LEARNING HAMILTONIAN DYNAMICS AT SCALE: A DIFFERENTIAL-GEOMETRIC APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

By embedding physical intuition, network architectures enforce fundamental properties, such as energy conservation laws, leading to plausible predictions. Yet, scaling these models to intrinsically high-dimensional systems remains a significant challenge. This paper introduces Geometric Reduced-order Hamiltonian Neural Network (RO-HNN), a novel physics-inspired neural network that combines the conservation laws of Hamiltonian mechanics with the scalability of model order reduction. RO-HNN is built on two core components: a novel geometrically-constrained symplectic autoencoder that learns a low-dimensional, structure-preserving symplectic submanifold, and a geometric Hamiltonian neural network that models the dynamics on the submanifold. Our experiments demonstrate that RO-HNN provides physically-consistent, stable, and generalizable predictions of complex high-dimensional dynamics, thereby effectively extending the scope of Hamiltonian neural networks to high-dimensional physical systems.

1 Introduction

Learning the unknown governing equations of dynamical systems is of fundamental importance to model physical processes. In this context, generic neural models lack built-in physical intuition, thus resulting in limited explainability and poor generalization beyond the data support. Physics-informed neural networks (Karniadakis et al., 2021) drastically improve performance by embedding fundamental physical properties, such as conservation laws and boundary conditions, into neural networks. Various models incorporate physical intuition as soft constraints via penalty terms in the loss function. This often leads to suboptimal enforcement of physical properties and to stiff optimization (Wang et al., 2021), motivating the embedding of domain-specific priors as hard constraints in specialized neural architectures. This allowed recent methods to preserve energy (Greydanus et al., 2019; Cranmer et al., 2020; Lutter & Peters, 2023), conserve mass and momentum (Jnini et al., 2025), and strictly enforce general conservation laws (Liu et al., 2024), thereby improving performances, generalization, and stability while yielding physically-consistent predictions.

Hamiltonian mechanics, introduced by Hamilton (1834) as a reformulation of Lagrangian mechanics, describe the evolution of a broad range of dynamical systems in robotics (Duong & Atanasov, 2021), fluid dynamics (Salmon, 1988), quantum mechanics (Schrödinger, 1926), and biology (Duarte et al., 1998), among others. Hamiltonian systems evolve on a phase space with symplectic structure, naturally enforcing energy conservation (Abraham & Marsden, 1987). Compared to Lagrangian mechanics, Hamiltonian mechanics provide a first-order formulation of dynamics that describes a broader range of physical systems. Hamiltonian neural networks (HNNs) are gray-box models that embed the Hamiltonian structure as hard constraints in specialized deep learning architectures. HNNs either directly learn the Hamiltonian function, ensuring conservation laws by construction (Greydanus et al., 2019; Lutter & Peters, 2023), or learn symplectomorphisms that preserve the invariants of interest via symplectic flows (Jin et al., 2020). HNNs were enhanced by including dissipation (Zhong et al., 2020a) and contact (Zhong et al., 2021) models, and utilized for model-based control (Duong & Atanasov, 2021; Zhong et al., 2020b). While most HNNs consider Hamiltonians characterized by a canonical symplectic form — exhibited at least locally for all Hamiltonian systems — few works proposed architectures handling non-canonical forms (Chen et al., 2021). Although HNNs yielded drastic performance improvements over generic black-box models, their application remains limited to low-dimensional systems with 2-5 dimensions.

Learning the dynamics of high-dimensional physical systems, such as robots, continua, or fluids, is arguably a difficult problem due to the increasing complexity and nonlinearity of their govern-

ing equations. Several approaches combine data-driven sparse identification of nonlinear dynamics (SINDy) and dimensionality reduction to discover high-dimensional governing equations (Brunton et al., 2016; Champion et al., 2019). However, they disregard the *apriori*-known structures of physical systems. In contrast, Sharma & Kramer (2024); Friedl et al. (2025) took inspiration from model order reduction (MOR) to learn high-dimensional Lagrangian dynamics. MOR addresses the complexity of nonlinear high-dimensional governing equations, so-called full-order model (FOM), by finding a reduced-order model (ROM), i.e., a computationally-cheaper yet accurate low-dimensional surrogate model (Schilders et al., 2008). While MOR techniques are typically intrusive, i.e., they assume entirely-known FOM dynamics, Sharma et al. (2024) presented a novel non-intrusive MOR-based approach that learns the parameters of a high-dimensional Lagrangian system in a linear structure-preserving subspace. In a similar line, Friedl et al. (2025) adopted a Riemannian perspective on the problem and introduced a physics-inspired neural architecture that jointly learns a non-linear embedded submanifold via a biorthogonal Autoencoder (AE) and its associated low-dimensional conservative dynamics via a geometric Lagrangian neural network (LNN).

This paper proposes a novel physics-inspired geometric deep neural network to learn the dynamics of high-dimensional Hamiltonian systems. In contrast to previous works that learn dynamics from high-dimensional observations such as images (Greydanus et al., 2019; Chen et al., 2021; Botev et al., 2021), we consider systems with intrinsically high-dimensional phase spaces. Taking inspiration from (Sharma & Kramer, 2024; Friedl et al., 2025), we build on recent advances in Hamiltonian MOR (Peng & Mohseni, 2016; Buchfink et al., 2024) and adopt a differential geometric perspective to embed the high-dimensional Hamiltonian structure as hard constraints in our architecture. Our first contribution is a geometrically-constrained symplectic AE that learns a low-dimensional symplectic submanifold from trajectories of a high-dimensional Hamiltonian system. Unlike soft-constrained symplectic networks (Buchfink et al., 2023), our AE guarantees the preservation of the symplectic structure of the FOM, including its conservation laws and stability properties (Lepri et al., 2024), with increased expressivity compared to linear and quadratic symplectic projections (Bendokat & Zimmermann, 2022; Sharma et al., 2023). Our second contribution is a geometric HNN that models conservative and dissipative Hamiltonian dynamics while accounting for the Riemannian geometry of its parameters, and resorts to symplectic integration (Tao, 2016) for accurate long-term dynamics simulation. Our third contribution is a geometric reduced-order Hamiltonian neural network (RO-HNN) that jointly learns a low-dimensional symplectic submanifold with a geometrically-constrained symplectic AE and the dynamics parameters of the associated Hamiltonian function with a geometric HNN. We validate our approach on three high-dimensional Hamiltonian systems: a pendulum, a thin cloth, and a particle vortex. Our experiments demonstrate that, due to its embedded geometries, RO-HNN predicts accurate, stable, and physically-consistent trajectories, outperforming traditional HNNs and state-of-the-art reduction approaches.

2 BACKGROUND

We provide a short background on Hamiltonian dynamics, structure-preserving Hamiltonian MOR, and related neural networks. Preliminaries on Riemannian and symplectic geometry are in App. A.

2.1 HAMILTONIAN DYNAMICS ON SYMPLECTIC MANIFOLDS

A symplectic manifold (\mathcal{M},ω) is a 2n-dimensional smooth manifold \mathcal{M} equipped with a symplectic form ω , i.e., a closed $(d\omega=0)$, non-degenerate, differential 2-form represented by a skew-symmetric matrix ω in coordinates. We slightly abuse notation, equivalently denoting symplectic manifolds as (\mathcal{M},ω) . A Hamiltonian system $(\mathcal{M},\omega,\mathcal{H})$ is a dynamical system evolving on a symplectic manifold (\mathcal{M},ω) according to a smooth Hamiltonian function $\mathcal{H}:\mathcal{M}\to\mathbb{R}$. The Hamiltonian vector field $\mathbf{X}_{\mathcal{H}}=\omega^{-1}d\mathcal{H}$ is uniquely defined and preserves \mathcal{H} . Trajectories $\gamma:\mathcal{I}\to\mathcal{M}$ of the system over a time-interval $\mathcal{I}=[t_0,t_{\rm f}]$ are solutions of the initial value problem (IVP)

$$\frac{d}{dt}\gamma|_t = X_{\mathcal{H}}|_{\gamma(t)} \in T_{\gamma(t)}\mathcal{M}, \quad \text{with} \quad \gamma(t_0) = \gamma_0 \in \mathcal{M}.$$
 (1)

A diffeomorphism $f:(\mathcal{M},\omega)\to (\mathcal{N},\eta)$ between symplectic manifolds is a symplectomorphism if it preserves the symplectic form, i.e., $f^*\eta=\omega$ with $f^*\eta$ denoting the pullback of η by f.

Following Darboux theorem, there exists a canonical chart (U, ϕ) , $x \in U$ for each point $x \in \mathcal{M}$ in which the symplectic form is represented as $\omega = \mathbb{J}_{2n}^{\mathsf{T}}$ via the canonical Poisson tensor

$$\mathbb{J}_{2n} = \begin{pmatrix} \mathbf{0} & \mathbf{I}_n \\ -\mathbf{I}_n & \mathbf{0} \end{pmatrix}, \quad \text{for which} \quad \mathbb{J}_{2n}^{\mathsf{T}} = \mathbb{J}_{2n}^{-1} = -\mathbb{J}_{2n}. \tag{2}$$

In other words, every symplectic manifold is locally symplectomorphic to $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^{\mathsf{T}})$. A system $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^{\mathsf{T}}, \mathcal{H})$ is called a canonical Hamiltonian system.

In this paper, we consider Hamiltonian systems $(\mathcal{M}, \omega, \mathcal{H})$, on \mathcal{M} with simple global chart and globally valid canonical symplectic form $\omega = \mathbb{J}_{2n}^\mathsf{T}$. In this case, the phase space \mathcal{M} can be modeled on the cotangent bundle $\mathcal{T}^*\mathcal{Q}$ of a smooth n-dimensional manifold \mathcal{Q} with canonical coordinates (q,p) with position $q \in \mathcal{Q}$ and conjugate momenta $p \in \mathcal{T}_q^*\mathcal{Q}$. The Hamiltonian vector field simplifies to $(\dot{q}^\mathsf{T}, \dot{p}^\mathsf{T})^\mathsf{T} = X_\mathcal{H} = \mathbb{J}_{2n} \, d\mathcal{H} = \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial p}^\mathsf{T}, -\frac{\partial \mathcal{H}}{\partial q}^\mathsf{T} \end{pmatrix}^\mathsf{T}$. Moreover, the Hamiltonian system $(\mathcal{T}^*\mathcal{Q}, \mathbb{J}_{2n}^\mathsf{T}, \mathcal{H})$ relates to a Lagrangian function $\mathcal{L}: \mathcal{T}\mathcal{Q} \to \mathbb{R}$ via the Legendre transform, which takes \mathcal{L} to $\mathcal{H} = \dot{q}^\mathsf{T}p - \mathcal{L}$ with $p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$ and $\dot{q} \in \mathcal{T}_q\mathcal{Q}$. Mechanical systems often display a quadratic kinetic energy structure, where the configuration manifold \mathcal{Q} is a Riemannian manifold endowed with the kinetic-energy metric equal to the system's mass-inertia matrix M(q). In this case, the Hamiltonian function is given by the sum of the system's kinetic T(q,p) and potential V(q) energies as $\mathcal{H} = T(q,p) + V(q) = \frac{1}{2}p^\mathsf{T}M^{-1}(q)p + V(q)$ and the momenta is $p = M(q)\dot{q}$.

2.2 STRUCTURE-PRESERVING MODEL-ORDER REDUCTION OF HAMILTONIAN SYSTEMS

Given the known parametrized dynamic equations of a high-dimensional system, i.e., a FOM, MOR aims to construct a low-dimensional surrogate dynamic model, i.e., a ROM, that accurately and efficiently approximates the FOM trajectories. Structure-preserving MOR preserves the underlying geometric structure of the FOM, ensuring the preservation of its properties, e.g. stability and energy conservation, in the ROM. For Hamiltonian systems $(\mathcal{M}, \omega, \mathcal{H})$, the symplectic structure is preserved by constructing a reduced Hamiltonian $(\check{\mathcal{M}}, \check{\omega}, \check{\mathcal{H}})$ with $\dim(\check{\mathcal{M}}) = d \ll \dim(\mathcal{M}) = n$, whose vector field $\check{\mathbf{X}}_{\mathcal{H}}$ approximates the set of solutions $S = \{\gamma(t) \in \mathcal{M} \mid t \in \mathcal{I}\} \subseteq \mathcal{M}$ of (1).

Following the geometric perspective of Buchfink et al. (2024), the reduced Hamiltonian $(\check{\mathcal{M}}, \check{\omega}, \check{\mathcal{H}})$ is derived by identifying the submanifold $\check{\mathcal{M}}$ via a smooth embedding $\varphi : \check{\mathcal{M}} \to \mathcal{M}$ such that

$$\check{\boldsymbol{\omega}} = \varphi^* \boldsymbol{\omega} = d\varphi^\mathsf{T} \boldsymbol{\omega} d\varphi, \tag{3}$$

is non-degenerate. This implies that $(\check{\mathcal{M}}, \check{\omega})$ is a symplectic manifold and φ is a symplectomorphism (Buchfink et al., 2024, Lemma 5.13). Note that structure-preserving Hamiltonian MOR typically considers a canonical FOM $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^\mathsf{T}, \mathcal{H})$ reduced to a canonical ROM $(\mathbb{R}^{2d}, \mathbb{J}_{2d}^\mathsf{T}, \check{\mathcal{H}})$ (Peng & Mohseni, 2016; Sharma et al., 2023; Buchfink et al., 2023). The Hamiltonian structure is preserved by constructing $\check{\mathcal{H}}$ via the pullback of the embedding as $\check{\mathcal{H}} = \varphi^*\mathcal{H} = \mathcal{H} \circ \varphi$. Trajectories $\check{\gamma}(t)$ of the reduced-order system are then obtained from the ROM $\frac{d}{dt}\check{\gamma}|_t = \check{X}_{\check{\mathcal{H}}}|_{\check{\gamma}(t)} \in \mathcal{T}_{\check{\gamma}(t)}\check{\mathcal{M}}$, with $\check{X}_{\check{\mathcal{H}}} = \check{\omega}^{-1}d\check{\mathcal{H}}$. The reduced initial value $\check{\gamma}_0 = \rho(\gamma_0) \in \check{\mathcal{M}}$ is computed via the point reduction map $\rho: \mathcal{M} \to \check{\mathcal{M}}$ associated with φ , which must satisfy the projection properties

$$\rho \circ \varphi = \mathrm{id}_{\check{\mathcal{M}}} \quad \text{and} \quad d\rho|_{\varphi(\check{\boldsymbol{x}})} \circ d\varphi|_{\check{\boldsymbol{x}}} = \mathrm{id}_{\mathcal{T}_{\check{\boldsymbol{x}}}\check{\mathcal{M}}}, \quad \forall \check{\boldsymbol{x}} \in \check{\mathcal{M}}. \tag{4}$$

Trajectories of the original system are finally obtained as the approximation $\gamma(t) \approx \varphi(\check{\gamma}(t))$.

The embedding φ and point reduction ρ are key for MOR as they determine the ROM trajectories. Accurately approximating the FOM requires the minimization of the reconstruction error

$$\ell_{\text{rec}} = \frac{1}{N} \sum_{i=1}^{N} \|\varphi \circ \rho(\boldsymbol{x}_i) - \boldsymbol{x}_i\|^2.$$
 (5)

Exact reconstruction requires $d\rho$ to be the symplectic inverse of $d\varphi$, i.e., $d\rho = d\varphi^+ = \check{\omega}^{-1} d\varphi \omega$. In this paper, we introduce a geometrically-constrained AE that fulfills (3) and (4) by design.

2.3 HAMILTONIAN NEURAL NETWORKS

While MOR reduces the dimensionality of systems with known dynamics, HNNs aim to learn the unknown dynamics of typically low-dimensional systems while ensuring energy conservation. Most HNNs assume canonical Hamiltonian systems or Hamiltonian systems with canonical symplectic form (2). In this paper, we build on two HNN variants that (1) learn the Hamiltonian function as a single network $\mathcal{H}_{\theta}(q, p)$ with parameters θ (Greydanus et al., 2019), or (2) learn the kinetic and potential energy as two distinct networks, i.e., $\mathcal{H}_{\theta}(q, p) = T_{\theta_T}(q, p) + V_{\theta_V}(q)$ (Zhong et al., 2020b; Lutter & Peters, 2023). Given a set of N observations $\{q_i, p_i, \dot{q}_i, \dot{p}_i\}_{i=1}^N$, the networks are trained to minimize the prediction error of the Hamiltonian vector field via the loss

$$\ell_{\text{HNN}} = \left\| \frac{\partial \mathcal{H}_{\boldsymbol{\theta}}}{\partial \boldsymbol{p}} (\boldsymbol{q}_i, \boldsymbol{p}_i) - \dot{\boldsymbol{q}}_i \right\|^2 + \left\| \frac{\partial \mathcal{H}_{\boldsymbol{\theta}}}{\partial \boldsymbol{q}} (\boldsymbol{q}_i, \boldsymbol{p}_i) - \dot{\boldsymbol{p}}_i \right\|^2.$$
 (6)

Figure 1: Flowchart of the forward dynamics of the geometric RO-HNN. The geometrically-constrained symplectic AE (in blue) is built as the cotangent lift of a constrained AE (top right). The geometric HNN (in brown) is composed of two SPD networks for the inverse mass-inertia and damping matrices and one MLP for the potential energy.

3 GEOMETRIC REDUCED-ORDER HAMILTONIAN NEURAL NETWORKS

We present the geometric reduced-order Hamiltonian neural network (RO-HNN) that learns the unknown dynamics of high-dimensional Hamiltonian systems. We focus on systems $(\mathcal{M}, \mathbb{J}_{2n}^\mathsf{T}, \mathcal{H})$ evolving on a phase space \mathcal{M} with canonical symplectic form $\mathbb{J}_{2n}^\mathsf{T}$ for which the solutions $\gamma(t)$ of the FOM (1) can be accurately approximated by a substantially lower dimensional surrogate model. Our goal is to learn a reduced Hamiltonian system $(\check{\mathcal{M}}, \check{\omega}, \check{\mathcal{H}})$ via non-intrusive structure-preserving MOR, where we set $\check{\mathcal{M}}$ as a phase space with $\check{\omega} = \mathbb{J}_{2d}^\mathsf{T}$. Given a set of high-dimensional observations $\{q_i, p_i\}_{i=1}^N$, we identify low-dimensional dynamics by jointly learning a reduced symplectic manifold $(\check{\mathcal{M}}, \mathbb{J}_{2d}^\mathsf{T})$ via a smooth embedding φ and a reduction ρ , and a latent Hamiltonian function $\check{\mathcal{H}}$.

The proposed RO-HNN ensures the preservation of the Hamiltonian structure by fulfilling three necessary conditions by design: (1) the embedding φ is a symplectomorphism, or equivalently

$$\check{\boldsymbol{\omega}} = \mathbb{J}_{2d} = d\varphi^{\mathsf{T}} \mathbb{J}_{2n} d\varphi; \tag{7}$$

(2) the embedding φ and reduction map ρ satisfy the projection properties (4); and (3) \mathcal{H} is a valid Hamiltonian function, thus preserving the reduced energy $\mathcal{E} = \mathcal{E} \circ \varphi$. The RO-HNN fulfill (1)-(2) via a novel geometrically-constrained symplectic AE (Sec. 3.1), while (3) is guaranteed by a reduced-order geometric HNN (Sec. 3.2), whose trajectories are obtained via symplectic integration (Sec. 3.3). Accurate modeling of the high-dimensional dynamics is achieved by jointly training the AE and the HNN (Sec. 3.4). The proposed RO-HNN is illustrated in Fig. 1.

3.1 GEOMETRICALLY-CONSTRAINED SYMPLECTIC AUTOENCODER

Preserving the geometric structure of the original Hamiltonian FOM is crucial for the learned ROM to display similar dynamics. We introduce a geometrically-constrained symplectic AE that projects a high-dimensional Hamiltonian system $(\mathcal{M}, \mathbb{J}_{2n}^\mathsf{T}, \mathcal{H})$ onto a low-dimensional nonlinear symplectic manifold $(\check{\mathcal{M}}, \mathbb{J}_{2d}^\mathsf{T})$ such that the reduced system strictly retains the Hamiltonian structure of the FOM. We parametrize the point reduction $\rho: \mathcal{M} \to \check{\mathcal{M}}$ and embedding $\varphi: \check{\mathcal{M}} \to \mathcal{M}$ as the encoder and decoder of an AE designed to satisfy symplecticity (7) and projection properties (4) by construction. To do so, we leverage the cotangent bundle structure of the phase space $\mathcal{M} = \mathcal{T}^*\mathcal{Q}$.

Given a smooth embedding $\varphi_{\mathcal{Q}}: \check{\mathcal{Q}} \to \mathcal{Q}$ and associated point reduction $\rho_{\mathcal{Q}}: \mathcal{Q} \to \check{\mathcal{Q}}$ satisfying (4), we define the cotangent-lifted embedding φ and point reduction ρ in canonical coordinates as

$$\varphi(\check{\boldsymbol{q}},\check{\boldsymbol{p}}) = \begin{pmatrix} \varphi_{\mathcal{Q}} \\ d\rho_{\mathcal{Q}} | \mathbf{T} \\ \varphi_{\mathcal{Q}}(\check{\boldsymbol{q}}) \end{pmatrix} \quad \text{and} \quad \rho(\boldsymbol{q},\boldsymbol{p}) = \begin{pmatrix} \rho_{\mathcal{Q}} \\ d\varphi_{\mathcal{Q}} | \mathbf{T} \\ \rho_{\mathcal{Q}}(\boldsymbol{q}) \end{pmatrix}. \tag{8}$$

Proposition 1. The reduction map $\rho(q, p)$ (8) satisfies the projection properties (4).

Proof. It is clear that the cotangent-lifted map ρ fulfills (4) as ρ_Q satisfies (4) by assumption.

Proposition 2. The embedding $\varphi(\check{q}, \check{p})$ (8) satisfies the symplecticity property (7).

Proof. Proving the statement is equivalent to show that the differential $d\varphi = \begin{pmatrix} \frac{d\varphi_{\mathcal{Q}}}{2} & 0 \\ \frac{\partial(d\rho_{\mathcal{Q}}|_{\mathbf{q}}^{\mathbf{T}}p)}{\partial \mathbf{q}} & d\rho_{\mathcal{Q}}^{\mathsf{T}} \end{pmatrix}$ belongs to the symplectic Stiefel manifold $\operatorname{Sp}(2n,2d) = \{ \boldsymbol{U} \in \mathbb{R}^{2n \times 2d} \mid \boldsymbol{U}^{\mathsf{T}} \mathbb{J}_{2n} \boldsymbol{U} = \mathbb{J}_{2d} \}$. A block matrix $\boldsymbol{U} = \begin{pmatrix} A & B \\ C & B \end{pmatrix}$ belongs to $\operatorname{Sp}(2n,2d)$ if its block elements satisfy the condition

$$\boldsymbol{U}^{\mathsf{T}} \mathbb{J}_{2n}^{\mathsf{T}} \boldsymbol{U} = \begin{pmatrix} \boldsymbol{A}^{\mathsf{T}} & \boldsymbol{C}^{\mathsf{T}} \\ \boldsymbol{B}^{\mathsf{T}} & \boldsymbol{D}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \boldsymbol{0} & -\boldsymbol{I}_n \\ \boldsymbol{I}_n & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{pmatrix} = \begin{pmatrix} \boldsymbol{C}^{\mathsf{T}} \boldsymbol{A} - \boldsymbol{A}^{\mathsf{T}} \boldsymbol{C} & \boldsymbol{C}^{\mathsf{T}} \boldsymbol{B} - \boldsymbol{A}^{\mathsf{T}} \boldsymbol{D} \\ \boldsymbol{D}^{\mathsf{T}} \boldsymbol{A} - \boldsymbol{B}^{\mathsf{T}} \boldsymbol{C} & \boldsymbol{D}^{\mathsf{T}} \boldsymbol{B} - \boldsymbol{B}^{\mathsf{T}} \boldsymbol{D} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & -\boldsymbol{I}_d \\ \boldsymbol{I}_d & \boldsymbol{0} \end{pmatrix},$$

i.e., the differential $d\varphi$ must satisfy

$$d\varphi^{\mathsf{T}} \mathbb{J}^{\mathsf{T}} d\varphi = \begin{pmatrix} \mathbf{C}^{\mathsf{T}} d\varphi_{\mathcal{Q}} - d\varphi_{\mathcal{Q}}^{\mathsf{T}} \mathbf{C} & -d\varphi_{\mathcal{Q}}^{\mathsf{T}} d\rho_{\mathcal{Q}}^{\mathsf{T}} \\ d\rho_{\mathcal{Q}} d\varphi_{\mathcal{Q}} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & -\mathbf{I}_d \\ \mathbf{I}_d & \mathbf{0} \end{pmatrix} \quad \text{with} \quad \mathbf{C} = \frac{\partial (d\rho_{\mathcal{Q}}|_{\mathbf{q}}^{\mathsf{T}} \check{\mathbf{p}})}{\partial \check{\mathbf{q}}}. \quad (9)$$

By assumption, $\rho_{\mathcal{Q}}$ fulfills the projection properties (4), so that $d\rho_{\mathcal{Q}}d\varphi_{\mathcal{Q}}=d\varphi_{\mathcal{Q}}^{\mathsf{T}}d\rho_{\mathcal{Q}}^{\mathsf{T}}=I_d$ holds by construction. It remains to prove $C^{\mathsf{T}}d\varphi_{\mathcal{Q}}-d\varphi_{\mathcal{Q}}^{\mathsf{T}}C=\mathbf{0}$. We denote the elements of the canonical and reduced canonical coordinates as q^i , p_i and \check{q}^{α} , \check{p}_{α} , respectively. By definition, we have $(d\varphi_{\mathcal{Q}})^i_{\alpha}=\frac{\partial q^i}{\partial q^{\alpha}}$ and $(d\rho_{\mathcal{Q}})^{\alpha}_i=\frac{\partial \check{q}^{\alpha}}{\partial q^i}$ and the projection properties hold by assumption, i.e., $(d\rho_{\mathcal{Q}})^{\alpha}_i(d\varphi_{\mathcal{Q}})^{\beta}_{\dot{\beta}}=\delta^{\alpha}_{\beta}\ \forall \check{q}\in\check{\mathcal{Q}}$, with $\delta^{\alpha}_{\beta}=1$ if $\alpha=\beta$ and $\delta^{\alpha}_{\beta}=0$ otherwise. Therefore, we have $p_i=(d\rho_{\mathcal{Q}})^{\alpha}_i\check{p}_{\alpha}$, and $C_{i\gamma}=\frac{\partial p_i}{\partial \check{q}^{\gamma}}=\frac{\partial}{\partial \check{q}^{\gamma}}((d\rho_{\mathcal{Q}})^{\alpha}_i\check{p}_{\alpha})=\frac{\partial (d\rho_{\mathcal{Q}})^{\alpha}_i}{\partial q^j}\check{p}_{\alpha}=\frac{\partial (d\rho_{\mathcal{Q}})^{\alpha}_i}{\partial q^j}(d\varphi_{\mathcal{Q}})^j_{\gamma}\check{p}_{\alpha}$. We aim to show that $C^{\mathsf{T}}d\varphi_{\mathcal{Q}}$ is symmetric, i.e., $(d\varphi_{\mathcal{Q}})^i_{\beta}C_{i\gamma}=(d\varphi_{\mathcal{Q}})^i_{\gamma}C_{i\beta}$. Using the projection properties, we can write $\check{p}_{\beta}=(d\varphi_{\mathcal{Q}})^i_{\beta}(d\rho_{\mathcal{Q}})^{\alpha}_i\check{p}_{\alpha}$. Differentiating with respect to \check{q}^{γ} yields

$$0 = \frac{\partial}{\partial \check{q}^{\gamma}} \left((d\varphi_{\mathcal{Q}})^{i}_{\beta} (d\rho_{\mathcal{Q}})^{\alpha}_{i} \check{p}_{\alpha} \right) = \frac{(d\varphi_{\mathcal{Q}})^{i}_{\beta}}{\partial \check{q}^{\gamma}} (d\rho_{\mathcal{Q}})^{\alpha}_{i} \check{p}_{\alpha} + (d\varphi_{\mathcal{Q}})^{i}_{\beta} \frac{(d\rho_{\mathcal{Q}})^{\alpha}_{i}}{\partial q^{j}} \frac{\partial q^{j}}{\partial \check{q}^{\gamma}} \check{p}_{\alpha}$$
$$= \frac{(d\varphi_{\mathcal{Q}})^{i}_{\beta}}{\partial \check{q}^{\gamma}} p_{i} + (d\varphi_{\mathcal{Q}})^{i}_{\beta} C_{i\gamma} = \frac{\partial q^{i}}{\partial \check{q}^{\beta} \partial \check{q}^{\gamma}} p_{i} + (d\varphi_{\mathcal{Q}})^{i}_{\beta} C_{i\gamma}.$$

As the Hessian in the first term is symmetric, the equality implies the symmetricity of the second term, i.e., $(d\varphi_Q)^i_{\beta}C_{i\gamma} = (d\varphi_Q)^i_{\gamma}C_{i\beta}$, and thus (9) holds.

Note that $d\rho \mathbb{J}_{2n} d\rho^{\mathsf{T}} = \mathbb{J}_{2d}$ is shown to hold on $\varphi(\check{\mathcal{M}})$ with similar arguments. Moreover, a similar proof is presented by Sharma et al. (2023) in the context of quadratic symplectic projections.

In practice, we learn the embedding $\varphi_{\mathcal{Q}}$ and point reduction $\rho_{\mathcal{Q}}$ via the constrained AE architecture from Otto et al. (2023), and compute their differentials to construct the cotangent-lifted maps (8). The encoder and decoder are given as a composition of feedforward layers $\rho_{\mathcal{Q}} = \rho_{\mathcal{Q}}^{(1)} \circ \ldots \circ \rho_{\mathcal{Q}}^{(L)}$ and $\varphi_{\mathcal{Q}} = \varphi_{\mathcal{Q}}^{(L)} \circ \ldots \circ \varphi_{\mathcal{Q}}^{(1)}$ with $\rho_{\mathcal{Q}}^{(l)} : \mathbb{R}^{n_{l-1}}, \varphi_{\mathcal{Q}}^{(l)} : \mathbb{R}^{n_{l-1}} \to \mathbb{R}^{n_{l}}$, and $n_{l-1} \leq n_{l}$. The key to fulfill the projection properties (4) is the construction of the layer pairs as

$$\rho_{\mathcal{Q}}^{(l)}(\boldsymbol{q}^{(l)}) = \sigma_{-}\left(\boldsymbol{\Psi}_{l}^{\mathsf{T}}(\boldsymbol{q}^{(l)} - \boldsymbol{b}_{l})\right) \quad \text{and} \quad \varphi_{\mathcal{Q}}^{(l)}(\check{\boldsymbol{q}}^{(l-1)}) = \boldsymbol{\Phi}_{l}\sigma_{+}(\check{\boldsymbol{q}}^{(l-1)}) + \boldsymbol{b}_{l}, \quad (10)$$

where (Φ_l, Ψ_l) and (σ_+, σ_-) are pairs of weight matrices and smooth activation functions such that $\Psi_l^{\mathsf{T}}\Phi_l = I_{n_{l-1}}$ and $\sigma_- \circ \sigma_+ = \mathrm{id}$, respectively, and b_l are bias vectors. Therefore, each layer pair (10) satisfies $\rho_{\mathcal{Q}}^{(l)} \circ \varphi_{\mathcal{Q}}^{(l)} = \mathrm{id}_{\mathbb{R}^{n_{l-1}}}$ and the constrained AE fulfills (4). Following (Friedl et al., 2025), we ensure that the pairs of weight matrices adhere to the biorthogonality constraint $\Psi_l^{\mathsf{T}}\Phi_l = I_d$ by accounting for the Riemannian geometry of biorthogonal matrices (see App. B.2 for a background). Specifically, we consider each pair (Φ_l, Ψ_l) as an element of the biorthogonal manifold $\mathcal{B}_{n_l,n_{l-1}} = \{(\Phi, \Psi) \in \mathbb{R}^{n_l \times n_{l-1}} \times \mathbb{R}^{n_l \times n_{l-1}} : \Psi^{\mathsf{T}}\Phi = I_{n_{l-1}}\}$ and optimize them to minimize the reconstruction error (5) via Riemannian optimization (Absil et al., 2007; Boumal, 2023) (see. App. F). Note that this Riemannian approach was shown to consistently outperform the overparametrization proposed by Otto et al. (2023), achieving lower reconstruction errors (Friedl et al., 2025). The constraint $\sigma_- \circ \sigma_+ = \mathrm{id}$ is met by utilizing the smooth, invertible activation functions defined in (Otto et al., 2023, Eq. 12). Additional details on the architecture are provided in App. D.

As will be shown in Sec. 4, the resulting geometrically-constrained symplectic AE provides increased expressivity compared to linear and quadratic symplectic projection approaches (Peng & Mohseni, 2016; Sharma et al., 2023), while guaranteeing the symplectic structure of the latent space in constrast to weakly-symplectic AEs based on soft constraints (Buchfink et al., 2023). In the intrusive case, i.e., if the FOM is known, we construct the reduced Hamiltonian function via the pullback of the cotangent-lifted embedding as $\check{\mathcal{H}} = \varphi^* \mathcal{H}$, which yields the Hamiltonian ROM. Instead, in this paper, we consider the case where the high-dimensional dynamics are unknown, and learn the reduced-order Hamiltonian function $\check{\mathcal{H}}$ with a geometric HNN, as explained next.

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285 286

287

289

290

291

292

294

296

297

298

299

300

301 302 303

304

305

306

307 308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

3.2 Conservative and Dissipative Hamiltonian Reduced-order Models

We propose to learn the reduced Hamiltonian dynamics in the embedded symplectic submanifold $(\mathcal{M}, \mathbb{J}_{2d}^{\mathsf{T}})$ via a HNN. For general systems, we encode the reduced-order Hamiltonian function as a single neural network $\mathcal{H}_{\theta}(\check{\mathbf{q}},\check{\mathbf{p}})$ with parameters θ , akin to (Greydanus et al., 2019). However, additional prior knowledge on the structure of the Hamiltonian is often available. For instance, the Hamiltonian function of mechanical systems sums a quadratic kinetic energy and a potential term. Leveraging that the learned symplectic submanifold preserves the original system structure, we propose to model the reduced Hamiltonian function as $\check{\mathcal{H}}_{\theta}(\check{q},\check{p}) = \frac{1}{2}\check{p}^{\mathsf{T}}\check{M}_{\theta_{\hat{T}}}^{-1}(\check{q})\check{p} + \check{V}_{\theta_{\hat{V}}}(\check{q})$ via two neural networks $\check{M}_{\theta_{\check{T}}}^{-1}$ and $\check{V}_{\theta_{\check{V}}}$ with parameters $\theta = \{\theta_{\check{T}}, \theta_{\check{V}}\}$. Existing HNNs enforce the symmetric positive-definiteness of the inverse mass-inertia matrix via a Euclidean network encoding its Cholesky decomposition L, i.e., $M^{-1} = LL^{T}$. However, as for LNNs (Friedl et al., 2025), this parametrization leads to flawed measures of distances in the space of symmetric positive-definite (SPD) matrices and ultimately results in inaccurate dynamics predictions. To overcome this issue, we parametrize $M_{\theta_T}^{-1}$ via the SPD network from Friedl et al. (2025) that accounts for the Riemannian geometry of the SPD manifold \mathcal{S}^d_{++} (see Apps. A, C). The network $\check{M}^{-1}_{\theta_T}(q) = (g_{Exp} \circ g_{\mathbb{R}})(q)$ is composed of (I) a standard Euclidean multilayer perceptron (MLP) $g_{\mathbb{R}} : \mathbb{R}^d \to \mathbb{R}^{d(d+1)/2}$ that maps the input configuration to the elements of a symmetric matrix $U \in \operatorname{Sym}^d$, and (2) an exponential map layer g_{Exp} that interprets U as an element of the tangent space $\mathcal{T}_P \mathcal{S}^d_{++}$, and maps it onto \mathcal{S}^d_{++} .

While classical Hamiltonian dynamics conserve energy, dissipation and external inputs often appear in real-world systems. Both can be modeled in HNNs by complementing the Hamiltonian vector field with a force field $X_{\mathcal{F}}$, so that the total vector field is $X = X_{\mathcal{H}} + X_{\mathcal{F}}$ (Sosanya & Greydanus, 2022; Zhong et al., 2020a). We propose to leverage the structure-preserving symplectic submanifold and model dissipation and external inputs as a reduced-order force field $X_{\mathcal{F}}$ on $(\mathcal{M}, \mathbb{J}_{2d}^{\mathsf{T}})$. Specifically, we model viscous damping via a Rayleigh dissipative function $\mathcal{\tilde{D}}_{\theta_{\tilde{D}}}(\check{q},\dot{\check{q}}) = \frac{1}{2}\dot{\check{q}}^{\mathsf{T}}\mathcal{\tilde{D}}_{\theta_{\tilde{D}}}(\check{q})\dot{\check{q}}$. Dissipative HNNs (Zhong et al., 2020a) constraint the dissipation matrix to be positive semidefinite through its Cholesky decomposition, i.e., $D = LL^{\dagger}$, thus overlooking its intrinsic geometric structure. Instead, we utilize a second SPD network $\dot{D}_{\theta_{\check{D}}}(\check{q}) = (g_{\text{Exp}} \circ g_{\mathbb{R}})(q)$. Moreover, we embed observed external inputs $au_{\rm ext}$ into the symplectic latent space via the embedding $arphi_{\mathcal{Q}}$ as $\check{\tau}_{\text{ext}} = d\varphi_{\mathcal{Q}}|_{\check{\boldsymbol{q}}}^{\intercal} \tau_{\text{ext}}$. The resulting geometric HNN predicts conservative and dissipative dynamics as

$$\dot{\tilde{q}}_p = \frac{\partial \check{\mathcal{H}}_{\theta}}{\partial \check{p}} \quad \text{and} \quad \dot{\tilde{p}}_p = -\frac{\partial \check{\mathcal{H}}_{\theta}}{\partial \check{q}} - \frac{\partial \check{\mathcal{D}}_{\theta_D}}{\partial \dot{\tilde{q}}} + \check{\tau}_{\text{ext}}, \tag{11}$$
 with $\check{\mathcal{D}}_{\theta_D} = 0$ and $\check{\tau}_{\text{ext}} = \mathbf{0}$ in the conservative case. The architecture is illustrated in Fig. 1-middle.

Predicting system trajectories according to the learned reduced-order Hamiltonian dynamics involves (1) integrating the latent predictions (\dot{q}_p, \dot{p}_p) (11), and (2) decoding the obtained reducedorder position and momentum $(\check{q}_p, \check{p}_p)$ into the high-dimensional coordinates of the original system with the point reduction ρ (8), i.e., $(\tilde{q}_p, \tilde{p}_p) = \rho(\tilde{q}_p, \tilde{p}_p)$. In this paper, we propose to integrate the learned reduced-order Hamiltonian flow via symplectic integration, as explained next.

3.3 TRAJECTORY PREDICTION VIA SYMPLECTIC INTEGRATION

Symplectic integrators are particularly well suited to integrate Hamiltonian dynamics as they preserve the geometric structure and invariants of the Hamiltonian flow (Leimkuhler & Reich, 2005). Symplectic integrators were shown to be key to accurately integrate learned HNNs dynamics, thus preventing long-term drifting of numerical solutions (Chen et al., 2020; Xiong et al., 2020).

The Hamiltonian dynamics learned in Sec. 3.2 are nonseparable, thus prohibiting the usage of standard explicit integration schemes, e.g., leapfrog (Leimkuhler & Reich, 2005). Instead, we integrate the reduced-order Hamiltonian flow (11) using the second-order symplectic integrator of (Tao, 2016) based on Strang splitting, akin to (Xiong et al., 2020). In a nutshell, the integrator considers an augmented Hamiltonian $\mathcal{H}(q, p, x, y) = \mathcal{H}(q, y) + \mathcal{H}(p, x) + \frac{1}{2}w(\|q, x\|^2 + \|p, y\|^2)$ with extended phase space, for which high-order separable symplectic integrators with explicit updates can be constructed. A numerical integrator approximating \mathcal{H} is obtained by composing the obtained explicit flows, which we refer to as Strang-symplectic integrator. Additional details are provided in App. E.

3.4 MODEL TRAINING

Finally, we propose to jointly learn the parameters $\{\Phi_l, \Psi_l, b_l\}_{l=1}^L$ of the AE and $\{\theta_{\check{T}}, \theta_{\check{V}}, \theta_{\check{D}}\}$ of the latent geometric HNN. As the learned dynamics are expected to predict multiple steps, we

Table 1: Prediction errors (\$\psi\$) over 10 test pendulum trajectories.

	$H\Delta t$ (s)	RO-HNN	15-DoF HNN	3-DoF HNN
$\frac{\ ilde{oldsymbol{q}}_{ ext{p}}-oldsymbol{q}\ }{\ oldsymbol{q}\ }$	0.25 5	$(1.66 \pm 1.38) \times 10^{-1}$ $(7.08 \pm 7.56) \times 10^{-1}$	$(5.33 \pm 6.02) \times 10^{-1}$ —	$(1.22 \pm 0.92) \times 10^{-1}$ $(5.44 \pm 6.93) \times 10^{-1}$
$\frac{\ ilde{oldsymbol{p}}_{ ext{p}}-oldsymbol{p}\ }{\ oldsymbol{p}\ }$	0.25 5	$(5.33 \pm 5.23) \times 10^{-2}$ $(1.98 \pm 2.67) \times 10^{-1}$	$(1.76 \pm 2.40) \times 10^{-1}$	$(2.50 \pm 2.96) \times 10^{-2}$ $(1.85 \pm 3.94) \times 10^{-1}$

Figure 2: Relative error and reconstructed trajectories of the RO-HNN (—) and 3-DoF HNN (—) vs. ground truth (—) for a horizon $H\Delta t = 5s$. The 15-DoF HNN diverges and is not shown.

Table 2: Mean and standard deviation of reconstruction, prediction, and symplecticity errors (\downarrow) of symplectic dimensionality reduction approaches over 10 test pendulum trajectories.

	Linear SMG	Quadr. SMG	Weakly-sympl. AE	Geom. Sympl. AE (ours)
$\ ilde{oldsymbol{q}} - oldsymbol{q}\ /\ oldsymbol{q}\ \ \ ilde{oldsymbol{p}} - oldsymbol{p}\ /\ oldsymbol{p}\ $	$(2.21 \pm 1.17) \times 10^{-1}$ $(4.43 \pm 3.99) \times 10^{-1}$	$(2.84 \pm 4.23) \times 10^{0}$ $(2.75 \pm 1.60) \times 10^{-1}$	$(1.43 \pm 0.68) \times 10^{-1}$ $(1.57 \pm 1.55) \times 10^{-1}$	$(8.84 \pm 6.22) imes 10^{-2} \ (4.09 \pm 3.99) imes 10^{-2}$
$\ ilde{oldsymbol{q}}_{ extsf{p}}-oldsymbol{q}\ /\ oldsymbol{q}\ \ ilde{oldsymbol{p}}_{ extsf{p}}-oldsymbol{p}\ /\ oldsymbol{p}\ $	$(2.58 \pm 2.33) \times 10^{-1}$ $(2.16 \pm 1.89) \times 10^{-1}$	$(3.53 \pm 5.18) \times 10^{0}$ $(8.68 \pm 1.04) \times 10^{-1}$	$(7.10 \pm 7.02) \times 10^{-1}$ $(2.16 \pm 1.89) \times 10^{-1}$	$(1.13 \pm 0.92) \times 10^{-1} \ (4.68 \pm 4.32) \times 10^{-2}$
$\frac{\ \mathbb{J}_{2d} - d\varphi^{T} \mathbb{J}_{2n} d\varphi\ }{\ d\rho - d\varphi^{+}\ }$	$0.0 \pm 0.0 \\ 0.0 \pm 0.0$	$0.0 \pm 0.0 \\ 0.0 \pm 0.0$	$(1.67 \pm 0.35) \times 10^{-2}$ $(5.32 \pm 1.45) \times 10^{0}$	$0.0 \pm 0.0 (9.53 \pm 5.35) \times 10^{-1}$

consider a loss that numerically integrates the latent predictions (\dot{q}_p, \dot{p}_p) (11) via H forward Strang-symplectic integration steps before decoding. Given sets of observations $\{q_i(\mathcal{I}_i), \dot{q}_i(\mathcal{I}_i), \tau_i(\mathcal{I}_i)\}_{i=1}^N$ over intervals $\mathcal{I}_i = [t_i, t_i + H\Delta t]$ with constant integration time Δt , the resulting multi-step loss is

$$\ell_{\text{RO-HNN}} = \frac{1}{HN} \sum_{i=1}^{N} \sum_{j=1}^{H} \underbrace{\|\tilde{q}_{i}(t_{i,j}) - q_{i}(t_{i,j})\|^{2} + \|\tilde{p}_{i}(t_{i,j}) - p(t_{i,j})\|^{2}}_{\ell_{\text{AE}}} + \underbrace{\lambda \|\tilde{q}_{p,i}(t_{i,j}) - \tilde{q}_{i}(t_{i,j})\|^{2}}_{\ell_{\text{HNN},d}} + \underbrace{\|\tilde{p}_{p,i}(t_{i,j}) - \tilde{p}_{i}(t_{i,j})\|^{2}}_{\ell_{\text{HNN},d}} + \underbrace{\|\tilde{q}_{p,i}(t_{i,j}) - q_{i}(t_{i,j})\|^{2} + \|\tilde{p}_{p,i}(t_{i,j}) - p_{i}(t_{i,j})\|^{2}}_{\ell_{\text{HNN},p}} + \gamma \|\boldsymbol{\theta}\|_{2}^{2},$$
(12)

where $\check{\mathbf{q}}_{p,i}(t_{i,j}) = \int_{t_i}^{t_{i,j}} \dot{\mathbf{q}}_{p,i} \mathrm{d}t$ and $\check{\mathbf{p}}_{p,i}(t_{i,j}) = \int_{t_i}^{t_{i,j}} \dot{\dot{\mathbf{p}}}_{p,i} \mathrm{d}t$ with $t_{i,j} = t_i + j\Delta t$, and loss scaling $\lambda \in \mathbb{R}_{>0}$. We optimize the network parameters via Riemannian Adam (Becigneul & Ganea, 2019).

4 EXPERIMENTS

We evaluate the proposed RO-HNN to learn the dynamics of three simulated high-dimensional Hamiltonian systems: a 15-degrees-of-freedom (DoF) pendulum, a 600-DoF thin cloth, and a 90-DoF particle vortex. Our experiments showcase that RO-HNNs accurately predict long-term trajectories of high-dimensional Hamiltonian systems, highlighting the importance of embedding geometric inductive biases as hard constraints in the AE and HNN. Details about datasets, network architectures, and model training are provided in App. G. Additional results are provided in App. H.

4.1 COUPLED PENDULUM (15 DOF)

We consider a 15-DoF augmented pendulum whose nonlinear dynamics are specified from the symplectomorphism of a latent 3-DoF pendulum augmented with a 12-DoF mass-spring mesh. As the mesh oscillations are small, the system dynamics are approximately reducible to 3 dimensions.

Learning high-dimensional dynamics. We train a RO-HNN with latent dimension d=3 and a conservative geometric HNN with Strang-symplectic integration on 3000 observations $\{q_i, p_i\}$ (see App. G.1 for details). We compare our RO-HNN with a 15-DoF geometric HNN that directly learns high-dimensional dynamic parameters. For completeness, we also consider a 3-DoF geometric HNN trained on observations of the latent system. Notice that this model would not be deployable in practice as it requires ground truth information, i.e., latent observations, that would not be available.

Short- and long-term relative prediction errors over $H\Delta t = \{0.25, 5\}$ s are reported in Table 1. The RO-HNN outperforms the 15-DoF HNN, leading to significantly lower prediction errors. Due to the high dimensionality, the 15-DoF HNN was difficult to train and did not lead to stable long-term predictions. As shown in Fig. 2, the RO-HNN achieves similar long-term predictions as the 3-DoF HNN, which is expected to perform best as trained directly on the low-dimensional system. This validates the RO-HNN ability to jointly learn a latent symplectic submanifold and associated dynamics.

AE architecture. The quality of the learned symplectic submanifold is crucial for learning accurate dynamics, as they may systematically deviate from the ground truth if the submanifold does

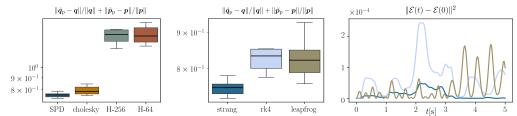


Figure 3: Ablation of the latent HNN architecture (*left*) and latent integrator (*middle*, *right*) of the RO-HNN to learn the dynamics of a 15-DoF pendulum.

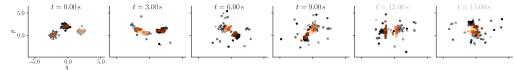


Figure 4: Predicted $(\bullet, \bullet, \bullet)$ vs ground truth $(\bullet, \bullet, \bullet)$ positions of the particle vortex. Times beyond 10s are out of the training data distribution.

not accurately capture the solution space of the high-dimensional system. We analyze the influence of the reduction method in the RO-HNN and compare the proposed geometrically-constrained symplectic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023) which preserve the symplectic structure by construction, and a weakly-symplectic AE (Buchfink et al., 2023) which encourages structure preservation via a penalty term in the loss (see App. G.1 for details). We train each approach on 3000 observations of the 15-DoF pendulum. Here, we consider an intrusive MOR setup and project the known FOM dynamics onto the learned submanifold to predict new trajectories ($H\Delta t = 0.25$ s). Table 2 shows that, due to their increased expressivity, the AEs outperform the linear and quadratic projections, with the geometrically-constrained symplectic AEs achieving the lowest reconstruction and prediction errors. Note that only the geometrically-constrained AE yielded stable longer-term predictions (see Fig. 2). Moreover, only the weakly-symplectic AE results in an error on the symplecticity condition (7), which is expected as both SMG projections and geometrically-constrained symplectic AE fulfill it by construction. Both SMG projections also ensure by design that the differential $d\rho$ is the symplectic inverse of $d\varphi$, while the geometrically-constrained AE leads to a lower error than the weakly-constrained one. Note that jointly training the AE with the geometric HNN in the RO-HNN further reduces this error to $(7.42 \pm 1.21) \times 10^{-1}$, showcasing the benefit of joint training.

Latent HNN architecture. We compare the performance of our geometric HNN to learn the low-dimensional dynamics of the latent 3-DoF pendulum against (1) a non-geometric variant that parametrizes the inverse mass-inertia matrix via a Cholesky network, and (2) two HNNs encoded as a single black-box network \mathcal{H}_{θ} , where we consider two MLPs of 64- and 256-neurons width. As shown in Fig. 3-left, the geometric HNN achieves the lowest reconstruction error, followed by the Cholesky HNN (see also App. H.1). This showcases the importance of considering both the quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices.

Latent integrator. We compare the Strang symplectic integrator against a symplectic leapfrog that disregards that the Hamiltonian is non-separable, and a Runge-Kutta of order 4 that overlooks its symplectic structure. Fig. 3-middle, right show that the Strang symplectic integrator achieves the lowest reconstruction error and conserves energy best during integration (see also App. H.1).

4.2 Particle Vortex (90-DoF)

Next, we learn the dynamics of a particle vortex composed of n=90 particles with uniform interaction strengths. As the particle vortex dynamics are purely determined via the logarithmic interaction, its Hamiltonian function does not separate into kinetic and potential energies. We train RO-HNNs with $d=\{6.10\}$ and (I) a geometric HNN and (2) a black-box HNN \mathcal{H}_{θ} , both with Strang-symplectic integration (see App. G.2 for details). Fig. 4 depicts the predicted particle positions and momenta for a prediction horizon of H=100, showing that the RO-HNN accurately predicts the particle vortex dynamics and generalizes beyond the data support (t>10s). As shown in Table 3, the geometric HNNs outperform the black-box HNNs despite the lack of structure of the ground truth Hamiltonian. This suggests that the AE learns a symplectomorphism to a latent space where the Hamiltonian can be decomposed into two energy terms, thereby taking advantage of the additional structure of the geometric HNN. Moreover, the 6-dimensional models outperform the 10-dimensional ones, showing that the choice of latent dimension trades off between the latent space expressivity and the limitations of HNNs in higher dimensions (see App. H.2 for more results).

Table 3: RO-HNN prediction errors (\$\psi\$) for different latent HNNs over 10 particle vortex trajectories.

	d = 6				d = 10		
	HNN	$\ ilde{oldsymbol{q}}_{ extsf{p}}-oldsymbol{q}\ /\ oldsymbol{q}\ $	$\ ilde{oldsymbol{p}}_{ extsf{p}}-oldsymbol{p}\ $	$/\ oldsymbol{p}\ $	$\ ilde{oldsymbol{q}}_{ ext{p}} - oldsymbol{q}\ /\ oldsymbol{q}\ $		$oldsymbol{p} \ /\ oldsymbol{p}\ $
	Black-box Geometric	$(6.73 \pm 2.83) \times 10^{-1}$ $(4.00 \pm 2.01) \times 10^{-1}$	(6.28 ± 2.18)	$) \times 10^{-1}$ (7.34 ± 3.03) × 10 4.44 ± 0.60) × 10		$27) \times 10^{-1}$ $32) \times 10^{-1}$
	t = 0.0		$t = 0.15 \mathrm{s}$	$t = 0.20 \mathrm{s}$,	$t = 0.40 \mathrm{s}$,
truth							
ground t							
prediction							
predi							

Figure 5: Predicted positions of the damped cloth with a RO-HNN with d=10 for a $625\times$ longer horizon than during training. Times beyond 0.3s are out of the training data distribution.

4.3 CLOTH (600-DOF)

Next, we learn the dynamics of a high-deformable damped system, namely a simulated 600-DoF thin cloth falling onto spheres of different radius, akin to (Friedl et al., 2025). The system is intrinsically damped due to external dissipation forces $\tau_{\rm d}$. We train two RO-HNNs with $d=\{6,10\}$ and a dissipative geometric HNN with Strang-symplectic integration on 20 trajectories of 3000 observations $\{q_i,p_i,\tau_i\}$ each, where $\tau=\tau_{\rm c}$ are measured external constraint forces (see App. G.3 for details). Fig. 5 depicts the predicted cloth configurations for a horizon $H\Delta t=0.5\,{\rm s}$, showing that the RO-HNN accurately predicts the high-dimensional dissipative dynamics of the cloth, generalizing beyond the data support $(t>0.3{\rm s})$ (see App. H.3 for additional results and ablations).

Latent damping. We compare the performance of the dissipative RO-HNN against (1) a conservative RO-HNN, where the dissipation forces τ_d are not learned but provided as ground truth in the external input $\tau = \tau_c + \tau_d$, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized via Cholesky decomposition. Note that the mass-inertia matrix is parametrized via SPD networks in all cases. Table 4 shows that both dissipative RO-HNNs successfully learn the dissipation forces, achieving similar prediction errors as the conservative RO-HNN. The geometric HNN slightly outperforms its Cholesky counterpart, showing the importance of considering geometry. However, the effect is less pronounced as when learning the inverse mass-inertia matrix, which we attribute to the reduced influence of damping compared to inertia in the overall dynamics.

5 CONCLUSIONS

This paper proposed a novel physics-inspired neural network, RO-HNN, for learning the dynamics of high-dimensional Hamiltonian systems from data. Our model provides physically-consistent, accurate, and stable predictions that generalize beyond the data support. To achieve this, our model systematically integrates geometric inductive bias by defining structure-preserving symplectic embeddings, considering the geometry of the dynamics parameters within the model and for optimization, and leveraging structure-preserving symplectic integrators. We showed that the structural incorporation of these priors in the architecture is essential to learn high-dimensional dynamics, whereas Euclidean and soft-constrained approaches consistently underperformed. Future work will extend RO-HNN to Hamiltonian systems with non-canonical symplectic forms. To do so, we plan to leverage Darboux theorem and explore the development of local RO-HNNs. Moreover, we will investigate model-based control strategies within the RO-HNN latent space.

Table 4: Mean and standard deviation of RO-HNN reconstruction and prediction errors (\downarrow) for different parametrization of the latent dissipation matrix $\check{\boldsymbol{D}}$ over 10 test cloth trajectories.

D	oF	$\check{m{D}}$	$\ ilde{oldsymbol{q}}_{ extsf{p}} - oldsymbol{q}\ /\ oldsymbol{q}\ $	$\ ilde{oldsymbol{p}}_{ extsf{p}} - oldsymbol{p}\ /\ oldsymbol{p}\ $	$\ \check{m{q}}_{ m p}-m{q}\ /\ \check{m{q}}\ $	$\ \check{m{p}}_{ extsf{p}} - m{p}\ /\ \check{m{p}}\ $
	6	Cholesky	$(4.21 \pm 1.07) \times 10^{-2}$	$(4.11 \pm 2.93) \times 10^{-1}$	$(3.45 \pm 1.13) \times 10^{-2}$	$(6.90 \pm 10.90) \times 10^{-2}$
		SPD	$(4.15 \pm 2.10) \times 10^{-2}$	$(3.58 \pm 3.03) \times 10^{-1}$	$(3.11 \pm 1.86) \times 10^{-2}$	$(8.42 \pm 10.40) \times 10^{-2}$
		Ground truth	$(3.18 \pm 0.74) \times 10^{-2}$	$(3.45 \pm 3.99) \times 10^{-1}$	$(2.58 \pm 0.94) \times 10^{-2}$	$(4.77 \pm 5.36) \times 10^{-2}$
		Cholesky	$(2.62 \pm 0.74) \times 10^{-2}$	$(3.39 \pm 3.01) \times 10^{-1}$	$(1.86 \pm 0.69) \times 10^{-2}$	$(3.90 \pm 4.36) \times 10^{-2}$
1	10	SPD	$(3.21 \pm 1.25) \times 10^{-2}$	$(3.33 \pm 2.88) imes 10^{-1}$	$(3.45 \pm 1.13) \times 10^{-2}$	$(1.96 \pm 1.10) \times 10^{-2}$
		Ground truth	$(2.31 \pm 0.70) \times 10^{-2}$	$(3.44 \pm 3.05) \times 10^{-1}$	$(1.37 \pm 0.63) \times 10^{-2}$	$(4.26 \pm 4.58) \times 10^{-2}$

REFERENCES

- Ralph Abraham and Jerrold E. Marsden. *Foundations of Mechanics*. Addison-Wesley Publishing Company, Inc., second edition, 1987.
- Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton University Press, 2007. URL https://press.princeton.edu/absil.
 - Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In *Intl. Conf. on Learning Representations (ICLR)*, 2019. URL https://openreview.net/forum?id=rleiqi09K7.
 - Thomas Bendokat and Ralf Zimmermann. Geometric optimization for structure-preserving model reduction of hamiltonian systems. *IFAC-PapersOnLine*, 55(20):457–462, 2022. URL https://www.sciencedirect.com/science/article/pii/S2405896322013386. 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022.
 - Aleksandar Botev, Andrew Jaegle, Peter Wirnsberger, Daniel Hennes, and Irina Higgins. Which priors matter? Benchmarking models for learning latent dynamics. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/f033ab37c30201f73f142449d037028d-Paper-roundl.pdf.
 - Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press, 2023. URL http://www.nicolasboumal.net/book.
 - Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proceedings of the National Academy of Sciences*, 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113.
 - Patrick Buchfink, Silke Glas, and Bernard Haasdonk. Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder. *SIAM Journal of Scientific Computing*, 45:A289–A311, 2023. doi: 10.1137/21m1466657.
 - Patrick Buchfink, Silke Glas, Bernard Haasdonk, and Benjamin Unger. Model reduction on manifolds: A differential geometric framework. *Physica D: Nonlinear Phenomena*, 468:134299, 2024. doi: 10.1016/j.physd.2024.134299.
 - Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery of coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116 (45):22445–22451, 2019. doi: 10.1073/pnas.1906995116.
 - Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: Learning Hamiltonian equations on general coordinate systems. In *Neural Information Processing Systems* (NeurIPS), 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8b519f198dd26772e3e82874826b04aa-Paper.pdf.
 - Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural networks. In *Intl. Conf. on Learning Representations (ICLR)*, 2020. URL https://openreview.net/forum?id=BkgYPREtPr.
 - Miles D. Cranmer, Sam Greydanus, Stephan Hoyer, Peter W. Battaglia, David N. Spergel, and Shirley Ho. Lagrangian neural networks. In *ICLR Deep Differential Equations Workshop*, 2020. URL https://arxiv.org/abs/2003.04630.
 - Pedro Duarte, Rui L. Fernandes, and Waldyr M. Oliva. Dynamics of the attractor in the lotka–volterra equations. *Journal of Differential Equations*, 149(1):143–189, 1998. doi: 10.1006/jdeq.1998.3443.
 - Thai Duong and Nikolay Atanasov. Hamiltonian-based neural ODE networks on the SE(3) manifold for dynamics learning and control. In *Robotics: Science and Systems (R:SS)*, 2021. doi: 10.15607/RSS.2021.XVII.086.

- Aasa Feragen and Andrea Fuster. *Geometries and interpolations for symmetric positive definite matrices*, pp. 85–113. Mathematics and Visualization. Springer, 2017. doi: 10.1007/978-3-319-61358-1_5.
 - Katharina Friedl, Noémie Jaquier, Jens Lundell, Tamim Asfour, and Danica Kragic. A Riemannian framework for learning reduced-order Lagrangian dynamics. In *Intl. Conf. on Learning Representations (ICLR)*, 2025. URL https://openreview.net/forum?id=RoN6M3i7gJ.
 - Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In *Neural Information Processing Systems (NeurIPS)*, volume 32, 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf.
 - William R. Hamilton. On a general method in dynamics. *Philosophical Transactions of the Royal Society*, pp. 247–308, 1834. doi: 10.1098/rstl.1834.0017.
 - Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. Sympnets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. *Neural Networks*, 132:166–179, 2020. doi: 10.1016/j.neunet.2020.08.017.
 - Anas Jnini, Lorenzo Breschi, and Flavio Vella. Riemann tensor neural networks: Learning conservative systems with physics-constrained networks. In *Intl. Conf. on Machine Learning (ICML)*, 2025. URL https://openreview.net/forum?id=cPMhMoJLAx¬eId=I8LbqaDsqw.
 - George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021. doi: 10.1038/s42254-021-00314-5.
 - Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in PyTorch. *arXiv:2005.02819*, 2020. URL https://github.com/geoopt/geoopt.
 - John M. Lee. Introduction to smooth manifolds. Springer, 2013. doi: 10.1007/978-1-4419-9982-5.
 - Benedict Leimkuhler and Sebastian Reich. *Simulating Hamiltonian Dynamics*. Cambridge University Press, 2005. doi: 10.1017/CBO9780511614118.
 - Marco Lepri, Davide Bacciu, and Cosimo Della Santina. Neural autoencoder-based structure-preserving model order reduction and control design for high-dimensional physical systems. *IEEE Control Systems Letters*, 8:133–138, 2024. doi: 10.1109/LCSYS.2023.3344286.
 - Ning Liu, Yiming Fan, Xianyi Zeng, Milan Klöwer, Lu Zhang, and Yue Yu. Harnessing the power of neural operators with automatically encoded conservation laws. In *Intl. Conf. on Machine Learning (ICML)*, 2024. URL https://proceedings.mlr.press/v235/liu24p.html.
 - Michael Lutter and Jan Peters. Combining physics and deep learning to learn continuous-time dynamics models. *Intl. Journal of Robotics Research*, 42(3):83–107, 2023. doi: 10.1177/02783649231169492.
 - Samuel E. Otto, Gregory R. Macchio, and Clarence W. Rowley. Learning nonlinear projections for reduced-order modeling of dynamical systems using constrained autoencoders. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 33(11), 2023. doi: 10.1063/5.0169688.
 - Liqian Peng and Kamran Mohseni. Symplectic model reduction of Hamiltonian systems. *SIAM Journal on Scientific Computing*, 38(1):A1–A27, 2016. doi: 10.1137/140978922.
 - Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing. *International Journal of Computer Vision*, 66(1):41–66, 2006. doi: 10.1007/s11263-005-3222-z.
 - Rick Salmon. Hamiltonian fluid mechanics. *Annual Review of Fluid Mechanics*, 20:225–256, 1988. doi: 10.1146/annurev.fl.20.010188.001301.
 - Wilhelmus H. A. Schilders, Henk A. Van der Vorst, and Joost Rommes. *Model Order Reduction: Theory, Research Aspects and Applications*, volume 13. Springer Verlag, 2008. doi: 10.1007/978-3-540-78841-6.

- Erwin Schrödinger. Quantisierung als eigenwertproblem. *Annalen der Physik*, 384(4):361–376, 1926. doi: 10.1002/andp.19263840404.
- Harsh Sharma and Boris Kramer. Preserving lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems. *Physica D: Nonlinear Phenomena*, 462:134128, 2024. doi: 10.1016/j.physd.2024.134128.
- Harsh Sharma, Hongliang Mu, Patrick Buchfink, Rudy Geelen, Silke Glas, and Boris Kramer. Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds. *Computer Methods in Applied Mechanics and Engineering*, 417:116402, 2023. doi: 10.1016/j.cma.2023. 116402.
- Harsh Sharma, David A. Najera-Flores, Michael D. Todd, and Boris Kramer. Lagrangian operator inference enhanced with structure-preserving machine learning for nonintrusive model reduction of mechanical systems. *Computer Methods in Applied Mechanics and Engineering*, 423:116865, 2024. doi: 10.1016/j.cma.2024.116865.
- Andrew Sosanya and Sam Greydanus. Dissipative Hamiltonian neural networks: Learning dissipative and conservative dynamics separately. *arXiv preprint arXiv:2201.10085*, 2022. doi: 10.48550/arxiv.2201.10085.
- Molei Tao. Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance. *Phys. Rev. E*, 94:043303, 2016. doi: 10.1103/PhysRevE.94.043303.
- Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In *IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS)*, pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.
- Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):A3055–A3081, 2021. doi: 10.1137/20m1318043.
- Shiying Xiong, Yunjin Tong, Xingzhe He, Shuqi Yang, Cheng Yang, and Bo Zhu. Nonseparable symplectic neural networks. In *Intl. Conf. on Learning Representations (ICLR)*, 2020. URL https://openreview.net/forum?id=B5VvQrI49Pa.
- Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative SymODEN: Encoding Hamiltonian dynamics with dissipation and control into deep learning. In *ICLR Workshop on Integration of Deep Neural Models and Differential Equations (DeepDiffEq)*, 2020a. URL https://openreview.net/pdf?id=knjWFNx6CN.
- Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-net: Learning Hamiltonian dynamics with control. In *Intl. Conf. on Learning Representations (ICLR)*, 2020b. URL https://openreview.net/forum?id=ryxmb1rKDS.
- Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Extending Lagrangian and Hamiltonian neural networks with differentiable contact models. In *Neural Information Processing Systems* (*NeurIPS*), volume 34, pp. 21910–21922, 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/b7a8486459730bea9569414ef76cf03f-Paper.pdf.

A RIEMANNIAN AND SYMPLECTIC GEOMETRY

In this section, we provide a short background on Riemannian and symplectic geometry, which compose the theoretical backbone of the RO-HNN. We refer the interested reader to (Abraham & Marsden, 1987; Lee, 2013) for more details.

As Riemannian and symplectic manifolds are smooth manifolds with special structures. A smooth manifold $\mathcal M$ of dimension n can be intuitively conceptualized as a manifold that is locally, but not globally, similar to the Euclidean space $\mathbb R^n$. The smooth structure of $\mathcal M$ allows the definition of derivative of curves on the manifold, which are tangent vectors. The set of all tangent vectors at a point $x \in \mathcal M$ defines the tangent space $\mathcal T_x \mathcal Q$ which is a n-dimensional vector space. Tangent vectors can be represented on an ordered basis of $\mathcal T_x \mathcal Q$ as $v = v^i \frac{\partial}{\partial x^i}|_x$. The tangent bundle $\mathcal T \mathcal M$ is the disjoint union of all tangent spaces on $\mathcal M$ and is 2n-dimensional smooth manifold.

The cotangent space $\mathcal{T}_x^*\mathcal{M}$ at $x\in\mathcal{M}$ is the dual of the tangent space $\mathcal{T}_x\mathcal{Q}$, i.e., $\mathcal{T}_x^*\mathcal{M}=\{\lambda|\lambda:\mathcal{T}_x\mathcal{Q}\to\mathbb{R} \text{ linear}\}$. Cotangent vectors can be represented on an ordered basis of $\mathcal{T}_x^*\mathcal{M}$ as $\lambda=\lambda_i\mathrm{d} x^i|_x$. The cotangent bundle $\mathcal{T}^*\mathcal{M}$ is the disjoint union of all cotangent spaces on \mathcal{M} and is 2n-dimensional smooth manifold, similarly as the tangent bundle.

A smooth mapping f between two smooth manifolds $\check{\mathcal{M}}$ and \mathcal{M} with $\dim(\check{\mathcal{M}}) = d \ll \dim(\mathcal{M}) = n$ is an immersion if the differential $\mathrm{d} f|_{\check{x}}: \mathcal{T}_{\check{x}}\mathcal{M} \to \mathcal{T}_{f(\check{x})}\mathcal{Q}$. An embedding is an immersion that is also a homeomorphism onto its image, i.e., it is an injective and structure-preserving map. In this case, $\check{\mathcal{M}}$ is an embedded submanifold of \mathcal{M} . The pullback of a function $h: \mathcal{M} \to \mathbb{R}$ by a smooth mapping $f: \mathcal{N} \to \mathcal{M}$ between two smooth manifolds \mathcal{N} and \mathcal{M} is a smooth function f^*h with

$$f^*h(\mathbf{x}) = h(f(\mathbf{x})) = (h \circ f)(\mathbf{x}). \tag{13}$$

A.1 RIEMANNIAN GEOMETRY

A Riemannian manifold (\mathcal{M}, g) is a smooth manifold \mathcal{M} endowed with a Riemannian metric g, i.e., a smoothly-varying inner product $g_x: \mathcal{T}_x\mathcal{Q} \times \mathcal{T}_x\mathcal{Q} \to \mathbb{R}$. In coordinates, a Riemannian metric is represented by a SPD matrix. The Riemannian metric defines the notion of distance on the manifold, as well as the so-called geodesics, which are length-minimizing curves on the manifold.

Learning and optimization methods involving Riemannian data typically take advantage of their Euclidean tangent spaces to operate. Specifically, the exponential map $\operatorname{Exp}_{\cdot}\mathcal{T}_{x}\mathcal{Q} \to \mathcal{M}$ and logarithmic map $\operatorname{Exp}_{\cdot}\mathcal{M} \to \mathcal{T}_{x}\mathcal{Q}$, derived from the Riemannian metric, allows us to map back and forth between the Euclidean tangent space and the manifold. Moreover, the parallel transport $\operatorname{PT}_{x \to y}: \mathcal{T}_{x}\mathcal{Q} \to \mathcal{T}_{y}\mathcal{Q}$ move tangent vectors across tangent spaces such that their inner product is conserved.

A Lagrangian system $(\mathcal{M}, g, \mathcal{L})$ is a dynamical system evolving on a Riemannian manifold (\mathcal{M}, g) according to a smooth Lagrangian function $\mathcal{L} : \mathcal{TM} \to \mathbb{R}$.

A.2 SYMPLECTIC GEOMETRY

A symplectic manifold (\mathcal{M}, ω) is a 2n-dimensional smooth manifold \mathcal{M} equipped with a symplectic form ω , i.e., a closed, non-degenerate, differential 2-form $g_x : \mathcal{T}_x \mathcal{Q} \times \mathcal{T}_x \mathcal{Q} \to \mathbb{R}$, which satisfies

$$\omega(\boldsymbol{u}, \boldsymbol{v}) = -\omega(\boldsymbol{v}, \boldsymbol{u}), \quad \omega(\boldsymbol{u}, \boldsymbol{v}) \ \forall \boldsymbol{v} \Rightarrow \boldsymbol{u} = \boldsymbol{0}, \quad \text{and} \quad d\omega = 0$$
 (14)

for all $u, v \in \mathcal{T}_x \mathcal{Q}$. In coordinates, a symplectic form is represented by a skew-symmetric matrix ω . We slightly abuse notation, equivalently denoting symplectic manifolds as (\mathcal{M}, ω) . Notice that the non-degeneracy of ω implies that all symplectic manifolds are of even dimension.

A diffeomorphism $f:(\mathcal{M},\omega)\to (\mathcal{N},\eta)$ between symplectic manifolds is a symplectomorphism if it preserves the symplectic form, i.e., $f^*\eta=\omega$ with $f^*\eta$ denoting the pullback of η by f. The Hamiltonian flow $\phi_t:(\mathcal{M},\omega)\to (\mathcal{M},\omega)$ induced by $X_{\mathcal{H}}$ is a symplectomorphism, as it maps points $x\in\mathcal{M}$ along the integral curves of the manifold thus preserving the symplectic form.

Following Darboux' theorem, there exists a canonical chart (U, ϕ) , $x \in U$ for each point $x \in \mathcal{M}$ in which the symplectic form is represented as $\omega = \mathbb{J}_{2n}^{\mathsf{T}}$ via the canonical Poisson tensor

$$\mathbb{J}_{2n} = \begin{pmatrix} \mathbf{0} & \mathbf{I}_n \\ -\mathbf{I}_n & \mathbf{0} \end{pmatrix}, \quad ext{for which} \quad \mathbb{J}_{2n}^\intercal = \mathbb{J}_{2n}^{-1} = -\mathbb{J}_{2n}.$$

In other words, every symplectic manifold is locally symplectomorphic to $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^{\mathsf{T}})$. A system $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^{\mathsf{T}}, \mathcal{H})$ is called a canonical Hamiltonian system. Moreover, the cotangent bundle $\mathcal{T}^*\mathcal{Q}$ any n-dimensional smooth manifold \mathcal{Q} carries a canonical symplectic structure, making it a symplectic manifold $(\mathcal{T}^*\mathcal{Q}, \mathbb{J}_{2n})$.

A Hamiltonian system $(\mathcal{M}, \omega, \mathcal{H})$ is a dynamical system evolving on a symplectic manifold (\mathcal{M}, ω) according to a smooth Hamiltonian function $\mathcal{H} : \mathcal{M} \to \mathbb{R}$.

B RIEMANNIAN MANIFOLDS OF INTEREST

This section provides a brief overview of the Riemannian manifolds of interest for this paper, namely the manifold of SPD matrices \mathcal{S}_{++}^n (App. B.1), and the biorthogonal manifold $\mathcal{B}_{n,d}$ (App. B.2).

B.1 THE MANIFOLD OF SPD MATRICES

We denote the set of $n \times n$ symmetric matrices as $\operatorname{Sym}^n = \{ S \in \mathbb{R}^{n \times n} | S = S^\intercal \}$. The set of SPD matrices $\mathcal{S}_{++}^n = \{ \Sigma \in \operatorname{Sym}^n | \Sigma \succ 0 \}$ forms a smooth manifold of dimension $\dim(\mathcal{S}_{++}^n) = \frac{n(n+1)}{2}$, which can be represented as the interior of a convex cone embedded in Sym^n . The tangent space $\mathcal{T}_\Sigma \mathcal{S}_{++}^n$ at a point $\Sigma \in \mathcal{S}_{++}^n$ is identified with Sym^n .

The SPD manifold can be endowed with various Riemannian metrics, resulting in different theoretical properties and closed-form operations. We utilize the widely-used affine-invariant metric (Pennec et al., 2006), which places symmetric matrices with non-positive eigenvalues at infinite distance from any SPD matrix and prevents the well-known swelling effect (Feragen & Fuster, 2017). The affine-invariant metric defines the inner product $g: \mathcal{T}_{\Sigma}\mathcal{S}^n_{++} \times \mathcal{T}_{\Sigma}\mathcal{S}^n_{++} \to \mathbb{R}$ given two matrices T_1 , $T_2 \in \mathcal{T}_{\Sigma}\mathcal{S}^n_{++}$, as

$$\langle T_1, T_2 \rangle_{\Sigma} = \operatorname{tr}(\Sigma^{-\frac{1}{2}} T_1 \Sigma^{-1} T_2 \Sigma^{-\frac{1}{2}}). \tag{15}$$

The corresponding geodesic distance, exponential map, logarithmic maps, and parallel transport are computed in closed form as

$$d_{\mathcal{M}}(\boldsymbol{\Lambda}, \boldsymbol{\Sigma}) = \|\log(\boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Lambda} \boldsymbol{\Sigma}^{-\frac{1}{2}})\|_{F}, \tag{16}$$

$$\operatorname{Exp}_{\Sigma}(S) = \Sigma^{\frac{1}{2}} \exp(\Sigma^{-\frac{1}{2}} S \Sigma^{-\frac{1}{2}}) \Sigma^{\frac{1}{2}}, \tag{17}$$

$$Log_{\Sigma}(\Lambda) = \Sigma^{\frac{1}{2}} log(\Sigma^{-\frac{1}{2}} \Lambda \Sigma^{-\frac{1}{2}}) \Sigma^{\frac{1}{2}}, \tag{18}$$

$$PT_{\Sigma \to \Lambda}(T) = A_{\Sigma \to \Lambda} T A_{\Sigma \to \Lambda}^{\mathsf{T}}, \tag{19}$$

where $\exp(\cdot)$ and $\log(\cdot)$ denote the matrix exponential and logarithm functions, and $A_{\Sigma \to \Lambda} = \Lambda^{\frac{1}{2}} \Sigma^{-\frac{1}{2}}$. These operations are key for the SPD networks encoding the mass-inertia and damping matrices in geometric HNNs (see Sec. 3.2), and for the on-manifold parameter optimization of SPD parameters of the network when training the model (see Sec. 3.4).

B.2 THE BIORTHOGONAL MANIFOLD

The biorthogonal manifold is the smooth manifold $\mathcal{B}_{n,d} = \{(\Phi, \Psi) \in \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \mid \Psi^\mathsf{T}\Phi = I_d\}$ formed by pairs of full-row-rank matrices $\Phi, \Psi \in \mathbb{R}^{n \times d}$, with $n \geq d \geq 1$ satisfying the biorthogonality condition $\Psi^\mathsf{T}\Phi = \mathbf{I}$ (Otto et al., 2023). The biorthogonal matrix manifold $\mathcal{B}_{n,d}$ is an embedded submanifold of the Euclidean product space $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d}$ with dimension $\dim(\mathcal{B}_{n,d}) = 2nd - d^2$. The tangent space at a point $(\Phi, \Psi) \in \mathcal{B}_{n,d}$ is given by

$$\mathcal{T}_{(\mathbf{\Phi}, \mathbf{\Psi})} \mathcal{B}_{n,d} = \{ (\mathbf{V}, \mathbf{W}) \in \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} : \mathbf{W}^{\mathsf{T}} \mathbf{\Phi} + \mathbf{\Psi}^{\mathsf{T}} \mathbf{V} = \mathbf{0} \}.$$
 (20)

A pair of matrices $(X,Y) \in \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d}$ can be projected onto the tangent space $\mathcal{T}_{(\Phi,\Psi)}\mathcal{B}_{n,d}$ via the projection operation $\operatorname{Proj}_{(\Phi,\Psi)} : \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \to \mathcal{T}_{(\Phi,\Psi)}\mathcal{B}_{n,d}$ defined as

$$\operatorname{Proj}_{\left(\mathbf{\Phi},\mathbf{\Psi}\right)}\left(\mathbf{X},\mathbf{Y}\right) = \left(\mathbf{X} - \mathbf{\Psi}\mathbf{A}, \mathbf{Y} - \mathbf{\Phi}\mathbf{A}^{\mathsf{T}}\right),\tag{21}$$

where A is a solution to the Sylvester equation $A(\Phi^{\mathsf{T}}\Phi) + (\Psi^{\mathsf{T}}\Psi)A = Y^{\mathsf{T}}\Phi + \Psi^{\mathsf{T}}X$.

When optimizing the parameters of the geometrically-constrained symplectic AE presented in Sec. 3.1, it is crucial to account for the biorthogonal geometry of the pairs of weight matrices (Friedl et al., 2025). Therefore, we train the model by optimizing pairs of weight matrices via Riemannian optimization on the biorthogonal manifold (see Sec. 3.4). Riemannian optimization algorithms utilize the exponential map and the parallel transport operations, which are difficult to obtain in closed form for the biorthogonal manifold. Therefore, we leverage a first-order approximation of the exponential map, i.e., a retraction map $R_{(\Phi,\Psi)}: \mathcal{T}_{(\Phi,\Psi)}\mathcal{B}_{n,d} \to \mathcal{B}_{n,d}$, defined as

$$R_{(\boldsymbol{\Phi},\boldsymbol{\Psi})}(\boldsymbol{V},\boldsymbol{W}) = \left((\boldsymbol{\Phi} + \boldsymbol{V}) \left((\boldsymbol{\Psi} + \boldsymbol{W})^{\mathsf{T}} (\boldsymbol{\Phi} + \boldsymbol{V}) \right)^{-1}, (\boldsymbol{\Psi} + \boldsymbol{W}) \right). \tag{22}$$

Moreover, we use a first-order approximation of the parallel transport operation defined via the successive application of retraction and projection as

$$PT_{(\mathbf{\Phi}_1, \mathbf{\Psi}_1) \to (\mathbf{\Phi}_2, \mathbf{\Psi}_2)} = Proj_{(\mathbf{\Phi}_2, \mathbf{\Psi}_2)} \circ R_{(\mathbf{\Phi}_1, \mathbf{\Psi}_1)}. \tag{23}$$

C SPD NETWORK

As explained in Sec. 3.2, we learn reduced Hamiltonian dynamics in the embedded symplectic submanifold via a latent geometric HNN that parametrizes the inverse mass-inertia and damping matrices via SPD networks that account for their intrinsic geometry. We use a SPD network introduced in (Friedl et al., 2025) composed of (1) Euclidean layers $g_{\mathbb{R}}$), and (2) an exponential map layer g_{Exp} , which we detail next.

Euclidean Layers $g_{\mathbb{R}}$. The SPD network leverages classical fully-connected layers to model functions that return elements on the tangent space of a manifold. The output of the l-th Euclidean layer $x^{(l)}$ is given by

$$\boldsymbol{x}^{(l)} = \sigma(\boldsymbol{A}_{l}\boldsymbol{x}^{(l-1)} + \boldsymbol{b}_{l}), \tag{24}$$

with $A_l \in \mathbb{R}^{n_l \times n_{l-1}}$ and $b_l \in \mathbb{R}^{n_{(l)}}$ the weight matrix and bias of the layer l, and σ a nonlinear activation function of choice.

Exponential Map Layer g_{Exp} . The exponential map layer is used to map layer inputs $X^{(l-1)} \in \text{Sym}^n$ from the tangent space onto the manifold S^n_{++} . The layer output is given by

$$\boldsymbol{X}^{(l)} = \operatorname{Exp}_{\boldsymbol{P}}(\boldsymbol{X}^{(l-1)}), \tag{25}$$

with $P \in \mathcal{S}^n_{++}$ denoting the basepoint of the considered tangent space. Following the results of the ablation conducted in (Friedl et al., 2025), we define P as equal to the identity matrix I, so that the layer input is assumed to lie in the tangent space at the origin of the cone.

Note that Friedl et al. (2025) additionally consider SPD layers mapping SPD matrices to SPD matrices, analogous to fully-connected Euclidean layers. However, the SPD networks with additional SPD layers were shown to achieve similar performances as those employing solely Euclidean and exponential-map layers. Therefore, we do not integrate such layers in the SPD networks of the RO-HNN.

D CONSTRAINED AUTOENCODER

The geometrically-constrained symplectic AE presented in Sec. 3.1 builds on the constrained AE architecture introduced in (Otto et al., 2023). Specifically, we learn the embedding $\varphi_{\mathcal{Q}}$ and associated point reduction $\rho_{\mathcal{Q}}$ via a constrained AE with layer pairs (10), and compute their differential to construct the tangent-lifted maps (8), as explained in Sec. 3.1. To guarantee the projection properties, the constrained AE architecture from (Otto et al., 2023) leverages pairs of biorthogonal weight matrices, which are described in Sec. 3.1, and pairs of invertible activation functions, which we introduce next.

The nonlinear activation functions σ_- and σ_+ employed in the encoder and decoder network must satisfy $\sigma_- \circ \sigma_+ = \mathrm{id}$. To do so, they are defined as

$$\sigma_{\pm}(x_i) = \frac{bx_i}{a} \mp \frac{\sqrt{2}}{a\sin(\alpha)} \pm \frac{1}{a} \sqrt{\left(\frac{2x_i}{\sin(\alpha)\cos(\alpha)} \mp \frac{\sqrt{2}}{\cos(\alpha)}\right) + 2a},\tag{26}$$

with

$$\begin{cases} a = \csc^2(\alpha) - \sec^2(\alpha), \\ b = \csc^2(\alpha) + \sec^2(\alpha). \end{cases}$$
 (27)

The activations then resemble smooth, rotation-symmetric versions of the common leaky ReLu activations. The parameter $0<\alpha<\frac{\pi}{4}$ sets the slope of the activation functions. Throughout our experiments, we set $\alpha=\frac{\pi}{8}$.

Otto et al. (2023) proposed to incorporate the biorthogonality of the weight matrices by considering an overparametrization of the biorthogonal weights along with a soft constraint in the form of additional penalty losses. However, this approach does not guarantee the biorthogonality condition, in contrast to the Riemannian approach we use in this paper. Moreover, as shown in (Friedl et al., 2025), the overparametrized model leads to higher reconstruction errors compared to constrained AE trained on the biorthogonal manifold.

We construct the tangent-lifted maps (8) by differentiating the outputs of the encoder $\rho_{\mathcal{Q}}$ and decoder $\varphi_{\mathcal{Q}}$ networks with respect to their inputs. In our implementation, we take layerwise analytical derivatives and obtain the full differentials via the chain rule.

E STRANG-SYMPLECTIC INTEGRATOR

As explained in Sec. 3.3, we integrate the learned reduced-order Hamiltonian flow (11) using the second-order symplectic integrator of (Tao, 2016), which we refer to as Strang-symplectic integrator.

The Strang-symplectic integrator approximates the flow of a non-separable Hamiltonian function $\mathcal{H}(q,p)$ by considering an augmented Hamiltonian function

$$\bar{\mathcal{H}}(q, p, x, y) = \mathcal{H}_A(q, y) + \mathcal{H}_B(p, x) + w\mathcal{H}_C(q, p, x, y), \tag{28}$$

in an extended phase space, where $\mathcal{H}_A(q, y)$ and $\mathcal{H}_B(p, x)$ are two copies of the original system with mixed-up positions and momenta, and $\mathcal{H}_C = \frac{1}{2}(\|q, x\|^2 + \|p, y\|^2)$ is an artificial restraint with parameter w controlling the binding of $\mathcal{H}_A(q, y)$ and $\mathcal{H}_B(p, x)$. The dynamics of the augmented Hamiltonian $\overline{\mathcal{H}}$ are

$$\dot{q} = \frac{\partial}{\partial p} \bar{\mathcal{H}}(q, p, x, y) = \frac{\partial}{\partial p} H(x, p) + w(p - y)$$
(29)

$$\dot{\mathbf{p}} = \frac{\partial}{\partial \mathbf{q}} \bar{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \frac{\partial}{\partial \mathbf{q}} H(\mathbf{q}, \mathbf{y}) - w(\mathbf{q} - \mathbf{x})$$
(30)

$$\dot{x} = \frac{\partial}{\partial y} \bar{\mathcal{H}}(q, p, x, y) = \frac{\partial}{\partial y} H(q, y) + w(y - p)$$
(31)

$$\dot{y} = \frac{\partial}{\partial p} \bar{\mathcal{H}}(q, p, x, y) = \frac{\partial}{\partial p} H(x, p) - w(x - q)$$
(32)

and leads to the same exact IVP solutions as the original function $\mathcal{H}(q,p)$. High-order symplectic integrators can be construct for each of the component of the augmented Hamiltonian $\bar{\mathcal{H}}$ as

$$\phi_{\mathcal{H}_{A}}^{\delta} = \begin{pmatrix} \mathbf{q} \\ \mathbf{p} - \delta \frac{\partial}{\partial \mathbf{q}} H(\mathbf{q}, \mathbf{y}) \\ \mathbf{x} + \delta \frac{\partial}{\partial \mathbf{y}} H(\mathbf{q}, \mathbf{y}) \\ \mathbf{y} \end{pmatrix}, \quad \phi_{\mathcal{H}_{B}}^{\delta} = \begin{pmatrix} \mathbf{q} + \delta \frac{\partial}{\partial \mathbf{p}} H(\mathbf{x}, \mathbf{p}) \\ \mathbf{p} \\ \mathbf{x} \\ \mathbf{y} - \delta \frac{\partial}{\partial \mathbf{x}} H(\mathbf{x}, \mathbf{p}) \end{pmatrix}, \quad (33)$$

$$\phi_{w\mathcal{H}_{C}}^{\delta} = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} q + x \\ p + y \end{pmatrix} + R(\delta) \begin{pmatrix} q - x \\ p - y \end{pmatrix} \\ \begin{pmatrix} q + x \\ p + y \end{pmatrix} - R(\delta) \begin{pmatrix} q - x \\ p - y \end{pmatrix} \end{pmatrix}, \text{ with } R(\delta) = \begin{pmatrix} \cos(2w\delta)\mathbf{I} & \sin(2w\delta)\mathbf{I} \\ -\sin(2w\delta)\mathbf{I} & \cos(2w\delta)\mathbf{I} \end{pmatrix}.$$
(34)

Tao (2016) proposed to construct a numerical symplectic integrator that approximates the flow of $\bar{\mathcal{H}}$ by composing these maps according to Strang splitting as

$$\phi_{\bar{\mathcal{H}}} = \phi_{\mathcal{H}_A}^{\delta/2} \circ \phi_{\mathcal{H}_B}^{\delta/2} \circ \phi_{w\mathcal{H}_C}^{\delta/2} \circ \phi_{\mathcal{H}_B}^{\delta/2} \circ \phi_{\mathcal{H}_A}^{\delta/2}. \tag{35}$$

The obtained Strang-symplectic integrator preserves the symplectic volume like the exact Hamiltonian flow.

The scalar parameter $w \in \mathbb{R}$, binding the two augmented Hamiltonians during the integration process, is obtained as optimization parameter during training. To enforce $w \leq 0$, we do not learn w directly. Instead, we learn it using the SoftPlus function with a small numerical offset for stability as $\log(1 + e^{\theta_w}) + 10^{-4}$, as part of the HNN network parameters $\theta_w \in \theta$.

F NETWORK TRAINING VIA RIEMANNIAN OPTIMIZATION

Training a neural network corresponds to finding a solution to an optimization problem

$$\min_{\boldsymbol{x} \in \mathcal{M}} \ell(\boldsymbol{x}),\tag{36}$$

where ℓ is the loss we aim to minimize, and $x \in \mathcal{M}$ is the optimization variable, a.k.a the network parameters. For the RO-HNN, we train the network by minimizing the loss $\ell_{\text{RO-HNN}}$ (12). In this case, \mathcal{M} is defined as a product of Euclidean, SPD, and biorthogonal manifolds to jointly optimize the parameters $\{\Phi_l, \Psi_l, b_l\}_{l=1}^L$ of the AE and $\{\theta_{\tilde{T}}, \theta_{\tilde{V}}, \theta_{\tilde{D}}\}$ of the latent geometric HNN. To account for the curvature of the non-Euclidean parameter spaces, we leverage Riemannian optimization (Absil et al., 2007; Boumal, 2023) to optimize the RO-HNN loss $\ell_{\text{RO-HNN}}$ (12).

Conceptually, each iteration step in a first-order (stochastic) Riemannian optimization method consists of the three following successive operations:

$$\eta_t \leftarrow h(\operatorname{grad} \ell(\boldsymbol{x}_t), \boldsymbol{\tau}_{t-1}), \quad \boldsymbol{x}_{t+1} \leftarrow \operatorname{Exp}_{\boldsymbol{x}_t}(-\alpha_t \boldsymbol{\eta}_t), \quad \boldsymbol{\tau}_t \leftarrow \operatorname{PT}_{\boldsymbol{x}_t \to \boldsymbol{x}_{t+1}}(\boldsymbol{\eta}_t).$$
(37)

where (1) given the current parameter estimate x_t , a search direction $\eta_t \in \mathcal{T}_{x_t} \mathcal{M}$ is computed based on a function h (determined by the choice of the optimization method) of the Riemannian gradient grad ℓ , and of τ_{t-1} , which corresponds to the parallel-transport of the previous search direction on to the new estimate's tangent space $\mathcal{T}_{x_t} \mathcal{M}$; (2) the estimate x_t is updated by projecting the search direction η_t scaled by a learning rate learning rate α_t onto the manifold via the exponential map, (3) the current search direction is parallel-transported to the tangent space of the updated estimate to prepare for the next iteration. In this paper, we use the Riemannian Adam (Becigneul & Ganea, 2019) implemented in Geoopt (Kochurov et al., 2020) to optimize the RO-HNN parameters. The relevant manifold operations for the optimization procedure are given in closed-form in App. B.

G ADDITIONAL DETAILS ON EXPERIMENTS

This section presents additional details on the experimental setup of Sec. 4.

G.1 COUPLED PENDULUM OF SECTION 4.1

G.1.1 DATASET

System. Our first set of experiments is conducted on the augmented pendulum, a nonlinear conservative system with $n\!=\!15\text{-DoF}$. The pendulum dynamics are specified from the symplectomorphism of a latent Hamiltonian system composed of two independent subsystems: a 3-DoF planar pendulum, and a 12-DoF planar oscillating mass-spring mesh, see Fig. 6. The pendulum dynamics evolve on a slower timescale and with larger amplitude than the mesh oscillations. Consequently, a surrogate model based solely on the pendulum would capture the dominant behavior of the full system, i.e. the system is well-reducible with a Hamiltonian ROM. As we have access to the ground truth dynamics of the 15-DoF pendulum, this scenario allows for various ablations on the network architecture.

We simulate both subsystems in MUJOCO (Todorov et al., 2012). The pendulum's links $i=\{1,2,3\}$ are modeled as capsules of radius $r_i=0.025\,\mathrm{m}$, length $l_i=0.5\,\mathrm{m}$, and mass $m_i=0.5\,\mathrm{kg}$, connected via hinge joints. The initial configurations and velocities for each DoF are randomly sampled from the intervals $q_{\mathrm{pend},i}(t=0) \in [-30,30]\,^\circ$ and $\dot{q}_{\mathrm{pend},i}(t=0) \in [-23,23]\,^\circ\,\mathrm{s}^{-1}$. The mass-spring mesh consists of 6 masses $m_j=0.005\,\mathrm{kg}$, equally spaced in a 3×2 grid along the x- and z-axes of the simulation environment. Each mass is connected to its immediate neighbors, and the top

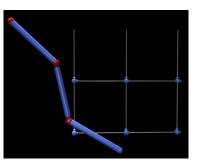


Figure 6: Illustration of the latent system used to obtain the dynamics of a 15-DoF augmented pendulum via a symplectomorphism. The latent system consists of an independent 3-DoF planar pendulum and a 12-DoF planar mass-spring mesh.

three masses are each additionally connected to a fixed anchor point above the grid, via springs of resting length $s_j = 0.5 \,\mathrm{m}$ and linear stiffness constants $k_j = 0.01 \,\mathrm{N}\,\mathrm{m}^{-1}$. Initial displacements and velocities for each DoF are randomly sampled from the intervals $q_{\mathrm{ms},j}(t=0) \in [-1,1] \times 10^{-2} \mathrm{m}$ and $\dot{q}_{\mathrm{ms},j}(t=0) \in [-2,2] \times 10^{-3} \mathrm{m} \,\mathrm{s}^{-1}$.

Data generation. Each simulation is recorded for $T=5\,\mathrm{s}$ at a timestep of $\Delta t=10^{-2}\mathrm{s}$, yielding N=30 training trajectories $\mathcal{D}_{\mathrm{pend}}=\{\{q_{\mathrm{pend},n,k},p_{\mathrm{pend},n,k}\}_{k=1}^K\}_{n=1}^N$ and $\mathcal{D}_{\mathrm{ms}}=\{\{q_{\mathrm{ms},n,k},p_{\mathrm{ms},n,k}\}_{k=1}^K\}_{n=1}^N$ with K=500 observations each. To form the full 15-dimensional dataset, the position and momentum vectors of the pendulum and mass-spring mesh are concatenated as $q_{\mathrm{aug}}=(q_{\mathrm{pend}}^\mathsf{T},q_{\mathrm{ms}}^\mathsf{T})^\mathsf{T}$ and $p_{\mathrm{aug}}=(p_{\mathrm{pend}}^\mathsf{T},p_{\mathrm{ms}}^\mathsf{T})^\mathsf{T}$ to obtain a dataset $\mathcal{D}_{\mathrm{aug}}=\{\{q_{\mathrm{aug},n,k},p_{\mathrm{aug},n,k}\}_{k=1}^K\}_{n=1}^N$ with $(q_{\mathrm{aug},n,k},p_{\mathrm{aug},n,k})\in\mathcal{T}^*(\mathcal{Q}_{\mathrm{pend}}\times\mathcal{Q}_{\mathrm{ms}})$.

To ensure that the reducibility of the augmented dataset is not purely of numerical nature, we transform the observed dynamics of the latent system onto more complex ones via a symplectomorphism $h: (\mathcal{T}^*(\mathcal{Q}_{\text{pend}} \times \mathcal{Q}_{\text{ms}}), \mathbb{J}_{2n}) \to (\mathcal{T}^*\mathcal{Q}, \mathbb{J}_{2n})$ and obtain the final dataset $\mathcal{D} = \{h(q_{\text{aug},n,k},p_{\text{aug},n,k})\}_{k=1}^K\}_{n=1}^N$. Practically, the symplectomorphism h is defined via the cotangent-lifted embedding φ of a map $\rho_{\mathcal{Q}}: \mathcal{Q}_{\text{pend}} \times \mathcal{Q}_{\text{ms}} \to \mathcal{Q}$, that we parametrize as a 3-layer encoder of the constrained AE from Sec. 3.1 and D. With $l=\{1,2,3\}$ layers of constant layer and latent dimension $n_l=n_0=15$, weights of each layer Ψ_l initialized as random orthogonal matrices $O\in\mathbb{R}^{n_l\times n_l}$ sampled from the Haar distribution, and zero biases $b_l=0$. Notice that due to the constant dimension through the AE-layers, with decoder weights set to $\Phi_l=\Psi_l=O$, the position decoder of the constrained AE returns an analytic inverse, and its cotangent lift h^{-1} .

The testing dataset is constructed in the same manner for N=10 trajectories.

G.1.2 MODEL TRAINING

For the experiments of Sec. 4.1, we train a geometric RO-HNN composed of a geometrically-constrained symplectic AE and a latent geometric HNN. As described in Sec. 3.1, the geometrically-constrained symplectic AE is built from the cotangent lift of a constrained AE composed of layer pairs $\rho_{\mathcal{Q}}^{(l)}:\mathbb{R}^{n_l}\to\mathbb{R}^{n_{l-1}}$ and $\varphi_{\mathcal{Q}}^{(l)}:\mathbb{R}^{n_{l-1}}\to\mathbb{R}^{n_l}$ as defined in (10) (see Sec. 3.1 and App. D). We use $l=\{1,2,3\}$ pairwise biorthogonal encoder and decoder layers of sizes $n_l=\{6,12,15\}$ with latent space dimension $n_0=3$. The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix $O\in\mathbb{R}^{n_l\times n_l}$ from the Haar distribution and setting $\Phi=\Psi=O_{[::n_{l-1}]}$, where $O_{[:::n_{l-1}]}$ are the first n_{l-1} column entries of O. Bias vectors are initialized as $b_l=0$. For the latent geometric HNN, we parametrize the potential energy network $V_{\theta_{\tilde{V}}}$ and the Euclidean part $g_{\mathbb{R}}$ of the inverse mass-inertia network $M_{\theta_{\tilde{T}}}^{-1}$ each with $L_{\tilde{V}}=L_{\tilde{T},\mathbb{R}}=2$ hidden Euclidean layers of 32 neurons and SoftPlus activation functions. We fix the basepoint of the exponential map layer g_{Exp} to the origin $P=\mathbf{I}$. Weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$ and bias vector entries set to 1. We train the model on the joint loss (12) with scaling factor $\lambda=1$ for the latent loss on 3000 uniformly sampled random points from the dataset \mathcal{D} with Strang-symplectic integration (see Sec. 3.3) over a training horizon of $H_{\mathcal{D}}=12$ timesteps. We use

a learning rate of 1.5×10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters. We train the model with Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs.

AE baselines. In Sec. 4.1, we compare the geometrically-constrained symplectic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023), and a weakly-symplectic AE (Buchfink et al., 2023). We implement the linear and quadratic SMG projections onto a 3-dimensional symplectic submanifold following (Sharma et al., 2023). We compute the reduction parameters based on a singular value decomposition computed from 3000 randomly sampled training datapoints in \mathcal{D} .

For the weakly-symplectic AE (Buchfink et al., 2023), we train two independent constrained AEs for position and momentum reduction and embedding, i.e., $\rho_{\mathcal{Q}}^{(l)}: \mathbb{R}^{n_l} \to \mathbb{R}^{n_{l-1}}, \, \varphi_{\mathcal{Q}}^{(l)}: \mathbb{R}^{n_{l-1}} \to \mathbb{R}^{n_l}$, and $\rho_{\mathcal{P}}^{(l)}: \mathbb{R}^{n_l} \to \mathbb{R}^{n_{l-1}}, \, \varphi_{\mathcal{P}}^{(l)}: \mathbb{R}^{n_{l-1}} \to \mathbb{R}^{n_l}$, and compute the embedding and reduction for the symplectic manifold as

$$\varphi(\check{q},\check{p}) = \begin{pmatrix} \varphi_{\mathcal{Q}} \\ \varphi_{\mathcal{P}} \end{pmatrix} \quad \text{and} \quad \rho(q,p) = \begin{pmatrix} \rho_{\mathcal{Q}} \\ \rho_{\mathcal{P}} \end{pmatrix}.$$
 (38)

Note that this architecture also fulfills the projection properties (4) by construction, as the other reduction approaches. However, it does not satisfy the symplecticity property (7). To enforce this property, Buchfink et al. (2023) introduces a symplecticity loss

$$\ell_{\text{sympl}} = \frac{1}{N} \sum_{i=1}^{N} \| \mathbb{J}_{2d} - d\varphi^{\mathsf{T}} \mathbb{J}_{2n} d\varphi \|_{\mathsf{F}}^{2}. \tag{39}$$

The weakly-symplectic AE is trained by minimizing the sum of the reconstruction loss ℓ_{AE} from (12) and the symplecticity loss (39).

For the geometrically-constrained symplectic AE, we consider the same architecture as in the RO-HNN described above.

All AE architectures consist of $l=\{1,2,3\}$ biorthogonal encoder and decoder layers with $n_l=\{6,12,15\}$ with latent space dimension $n_0=3$. We train both AE on 3000 samples from the dataset $\mathcal D$ with Riemannian Adam with a learning rate of 1.5×10^{-2} until convergence at 3000 epochs.

HNN baselines. In Sec. 4.1, we also ablate the choice of latent HNN and integrator. To isolate the HNN performance, we consider the low-dimensional dataset \mathcal{D}_{pend} of the 3-DoF pendulum and no reduction. For the Cholesky HNN where the inverse mass-inertia matrix is parametrized via a Cholesky network, we implement shared parameters for the inverse mass-matrix and potential energy networks, i.e., $\theta_{\tilde{T}} \cap \theta_{\tilde{V}}$, following (Lutter & Peters, 2023). The MLP consists of 2 hidden Euclidean SoftPlus layers of 64 neurons, while separate output layers return the potential energy and the Cholesky decomposition. For the black-box HNNs, we use a single fully-connected MLP to model a Hamiltonian function \mathcal{H}_{θ} . We conduct experiments with two black-box HNNs of 2 hidden layers with a width of 64, and 256 neurons, respectively. In all cases, the weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$, and the bias vector entries are initialized to 1.

We train all architectures on 3000 datapoints of the dataset $\mathcal{D}_{\text{pend}}$ with Riemannian Adam optimizer on the HNN term $\ell_{\text{HNN},d}$ of the loss (12) over a training horizon of $H_{\mathcal{D}}=12$ timesteps. For the ablation of the HNN architecture, we use the Strang-symplectic integrator. The geometric HNN and Cholesky networks are trained until convergence at 2500 epochs with learning rate set to 7×10^{-4} . The black-box HNNs are trained at a learning rate of 2×10^{-3} for 3000 epochs.

For the ablation of the integrator, we use the geometric HNN and compare the Strang-symplectic integrator with an explicit Euler integrator, a Runge-Kutta integrator of order 4, and a symplectic leapfrog integrator.

G.2 Particle Vortex of Section 4.2

G.2.1 DATASET

System. In Sec. 4.2, we learn the dynamics of an n = 90-dimensional particle vortex, consisting of $j = \{1, ..., N\}$ particles with phase $\mathbf{x}_j = (q_j, p_j)^\mathsf{T}$ and uniform interaction strengths $\Gamma_j = 1$. The

particle vortex dynamics are governed by the Hamiltonian

$$\mathcal{H}(\boldsymbol{q}, \boldsymbol{p}) = -\sum_{j < k} \log |\boldsymbol{x}_j - \boldsymbol{x}_k|, \tag{40}$$

that models the interaction between each $j \neq k$ pair of particles. Note that, as the particle vortex dynamics are purely determined via the logarithmic interaction, its Hamiltonian function does not separate into kinetic and potential energy, in contrast to mechanical systems such as the pendulum and the cloth.

Data generation. We generate a training dataset $\mathcal{D}_{pv} = \{\{q_{n,k}, p_{n,k}\}_{k=1}^{K}\}_{n=1}^{N}$ by simulating N=20 trajectories of the conservative system over the time interval $\mathcal{I}=[0,10.0]$ s with timestep $\Delta t=10^{-3}$ s and Strang-symplectic solver with weight parameter w=0.1, resulting in K=10000 steps per trajectory. For each trajectory, initial conditions are randomly sampled to mimic clustered vortex distributions. The particles are evenly split among $j=\{1,2,3\}$ clusters. For each cluster, we randomly sample a center c_j within a radius of R=6 m form the origin. Then, a cluster radius is sampled uniformly from $r_j \in [0.1,2]$ m, and particles within a cluster are positioned following a Gaussian distribution $\mathcal{N} \sim (c_j, r_j^2 \mathbf{I})$ around the center c_j . For the testing dataset, we generate N=10 trajectories via the same distribution of initial conditions, but simulating the system over a time interval of $\mathcal{I}=[0,15.0]$ s.

G.2.2 MODEL TRAINING

The results presented in Sec. 4.2 are obtained via RO-HNNs composed of a geometrically-constrained symplectic AE and a latent geometric HNN. We conduct experiments with two RO-HNN with latent space dimensions d=3 and d=6. The constrained AE is composed of $l=\{1,2,3,4\}$ pairwise biorthogonal encoder and decoder layers of sizes $n_l=\{32,64,128,600\}$. The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix $\boldsymbol{O} \in \mathbb{R}^{n_l \times n_l}$ from the Haar distribution and setting $\boldsymbol{\Phi} = \boldsymbol{\Psi} = \boldsymbol{O}_{[:,:n_{l-1}]}$, where $\boldsymbol{O}_{[:,:n_{l-1}]}$ are the first n_{l-1} column entries of \boldsymbol{O} . Bias vectors are initialized as $\boldsymbol{b}_l = \boldsymbol{0}$. The latent Hamiltonian network $\check{V}_{\boldsymbol{\theta}_{\check{V}}}$ is parametrized by 2 hidden Euclidean layers of 32 neurons with SoftPlus activation functions. All weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$, and all bias vector entries are initialized to 1.

We train the model on the joint loss (12) on 3000 random samples from the dataset \mathcal{D} with Strang-symplectic integration over a training horizon $H_{\mathcal{D}}=8$ timesteps. For better convergence, we scale the loss term $\ell_{\rm HNN,d}$ via a scalar factor $\lambda=10^3$. The parameters are optimized via Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5×10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters.

In Sec. 4.2, we consider a comparison with a RO-HNN with a latent black-box HNN $\check{\mathcal{H}}_{\theta}$ composed of 2 layers of 64 neurons. We set the learning rate to 2×10^{-3} . The remaining of the RO-HNN architecture and training pipeline are unchanged.

G.3 CLOTH OF SECTION 4.3

G.3.1 Dataset

System. Our second set of experiments is conducted on a deformable thin cloth modeled in MUJOCO as a flexible composite object with $i = \{1, ..., 200\}$ masses $m_i = 0.1 \, \mathrm{kg}$, equally spaced over a width of $0.1 \, \mathrm{m}$ and length of $0.2 \, \mathrm{m}$. Generalized coordinates are given by the Cartesian positions $q_i = (x_i, y_i, z_i)^\mathsf{T}$ of each mass' center of mass in the world frame. The viscous damping coefficient is uniformly set to $d_i = 0.01 \, \mathrm{N \, s \, m^{-1}}$.

Data generation. Each trajectory captures the cloth falling on a sphere from a height of $0.12\,\mathrm{m}$ in the center above the origin of the sphere. To vary scenarios, the radius of the sphere is randomly-sampled from $r \in [0.02, 0.12]\,\mathrm{m}$. The state evolution is simulated with timestep $\Delta t = 10^{-4}\,\mathrm{s}$ over a time interval $\mathcal{I} = [0, 0.3]\,\mathrm{s}$, resulting in $K = 3000\,\mathrm{samples}$ per trajectory. We generate $N = 20\,\mathrm{trajectories}$ for a training dataset $\mathcal{D}_{\mathrm{cloth}} = \{\{\boldsymbol{q}_{n,k}, \boldsymbol{p}_{n,k}, \boldsymbol{\tau}_{n,k}\}_{k=1}^K\}_{n=1}^N$, and $N = 10\,\mathrm{testing}$ trajectories over a longer time interval $\mathcal{I} = [0, 0.5]\,\mathrm{s}$. When learning the damping force via a dissipative HNN, the generalized force vector consists of external constraint forces, i.e., $\boldsymbol{\tau} = \boldsymbol{\tau}_{\mathrm{c}}$.

The ablation of Sec. 4.3 compares the dissipative geometric HNN against a conservative HNN for which all external forces are provided. In this case, the training dataset is composed of generalized force vector $\boldsymbol{\tau} = \boldsymbol{\tau}_d + \boldsymbol{\tau}_c$ that contains both the damping forces $\boldsymbol{\tau}_d$ and the constraint forces $\boldsymbol{\tau}_c$.

G.3.2 MODEL TRAINING

For the RO-HNN experiments in Sec. 4.3, we train a RO-HNN composed of a geometrically-constrained symplectic AE and a latent dissipative geometric HNN. The underlying constrained AE $l=\{1,2,3,4\}$ pairwise biorthogonal encoder and decoder layers of sizes $n_l=\{32,64,128,600\}$ with latent space dimension $n_0=6$ or $n_0=10$. The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix $\mathbf{O} \in \mathbb{R}^{n_l \times n_l}$ from the Haar distribution and setting $\mathbf{\Phi}_l = \mathbf{\Psi}_l = \mathbf{O}_{[:,:n_{l-1}]}$, where $\mathbf{O}_{[:,:n_{l-1}]}$ are the first n_{l-1} column entries of \mathbf{O} . Bias vectors are initialized as $\mathbf{b}_l = \mathbf{0}$.

The latent potential energy network $\check{V}_{\theta_{\check{V}}}$ is parametrized with $L_{\check{V}} = L_{\check{T},\mathbb{R}} = 2$ hidden Euclidean layers of 32 neurons. The Euclidean part $g_{\mathbb{R}}$ of the inverse mass-inertia network $\check{M}_{\theta_{\check{T}}}^{-1}$ and of the damping-matrix network $\check{D}_{\theta_{\check{D}}}$ are composed of 2 hidden layers with 32 neurons. For both networks, we fix the basepoint of the exponential map layer $g_{\rm Exp}$ to the origin $P={\bf I}$. All activation functions are SoftPlus, all weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$, and all bias vector entries are initialized to 1.

We train the model on the joint loss (12) on 3000 samples from the dataset \mathcal{D} with Strang-symplectic integration over a training horizon $H_{\mathcal{D}}=8$ timesteps. The scaling constant on the latent loss term $\ell_{\text{HNN,d}}$ is set to $\lambda=10^4$. We train the RO-HNN with Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5×10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters.

Sequentially-trained baseline. To assess the effectiveness of the proposed joint training procedure, we compare the jointly-trained RO-HNN with a variant that sequentially trains first the geometrically-constrained AE, and second the latent HNN. As convergence is difficult to achieve when training only the latent HNN on a fully-trained representation of the AE, we first train only the AE by optimizing ℓ_{AE} for 3000 epochs with a learning rate of 1.5×10^{-2} . Subsequently, we jointly optimize the AE and latent loss (12). We train the networks jointly within the RO-HNN with Riemannian Adam (Becigneul & Ganea, 2019) until convergence at learning rates 1.5×10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters.

Projection and AE baselines. In App. H.3 (see Fig. 14), we compare the ability of a latent HNN to learn accurate dynamics using different reduction methods to obtain the symplectic embedding φ and corresponding reduction ρ . We compare the RO-HNN with geometrically-constrained symplectic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023), and a weakly-symplectic AE (Buchfink et al., 2023). We compute the linear and quadratic SMG projections onto latent spaces of symplectic submanifolds of three different dimensionalities $d = \{2, 6, 10\}$, following (Sharma et al., 2023), via 3000 training datapoints. In both cases, we then train a latent HNN on the terms $\ell_{\text{HNN},n}$ and $\ell_{\text{HNN},d}$ of the joint loss equation (12) on 3000 samples from the dataset \mathcal{D} with Strang-symplectic integration over a training horizon $H_{\mathcal{D}} = 8$ timesteps. The model is trained with Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 7×10^{-4} . Note that this essentially corresponds to a scenario with pre-trained symplectic submanifolds, as the parameter optimization for the linear and quadratic embedding maps happens once in the beginning.

The weakly-symplectic AE consists of two independent constrained AEs for position and momentum. We use 4 layers of size $n_l = \{32, 64, 128, 600\}$ with varying latent space dimension. We train the network jointly on the sum of the losses (12) and (39) via Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5×10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters.

H ADDITIONAL EXPERIMENTAL RESULTS

This section presents additional results, complementing those presented in Sec. 4.

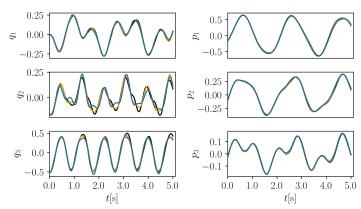


Figure 7: Reconstructed trajectories of the RO-HNN (—) and 3-DoF HNN (—) compared to ground truth (—). The 15-DoF HNN leads to unstable long-term predictions and is not depicted.

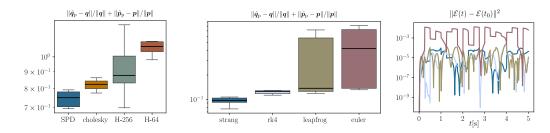


Figure 8: Left: Ablation of the latent HNN architecture on a doubled training set size $|\mathcal{D}| = 6000$ compared to Fig. 8-left. Middle, right: Ablation of the latent integrator of the geometric RO-HNN at $|\mathcal{D}| = 3000$ for learning the dynamics of a 15-DoF pendulum. Errors are obtained via short-term prediction horizons $H\Delta t = 0.25\,\mathrm{s}$.

H.1 COUPLED PENDULUM OF SECTION 4.1

This section presents additional results on learning the Hamiltonian dynamics of a 15-DoF coupled pendulum.

Learning high-dimensional dynamics. Fig. 7 complements Fig. 2 by depicting the predicted long-term (5s) positions and momenta. For the ease of visualization, we change the prediction coordinates and plot the first 3-DoF corresponding to the latent pendulum. We observe that RO-HNN leads to accurate long-term predictions similar to those of the 3-DoF HNN.

Latent HNN architecture. Here we further evaluate the impact of HNN architecture. We compare the performance of our geometric HNN to learn the low-dimensional dynamics of the latent 3-DoF pendulum against (1) a non-geometric variant that parametrizes the inverse mass-inertia matrix via a Cholesky network, and (2) two HNNs encoded as a single black-box network \mathcal{H}_{θ} , where we consider two MLPs of 64- and 256-neurons width. Compared to Sec. 4.1, we consider a doubled amount of training datapoints with 6000 random samples. As shown in Fig. 8-left, the geometric HNN still achieves the lowest reconstruction error, with differences compared to the black-box HNN increased compared to the smaller dataset of Fig. 3-left. This showcases the importance of considering both the quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices, for both enhanced performance and data efficiency.

Latent integrator. We compare the Strang symplectic integrator against (1) a symplectic leapfrog integrator that disregards that the Hamiltonian is non-separable, (2) a Runge-Kutta integrator of order 4 that overlooks its symplectic structure, and (3) an explicit Euler integrator that also overlooks the symplectic structure. Compared to Sec. 4.1 (see Fig. 3-middle,right), we consider shorter prediction horizons, feeding the model with ground truth initial conditions every $H\Delta t = 0.25 \, \mathrm{s}$, since the explicit Euler integrator did not lead to stable long-term predictions for $H\Delta t = 5 \, \mathrm{s}$. Figs. 8-middle, right show that the networks trained via the Strang-symplectic integrator achieve the lowest

Table 5: Evaluation wall clock times for different network architectures. Runtimes are averaged over 10 forward passes and given in ms.

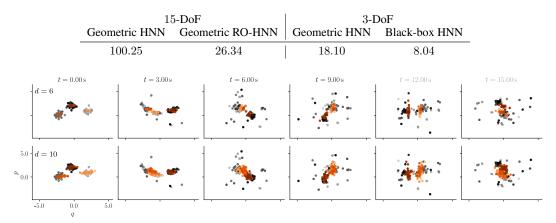


Figure 9: Predicted $(\bullet, \bullet, \bullet)$ vs ground truth $(\bullet, \bullet, \bullet)$ positions of the particle vortex. The dynamics are learned with RO-HNN with d=6 and d=10. Times beyond 10s are out of the training data distribution.

reconstruction error and conserves energy best during integration, showcasing the importance of considering the symplectic structure of the system during numerical integration for stable predictions on short- and long-term time horizons.

Runtimes. Table 5 reports the averaged runtimes for the forward pass of the differently-sized network architectures considered in Sec. 4.1. The reported times correspond to the wall clock time of one forward pass of a batch of 10 initial conditions, predicted over H=10 timesteps with the Strang-symplectic integrator. We observe that the RO-HNN speeds up the forward dynamics computation compared to the HNN, highlighting the computational advantages of ROMs compared to FOMs. Moreover, the black-box HNN is computationally more efficient than the geometric HNN at the expense of prediction accuracy.

H.2 Particle Vortex (90-DoF) of Section 4.2

This section presents additional results on learning the Hamiltonian dynamics of a 90-DoF particle vortex.

Fig. 9 depicts the predicted positions and momenta of the particles along with the ground truth in the high-dimensional state space for RO-HNNs with latent dimension $d=\{6,10\}$. Fig. 10 depicts the predicted positions and momenta of the particles in the reduced phase space of the AE along with the projected ground truth. We observe that both models accurately predict the particle vortex dynamics, with the d=6-dimensional model slightly outperforming the 10-dimensional one (see also Table 3). This shows that the choice of latent dimension is a trade off between the latent space expressivity and the limitations of HNNs in higher dimensions. In general, we observed that errors initially decrease as the latent dimension increases, suggesting that higher-dimensional latent spaces better capture the original high-dimensional dynamics. The errors then increase beyond a certain latent dimension, indicating that the latent HNN becomes harder to train.

H.3 CLOTH (600-DOF) OF SECTION 4.3

This section presents additional results on learning the Hamiltonian dynamics of a 600-DoF thin cloth falling on a sphere.

Learning high-dimensional dynamics with dissipation. Fig. 11 complements Fig. 5 by depicting the predicted cloth configurations for the RO-HNNs with latent dimensions $d = \{6, 10\}$ for a horizon $H\Delta t = 0.5\,\mathrm{s}$. We observe that that both RO-HNNs accurately predict the high-dimensional dissipative dynamics of the cloth, generalizing beyond the data support $(t > 0.3\mathrm{s})$. As also shown

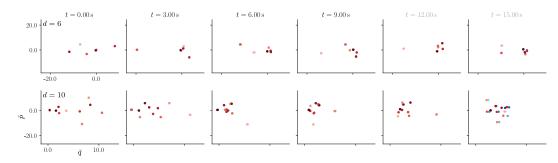


Figure 10: Predicted $(\bullet, \bullet, \bullet)$ vs ground truth $(\bullet, \bullet, \bullet)$ reduced positions of the particle vortex in the latent space of the RO-HNN with d=6 and d=10. Times beyond 10s are out of the training data distribution.

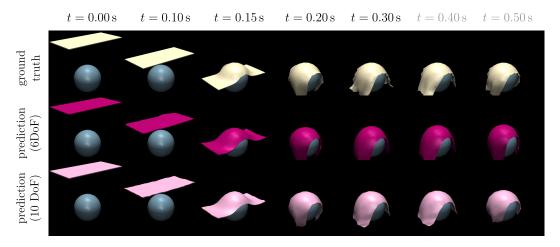


Figure 11: Predicted positions of the damped cloth with RO-HNNs with $d = \{6, 10\}$ for a $625 \times$ longer horizon than during training. Times beyond 0.3s are out of the training data distribution.

in Table 4, the 10—dimensional model slightly outperforms the 6-dimensional one, modeling more details of the cloth, as shown in Fig. 11.

Fig. 11 shows the predictions of the RO-HNNs with different parametrizations of the dissipation matrix $\check{\boldsymbol{D}}$ for selected dimensions of a test trajectory. This show that the dissipative RO-HNNs successfully learn the dissipation forces, achieving similar prediction errors as the conservative models Fig. 13 displays the predicted latent energy to be compared with the ground-truth energy projected in the symplectic latent space. Overall, our results demonstrat the ability of the RO-HNN to infer long-term predictions of dissipative systems.

Latent dimension and training ablation. We compare the performance of our dissipative RO-HNN across several latent dimensions $d=\{2,6,10\}$ with jointly-trained geometrically-constrained symplectic AE and latent geometric HNN against sequentially-trained architectures. Specifically, we consider (1) linear and (2) quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023), (3) a weakly-symplectic AE trained jointly with a latent geometric HNN, and (4) a RO-HNN with pretrained geometrically-constrained AE. Fig. 14 shows that our jointly-trained RO-HNN significantly outperforms all baselines for all dimensions, leading to reduced relative reconstruction, latent prediction, and reconstructed prediction errors. This showcases (1) the higher expressivity of the AEs compared to linear and quadratic projection methods, (2) the importance of structurally-embedding the symplecticity condition, unlike the weakly-symplectic AE, and (3) the importance of joint training, allowing the RO-HNN to jointly learn a symplectic submanifold and the associated dynamics.

Finally, we compare the performance of the dissipative RO-HNN against (1) a conservative RO-HNN, where the dissipation forces τ_d are not learned but provided as ground truth in the ex-

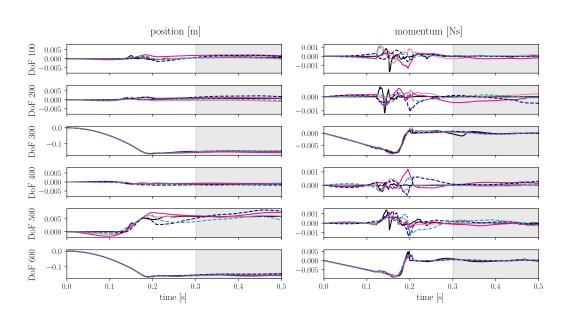


Figure 12: Predicted cloth positions and momenta for 6-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (····), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (····). The grey-shaded areas indicates interval beyond the data support, for which the ground truth is extrapolated from the last observation.

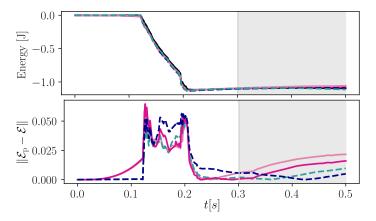


Figure 13: *Top*: Ground truth (—) and predicted latent energies for 6-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (····), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (····). *Bottom*: Energy errors for the same models. The grey-shaded areas indicate intervals beyond the data support, for which the ground truth is extrapolated from the last observation.

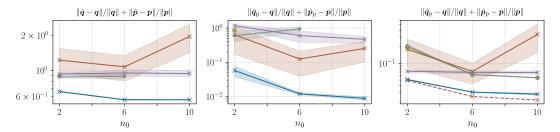


Figure 14: Mean and standard deviation of the relative reconstruction (left), latent prediction (middle), and reconstructed prediction (right) errors over 10 cloth trajectories with $H\Delta t=0.0025\,\mathrm{s}$. Our RO-HNN with geometrically-constrained symplectic AE ($\not\sim$) is compared against linear SMG reduction (\rightarrow), quadratic SMG reduction (\rightarrow), a weakly symplectic AE ($\not\sim$), and a sequentially-trained RO-HNN with pretrained geometrically-constrained symplectic AE ($\not\sim$). The pretrained AE ($\cdot \times$) is depicted for completeness. Notice that the linear SMG and quadratic SMG projections led to diverging dynamics for d>2 and d>6, respectively, for which results are not depicted.

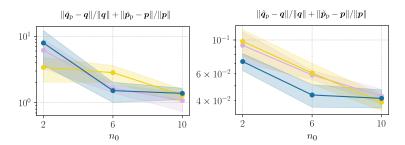


Figure 15: Meand and standard deviation of the latent prediction (left) and reconstructed prediction (right) errors for different parametrization of the latent dissipation matrix \check{D} over 10 test cloth trajectories. We compare our SPD network (—) against a Cholesky network (—), and the ground truth parametrization (—).

ternal input $\tau = \tau_c + \tau_d$, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized via Cholesky decomposition for latent dimensions $d = \{2, 6, 10\}$. The mass-inertia matrix is parametrized via SPD networks in all cases. Fig. 15 shows the obtained latent prediction and reconstructed prediction errors. Both dissipative HNNs achieve errors close to the conservative HNN where the ground truth dissipative forces are provided, with the geometric HNN slightly outperforming its Cholesky counterpart. However, the effect is less pronounced as when learning the inverse mass-inertia matrix, which we attribute to the reduced influence of damping compared to inertia in the overall dynamics.