007; Boumal, 2023) to optimize the RO-HNN loss ℓRO-HNN (12).

Conceptually, each iteration step in a first-order (stochastic) Riemannian optimization method con-
sists of the three following successive operations:

ηt ← h
(
grad ℓ(xt), τt−1

)
, xt+1 ← Expxt

(−αtηt), τt ← PTxt→xt+1

(
ηt

)
. (39)
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Figure 6: Illustration of the latent system used to obtain the dynamics of a 15-DoF augmented
pendulum via a symplectomorphism. The latent system consists of an independent 3-DoF planar
pendulum and a 12-DoF planar mass-spring mesh.

where (1) given the current parameter estimate xt, a search direction ηt ∈ Txt
M is computed based

on a function h (determined by the choice of the optimization method) of the Riemannian gradient
grad ℓ, and of τt−1, which corresponds to the parallel-transport of the previous search direction on
to the new estimate’s tangent space TxtM; (2) the estimate xt is updated by projecting the search
direction ηt scaled by a learning rate learning rate αt onto the manifold via the exponential map,
(3) the current search direction is parallel-transported to the tangent space of the updated estimate
to prepare for the next iteration. In this paper, we use the Riemannian Adam (Becigneul & Ganea,
2019) implemented in Geoopt (Kochurov et al., 2020) to optimize the RO-HNN parameters. The
relevant manifold operations for the optimization procedure are given in closed-form in App. B.

G ADDITIONAL DETAILS ON EXPERIMENTS

This section presents additional details on the experimental setup of Sec. 4.

G.1 COUPLED PENDULUM OF SECTION 4.1

G.1.1 DATASET

System. Our first set of experiments is conducted on the augmented pendulum, a nonlinear con-
servative system with n=15-DoF. The pendulum dynamics are specified from the symplectomor-
phism of a latent Hamiltonian system composed of two independent subsystems: a 3-DoF planar
pendulum, and a 12-DoF planar oscillating mass-spring mesh, see Fig. 6. The pendulum dynamics
evolve on a slower timescale and with larger amplitude than the mesh oscillations. Consequently,
a surrogate model based solely on the pendulum would capture the dominant behavior of the full
system, i.e. the system is well-reducible with a Hamiltonian ROM. As we have access to the ground
truth dynamics of the 15-DoF pendulum, this scenario allows for various ablations on the network
architecture.

We simulate both subsystems in MUJOCO (Todorov et al., 2012). The pendulum’s links i = {1, 2, 3}
are modeled as capsules of radius ri = 0.025m, length li = 0.5m, and mass mi = 0.5 kg, con-
nected via hinge joints. The initial configurations and velocities for each DoF are randomly sampled
from the intervals qpend,i(t = 0) ∈ [−30, 30] ◦ and q̇pend,i(t = 0) ∈ [−23, 23] ◦ s−1. The mass-spring
mesh consists of 6 masses mj = 0.005 kg, equally spaced in a 3× 2 grid along the x− and z−axes
of the simulation environment. Each mass is connected to its immediate neighbors, and the top
three masses are each additionally connected to a fixed anchor point above the grid, via springs of
resting length sj = 0.5m and linear stiffness constants kj = 0.01Nm−1. Initial displacements and
velocities for each DoF are randomly sampled from the intervals qms,j(t = 0) ∈ [−1, 1] × 10−2m
and q̇ms,j(t = 0) ∈ [−2, 2]× 10−3ms−1.

Data generation. Each simulation is recorded for T = 5 s at a timestep of ∆t = 10−2s,
yielding N = 30 training trajectories Dpend = {{qpend,n,k,ppend,n,k}Kk=1}Nn=1 and Dms =
{{qms,n,k,pms,n,k}Kk=1}Nn=1 with K = 500 observations each. To form the full 15-dimensional
dataset, the position and momentum vectors of the pendulum and mass-spring mesh are con-
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catenated as qaug = (q
⊺
pend q⊺

ms)⊺ and paug = (p
⊺
pend, p⊺

ms)⊺ to obtain a dataset Daug =

{{qaug,n,k,paug,n,k}Kk=1}Nn=1 with (qaug,n,k,paug,n,k) ∈ T ∗(Qpend ×Qms).

To ensure that the reducibility of the augmented dataset is not purely of numerical nature, we
transform the observed dynamics of the latent system onto more complex ones via a symplec-
tomorphism h : (T ∗(Qpend × Qms), J2n) → (T ∗Q, J2n) and obtain the final dataset D =
{{h(qaug,n,k,paug,n,k)}Kk=1}Nn=1. Practically, the symplectomorphism h is defined via the cotangent-
lifted embedding φ of a map ρQ : Qpend×Qms → Q, that we parametrize as a 3-layer encoder of the
constrained AE from Sec. 3.1 and D. With l = {1, 2, 3} layers of constant layer and latent dimension
nl = n0 = 15, weights of each layer Ψl initialized as random orthogonal matrices O ∈ Rnl×nl

sampled from the Haar distribution, and zero biases bl = 0. Notice that due to the constant dimen-
sion through the AE-layers, with decoder weights set to Φl = Ψl = O, the position decoder of the
constrained AE returns an analytic inverse, and its cotangent lift h−1.

The testing dataset is constructed in the same manner for N = 10 trajectories.

G.1.2 MODEL TRAINING

For the experiments of Sec. 4.1, we train a geometric RO-HNN composed of a geometrically-
constrained symplectic AE and a latent geometric HNN. As described in Sec. 3.1, the geometrically-
constrained symplectic AE is built from the cotangent lift of a constrained AE composed of layer
pairs ρ

(l)
Q : Rnl → Rnl−1 and φ

(l)
Q : Rnl−1 → Rnl as defined in (10) (see Sec. 3.1 and App. D).

We use l = {1, 2, 3} pairwise biorthogonal encoder and decoder layers of sizes nl = {6, 12, 15}
with latent space dimension n0 = 3. The biorthogonal weight matrices are initialized by sampling a
random orthogonal matrix O ∈ Rnl×nl from the Haar distribution and setting Φ = Ψ = O[:,:nl−1],
where O[:,:nl−1] are the first nl−1 column entries of O. Bias vectors are initialized as bl = 0. For
the latent geometric HNN, we parametrize the potential energy network V̌θV̌

and the Euclidean part
gR of the inverse mass-inertia network M̌−1

θŤ
each with LV̌ = LŤ ,R = 2 hidden Euclidean layers

of 32 neurons and SoftPlus activation functions. We fix the basepoint of the exponential map layer
gExp to the origin P = I. Weights are initialized by sampling from a Xavier normal distribution
with gain

√
2 and bias vector entries set to 1. We train the model on the joint loss (12) with scaling

factor λ = 1 for the latent loss on 3000 uniformly sampled random points from the dataset D with
Strang-symplectic integration (see Sec. 3.3) over a training horizon of HD = 12 timesteps. We use
a learning rate of 1.5×10−2 for the AE parameters and 7×10−4 for the HNN parameters. We train
the model with Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs.

AE baselines. In Sec. 4.1, we compare the geometrically-constrained symplectic AE with linear
and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma
et al., 2023), and a weakly-symplectic AE (Buchfink et al., 2023). We implement the linear and
quadratic SMG projections onto a 3-dimensional symplectic submanifold following (Sharma et al.,
2023). We compute the reduction parameters based on a singular value decomposition computed
from 3000 randomly sampled training datapoints in D.

For the weakly-symplectic AE (Buchfink et al., 2023), we train two independent constrained AEs for
position and momentum reduction and embedding, i.e., ρ(l)Q : Rnl → Rnl−1 , φ(l)

Q : Rnl−1 → Rnl ,

and ρ
(l)
P : Rnl → Rnl−1 , φ(l)

P : Rnl−1 → Rnl , and compute the embedding and reduction for the
symplectic manifold as

φ(q̌, p̌) =

(
φQ
φP

)
and ρ(q,p) =

(
ρQ
ρP

)
. (40)

Note that this architecture also fulfills the projection properties (4) by construction, as the other
reduction approaches. However, it does not satisfy the symplecticity property (7). To enforce this
property, Buchfink et al. (2023) introduces a symplecticity loss

ℓsympl =
1

N

N∑
i=1

∥J2d − dφ⊺J2ndφ∥2F. (41)

The weakly-symplectic AE is trained by minimizing the sum of the reconstruction loss ℓAE from (12)
and the symplecticity loss (41).
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For the geometrically-constrained symplectic AE, we consider the same architecture as in the
RO-HNN described above.

All AE architectures consist of l = {1, 2, 3} biorthogonal encoder and decoder layers with nl =
{6, 12, 15} with latent space dimension n0 = 3. We train both AE on 3000 samples from the dataset
D with Riemannian Adam with a learning rate of 1.5× 10−2 until convergence at 3000 epochs.

HNN baselines. In Sec. 4.1, we also ablate the choice of latent HNN and integrator. To isolate
the HNN performance, we consider the low-dimensional dataset Dpend of the 3-DoF pendulum and
no reduction. For the Cholesky HNN where the inverse mass-inertia matrix is parametrized via
a Cholesky network, we implement shared parameters for the inverse mass-matrix and potential
energy networks, i.e., θŤ ∩ θV̌, following (Lutter & Peters, 2023). The MLP consists of 2 hidden
Euclidean SoftPlus layers of 64 neurons, while separate output layers return the potential energy
and the Cholesky decomposition. For the black-box HNNs, we use a single fully-connected MLP to
model a Hamiltonian function Hθ. We conduct experiments with two black-box HNNs of 2 hidden
layers with a width of 64, and 256 neurons, respectively. In all cases, the weights are initialized by
sampling from a Xavier normal distribution with gain

√
2, and the bias vector entries are initialized

to 1.

We train all architectures on 3000 datapoints of the dataset Dpend with Riemannian Adam optimizer
on the HNN term ℓHNN,d of the loss (12) over a training horizon of HD = 12 timesteps. For the
ablation of the HNN architecture, we use the Strang-symplectic integrator. The geometric HNN and
Cholesky networks are trained until convergence at 2500 epochs with learning rate set to 7× 10−4.
The black-box HNNs are trained at a learning rate of 2× 10−3 for 3000 epochs.

For the ablation of the integrator, we use the geometric HNN and compare the Strang-symplectic
integrator with an explicit Euler integrator, a Runge-Kutta integrator of order 4, and a symplectic
leapfrog integrator.

HNKO baseline. In Sec. 4.1, we compare the RO-HNN against the HNKO proposed by Zhang
et al. (2024). Moreover, in App. H.1, we evaluate the performance of the RO-HNN against the
HNKO under noisy observations. Hyperparameters are selected and refined empirically following
the supplementary material and code provided by Zhang et al. (2024).

The HNKO first maps the 2n = 30-dimensional observations into a d = 100-dimensional lifted
latent space via a fully-connected neural network of 6 hidden layers with Tanh activations. The latent
dynamics are then propagated on a 50-dimensional sphere via the special orthogonal Hamiltonian
Koopman operator, implemented by a constrained linear, bias-free layer with 100-dimensional input
and output. The predicted states are mapped back onto the original space with a fully-connected
neural network with 3 hidden layers and Tanh activations. The overall model is trained on 3000
randomly sampled datapoints of the dataset withDpend, using the Adam optimizer until convergence
at 15000 epochs. For a fair comparison and for stable predictions over longer horizons, we adjusted
the loss on the latent Koopman predictions, referred to as Lkoop in (Zhang et al., 2024), to sum over
a training horizon of HD = 12 timesteps, similar to our latent loss term ℓHNN,d in (12).

G.2 PARTICLE VORTEX OF SECTION 4.2

G.2.1 DATASET

System. In Sec. 4.2, we learn the dynamics of an n = 90-dimensional particle vortex, consisting
of j = {1, ..., N} particles with phase-space coordinates xj = (qj , pj)

⊺ and uniform interaction
strengths Γj = 1. The particle vortex dynamics are governed by the Hamiltonian

H(q,p) = −
∑
j<k

log |xj − xk|, (42)

that models the interaction between each j ̸= k pair of particles (Xiong et al., 2021). Note that, as
the particle vortex dynamics are purely determined via the logarithmic interaction, its Hamiltonian
function does not separate into kinetic and potential energy, in contrast to mechanical systems such
as the pendulum and the cloth.

Data generation. We generate a training dataset Dpv = {{qn,k,pn,k}Kk=1}Nn=1 by simulating N =
20 trajectories of the conservative system over the time interval I = [0, 10.0]s with timestep ∆t =
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10−3s and Strang-symplectic solver with weight parameter w = 0.1, resulting in K = 10000
steps per trajectory. For each trajectory, initial conditions are randomly sampled to mimic clustered
vortex distributions. The particles are evenly split among j = {1, 2, 3} clusters. For each cluster,
we randomly sample a center cj within a radius of R = 6m form the origin. Then, a cluster radius
is sampled uniformly from rj ∈ [0.1, 2]m, and particles within a cluster are positioned following
a Gaussian distribution N ∼ (cj , r

2
j I) around the center cj . For the testing dataset, we generate

N = 10 trajectories via the same distribution of initial conditions, but simulating the system over a
time interval of I = [0, 15.0]s.

G.2.2 MODEL TRAINING

The results presented in Sec. 4.2 are obtained via RO-HNNs composed of a geometrically-
constrained symplectic AE and a latent geometric HNN. We conduct experiments with two
RO-HNN with latent space dimensions d = 3 and d = 6. The constrained AE is composed of
l = {1, 2, 3, 4} pairwise biorthogonal encoder and decoder layers of sizes nl = {32, 64, 128, 600}.
The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix O ∈
Rnl×nl from the Haar distribution and setting Φ = Ψ = O[:,:nl−1], where O[:,:nl−1] are the first
nl−1 column entries of O. Bias vectors are initialized as bl = 0. The latent Hamiltonian network
V̌θV̌

is parametrized by 2 hidden Euclidean layers of 32 neurons with SoftPlus activation functions.
All weights are initialized by sampling from a Xavier normal distribution with gain

√
2, and all bias

vector entries are initialized to 1.

We train the model on the joint loss (12) on 3000 random samples from the dataset D with Strang-
symplectic integration over a training horizon HD = 8 timesteps. For better convergence, we scale
the loss term ℓHNN,d via a scalar factor λ = 103. The parameters are optimized via Riemannian
Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5 ×
10−2 for the AE parameters and 7× 10−4 for the HNN parameters.

In Sec. 4.2, we consider a comparison with a RO-HNN with a latent black-box HNN Ȟθ composed
of 2 layers of 64 neurons. We set the learning rate to 2 × 10−3. The remaining of the RO-HNN
architecture and training pipeline are unchanged.

G.3 CLOTH OF SECTION 4.3

G.3.1 DATASET

System. Our second set of experiments is conducted on a deformable thin cloth modeled in MUJOCO
as a flexible composite object with i = {1, ..., 200} masses mi = 0.1 kg, equally spaced over a
width of 0.1m and length of 0.2m. Generalized coordinates are given by the Cartesian positions
qi = (xi, yi, zi)

⊺ of each mass’ center of mass in the world frame. The viscous damping coefficient
is uniformly set to di = 0.01N sm−1.

Data generation. Each trajectory captures the cloth falling on a sphere from a height of 0.12m in
the center above the origin of the sphere. To vary scenarios, the radius of the sphere is randomly-
sampled from r ∈ [0.02, 0.12]m. The state evolution is simulated with timestep ∆t = 10−4 s
over a time interval I = [0, 0.3]s, resulting in K = 3000 samples per trajectory. We generate
N = 20 trajectories for a training dataset Dcloth = {{qn,k,pn,k, τn,k}Kk=1}Nn=1, and N = 10
testing trajectories over a longer time interval I = [0, 0.5]s. When learning the damping force via
a dissipative HNN, the generalized force vector consists of external constraint forces, i.e., τ = τc.
The ablation of Sec. 4.3 compares the dissipative geometric HNN against a conservative HNN for
which all external forces are provided. In this case, the training dataset is composed of generalized
force vector τ = τd + τc that contains both the damping forces τd and the constraint forces τc.

G.3.2 MODEL TRAINING

For the RO-HNN experiments in Sec. 4.3, we train a RO-HNN composed of a geometrically-
constrained symplectic AE and a latent dissipative geometric HNN. The underlying constrained AE
l = {1, 2, 3, 4} pairwise biorthogonal encoder and decoder layers of sizes nl = {32, 64, 128, 600}
with latent space dimension n0 = 6 or n0 = 10. The biorthogonal weight matrices are initial-
ized by sampling a random orthogonal matrix O ∈ Rnl×nl from the Haar distribution and setting
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Φl = Ψl = O[:,:nl−1], where O[:,:nl−1] are the first nl−1 column entries of O. Bias vectors are
initialized as bl = 0.

The latent potential energy network V̌θV̌
is parametrized with LV̌ = LŤ ,R = 2 hidden Euclidean

layers of 32 neurons. The Euclidean part gR of the inverse mass-inertia network M̌−1
θŤ

and of the
damping-matrix network ĎθĎ

are composed of 2 hidden layers with 32 neurons. For both networks,
we fix the basepoint of the exponential map layer gExp to the origin P = I. All activation functions
are SoftPlus, all weights are initialized by sampling from a Xavier normal distribution with gain

√
2,

and all bias vector entries are initialized to 1.

We train the model on the joint loss (12) on 3000 samples from the datasetD with Strang-symplectic
integration over a training horizon HD = 8 timesteps. The scaling constant on the latent loss term
ℓHNN,d is set to λ = 104. We train the RO-HNN with Riemannian Adam (Becigneul & Ganea, 2019)
until convergence at 3000 epochs with a learning rate of 1.5 × 10−2 for the AE parameters and
7× 10−4 for the HNN parameters.

In Fig. 21, we compare the geometric RO-HNN with a black-box variant where the latent HNN is
encoded as a single black-box network Hθ corresponding to a fully-connected MLP of 2 hidden
layers with a width of 256 neurons. The HNN weights are initialized by sampling from a Xavier
normal distribution with gain

√
2, and the bias vector entries are initialized to 1. This black-box

RO-HNN is training with the same parameters as the geometric RO-HNN, except for the learning
rate of the HNN parameters, which we set as 2× 10−3.

Sequentially-trained baseline. To assess the effectiveness of the proposed joint training pro-
cedure, we compare the jointly-trained RO-HNN with a variant that sequentially trains first the
geometrically-constrained AE, and second the latent HNN. As convergence is difficult to achieve
when training only the latent HNN on a fully-trained representation of the AE, we first train only
the AE by optimizing ℓAE for 3000 epochs with a learning rate of 1.5 × 10−2. Subsequently, we
jointly optimize the AE and latent loss (12). We train the networks jointly within the RO-HNN with
Riemannian Adam (Becigneul & Ganea, 2019) until convergence at learning rates 1.5 × 10−2 for
the AE parameters and 7× 10−4 for the HNN parameters.

Projection and AE baselines. In App. H.3 (see Fig. 18), we compare the ability of a latent HNN
to learn accurate dynamics using different reduction methods to obtain the symplectic embedding φ
and corresponding reduction ρ. We compare the RO-HNN with geometrically-constrained symplec-
tic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni,
2016; Sharma et al., 2023), and a weakly-symplectic AE (Buchfink et al., 2023). We compute the
linear and quadratic SMG projections onto latent spaces of symplectic submanifolds of three differ-
ent dimensionalities d = {2, 6, 10}, following (Sharma et al., 2023), via 3000 training datapoints.
In both cases, we then train a latent HNN on the terms ℓHNN,n and ℓHNN,d of the joint loss equa-
tion (12) on 3000 samples from the dataset D with Strang-symplectic integration over a training
horizon HD = 8 timesteps. The model is trained with Riemannian Adam (Becigneul & Ganea,
2019) until convergence at 3000 epochs with a learning rate of 7 × 10−4. Note that this essentially
corresponds to a scenario with pre-trained symplectic submanifolds, as the parameter optimization
for the linear and quadratic embedding maps happens once in the beginning.

The weakly-symplectic AE consists of two independent constrained AEs for position and momen-
tum. We use 4 layers of size nl = {32, 64, 128, 600} with varying latent space dimension. We
train the network jointly on the sum of the losses (12) and (41) via Riemannian Adam (Becigneul
& Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5 × 10−2 for the AE
parameters and 7× 10−4 for the HNN parameters.

Non-symplectic AE baseline. In App. H.3 (see Fig. 20), we ablate geometrically-constrained sym-
plectic AE of the RO-HNN in a dissipative scenario. To do so, we train a RO-HNN that utilizes
a non-symplectic projection-constrained AE instead of geometrically-constrained symplectic AE.
Specifically, we use a single vanilla constrained AE with latent space dimension n0 = 20 with 4
pairwise biorthogonal encoder-decoder layers of sizes nl = {64, 128, 256, 1200}. Note that we as-
sume the first 10 output dimensions of the latent space to correspond to reduced position q̌ and the
last 10 to correspond to the reduced momentum p̌, which are used as inputs for the latent dissipative
HNN.
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Comparison against reduced-order LNN (RO-LNN). In App. H.3, we compare the RO-HNNs
against RO-LNNs (Friedl et al., 2025). The RO-LNNs are trained on the dataset Dcloth, vel =
{{qn,k, q̇n,k, τn,k}Kk=1}Nn=1 obtained from the dataset described in App. G.3.1 by transforming the
momentum data into velocities via q̇ = M(q)−1p.

We construct the RO-LNN following the procedure described in (Friedl et al., 2025) and use the
same architecture for the constrained AE as for the RO-HNN. Specifically, we consider a latent
space of dimension n0 = 10 and use l = {1, 2, 3, 4} pairwise biorthogonal encoder and decoder
layers of sizes nl = {32, 64, 128, 600}. The kinetic and potential energy networks of the latent
geometric LNN consist of 2 hidden Euclidean layers with 64 neurons and SoftPlus activation func-
tions, initialized as for the RO-HNN. Notice that, for the RO-LNN, the dissipation forces τd are not
learned but provided as ground truth in the external input τ =τc + τd.

The RO-LNN is trained on 3000 samples from Dcloth, vel with a Runge-Kutta integrator of order 4
over a training horizon HD = 8 timesteps. We train the RO-HNN with Riemannian Adam (Be-
cigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 5 × 10−2 for the
AE parameters, 2 × 10−4 for the HNN parameters, and a regularization γ = 2 × 10−5 for 3000
epochs.

In our comparison, we also consider a black-box version of the RO-HNN, hereinafter referred to as
black-box RO-LNN, where the latent LNN is encoded as a single black-box networkLθ representing
the Lagrangian function, which we model via a single fully-connected MLP of 2 hidden layers with
a width of 256 neurons. The network weights are initialized by sampling from a Xavier normal
distribution with gain

√
2, and the bias vector entries are initialized to 1. The black-box RO-LNN is

trained with the same parameters as the original RO-LNN, except for the learning rate for the LNN
parameters, which is set as of 2× 10−3.

H ADDITIONAL EXPERIMENTAL RESULTS

This section presents additional results, complementing those presented in Sec. 4.

H.1 COUPLED PENDULUM OF SECTION 4.1

This section presents additional results on learning the Hamiltonian dynamics of a 15-DoF coupled
pendulum.

Learning high-dimensional dynamics. Fig. 7 complements Fig. 2 by depicting the predicted long-
term (5s) positions and momenta. For the ease of visualization, we change the prediction coordinates
and plot the first 3-DoF corresponding to the latent pendulum. We observe that RO-HNN leads to
accurate long-term predictions similar to those of the 3-DoF HNN. Unlike the 15-dimensional full-
order HNN, the HNKO yields stable, but inaccurate long-term predictions, exhibiting significantly
higher deviation from the ground truth trajectory than the predictions of the RO-HNN.

Fig. 8 depicts the original 15-DoF trajectories projected into the 3-DoF latent space learned by
the RO-HNN, along with its latent dynamic predictions over the full prediction horizon of 5s. We
observe that the latent predictions are accurate and match the projected original trajectories. As
expected, the learned latent space does not coincide with the phase-space of the original pendu-
lum due to the nonlinear dimensionality reduction conducted via the AE, but displays comparable
frequencies and amplitudes.

AE architecture. Figure 9 accompanies and validates the results of Table 2 by displaying the me-
dian and quartiles of the prediction errors obtained by different symplectic dimensionality reduction
methods in the intrusive MOR scenario of Sec. 4.1.

Latent HNN architecture. Here we further evaluate the impact of HNN architecture. We compare
the performance of our geometric HNN to learn the low-dimensional dynamics of the latent 3-DoF
pendulum against (1) a non-geometric variant that parametrizes the inverse mass-inertia matrix via a
Cholesky network, and (2) two HNNs encoded as a single black-box networkHθ, where we consider
two MLPs of 64- and 256-neurons width. Compared to Sec. 4.1, we consider a doubled amount of
training datapoints with 6000 random samples. As shown in Fig. 10-left, the geometric HNN still
achieves the lowest reconstruction error, with differences compared to the black-box HNN increased
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Figure 7: Reconstructed trajectories of the RO-HNN ( ), 3-DoF HNN ( ), and HNKO ( )
compared to ground truth ( ). The 15-DoF HNN leads to unstable long-term predictions and is
not depicted.

Figure 8: Trajectories of the original 15-DoF pendulum projected into the latent space of the
RO-HNN ( ), and corresponding dynamic predictions obtained via the latent HNN ( ). As
expected, they does not coincide directly with the trajectories of the underlying 3-DoF pendulum
representation ( ).

Figure 9: Prediction errors (↓) of intrusive symplectic dimensionality reduction approaches over 10
test pendulum trajectories.
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Figure 10: Left: Ablation of the latent HNN architecture on a doubled training set size |D| = 6000
compared to Fig. 10-left. Middle, right: Ablation of the latent integrator of the geometric RO-HNN
at |D| = 3000 for learning the dynamics of a 15-DoF pendulum. Errors are obtained via short-term
prediction horizons H∆t = 0.25 s.

Table 5: Mean and standard deviation of prediction errors (↓) over N = 10 noise-free test pendulum
trajectories, comparing the performances of the RO-HNNs and HNKOs trained on noisy observa-
tions.

cnoise = 0 cnoise = 5% cnoise = 10%
H∆t (s) RO-HNN HNKO RO-HNN HNKO RO-HNN HNKO

∥q̃p−q∥
∥q∥

0.25 (1.66± 1.38)× 10−1 (5.64± 4.41)× 10−1 (2.44± 1.94)× 10−1 (9.76± 10.48)× 10−1 (3.23± 2.86)× 10−1 (1.02± 0.78)× 100

5 (7.08± 7.56)× 10−1 (1.32± 0.94)× 100 (8.40± 8.17)× 10−1 (1.98± 1.84)× 100 (9.14± 10.02)× 10−1 (4.06± 3.47)× 100

∥p̃p−p∥
∥p∥

0.25 (5.33± 5.23)× 10−2 (5.93± 10.73)× 10−1 (7.02± 7.17)× 10−2 (4.56± 8.34)× 10−1 (9.64± 10.30)× 10−2 (9.60± 17.23)× 10−1

5 (1.98± 2.67)× 10−1 (1.23± 2.08)× 100 (3.34± 4.97)× 10−1 (1.62± 2.97)× 100 (3.61± 4.94)× 10−1 (3.13± 5.58)× 100

compared to the smaller dataset of Fig. 3-left. This showcases the importance of considering both the
quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices,
for both enhanced performance and data efficiency.

Latent integrator. We compare the Strang symplectic integrator against (1) a symplectic leapfrog
integrator that disregards that the Hamiltonian is non-separable, (2) a Runge-Kutta integrator of or-
der 4 that overlooks its symplectic structure, and (3) an explicit Euler integrator that also overlooks
the symplectic structure. Compared to Sec. 4.1 (see Fig. 3-middle,right), we consider shorter pre-
diction horizons, feeding the model with ground truth initial conditions every H∆t = 0.25 s, since
the explicit Euler integrator did not lead to stable long-term predictions for H∆t = 5 s. Figs. 10-
middle, right show that the networks trained via the Strang-symplectic integrator achieve the lowest
reconstruction error and conserves energy best during integration, showcasing the importance of
considering the symplectic structure of the system during numerical integration for stable predic-
tions on short- and long-term time horizons.

Training under noisy observations. To assess the robustness of the RO-HNNs, we evaluate its
performance under noisy observations and compare it against the HNKOs baseline, which is reported
to be robust to noise in high-dimensional systems.

We generate noisy training data {qi + ϵq,i,pi + ϵp,i} corrupted with zero-mean Gaussian noise
ϵq,i ∼ N (0, σ2

qI) and ϵp,i ∼ N (0, σ2
pI). The noise level cnoise is determines the standard de-

viations, which is also proportional to the maximum entry of the position and momentum, i.e.,
σq = cnoise maxj,k |qj,k| and σp = cnoise maxj,k |pj,k|.
Table 5 reports the prediction errors on a testing dataset of 10 noise-free trajectories over time hori-
zons H∆t = {0.25, 5}s for three noise level cnoise = {0, 0.05, 0.1}. The noiseless results are
repeated from Table 1 for completeness. As expected, the performance of both models decreases
with increasing noise magnitude. In each scenario, the RO-HNN outperforms the HNKO baseline.
Note that the RO-HNN trained at cnoise = 0.1 outperforms the HNKO trained without noise, demon-
strating the enhanced accuracy and robustness of the RO-HNN to noisy observations.

H.2 PARTICLE VORTEX (90-DOF) OF SECTION 4.2

This section presents additional results on learning the Hamiltonian dynamics of a 90-DoF particle
vortex.
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Figure 11: Predicted ( , , ) vs ground truth ( , , ) positions of the particle vortex. The dynamics
are learned with RO-HNN with d = 6 and d = 10. Times beyond 10s are out of the training data
distribution.

Figure 12: Predicted ( , , ) vs ground truth ( , , ) reduced positions of the particle vortex in the
latent space of the RO-HNN with d = 6 and d = 10. Times beyond 10s are out of the training data
distribution.

Fig. 11 depicts the predicted positions and momenta of the particles along with the ground truth in
the high-dimensional state space for RO-HNNs with latent dimension d = {6, 10}. Fig. 12 depicts
the predicted positions and momenta of the particles in the reduced phase space of the AE along
with the projected ground truth. We observe that both models accurately predict the particle vortex
dynamics, with the d = 6-dimensional model slightly outperforming the 10-dimensional one (see
also Table 3 and Fig. 13). This shows that the choice of latent dimension is a trade off between the
latent space expressivity and the limitations of HNNs in higher dimensions. In general, we observed
that errors initially decrease as the latent dimension increases, suggesting that higher-dimensional
latent spaces better capture the original high-dimensional dynamics. The errors then increase beyond
a certain latent dimension, indicating that the latent HNN becomes harder to train.

Fig. 13 accompanies and validates the results of Table 3 by displaying the median and quartiles of
the prediction errors obtained by different latent HNNs.

Figure 13: RO-HNN prediction errors (↓) for black-box and geometric latent HNNs with latent
dimensions d = 6 ( ) and d = 10 ( ) over 10 particle vortex trajectories.
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Figure 14: Median and quartiles of the latent and reconstructed prediction errors of 10-dimensional
RO-HNNs with latent dissipation matrix parametrized with a SPD network ( ), a Cholesky net-
work ( ), and ground truth values ( ). The gray-shaded area indicates the time horizon beyond
the training data support.

H.3 CLOTH (600-DOF) OF SECTION 4.3

This section presents additional results on learning the Hamiltonian dynamics of a 600-DoF thin
cloth falling on a sphere.

Learning high-dimensional dynamics with dissipation. Fig. 15 complements Fig. 5 by depict-
ing the predicted cloth configurations for the RO-HNNs with latent dimensions d = {6, 10} for a
horizon H∆t = 0.5 s. We observe that both RO-HNNs accurately predict the high-dimensional
dissipative dynamics of the cloth, generalizing beyond the data support (t > 0.3s). As also shown
in Table 4, the 10−dimensional model slightly outperforms the 6-dimensional one, modeling more
details of the cloth, as shown in Fig. 15.

Fig. 14 accompanies Table 4 by visualizing the median and quartiles of the RO-HNN (d = 10)
reconstructed and latent prediction errors over time for two different parametrization of the reduced
dissipation matrix Ď. Both dissipative RO-HNN perform similarly to the conservative RO-HNN,
showing that the RO-HNN can successfully predict dissipative dynamics in a stable manner, includ-
ing beyond the training time horizon.

Fig. 16 shows the predictions of the RO-HNNs with different parametrizations of the dissipation
matrix Ď for selected dimensions of a test trajectory. This shows that the dissipative RO-HNNs suc-
cessfully learn the dissipation forces, achieving similar prediction errors as the conservative models
Fig. 17 displays the predicted latent energy to be compared with the ground-truth energy projected
in the symplectic latent space. Overall, our results demonstrate the ability of the RO-HNN to infer
long-term predictions of dissipative systems.

Latent dimension and training ablation. We compare the performance of our dissipative RO-HNN
across several latent dimensions d = {2, 6, 10} with jointly-trained geometrically-constrained sym-
plectic AE and latent geometric HNN against sequentially-trained architectures. Specifically, we
consider (1) linear and (2) quadratic symplectic manifold Galerkin (SMG) projections (Peng &
Mohseni, 2016; Sharma et al., 2023), (3) a weakly-symplectic AE trained jointly with a latent geo-
metric HNN, and (4) a RO-HNN with pretrained geometrically-constrained AE. Fig. 18 shows that
our jointly-trained RO-HNN significantly outperforms all baselines for all dimensions, leading to re-
duced relative reconstruction, latent prediction, and reconstructed prediction errors. This showcases
(1) the higher expressivity of the AEs compared to linear and quadratic projection methods, (2) the
importance of structurally-embedding the symplecticity condition, unlike the weakly-symplectic
AE, and (3) the importance of joint training, allowing the RO-HNN to jointly learn a symplectic
submanifold and the associated dynamics.

Finally, we compare the performance of the dissipative RO-HNN against (1) a conservative
RO-HNN, where the dissipation forces τd are not learned but provided as ground truth in the ex-
ternal input τ =τc +τd, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized
via Cholesky decomposition for latent dimensions d = {2, 6, 10}. The mass-inertia matrix is
parametrized via SPD networks in all cases. Fig. 19 shows the obtained latent prediction and re-
constructed prediction errors. Both dissipative HNNs achieve errors close to the conservative HNN
where the ground truth dissipative forces are provided, with the geometric HNN slightly outperform-
ing its Cholesky counterpart. However, the effect is less pronounced as when learning the inverse
mass-inertia matrix, which we attribute to the reduced influence of damping compared to inertia in
the overall dynamics.
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Figure 15: Predicted positions of the damped cloth with RO-HNNs with d = {6, 10} and RO-LNN
with d = 10 for a 625× longer horizon than during training. Times beyond 0.3s are out of the
training data distribution.

Figure 16: Predicted cloth positions and momenta for 6-dimensional RO-HNNs with latent dissi-
pation matrix parametrized with a SPD network ( ), a Cholesky network ( ), and ground truth
values ( ), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD
network ( ), a Cholesky network ( ), and ground truth values ( ). The grey-shaded areas indi-
cates interval beyond the data support.
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Figure 17: Top: Ground truth ( ) and predicted latent energies for 6-dimensional RO-HNNs with
latent dissipation matrix parametrized with a SPD network ( ), a Cholesky network ( ), and
ground truth values ( ), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized
with a SPD network ( ), a Cholesky network ( ), and ground truth values ( ). Bottom: Energy
errors for the same models. The grey-shaded areas indicate intervals beyond the data support, for
which the ground truth is extrapolated from the last observation.

Figure 18: Mean and standard deviation of the relative reconstruction (left), latent prediction (mid-
dle), and reconstructed prediction (right) errors over 10 cloth trajectories with H∆t = 0.0025 s.
Our RO-HNN with geometrically-constrained symplectic AE ( × ) is compared against linear SMG
reduction ( ), quadratic SMG reduction ( ), a weakly symplectic AE ( × ), and a sequentially-
trained RO-HNN with pretrained geometrically-constrained symplectic AE ( × ). The pretrained
AE ( × ) is depicted for completeness. Notice that the linear SMG and quadratic SMG projections
led to diverging dynamics for d > 2 and d > 6, respectively, for which results are not depicted.

Figure 19: Mean and standard deviation of the latent prediction (left) and reconstructed prediction
(right) errors for different parametrization of the latent dissipation matrix Ď over 10 test cloth
trajectories. We compare our SPD network ( ) against a Cholesky network ( ), and the ground
truth parametrization ( ).
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Figure 20: Prediction errors (↓) of RO-HNNs with geometrically-constrained symplectic or vanilla
constrained AE with Strang symplectic integrator ( ) or Runge-Kutta integrator of order 4 ( ) over
10 testing cloth trajectories.

Figure 21: Median and quartiles of the latent and reconstructed prediction errors of 10-dimensional
geometric RO-HNN ( ), geometric RO-LNN ( ), a RO-HNN with latent black-box HNN ( ),
and a RO-LNN with latent black-box LNN ( ).

Ablation of the symplectic architecture to learn dissipative dynamics. As discussed in Sec. 3.2,
the dissipative dynamics do not preserve a symplectic structure. Our proposed RO-HNN features
two main symplecticity-preserving components, namely the geometrically-constrained symplectic
AE and the Strang-symplectic integrator, which we ablate here. We consider two variations of
each components, i.e., (1) our geometrically-constrained symplectic AE and a vanilla projection-
constrained AE, and (2) the Strang-symplectic integrator and a Runge-Kutta integrator of order 4.
Throughout all experiments, we set the latent dimension d = 10. Fig. 20 shows the obtained re-
constructed prediction errors. We observe that our geometrically-constrained symplectic AE leads
to significantly lower median errors than vanilla projection-constrained AE independently of the
choice of integrator, showcasing the benefit of preserving the structure of FOM vector field in the
ROM (see Proposition 3). Moreover, despite the dissipative structure, the RO-HNN obtained with
the Strang-symplectic integrator outperforms the non-symplectic Runge-Kutta integrator. We hy-
pothesize that this is due to the fact that the evolution of this dissipative system is mostly governed
by its Hamiltonian function, especially over the short timesteps taken by the integrators.

Comparison against RO-LNN. The last row of Fig. 15 depicts the predicted cloth configuration for
the RO-LNN with latent dimension d = 10. Moreover, Fig. 21 compares the latent prediction and
reconstructed prediction errors of the geometric and black-box RO-HNN and RO-LNN over time.

Our results show that the geometric RO-HNN outperforms the RO-LNN, leading to more accurate
predictions. It is worth noting that the RO-HNN leads to increased performances despite that it also
learns the dissipation forces via the latent damping matrix, which are instead provided as ground
truth to the RO-LNN. Moreover, Fig. 21 shows that the geometric RO-HNN and RO-LNN featuring
geometric latent HNN and LNN outperform their black-box counterparts, showcasing the impor-
tance of considering the quadratic energy structure of mechanical systems in both network types.

We hypothesize that the improved accuracy of the RO-HNN compared to the RO-LNN can be at-
tributed to (1) the first-order dynamic formulation stemming from Hamiltonian mechanics, which is
easier to learn and optimize than the second-order Lagrangian formulation, (2) the Strang-symplectic
integrator which is specifically designed for Hamiltonian systems, in contrast to the Runge Kutta in-
tegrators typically used in the case of continuous-time Lagrangians. This aligns with the discussions
in (Liu et al., 2024a), which showed that, by using position and momentum observations, HNNs
learn mass-inertia matrices that are close to the physical solutions, while LNNs only learn one of the
solutions satisfying the Euler-Lagrange equations.
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Table 6: Evaluation wall clock times for different ODE-solvers on analytic FOM compared to
RO-HNN. Runtimes are averaged over 10 forward passes and given in s.

pendulum (n = 15, d = 3) cloth (n = 600, d = 10)
∆t = 10−2s ∆t = 10−1s ∆t = 10−4s ∆t = 10−3s

Strang Euler Strang Strang Euler Strang

FOM, n−DoF 1.29 0.75 0.18 255.24 77.62 109.74
RO-HNN, d−DoF 0.79 — — 16.01 — —

Figure 22: Position prediction errors introduced by various simulation speedup methods: Euler-
forward integration ( ), Strang integration ( ) at larger stepsize, and RO-HNN ( ).

H.4 RUNTIMES

This section compares the runtimes of different models. All experiments were performed locally on
a MacBook Pro with M3 CPU.

Speedup of simulation via the RO-HNN. We aim at providing an idea of the computational effort
of the RO-HNN compared to the evaluation of the FOMs. To do so, we symbolically derive the
Hamiltonian equations of motion with known physical quantities of the 15-DoF coupled pendulum
of Sec. 4.1 and obtain the equations of motion of the 600-DoF cloth from Sec. 4.3 from Mujoco. We
compare the wall-clock time of the evaluation of these two FOMs against the respective RO-HNN
averaged over 10 single trajectory roll-outs from the same initial conditions as in the testing dataset.
We consider two different integrators, namely an Euler forward and the Strang symplectic integrator,
and different step size ∆t on a time-horizon of H∆t = 5s for the pendulum and H∆t = 0.5s for
the cloth. The evaluation times for the coupled pendulum and the cloth are given in Table 6, with the
corresponding relative position prediction errors depicted in Fig. 22. We observe a prominent reduc-
tion of the evaluation time for the RO-HNNs compared to the FOMs. This reduction is exacerbated
for higher-dimensional systems, e.g., the cloth, where the evaluation time of the RO-HNN remains
significantly lower than that of the FOM evaluated with the computationally-cheaper forward Eu-
ler integrator or increased step size. Moreover, as shown in Fig. 22, the RO-HNNs exhibit lower
prediction errors than their FOM counterparts in addition to a reduced computational complexity.
This showcases that the RO-HNN not only enable accurate learning of unknown high-dimensional
Hamiltonian dynamics, but also the computationally-efficient and accurate evaluation of known sys-
tems via surrogate dynamics.

Comparison of runtimes of HNNs and RO-HNNs. Table 7 reports the averaged runtimes for
the forward pass of the differently-sized network architectures considered in Sec. 4.1. The reported
times correspond to the wall clock time of one forward pass of a batch of 10 initial conditions, pre-
dicted over H = 10 timesteps with the Strang-symplectic integrator. We observe that the RO-HNN
speeds up the forward dynamics computation compared to the HNN, highlighting the computational
advantages of ROMs compared to FOMs. Moreover, the black-box HNN is computationally more
efficient than the geometric HNN at the expense of prediction accuracy.

Table 7: Evaluation wall clock times for different network architectures on the 15-DoF pendulum.
Runtimes are averaged over 10 forward passes and given in ms.

15-DoF 3-DoF
Geometric HNN Geometric RO-HNN Geometric HNN Black-box HNN

100.25 26.34 18.10 8.04
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Table 8: Evaluation wall clock times of different variants for the AE on the 600-DoF cloth dataset.
Runtimes are averaged over 10 forward passes and given in ms.

Position-level AE Geometric AE with analytic lift Geometric AE with autodiff.vjp lift AE with naive lift
φQ ◦ ρQ(q) φ ◦ ρ(q,p) φ ◦ ρ(q,p) φQ ◦ ρQ(q,p)

16.92 20.93 54.24 19.03

Runtimes of the lifted AE. Table 8 reports the average wall-clock times for one forward pass of
a batch of 100 states for several projection scenarios on the 600-DoF cloth dataset. We consider
reduction to a latent space of dimension d = 10 via 4 layers of size nl = {32, 64, 128, 600}. We
consider (1) a position-level constrained AE, where only position projections q̃ = φQ ◦ ρQ(q)
are computed via the encoder and decoder layers, (2) a geometric symplectic AE, whose lifted
mappings (8) are computed analytically as a composition of layer derivatives (see App. D) to project
both positions and momenta via (q̃, p̃) = φ ◦ ρ(q,p), (3) a geometric symplectic AE whose lifted
maps are computed via automatic differentiation using Pytorch’s autograd.vjp function, and
(4) a naive constrained AE that jointly projects the positions and momenta in 2d=20-dimensional
latent space via doubled layer dimensions, i.e., nl = {64, 128, 256, 1200}. The first two variants
were evaluated under torch.no grad(), reflecting a realistic scenario for evaluation of forward
dynamics in the RO-HNN.

The runtimes reported in Table 8 show that the analytic computation of the lifted mappings is sig-
nificantly faster than the automatic-differentiation-based implementation. This is expected, as our
analytic implementation avoids the construction of a backward graph. It is worth emphasizing that
the geometric AE with analytic lifts requires significantly less than twice the runtime of the position-
level constrained AE. Therefore, using a single cotangent-lifted AE that jointly projects positions
and momenta is computationally more advantageous than training two separate AEs for separate
projections.
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