

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING HAMILTONIAN DYNAMICS AT SCALE: A DIFFERENTIAL-GEOMETRIC APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

Embedding physical intuition into network architectures allows the learning of dynamics that enforce fundamental properties, such as energy conservation laws, thereby leading to physically-plausible predictions. Yet, scaling these models to intrinsically high-dimensional dynamical systems remains a significant challenge. This paper introduces Geometric Reduced-order Hamiltonian Neural Network (RO-HNN), a novel physics-inspired neural network that combines the conservation laws of Hamiltonian mechanics with the scalability of model order reduction. RO-HNN is built on two core components: a novel geometrically-constrained symplectic autoencoder that learns a low-dimensional, structure-preserving symplectic submanifold, and a geometric Hamiltonian neural network that models the dynamics on the submanifold. Our experiments demonstrate that RO-HNN provides physically-consistent, stable, and generalizable predictions of complex high-dimensional dynamics, thereby effectively extending the scope of Hamiltonian neural networks to high-dimensional physical systems.

1 INTRODUCTION

Learning the unknown governing equations of dynamical systems is of fundamental importance to model physical processes. In this context, generic neural models lack built-in physical intuition, thus resulting in limited explainability and poor generalization beyond the data support. Embedding fundamental physical properties, such as conservation laws and boundary conditions, into neural networks has been shown to drastically improve their performance. Various models incorporate physical intuition as soft constraints via penalty terms in the loss function (Saqlain et al., 2023). This often leads to suboptimal enforcement of physical properties and to stiff optimization (Wang et al., 2021), motivating the embedding of domain-specific priors as hard constraints in specialized neural architectures. This allowed recent methods to learn dynamics that preserve energy (Greydanus et al., 2019; Cranmer et al., 2020; Lutter & Peters, 2023), conserve mass and momentum (Jnini et al., 2025), and strictly enforce general conservation laws (Liu et al., 2024b), thereby improving performances, generalization, and stability while yielding physically-consistent predictions.

Hamiltonian mechanics, introduced by Hamilton (1834) as a reformulation of Lagrangian mechanics, describe the evolution of a broad range of dynamical systems in robotics (Duong & Atanasov, 2021), fluid dynamics (Salmon, 1988), quantum mechanics (Schrödinger, 1926), and biology (Duarte et al., 1998), among others. Hamiltonian systems evolve on a phase space with symplectic structure, naturally enforcing energy conservation (Abraham & Marsden, 1987). Compared to Lagrangian mechanics, Hamiltonian mechanics provide a first-order formulation of dynamics that describes a broader range of physical systems. Hamiltonian neural networks (HNNs) are gray-box models that embed the Hamiltonian structure as hard constraints in specialized deep learning architectures. HNNs either directly learn the Hamiltonian function, ensuring conservation laws by construction (Greydanus et al., 2019; Lutter & Peters, 2023), or learn symplectomorphisms that preserve the invariants of interest via symplectic flows (Jin et al., 2020). HNNs were enhanced by including dissipation (Zhong et al., 2020a) and contact (Zhong et al., 2021) models, and utilized for model-based control (Duong & Atanasov, 2021; Zhong et al., 2020b). While most HNNs consider Hamiltonians characterized by a canonical symplectic form — exhibited at least locally for all Hamiltonian systems — few works proposed architectures handling non-canonical forms (Chen et al., 2021) and more general Poisson systems (Jin et al., 2021; Šípka et al., 2023). Although HNNs yielded drastic performance improvements over generic black-box models, their application remains limited to low-dimensional systems with 2-5 dimensions.

Learning the dynamics of high-dimensional physical systems, such as robots, continua, or fluids, is arguably a difficult problem due to the increasing complexity and nonlinearity of their governing equations. Several approaches combine data-driven sparse identification of nonlinear dynamics (SINDy) and dimensionality reduction to discover high-dimensional governing equations (Brunton et al., 2016; Champion et al., 2019). However, they disregard the *a priori*-known structures of physical systems. In contrast, Sharma & Kramer (2024); Friedl et al. (2025) took inspiration from model order reduction (MOR) to learn high-dimensional Lagrangian dynamics. MOR addresses the complexity of nonlinear high-dimensional governing equations, so-called full-order model (FOM), by finding a reduced-order model (ROM), i.e., a computationally-cheaper yet accurate low-dimensional surrogate model (Schilders et al., 2008). While MOR techniques are typically intrusive, i.e., they assume entirely-known FOM dynamics, Sharma et al. (2024) presented a novel non-intrusive MOR-based approach that learns the parameters of a high-dimensional Lagrangian system in a linear structure-preserving subspace. In a similar line, Friedl et al. (2025) adopted a Riemannian perspective on the problem and introduced a physics-inspired neural architecture that jointly learns a non-linear embedded submanifold via a biorthogonal Autoencoder (AE) and its associated low-dimensional conservative dynamics via a geometric Lagrangian neural network (LNN). [A different line of works leverage Koopman operator theory to model nonlinear, e.g., Hamiltonian, dynamics via a learned surrogate linear dynamic model embedded in a higher-dimensional latent space \(Lusch et al., 2018; Zhang et al., 2024\).](#)

This paper proposes a novel physics-inspired geometric deep neural network to learn the dynamics of high-dimensional Hamiltonian systems. In contrast to previous works that learn dynamics from high-dimensional observations such as images (Greydanus et al., 2019; Chen et al., 2021; Botev et al., 2021), we consider systems with *intrinsically high-dimensional* phase spaces. Taking inspiration from (Sharma & Kramer, 2024; Friedl et al., 2025), we build on recent advances in Hamiltonian MOR (Peng & Mohseni, 2016; Buchfink et al., 2024) and adopt a differential geometric perspective to embed the high-dimensional Hamiltonian structure as hard constraints in our architecture. **Our first contribution** is a geometrically-constrained symplectic AE that learns a low-dimensional symplectic submanifold from trajectories of a high-dimensional Hamiltonian system. Unlike soft-constrained symplectic networks (Buchfink et al., 2023), our AE guarantees the preservation of the symplectic structure of the FOM, including its conservation laws and stability properties (Lepri et al., 2024), with increased expressivity compared to linear and quadratic symplectic projections (Bendokat & Zimmermann, 2022; Sharma et al., 2023). **Our second contribution** is a geometric HNN that models conservative and dissipative Hamiltonian dynamics while accounting for the Riemannian geometry of its parameters, and resorts to symplectic integration (Tao, 2016) for accurate long-term dynamics simulation. **Our third contribution** is a geometric reduced-order Hamiltonian neural network (RO-HNN) that jointly learns a low-dimensional symplectic submanifold with a geometrically-constrained symplectic AE and the dynamics parameters of the associated Hamiltonian function with a geometric HNN. We validate our approach on three high-dimensional Hamiltonian systems: a pendulum, a thin cloth, and a particle vortex. Our experiments demonstrate that, due to its embedded geometries, RO-HNN predicts accurate, stable, and physically-consistent trajectories, outperforming traditional HNNs and state-of-the-art reduction approaches.

2 BACKGROUND

We provide a short background on Hamiltonian dynamics, structure-preserving Hamiltonian MOR, and related neural networks. Preliminaries on Riemannian and symplectic geometry are in App. A.

2.1 HAMILTONIAN DYNAMICS ON SYMPLECTIC MANIFOLDS

A symplectic manifold (\mathcal{M}, ω) is a $2n$ -dimensional smooth manifold \mathcal{M} equipped with a symplectic form ω , i.e., a closed ($d\omega = 0$), non-degenerate, differential 2-form represented by a skew-symmetric matrix ω in coordinates. We slightly abuse notation, equivalently denoting symplectic manifolds as (\mathcal{M}, ω) . A Hamiltonian system $(\mathcal{M}, \omega, \mathcal{H})$ is a dynamical system evolving on a symplectic manifold (\mathcal{M}, ω) according to a smooth Hamiltonian function $\mathcal{H} : \mathcal{M} \rightarrow \mathbb{R}$. The Hamiltonian vector field $\mathbf{X}_{\mathcal{H}} = \omega^{-1} d\mathcal{H}$ is uniquely defined and preserves \mathcal{H} . Trajectories $\gamma : \mathcal{I} \rightarrow \mathcal{M}$ of the system over a time-interval $\mathcal{I} = [t_0, t_f]$ are solutions of the initial value problem (IVP)

$$\frac{d}{dt} \gamma|_t = \mathbf{X}_{\mathcal{H}}|_{\gamma(t)} \in T_{\gamma(t)} \mathcal{M}, \quad \text{with} \quad \gamma(t_0) = \gamma_0 \in \mathcal{M}. \quad (1)$$

A diffeomorphism $f : (\mathcal{M}, \omega) \rightarrow (\mathcal{N}, \eta)$ between symplectic manifolds is a symplectomorphism if it preserves the symplectic form, i.e., $f^* \eta = \omega$ with $f^* \eta$ denoting the pullback of η by f .

Following Darboux theorem, there exists a canonical chart (U, ϕ) , $\mathbf{x} \in U$ for each point $\mathbf{x} \in \mathcal{M}$ in which the symplectic form is represented as $\omega = \mathbb{J}_{2n}^\top$ via the canonical Poisson tensor

$$\mathbb{J}_{2n} = \begin{pmatrix} \mathbf{0} & \mathbf{I}_n \\ -\mathbf{I}_n & \mathbf{0} \end{pmatrix}, \quad \text{for which } \mathbb{J}_{2n}^\top = \mathbb{J}_{2n}^{-1} = -\mathbb{J}_{2n}. \quad (2)$$

In other words, every symplectic manifold is locally symplectomorphic to $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^\top)$. A system $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^\top, \mathcal{H})$ is called a canonical Hamiltonian system.

In this paper, we consider Hamiltonian systems $(\mathcal{M}, \omega, \mathcal{H})$, on \mathcal{M} globally valid canonical symplectic form $\omega = \mathbb{J}_{2n}^\top$. In this case, the phase space \mathcal{M} can be modeled on the cotangent bundle $\mathcal{T}^*\mathcal{Q}$ of a smooth n -dimensional manifold \mathcal{Q} (Weinstein, 1971) with canonical coordinates (\mathbf{q}, \mathbf{p}) with position $\mathbf{q} \in \mathcal{Q}$ and conjugate momenta $\mathbf{p} \in \mathcal{T}_q^*\mathcal{Q}$. The Hamiltonian vector field simplifies to $(\dot{\mathbf{q}}^\top, \dot{\mathbf{p}}^\top)^\top = \mathbf{X}_{\mathcal{H}} = \mathbb{J}_{2n} d\mathcal{H}^\top = (\frac{\partial \mathcal{H}}{\partial \mathbf{p}}, -\frac{\partial \mathcal{H}}{\partial \mathbf{q}})^\top$. Moreover, the Hamiltonian system $(\mathcal{T}^*\mathcal{Q}, \mathbb{J}_{2n}^\top, \mathcal{H})$ relates to a Lagrangian function $\mathcal{L} : \mathcal{T}\mathcal{Q} \rightarrow \mathbb{R}$ via the Legendre transform, which takes \mathcal{L} to $\mathcal{H} = \dot{\mathbf{q}}^\top \mathbf{p} - \mathcal{L}$ with $\mathbf{p} = \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}}$ and $\dot{\mathbf{q}} \in \mathcal{T}_q\mathcal{Q}$. Mechanical systems often display a quadratic kinetic energy structure, where the configuration manifold \mathcal{Q} is a Riemannian manifold endowed with the kinetic-energy metric equal to the system's mass-inertia matrix $\mathbf{M}(\mathbf{q})$. In this case, the Hamiltonian function is given by the sum of the system's kinetic $T(\mathbf{q}, \mathbf{p})$ and potential $V(\mathbf{q})$ energies as $\mathcal{H} = T(\mathbf{q}, \mathbf{p}) + V(\mathbf{q}) = \frac{1}{2} \mathbf{p}^\top \mathbf{M}^{-1}(\mathbf{q}) \mathbf{p} + V(\mathbf{q})$ and the momenta is $\mathbf{p} = \mathbf{M}(\mathbf{q}) \dot{\mathbf{q}}$.

2.2 STRUCTURE-PRESERVING MODEL-ORDER REDUCTION OF HAMILTONIAN SYSTEMS

Given the known parametrized dynamic equations of a high-dimensional system, i.e., a FOM, MOR aims to construct a low-dimensional surrogate dynamic model, i.e., a ROM, that accurately and efficiently approximates the FOM trajectories. Structure-preserving MOR preserves the underlying geometric structure of the FOM, ensuring that its properties, e.g. stability and energy conservation, are maintained in the ROM. For Hamiltonian systems $(\mathcal{M}, \omega, \mathcal{H})$, the symplectic structure is preserved by constructing a reduced Hamiltonian $(\check{\mathcal{M}}, \check{\omega}, \check{\mathcal{H}})$ with $\dim(\check{\mathcal{M}}) = d \ll \dim(\mathcal{M}) = n$, whose vector field $\check{\mathbf{X}}_{\mathcal{H}}$ approximates the set of solutions $S = \{\gamma(t) \in \mathcal{M} \mid t \in \mathcal{I}\} \subseteq \mathcal{M}$ of (1).

Following the geometric perspective of Buchfink et al. (2024), the reduced Hamiltonian $(\check{\mathcal{M}}, \check{\omega}, \check{\mathcal{H}})$ is derived by identifying the submanifold $\check{\mathcal{M}}$ via a smooth embedding $\varphi : \check{\mathcal{M}} \rightarrow \mathcal{M}$ such that

$$\check{\omega} = \varphi^* \omega = d\varphi^\top \omega d\varphi, \quad (3)$$

is non-degenerate. This implies that $(\check{\mathcal{M}}, \check{\omega})$ is a symplectic manifold and φ is a symplectomorphism (Buchfink et al., 2024, Lemma 5.13). Note that structure-preserving Hamiltonian MOR typically considers a canonical FOM $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^\top, \mathcal{H})$ reduced to a canonical ROM $(\mathbb{R}^{2d}, \mathbb{J}_{2d}^\top, \check{\mathcal{H}})$ (Peng & Mohseni, 2016; Sharma et al., 2023; Buchfink et al., 2023). The Hamiltonian structure is preserved by constructing $\check{\mathcal{H}}$ via the pullback of the embedding as $\check{\mathcal{H}} = \varphi^* \mathcal{H} = \mathcal{H} \circ \varphi$. Trajectories $\check{\gamma}(t)$ of the reduced-order system are then obtained from the ROM $\frac{d}{dt} \check{\gamma}|_t = \check{\mathbf{X}}_{\check{\mathcal{H}}}|_{\check{\gamma}(t)} \in \mathcal{T}_{\check{\gamma}(t)} \check{\mathcal{M}}$, with $\check{\mathbf{X}}_{\check{\mathcal{H}}} = \check{\omega}^{-1} d\check{\mathcal{H}}$. The reduced initial value $\check{\gamma}_0 = \rho(\gamma_0) \in \check{\mathcal{M}}$ is computed via the point reduction map $\rho : \mathcal{M} \rightarrow \check{\mathcal{M}}$ associated with φ , which must satisfy the projection properties

$$\rho \circ \varphi = \text{id}_{\check{\mathcal{M}}} \quad \text{and} \quad d\rho|_{\varphi(\check{\mathbf{x}})} \circ d\varphi|_{\check{\mathbf{x}}} = \text{id}_{\mathcal{T}_{\check{\mathbf{x}}} \check{\mathcal{M}}}, \quad \forall \check{\mathbf{x}} \in \check{\mathcal{M}}. \quad (4)$$

Trajectories of the original system are finally obtained as the approximation $\gamma(t) \approx \varphi(\check{\gamma}(t))$.

The embedding φ and point reduction ρ are key for MOR as they determine the ROM trajectories. Accurately approximating the FOM requires the minimization of the reconstruction error

$$\ell_{\text{rec}} = \frac{1}{N} \sum_{i=1}^N \|\varphi \circ \rho(\mathbf{x}_i) - \mathbf{x}_i\|^2. \quad (5)$$

Exact reconstruction requires $d\rho$ to be the symplectic inverse of $d\varphi$, i.e., $d\rho = d\varphi^+ = \check{\omega}^{-1} d\varphi^\top \omega$. In this paper, we introduce a geometrically-constrained AE that fulfills (3) and (4) by design.

2.3 HAMILTONIAN NEURAL NETWORKS

While MOR reduces the dimensionality of systems with known dynamics, HNNs aim to learn the unknown dynamics of typically low-dimensional systems while ensuring energy conservation. Most HNNs assume canonical Hamiltonian systems or Hamiltonian systems with canonical symplectic

Figure 1: Flowchart of the forward dynamics of the geometric RO-HNN. The geometrically-constrained symplectic AE (in blue) is built as the cotangent lift of a constrained AE (top right). The geometric HNN (in brown) is composed of two SPD networks for the inverse mass-inertia and damping matrices and one MLP for the potential energy.

form (2). In this paper, we build on two HNN variants that (1) learn the Hamiltonian function as a single network $\mathcal{H}_\theta(\mathbf{q}, \mathbf{p})$ with parameters θ (Greydanus et al., 2019), or (2) learn the kinetic and potential energy as two distinct networks, i.e., $\mathcal{H}_\theta(\mathbf{q}, \mathbf{p}) = T_{\theta_T}(\mathbf{q}, \mathbf{p}) + V_{\theta_V}(\mathbf{q})$ (Zhong et al., 2020b; Lutter & Peters, 2023). Given a set of N observations $\{\mathbf{q}_i, \mathbf{p}_i, \dot{\mathbf{q}}_i, \dot{\mathbf{p}}_i\}_{i=1}^N$, the networks are trained to minimize the prediction error of the Hamiltonian vector field via the loss

$$\ell_{\text{HNN}} = \left\| \frac{\partial \mathcal{H}_\theta}{\partial \mathbf{p}}(\mathbf{q}_i, \mathbf{p}_i) - \dot{\mathbf{q}}_i \right\|^2 + \left\| \frac{\partial \mathcal{H}_\theta}{\partial \mathbf{q}}(\mathbf{q}_i, \mathbf{p}_i) - \dot{\mathbf{p}}_i \right\|^2. \quad (6)$$

3 GEOMETRIC REDUCED-ORDER HAMILTONIAN NEURAL NETWORKS

We present the geometric reduced-order Hamiltonian neural network (RO-HNN) that learns the unknown dynamics of high-dimensional Hamiltonian systems. We focus on systems $(\mathcal{M}, \mathbb{J}_{2n}^\top, \mathcal{H})$ evolving on a phase space \mathcal{M} with canonical symplectic form \mathbb{J}_{2n}^\top for which the solutions $\gamma(t)$ of the FOM (1) can be accurately approximated by a substantially lower dimensional surrogate model. Our goal is to learn a reduced Hamiltonian system $(\tilde{\mathcal{M}}, \tilde{\omega}, \tilde{\mathcal{H}})$ via non-intrusive structure-preserving MOR, where we set $\tilde{\mathcal{M}}$ as a phase space with $\tilde{\omega} = \mathbb{J}_{2d}^\top$. Given a set of high-dimensional observations $\{\mathbf{q}_i, \mathbf{p}_i\}_{i=1}^N$, we identify low-dimensional dynamics by jointly learning a reduced symplectic manifold $(\tilde{\mathcal{M}}, \mathbb{J}_{2d}^\top)$ via a smooth embedding φ and a reduction ρ , and a latent Hamiltonian function $\tilde{\mathcal{H}}$.

The proposed RO-HNN ensures the preservation of the Hamiltonian structure by fulfilling three necessary conditions by design: (1) the embedding φ is a symplectomorphism, or equivalently

$$\tilde{\omega} = \mathbb{J}_{2d} = d\varphi^\top \mathbb{J}_{2n} d\varphi; \quad (7)$$

(2) the embedding φ and reduction map ρ satisfy the projection properties (4); and (3) $\tilde{\mathcal{H}}$ is a valid Hamiltonian function, thus preserving the reduced energy $\tilde{\mathcal{E}} = \mathcal{E} \circ \varphi$. The RO-HNN fulfill (1)-(2) via a novel geometrically-constrained symplectic AE (Sec. 3.1), while (3) is guaranteed by a reduced-order geometric HNN (Sec. 3.2), whose trajectories are obtained via symplectic integration (Sec. 3.3). Accurate modeling of the high-dimensional dynamics is achieved by jointly training the AE and the HNN (Sec. 3.4). The proposed RO-HNN is illustrated in Fig. 1.

3.1 GEOMETRICALLY-CONSTRAINED SYMPLECTIC AUTOENCODER

Preserving the geometric structure of the original Hamiltonian FOM is crucial for the learned ROM to display similar dynamics. We introduce a geometrically-constrained symplectic AE that projects a high-dimensional Hamiltonian system $(\mathcal{M}, \mathbb{J}_{2n}^\top, \mathcal{H})$ onto a low-dimensional nonlinear symplectic manifold $(\tilde{\mathcal{M}}, \mathbb{J}_{2d}^\top)$ such that the reduced system strictly retains the Hamiltonian structure of the FOM. We parametrize the point reduction $\rho : \mathcal{M} \rightarrow \tilde{\mathcal{M}}$ and embedding $\varphi : \tilde{\mathcal{M}} \rightarrow \mathcal{M}$ as the encoder and decoder of an AE designed to satisfy symplecticity (7) and projection properties (4) by construction. To do so, we leverage the cotangent bundle structure of the phase space $\mathcal{M} = \mathcal{T}^*\mathcal{Q}$.

Given a smooth embedding $\varphi_Q : \check{\mathcal{Q}} \rightarrow \mathcal{Q}$ and associated point reduction $\rho_Q : \mathcal{Q} \rightarrow \check{\mathcal{Q}}$ satisfying (4), we define the cotangent-lifted embedding φ and point reduction ρ in canonical coordinates as

$$\varphi(\check{\mathbf{q}}, \check{\mathbf{p}}) = \begin{pmatrix} \varphi_Q(\check{\mathbf{q}}) \\ d\rho_Q|_{\varphi_Q(\check{\mathbf{q}})}^\top \check{\mathbf{p}} \end{pmatrix} \quad \text{and} \quad \rho(\mathbf{q}, \mathbf{p}) = \begin{pmatrix} \rho_Q(\mathbf{q}) \\ d\varphi_Q|_{\rho_Q(\mathbf{q})}^\top \mathbf{p} \end{pmatrix}, \quad (8)$$

where the pullbacks $d\rho_Q|_{\varphi_Q(\check{\mathbf{q}})}^\top \check{\mathbf{p}}$ and $d\varphi_Q|_{\rho_Q(\mathbf{q})}^\top \mathbf{p}$ are computed using the Jacobian of ρ_Q and φ_Q .

Proposition 1. *The reduction map $\rho(\mathbf{q}, \mathbf{p})$ (8) satisfies the projection properties (4).*

Proof. It is clear that the cotangent-lifted map ρ fulfills (4) as ρ_Q satisfies (4) by assumption. \square

Proposition 2. *The embedding $\varphi(\check{\mathbf{q}}, \check{\mathbf{p}})$ (8) satisfies the symplecticity property (7).*

Proof. Proving the statement is equivalent to show that the differential $d\varphi = \begin{pmatrix} d\varphi_Q \\ \frac{\partial(d\rho_Q|_{\varphi_Q(\check{\mathbf{q}})}^\top \check{\mathbf{p}})}{\partial \check{\mathbf{q}}} d\rho_Q^\top \end{pmatrix}$ belongs to the symplectic Stiefel manifold $\text{Sp}(2n, 2d) = \{U \in \mathbb{R}^{2n \times 2d} \mid U^\top \mathbb{J}_{2n} U = \mathbb{J}_{2d}\}$. A block matrix $U = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ belongs to $\text{Sp}(2n, 2d)$ if its block elements satisfy the condition

$$U^\top \mathbb{J}_{2n} U = \begin{pmatrix} A^\top & C^\top \\ B^\top & D^\top \end{pmatrix} \begin{pmatrix} \mathbf{0} & -\mathbf{I}_n \\ \mathbf{I}_n & \mathbf{0} \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} C^\top A - A^\top C & C^\top B - A^\top D \\ D^\top A - B^\top C & D^\top B - B^\top D \end{pmatrix} = \begin{pmatrix} \mathbf{0} & -\mathbf{I}_d \\ \mathbf{I}_d & \mathbf{0} \end{pmatrix},$$

i.e., the differential $d\varphi$ must satisfy

$$d\varphi^\top \mathbb{J}^\top d\varphi = \begin{pmatrix} C^\top d\varphi_Q - d\varphi_Q^\top C & -d\varphi_Q^\top d\rho_Q^\top \\ d\rho_Q d\varphi_Q & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & -\mathbf{I}_d \\ \mathbf{I}_d & \mathbf{0} \end{pmatrix} \quad \text{with} \quad C = \frac{\partial(d\rho_Q|_{\varphi_Q(\check{\mathbf{q}})}^\top \check{\mathbf{p}})}{\partial \check{\mathbf{q}}}. \quad (9)$$

By assumption, ρ_Q fulfills the projection properties (4), so that $d\rho_Q d\varphi_Q = d\varphi_Q^\top d\rho_Q^\top = \mathbf{I}_d$ holds by construction. It remains to prove $C^\top d\varphi_Q - d\varphi_Q^\top C = \mathbf{0}$. We denote the elements of the canonical and reduced canonical coordinates as q^i , p_i and \check{q}^α , \check{p}_α , respectively. By definition, we have $(d\varphi_Q)_\alpha^i = \frac{\partial q^i}{\partial \check{q}^\alpha}$ and $(d\varphi_Q)_i^\alpha = \frac{\partial \check{q}^\alpha}{\partial q^i}$ and the projection properties hold by assumption, i.e., $(d\varphi_Q)_i^\alpha (d\varphi_Q)_\beta^i = \delta_\beta^\alpha \forall \check{q} \in \check{\mathcal{Q}}$, with $\delta_\beta^\alpha = 1$ if $\alpha = \beta$ and $\delta_\beta^\alpha = 0$ otherwise. Therefore, we have $p_i = (d\varphi_Q)_i^\alpha \check{p}_\alpha$, and $C_{i\gamma} = \frac{\partial p_i}{\partial \check{q}^\gamma} = \frac{\partial}{\partial \check{q}^\gamma} ((d\varphi_Q)_i^\alpha \check{p}_\alpha) = \frac{\partial(d\varphi_Q)_i^\alpha}{\partial \check{q}^\gamma} \frac{\partial \check{q}^\gamma}{\partial \check{q}^\gamma} \check{p}_\alpha = \frac{\partial(d\varphi_Q)_i^\alpha}{\partial \check{q}^\gamma} (d\varphi_Q)_\gamma^j \check{p}_\alpha$. We aim to show that $C^\top d\varphi_Q$ is symmetric, i.e., $(d\varphi_Q)_\beta^i C_{i\gamma} = (d\varphi_Q)_\gamma^i C_{i\beta}$. Using the projection properties, we can write $\check{p}_\beta = (d\varphi_Q)_\beta^i (d\varphi_Q)_i^\alpha \check{p}_\alpha$. Differentiating with respect to \check{q}^γ yields

$$\begin{aligned} 0 = \frac{\partial}{\partial \check{q}^\gamma} ((d\varphi_Q)_\beta^i (d\varphi_Q)_i^\alpha \check{p}_\alpha) &= \frac{(d\varphi_Q)_\beta^i}{\partial \check{q}^\gamma} (d\varphi_Q)_i^\alpha \check{p}_\alpha + (d\varphi_Q)_\beta^i \frac{(d\varphi_Q)_i^\alpha}{\partial \check{q}^\gamma} \frac{\partial \check{q}^\gamma}{\partial \check{q}^\gamma} \check{p}_\alpha \\ &= \frac{(d\varphi_Q)_\beta^i}{\partial \check{q}^\gamma} p_i + (d\varphi_Q)_\beta^i C_{i\gamma} = \frac{\partial q^i}{\partial \check{q}^\beta \partial \check{q}^\gamma} p_i + (d\varphi_Q)_\beta^i C_{i\gamma}. \end{aligned}$$

As the Hessian in the first term is symmetric, the equality implies the symmetry of the second term, i.e., $(d\varphi_Q)_\beta^i C_{i\gamma} = (d\varphi_Q)_\gamma^i C_{i\beta}$, and thus (9) holds. \square

Note that $d\rho \mathbb{J}_{2n} d\rho^\top = \mathbb{J}_{2d}$ is shown to hold on $\varphi(\check{\mathcal{M}})$ with similar arguments. Moreover, a similar proof is presented by Sharma et al. (2023) in the context of quadratic symplectic projections.

In practice, we learn the embedding φ_Q and point reduction ρ_Q via the constrained AE architecture from Otto et al. (2023), and compute their differentials analytically to construct the cotangent-lifted maps (8) (see App. D for details). The encoder and decoder are given as a composition of feedforward layers $\rho_Q = \rho_Q^{(1)} \circ \dots \circ \rho_Q^{(L)}$ and $\varphi_Q = \varphi_Q^{(L)} \circ \dots \circ \varphi_Q^{(1)}$ with $\rho_Q^{(l)} : \mathbb{R}^{n_l} \rightarrow \mathbb{R}^{n_{l-1}}$, $\varphi_Q^{(l)} : \mathbb{R}^{n_{l-1}} \rightarrow \mathbb{R}^{n_l}$, and $n_{l-1} \leq n_l$. The key to fulfill the projection properties (4) is the construction of the layer pairs as

$$\rho_Q^{(l)}(\mathbf{q}^{(l)}) = \sigma_- \left(\Psi_l^\top (\mathbf{q}^{(l)} - \mathbf{b}_l) \right) \quad \text{and} \quad \varphi_Q^{(l)}(\check{\mathbf{q}}^{(l-1)}) = \Phi_l \sigma_+(\check{\mathbf{q}}^{(l-1)}) + \mathbf{b}_l, \quad (10)$$

where (Φ_l, Ψ_l) and (σ_+, σ_-) are pairs of weight matrices and smooth activation functions such that $\Psi_l^\top \Phi_l = \mathbf{I}_{n_{l-1}}$ and $\sigma_- \circ \sigma_+ = \text{id}$, respectively, and \mathbf{b}_l are bias vectors. Therefore, each layer pair (10) satisfies $\rho_Q^{(l)} \circ \varphi_Q^{(l)} = \text{id}_{\mathbb{R}^{n_{l-1}}}$ and the constrained AE fulfills (4). Following (Friedl et al., 2025), we ensure that the pairs of weight matrices adhere to the biorthogonality constraint $\Psi_l^\top \Phi_l = \mathbf{I}_d$ by accounting for the Riemannian geometry of biorthogonal matrices (see App. B.2 for a background). Specifically, we consider each pair (Φ_l, Ψ_l) as an element of the biorthogonal manifold $\mathcal{B}_{n_l, n_{l-1}} = \{(\Phi, \Psi) \in \mathbb{R}^{n_l \times n_{l-1}} \times \mathbb{R}^{n_l \times n_{l-1}} : \Psi^\top \Phi = \mathbf{I}_{n_{l-1}}\}$ and optimize them to minimize the reconstruction error (5) via Riemannian optimization (Absil et al., 2007; Boumal, 2023)

(see, App. F). Note that this Riemannian approach was shown to consistently outperform the over-parametrization proposed by Otto et al. (2023), achieving lower reconstruction errors (Friedl et al., 2025). The constraint $\sigma_- \circ \sigma_+ = \text{id}$ is met by utilizing the smooth, invertible activation functions defined in (Otto et al., 2023, Eq. 12), see also App. D.

As will be shown in Sec. 4, the resulting geometrically-constrained symplectic AE provides increased expressivity compared to linear and quadratic symplectic projection approaches (Peng & Mohseni, 2016; Sharma et al., 2023), while guaranteeing the symplectic structure of the latent space in contrast to weakly-symplectic AEs based on soft constraints (Buchfink et al., 2023). In the intrusive case, i.e., if the FOM is known, we construct the reduced Hamiltonian function via the pullback of the cotangent-lifted embedding as $\check{\mathcal{H}} = \varphi^* \mathcal{H}$, which yields the Hamiltonian ROM. Instead, in this paper, we consider the case where the high-dimensional dynamics are unknown, and learn the reduced-order Hamiltonian function $\check{\mathcal{H}}$ with a geometric HNN, as explained next.

3.2 CONSERVATIVE AND DISSIPATIVE HAMILTONIAN REDUCED-ORDER MODELS

Conservative dynamics. We propose to learn the reduced Hamiltonian dynamics in the embedded symplectic submanifold $(\check{\mathcal{M}}, \check{\mathbb{J}}_{2d})$ via a HNN. For general systems, we encode the reduced-order Hamiltonian function as a single neural network $\check{\mathcal{H}}_\theta(\check{q}, \check{p})$ with parameters θ , akin to (Greydanus et al., 2019). However, additional prior knowledge on the structure of the Hamiltonian is often available. For instance, the Hamiltonian function of mechanical systems sums a quadratic kinetic energy and a potential term. Leveraging that the learned symplectic submanifold preserves the original system structure, we propose to model the reduced Hamiltonian function as $\check{\mathcal{H}}_\theta(\check{q}, \check{p}) = \frac{1}{2} \check{p}^\top \check{M}_{\theta_T}^{-1}(\check{q}) \check{p} + \check{V}_{\theta_V}(\check{q})$ via two neural networks $\check{M}_{\theta_T}^{-1}$ and \check{V}_{θ_V} with parameters $\theta = \{\theta_T, \theta_V\}$. Existing HNNs (Lutter & Peters, 2023; Zhong et al., 2020a) enforce the symmetric positive-definiteness of the inverse mass-inertia matrix via a Euclidean network encoding its Cholesky decomposition L , i.e., $M^{-1} = LL^\top$. However, as for LNNs (Friedl et al., 2025), this parametrization leads to flawed measures of distances in the space of symmetric positive-definite (SPD) matrices and ultimately results in inaccurate dynamics predictions. To overcome this issue, we parametrize $\check{M}_{\theta_T}^{-1}$ via the SPD network from Friedl et al. (2025) that accounts for the Riemannian geometry of the SPD manifold \mathcal{S}_{++}^d (see Apps. A, C). The network $\check{M}_{\theta_T}^{-1}(q) = (g_{\text{Exp}} \circ g_{\mathbb{R}})(q)$ is composed of (1) a standard Euclidean multilayer perceptron (MLP) $g_{\mathbb{R}} : \mathbb{R}^d \rightarrow \mathbb{R}^{d(d+1)/2}$ that maps the input configuration to the elements of a symmetric matrix $U \in \text{Sym}^d$, and (2) an exponential map layer g_{Exp} that interprets U as an element of the tangent space $\mathcal{T}_P \mathcal{S}_{++}^d$, and maps it onto \mathcal{S}_{++}^d .

Dissipative dynamics. While classical Hamiltonian dynamics conserve energy, dissipation and external inputs often appear in real-world systems. Both can be modeled in HNNs by complementing the Hamiltonian vector field with a force field \mathbf{X}_F , so that the total vector field is $\mathbf{X} = \mathbf{X}_H + \mathbf{X}_F$ (Sosanya & Greydanus, 2022; Zhong et al., 2020a). We propose to leverage the structure-preserving symplectic submanifold and model dissipation and external inputs as a reduced-order force field $\check{\mathbf{X}}_F$ on $(\check{\mathcal{M}}, \check{\mathbb{J}}_{2d})$. Specifically, we consider high-dimensional systems with observed external inputs τ_{ext} and viscous damping following a Rayleigh dissipative function $\mathcal{D}(q, \dot{q}) = \frac{1}{2} \dot{q}^\top \mathbf{D}(q) \dot{q}$ with unknown positive semi-definite dissipation matrix $\mathbf{D}(q)$. The resulting force field is $\mathbf{X}_F = \left(\begin{smallmatrix} 0 \\ \tau_{\text{ext}} + \tau_d \end{smallmatrix} \right)$ with damping force $\tau_d = \frac{\partial \mathcal{D}(q, \dot{q})}{\partial \dot{q}} = \mathbf{D}(q) \dot{q}$.

Proposition 3. *The reduced vector field $\check{\mathbf{X}} = \varphi^* \mathbf{X}$ obtained via the pullback of the cotangent-lifted embedding φ (8) preserves the structure of the total vector field $\mathbf{X} = \mathbf{X}_H + \mathbf{X}_F$ with $\mathbf{X}_F = \left(\begin{smallmatrix} 0 \\ \tau_{\text{ext}} + \tau_d \end{smallmatrix} \right)$.*

Proof. The reduced vector field decomposes as $\check{\mathbf{X}} = \varphi^* \mathbf{X} = \varphi^* \mathbf{X}_H + \varphi^* \mathbf{X}_F = \check{\mathbf{X}}_{\check{\mathcal{H}}} + \check{\mathbf{X}}_{\check{\mathcal{F}}}$ with $\check{\mathbf{X}}_{\check{\mathcal{H}}} = \check{\omega}^{-1} d\check{\mathcal{H}}$ (see Sec. 2.2) and $\check{\mathbf{X}}_{\check{\mathcal{F}}}$ is obtained by pulling back the external and damping terms. Since generalized forces belong to the cotangent bundle $\mathcal{T}^* \mathcal{Q}$, they are embedded and reduced via the cotangent-lifted maps (8) as $\varphi(\check{q}, \check{\tau})$ and $\rho(q, \tau)$, leading to the reduced external inputs $\check{\tau}_{\text{ext}} = d\varphi_Q|_{\check{q}}^\top \tau_{\text{ext}}$. The reduced Rayleigh dissipative function is obtained via the pullback of the tangent-lifted embedding $\varphi_{\mathcal{T}Q}(\check{q}, \dot{q}) = (\varphi_Q(\check{q})^\top, (d\varphi_Q|_{\check{q}} \dot{q})^\top)^\top$ as $\check{\mathcal{D}} = \varphi_{\mathcal{T}Q}^* \mathcal{D} = \frac{1}{2} \dot{q}^\top \check{\mathbf{D}}(\check{q}) \dot{q}$ with positive semi-definite reduced damping matrix $\check{\mathbf{D}}(\check{q}) = d\varphi_Q^\top \mathbf{D}(q) d\varphi_Q$. The reduced damping force is then $\check{\tau}_d = \frac{\partial \check{\mathcal{D}}(\check{q}, \dot{q})}{\partial \dot{q}} = \check{\mathbf{D}}(\check{q}) \dot{q}$. Therefore, the reduced force field is $\check{\mathbf{X}}_{\check{\mathcal{F}}} = \left(\begin{smallmatrix} 0 \\ \check{\tau}_{\text{ext}} + \check{\tau}_d \end{smallmatrix} \right)$. \square

We propose to model the reduced Rayleigh dissipative function $\check{\mathcal{D}}_{\theta_D}(\check{q}, \dot{q}) = \frac{1}{2} \dot{q}^\top \check{\mathbf{D}}_{\theta_D}(\check{q}) \dot{q}$ via a neural network $\check{\mathbf{D}}_{\theta_D}$. Dissipative HNNs (Zhong et al., 2020a) constrain the dissipation matrix to

324 be positive semi-definite through its Cholesky decomposition, i.e., $\mathbf{D} = \mathbf{L}\mathbf{L}^\top$, thus overlooking its
 325 intrinsic geometric structure. Instead, we utilize a second SPD network $\check{\mathbf{D}}_{\theta_D}(\check{\mathbf{q}}) = (g_{\text{Exp}} \circ g_{\mathbb{R}})(\mathbf{q})$.
 326

327 Note that the dissipative dynamics no longer preserve a symplectic structure. However, Proposition 3
 328 shows that the RO-HNN latent space still preserves the structure of high-dimensional dissipative dy-
 329 namical systems characterized by a Rayleigh dissipative function. It is worth noting that these sys-
 330 tems are equivalent to Port-Hamiltonian systems with energy dissipation matrix $\mathbf{R}(\mathbf{q}, \mathbf{p}) = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & D(\mathbf{q}) \end{pmatrix}$
 331 and input $\mathbf{G}(\mathbf{q}, \mathbf{p})\mathbf{u} = \tau_{\text{ext}}$, and to contact Hamiltonians $\mathcal{H}_c(\mathbf{q}, \mathbf{p}, s)$ with $\dot{s} = \mathcal{D}$.

332 **Predicting dynamics.** The geometric HNN predicts conservative and dissipative dynamics as
 333

$$334 \quad \dot{\check{\mathbf{q}}}_p = \frac{\partial \check{\mathcal{H}}_{\theta}}{\partial \check{\mathbf{p}}} \quad \text{and} \quad \dot{\check{\mathbf{p}}}_p = -\frac{\partial \check{\mathcal{H}}_{\theta}}{\partial \check{\mathbf{q}}} - \check{\mathbf{D}}_{\theta_D}(\check{\mathbf{q}}) \frac{\partial \check{\mathcal{H}}}{\partial \check{\mathbf{p}}} + \check{\tau}_{\text{ext}}, \quad (11)$$

336 where the predictions of the dynamic model are denoted via the subscript p. Note that $\check{\mathbf{D}}_{\theta_D} = \mathbf{0}$ and
 337 $\check{\tau}_{\text{ext}} = \mathbf{0}$ in the conservative case. The architecture is illustrated in Fig. 1-middle.

338 Predicting system trajectories according to the learned reduced-order Hamiltonian dynamics in-
 339 volves (1) integrating the latent predictions $(\dot{\check{\mathbf{q}}}_p, \dot{\check{\mathbf{p}}}_p)$ (11), and (2) decoding the obtained reduced-
 340 order position and momentum $(\check{\mathbf{q}}_p, \check{\mathbf{p}}_p)$ into the high-dimensional coordinates of the original system
 341 with the [lifted point embedding](#) φ (8), i.e., $(\check{\mathbf{q}}_p, \check{\mathbf{p}}_p) = \varphi(\check{\mathbf{q}}_p, \check{\mathbf{p}}_p)$. In this paper, we propose to
 342 integrate the learned reduced-order Hamiltonian flow via symplectic integration, as explained next.
 343

344 3.3 TRAJECTORY PREDICTION VIA SYMPLECTIC INTEGRATION

345 Symplectic integrators are particularly well suited to integrate Hamiltonian dynamics as they pre-
 346 serve the geometric structure and invariants of the Hamiltonian flow (Leimkuhler & Reich, 2005).
 347 Symplectic integrators were shown to be key to accurately integrate learned HNNs dynamics, thus
 348 preventing long-term drifting of numerical solutions (Chen et al., 2020; Xiong et al., 2021).

349 The Hamiltonian dynamics learned in Sec. 3.2 are nonseparable, thus prohibiting the usage of stan-
 350 dard explicit integration schemes, e.g., leapfrog (Leimkuhler & Reich, 2005). Instead, we integrate
 351 the reduced-order Hamiltonian flow (11) using the second-order symplectic integrator of (Tao, 2016)
 352 based on Strang splitting, akin to (Xiong et al., 2021). In a nutshell, the integrator considers an aug-
 353 mented Hamiltonian $\check{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \mathcal{H}(\mathbf{q}, \mathbf{y}) + \mathcal{H}(\mathbf{p}, \mathbf{x}) + \frac{1}{2}w(\|\mathbf{q}, \mathbf{x}\|^2 + \|\mathbf{p}, \mathbf{y}\|^2)$ with extended
 354 phase space, for which high-order separable symplectic integrators with explicit updates can be con-
 355 structed. A numerical integrator approximating $\check{\mathcal{H}}$ is obtained by composing the obtained explicit
 356 flows, which we refer to as Strang-symplectic integrator. Additional details are provided in App. E.
 357

358 3.4 MODEL TRAINING

359 Finally, we propose to jointly learn the parameters $\{\Phi_l, \Psi_l, \mathbf{b}_l\}_{l=1}^L$ of the AE and $\{\theta_T, \theta_V, \theta_D\}$
 360 of the latent geometric HNN. As the learned dynamics are expected to predict multiple steps, we
 361 consider a loss that numerically integrates the latent predictions $(\check{\mathbf{q}}_p, \check{\mathbf{p}}_p)$ (11) via H forward Strang-
 362 symplectic integration steps before decoding. Given sets of observations $\{\mathbf{q}_i(\mathcal{I}_i), \mathbf{p}_i(\mathcal{I}_i), \tau_i(\mathcal{I}_i)\}_{i=1}^N$
 363 over intervals $\mathcal{I}_i = [t_i, t_i + H\Delta t]$ with constant integration time Δt , the resulting multi-step loss is
 364

$$365 \quad \ell_{\text{RO-HNN}} = \frac{1}{HN} \sum_{i=1}^N \sum_{j=1}^H \underbrace{\|\check{\mathbf{q}}_i(t_{i,j}) - \mathbf{q}_i(t_{i,j})\|^2 + \|\check{\mathbf{p}}_i(t_{i,j}) - \mathbf{p}_i(t_{i,j})\|^2}_{\ell_{\text{AE}}} + \underbrace{\lambda \|\check{\mathbf{q}}_{p,i}(t_{i,j}) - \check{\mathbf{q}}_i(t_{i,j})\|^2}_{\ell_{\text{HNN}, d}} \quad (12)$$

$$366 \quad + \underbrace{\lambda \|\check{\mathbf{p}}_{p,i}(t_{i,j}) - \check{\mathbf{p}}_i(t_{i,j})\|^2}_{\ell_{\text{HNN}, d}} + \underbrace{\|\check{\mathbf{q}}_{p,i}(t_{i,j}) - \mathbf{q}_i(t_{i,j})\|^2 + \|\check{\mathbf{p}}_{p,i}(t_{i,j}) - \mathbf{p}_i(t_{i,j})\|^2}_{\ell_{\text{HNN}, n}} + \gamma \|\theta\|_2^2,$$

369 where $\check{\mathbf{q}}_{p,i}(t_{i,j}) = \int_{t_i}^{t_{i,j}} \dot{\check{\mathbf{q}}}_{p,i} dt$ and $\check{\mathbf{p}}_{p,i}(t_{i,j}) = \int_{t_i}^{t_{i,j}} \dot{\check{\mathbf{p}}}_{p,i} dt$ with $t_{i,j} = t_i + j\Delta t$, and loss scaling
 370 $\lambda \in \mathbb{R}_{>0}$. Note that initial conditions to the latent IVPs are given by the encoded observations
 371 at the initial timestep $\check{\mathbf{q}}_{p,i}(t_i) := \check{\mathbf{q}}_i$ and $\check{\mathbf{p}}_{p,i}(t_i) := \check{\mathbf{p}}_i$. We optimize the network parameters via
 372 Riemannian Adam (Becigneul & Ganea, 2019).
 373

374 4 EXPERIMENTS

375 We evaluate the proposed RO-HNN to learn the dynamics of three simulated high-dimensional
 376 Hamiltonian systems: a 15-degrees-of-freedom (DoF) pendulum, a 600-DoF thin cloth, and a 90-
 377 DoF particle vortex. Our experiments showcase that RO-HNNs accurately predict long-term tra-

378 Table 1: Mean and standard deviation of prediction errors (\downarrow) over 10 test pendulum trajectories.
379

	$H\Delta t$ (s)	RO-HNN	15-DoF HNN	3-DoF HNN	HNKO
$\frac{\ \tilde{\mathbf{q}}_p - \mathbf{q}\ }{\ \mathbf{q}\ }$	0.25 5	$(1.66 \pm 1.38) \times 10^{-1}$ $(7.08 \pm 7.56) \times 10^{-1}$	$(5.33 \pm 6.02) \times 10^{-1}$ —	$(1.22 \pm 0.92) \times 10^{-1}$ $(5.44 \pm 6.93) \times 10^{-1}$	$(5.64 \pm 4.41) \times 10^{-1}$ $(1.32 \pm 0.94) \times 10^0$
$\frac{\ \tilde{\mathbf{p}}_p - \mathbf{p}\ }{\ \mathbf{p}\ }$	0.25 5	$(5.33 \pm 5.23) \times 10^{-2}$ $(1.98 \pm 2.67) \times 10^{-1}$	$(1.76 \pm 2.40) \times 10^{-1}$ —	$(2.50 \pm 2.96) \times 10^{-2}$ $(1.85 \pm 3.94) \times 10^{-1}$	$(5.93 \pm 10.73) \times 10^{-1}$ $(1.23 \pm 2.08) \times 10^0$

384 Table 2: Mean and standard deviation of reconstruction, prediction, and symplecticity errors (\downarrow) of
385 intrusive symplectic dimensionality reduction approaches over 10 test pendulum trajectories.
386

	Linear SMG	Quadr. SMG	Weakly-symp. AE	Geom. Symp. AE (ours)
$\ \tilde{\mathbf{q}} - \mathbf{q}\ /\ \mathbf{q}\ $	$(2.21 \pm 1.17) \times 10^{-1}$	$(2.84 \pm 4.23) \times 10^0$	$(1.43 \pm 0.68) \times 10^{-1}$	$(8.84 \pm 6.22) \times 10^{-2}$
$\ \tilde{\mathbf{p}} - \mathbf{p}\ /\ \mathbf{p}\ $	$(4.43 \pm 3.99) \times 10^{-1}$	$(2.75 \pm 1.60) \times 10^{-1}$	$(1.57 \pm 1.55) \times 10^{-1}$	$(4.09 \pm 3.99) \times 10^{-2}$
$\ \tilde{\mathbf{q}}_p - \mathbf{q}\ /\ \mathbf{q}\ $	$(2.58 \pm 2.33) \times 10^{-1}$	$(3.53 \pm 5.18) \times 10^0$	$(7.10 \pm 7.02) \times 10^{-1}$	$(1.13 \pm 0.92) \times 10^{-1}$
$\ \tilde{\mathbf{p}}_p - \mathbf{p}\ /\ \mathbf{p}\ $	$(2.16 \pm 1.89) \times 10^{-1}$	$(8.68 \pm 1.04) \times 10^{-1}$	$(2.16 \pm 1.89) \times 10^{-1}$	$(4.68 \pm 4.32) \times 10^{-2}$
$\ \mathbb{J}_{2d} - d\varphi^\top \mathbb{J}_{2n} d\varphi\ $	0.0 ± 0.0	0.0 ± 0.0	$(1.67 \pm 0.35) \times 10^{-2}$	0.0 ± 0.0
$\ d\rho - d\varphi^\top\ $	0.0 ± 0.0	0.0 ± 0.0	$(5.32 \pm 1.45) \times 10^0$	$(9.53 \pm 5.35) \times 10^{-1}$

393 jectors of high-dimensional Hamiltonian systems, highlighting the importance of embedding geo-
394 metric inductive biases as hard constraints in the AE and HNN. Details about datasets, network
395 architectures, and model training are provided in App. G. Additional results are provided in App. H.

396 4.1 COUPLED PENDULUM (15 DoF)

397 We consider a 15-DoF augmented pendulum whose nonlinear dynamics are specified from the sym-
398 plectomorphism of a latent 3-DoF pendulum augmented with a 12-DoF mass-spring mesh. As the
399 mesh oscillations are small, the system dynamics are approximately reducible to 3 dimensions.
400

401 **Learning high-dimensional dynamics.** We train a RO-HNN with latent dimension $d = 3$
402 and a conservative geometric HNN with Strang-symplectic integration on 3000 observations
403 $\{\mathbf{q}_i, \mathbf{p}_i\}$ (see App. G.1 for details). We compare our RO-HNN with a 15-DoF geometric HNN
404 that directly learns high-dimensional dynamic parameters, and with a **Hamiltonian neural Koop-
405 man operator (HNKO)** that learns a discrete linear predictor embedded in a 100-dimensional
406 lifted space. For completeness, we also consider a 3-DoF geometric HNN trained on ob-
407 servations of the latent system. Notice that this model would not be deployable in practice
408 as it requires ground truth information, i.e., latent observations, that would not be available.

409 Short- and long-term relative prediction errors over $H\Delta t = \{0.25, 5\}$ s are reported in Table 1. The RO-HNN outperforms the
410 15-DoF HNN and the HNKO, leading to significantly lower pre-
411 diction errors. Due to the high dimensionality, the 15-DoF HNN
412 was difficult to train and did not lead to stable long-term predictions.
413 As also shown in Fig. 2, the HNKO learns stable, but inaccurate long-term predictions. In contrast, the RO-HNN achieves sim-
414 ilar long-term predictions as the 3-DoF HNN, which is expected
415 to perform best as trained directly on the low-dimensional system
416 (see also Figs. 7-8 in App. H.1). This validates the RO-HNN abil-
417 ity to jointly learn a latent symplectic submanifold and associated
418 dynamics. Table 5 in App. H.1 shows that the RO-HNN is robust
419 to observation noise, consistently outperforming the HNKO.
420

421 **AE architecture.** The quality of the learned symplectic submani-
422 fold is crucial for learning accurate dynamics, as they may system-
423 atically deviate from the ground truth if the submanifold does not
424 accurately capture the solution space of the high-dimensional sys-
425 tem. We analyze the influence of the reduction method in the RO-HNN and compare the proposed
426 geometrically-constrained symplectic AE with linear and quadratic symplectic manifold Galerkin
427 (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023) which preserve the symplectic
428 structure by construction, and a weakly-symplectic AE (Buchfink et al., 2023) which encourages
429 structure preservation via a penalty term in the loss (see App. G.1 for details). We train each
430 approach on 3000 observations of the 15-DoF pendulum. Here, we consider an intrusive MOR
431 setup and project the known FOM dynamics onto the learned submanifold to predict new trajec-
432 tories ($H\Delta t = 0.25$ s). Table 2 shows that, due to their increased expressivity, the AEs outperform
433 the linear and quadratic projections, with the geometrically-constrained AEs achieving

Figure 2: Median and quartiles of relative error and reconstructed trajectories of the RO-HNN (—), 3-DoF HNN (—), and HNKO (—) vs. ground truth (—) for a horizon $H\Delta t = 5$ s. The 15-DoF HNN diverges and is not shown.

Figure 3: Ablation of the latent HNN architecture (*left*) and latent integrator (*middle, right*) of the RO-HNN to learn the dynamics of a 15-DoF pendulum.

Figure 4: Predicted (\bullet , \bullet , \bullet) vs ground truth (\circ , \circ , \circ) positions of the particle vortex. Times beyond 10s are out of the training data distribution.

the lowest reconstruction and prediction errors (see also Fig. 9 in App. H.1). Note that only the geometrically-constrained AE yielded stable longer-term predictions (see Fig. 2). Moreover, only the weakly-symplectic AE results in an error on the symplecticity condition (7), which is expected as both SMG projections and geometrically-constrained symplectic AE fulfill it by construction. Both SMG projections also ensure by design that the differential $d\rho$ is the symplectic inverse of $d\varphi$, while the geometrically-constrained AE leads to a lower error than the weakly-constrained one. Note that jointly training the AE with the geometric HNN in the RO-HNN further reduces this error to $(7.42 \pm 1.21) \times 10^{-1}$, showcasing the benefit of joint training.

Latent HNN architecture. We compare the performance of our geometric HNN to learn the low-dimensional dynamics of the latent 3-DoF pendulum against (1) a non-geometric variant that parametrizes the inverse mass-inertia matrix via a Cholesky network, and (2) two HNNs encoded as a single black-box network \mathcal{H}_θ , where we consider two MLPs of 64- and 256-neurons width. As shown in Fig. 3-*left*, the geometric HNN achieves the lowest reconstruction error, followed by the Cholesky HNN (see also App. H.1). This showcases the importance of considering both the quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices.

Latent integrator. We compare the Strang symplectic integrator against a symplectic leapfrog that disregards that the Hamiltonian is non-separable, and a Runge-Kutta of order 4 that overlooks its symplectic structure. Fig. 3-*middle, right* show that the Strang symplectic integrator achieves the lowest reconstruction error and conserves energy best during integration (see also App. H.1).

4.2 PARTICLE VORTEX (90-DOF)

Next, we learn the dynamics of a particle vortex composed of $n = 90$ particles with uniform interaction strengths. As the particle vortex dynamics are purely determined via the logarithmic interaction, its Hamiltonian function does not separate into kinetic and potential energies. We train RO-HNNs with $d = \{6, 10\}$ and (1) a geometric HNN and (2) a black-box HNN $\tilde{\mathcal{H}}_\theta$, both with Strang-symplectic integration (see App. G.2 for details). Fig. 4 depicts the predicted particle positions and momenta for a prediction horizon of $H = 100$, showing that the RO-HNN accurately predicts the particle vortex dynamics and generalizes beyond the data support ($t > 10$ s). As shown in Table 3 and Fig. 13 in App. H.2, the geometric HNNs outperform the black-box HNNs despite the lack of structure of the ground truth Hamiltonian. This suggests that the AE learns a symplectomorphism to a latent space where the Hamiltonian can be decomposed into two energy terms, thereby taking advantage of the additional structure of the geometric HNN. Moreover, the 6-dimensional models slightly outperform the 10-dimensional ones, showing that the choice of latent dimension trades off between the latent space expressivity and the limitations of HNNs in higher dimensions (see App. H.2 for more results).

Table 3: RO-HNN prediction errors (\downarrow) for different latent HNNs over 10 particle vortex trajectories.

HNN	$d = 6$		$d = 10$	
	$\ \tilde{q}_p - q\ /\ q\ $	$\ \tilde{p}_p - p\ /\ p\ $	$\ \tilde{q}_p - q\ /\ q\ $	$\ \tilde{p}_p - p\ /\ p\ $
Black-box	$(6.73 \pm 2.83) \times 10^{-1}$	$(6.28 \pm 2.18) \times 10^{-1}$	$(7.34 \pm 3.03) \times 10^{-1}$	$(7.04 \pm 2.27) \times 10^{-1}$
Geometric	$(4.00 \pm 2.01) \times 10^{-1}$	$(4.33 \pm 0.14) \times 10^{-1}$	$(4.44 \pm 0.60) \times 10^{-1}$	$(4.60 \pm 0.32) \times 10^{-1}$

Figure 5: Predicted positions of the damped cloth with a RO-HNN with $d = 10$ for a $625 \times$ longer horizon than during training. Times beyond 0.3s are out of the training data distribution.

Table 4: Mean and standard deviation of RO-HNN reconstruction and prediction errors (\downarrow) for different parametrization of the latent dissipation matrix \check{D} over 10 test cloth trajectories.

DoF	\check{D}	$\ \check{q}_p - q\ /\ q\ $	$\ \check{p}_p - p\ /\ p\ $	$\ \check{q}_p - \check{q}\ /\ \check{q}\ $	$\ \check{p}_p - \check{p}\ /\ \check{p}\ $
6	Cholesky	$(4.21 \pm 1.07) \times 10^{-2}$	$(4.11 \pm 2.93) \times 10^{-1}$	$(3.45 \pm 1.13) \times 10^{-2}$	$(6.90 \pm 10.90) \times 10^{-2}$
	SPD	$(4.15 \pm 2.10) \times 10^{-2}$	$(3.58 \pm 3.03) \times 10^{-1}$	$(3.11 \pm 1.86) \times 10^{-2}$	$(8.42 \pm 10.40) \times 10^{-2}$
	Ground truth	$(3.18 \pm 0.74) \times 10^{-2}$	$(3.45 \pm 3.99) \times 10^{-1}$	$(2.58 \pm 0.94) \times 10^{-2}$	$(4.77 \pm 5.36) \times 10^{-2}$
10	Cholesky	$(2.62 \pm 0.74) \times 10^{-2}$	$(3.39 \pm 3.01) \times 10^{-1}$	$(1.86 \pm 0.69) \times 10^{-2}$	$(3.90 \pm 4.36) \times 10^{-2}$
	SPD	$(3.21 \pm 1.25) \times 10^{-2}$	$(3.33 \pm 2.88) \times 10^{-1}$	$(3.45 \pm 1.13) \times 10^{-2}$	$(1.96 \pm 1.10) \times 10^{-2}$
	Ground truth	$(2.31 \pm 0.70) \times 10^{-2}$	$(3.44 \pm 3.05) \times 10^{-1}$	$(1.37 \pm 0.63) \times 10^{-2}$	$(4.26 \pm 4.58) \times 10^{-2}$

4.3 CLOTH (600-DOF)

Next, we learn the dynamics of a high-deformable damped system, namely a simulated 600-DoF thin cloth falling onto spheres of different radius, akin to (Friedl et al., 2025). The system is intrinsically damped due to external dissipation forces τ_d . We train two RO-HNNs with $d = \{6, 10\}$ and a dissipative geometric HNN with Strang-symplectic integration on 20 trajectories of 3000 observations $\{q_i, p_i, \tau_i\}$ each, where $\tau = \tau_c + \tau_d$ are measured external constraint forces (see App. G.3 for details). Fig. 5 depicts the predicted cloth configurations for a horizon $H\Delta t = 0.5$ s, showing that the RO-HNN accurately predicts the high-dimensional dissipative dynamics of the cloth, generalizing beyond the data support ($t > 0.3$ s) (see App. H.3 for additional results and ablations).

Latent damping. We compare the performance of the dissipative RO-HNN against (1) a conservative RO-HNN, where the dissipation forces τ_d are not learned but provided as ground truth in the external input $\tau = \tau_c + \tau_d$, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized via Cholesky decomposition. Note that the mass-inertia matrix is parametrized via SPD networks in all cases. Table 4 shows that both dissipative RO-HNNs successfully learn the dissipation forces, achieving similar prediction errors as the conservative RO-HNN (see also Fig. 14 in App. H.3). The geometric HNN slightly outperforms its Cholesky counterpart, showing the importance of considering geometry. However, the effect is less pronounced as when learning the inverse mass-inertia matrix, which we attribute to the reduced influence of damping compared to inertia in the overall dynamics. As the dissipative dynamics do not preserve the symplectic structure, we compare the Strang symplectic integrator, which assumes a symplectic structure, against a non-symplectic Runge-Kutta integrator of order 4. Fig. 20 in App. H.3 shows that, despite the dissipative structure, the Strang symplectic integrator outperforms the Runge-Kutta one. We hypothesize that this is due to the fact that the evolution of this dissipative system is mostly governed by its Hamiltonian function, especially over the short timesteps taken by the integrators.

5 CONCLUSIONS

This paper proposed a novel physics-inspired neural network, RO-HNN, for learning the dynamics of high-dimensional Hamiltonian systems from data. Our model provides physically-consistent, accurate, and stable predictions that generalize beyond the data support. To achieve this, our model systematically integrates geometric inductive bias by defining structure-preserving symplectic embeddings, considering the geometry of the dynamics parameters within the model and for optimization, and leveraging structure-preserving symplectic integrators. We showed that the structural incorporation of these priors in the architecture is essential to learn high-dimensional dynamics, whereas Euclidean and soft-constrained approaches consistently underperformed. Future work will extend RO-HNN to Hamiltonian systems with non-canonical symplectic forms. To do so, we plan to leverage Darboux theorem and explore the development of local RO-HNNs. We will also generalize the RO-HNN to learn more general dynamics of Port-Hamiltonian and contact Hamiltonian systems. Finally, we will investigate model-based control strategies within the RO-HNN latent space.

540 REFERENCES
541

542 Ralph Abraham and Jerrold E. Marsden. *Foundations of Mechanics*. Addison-Wesley Publishing
543 Company, Inc., second edition, 1987.

544 Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization Algorithms on Matrix
545 Manifolds*. Princeton University Press, 2007. URL <https://press.princeton.edu/absil>.

546

547 Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
548 *Intl. Conf. on Learning Representations (ICLR)*, 2019. URL <https://openreview.net/forum?id=r1eiqi09K7>.

549

550 Thomas Bendokat and Ralf Zimmermann. Geometric optimization for structure-preserving model
551 reduction of hamiltonian systems. *IFAC-PapersOnLine*, 55(20):457–462, 2022. URL <https://www.sciencedirect.com/science/article/pii/S2405896322013386>. 10th
552 Vienna International Conference on Mathematical Modelling MATHMOD 2022.

553

554 Aleksandar Botev, Andrew Jaegle, Peter Wirnsberger, Daniel Hennes, and Irina Higgins. Which
555 priors matter? Benchmarking models for learning latent dynamics. In *Proceedings of the Neural
556 Information Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021. URL
557 https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/f033ab37c30201f73f142449d037028d-Paper-round1.pdf.

558

559

560 Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press,
561 2023. URL <http://www.nicolasboumal.net/book>.

562

563 Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
564 from data by sparse identification of nonlinear dynamical systems. *Proceedings of the National
565 Academy of Sciences*, 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113.

566

567 Patrick Buchfink, Silke Glas, and Bernard Haasdonk. Symplectic model reduction of Hamiltonian
568 systems on nonlinear manifolds and approximation with weakly symplectic autoencoder. *SIAM
569 Journal of Scientific Computing*, 45:A289–A311, 2023. doi: 10.1137/21m1466657.

570

571 Patrick Buchfink, Silke Glas, Bernard Haasdonk, and Benjamin Unger. Model reduction on mani-
572 folds: A differential geometric framework. *Physica D: Nonlinear Phenomena*, 468:134299, 2024.
573 doi: 10.1016/j.physd.2024.134299.

574

575 Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery
576 of coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116
577 (45):22445–22451, 2019. doi: 10.1073/pnas.1906995116.

578

579 Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: Learning Hamil-
580 tonian equations on general coordinate systems. In *Neural Information Processing Systems
(NeurIPS)*, 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8b519f198dd26772e3e82874826b04aa-Paper.pdf.

581

582 Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neu-
583 ral networks. In *Intl. Conf. on Learning Representations (ICLR)*, 2020. URL <https://openreview.net/forum?id=BkgYPREtPr>.

584

585 Miles D. Cranmer, Sam Greydanus, Stephan Hoyer, Peter W. Battaglia, David N. Spergel, and
586 Shirley Ho. Lagrangian neural networks. In *ICLR Deep Differential Equations Workshop*, 2020.
587 URL <https://arxiv.org/abs/2003.04630>.

588

589 Pedro Duarte, Rui L. Fernandes, and Waldyr M. Oliva. Dynamics of the attractor in the
590 lotka–volterra equations. *Journal of Differential Equations*, 149(1):143–189, 1998. doi:
591 10.1006/jdeq.1998.3443.

592

593 Thai Duong and Nikolay Atanasov. Hamiltonian-based neural ODE networks on the SE(3) manifold
594 for dynamics learning and control. In *Robotics: Science and Systems (RSS)*, 2021. doi: 10.15607/
RSS.2021.XVII.086.

594 Aasa Feragen and Andrea Fuster. *Geometries and interpolations for symmetric positive definite matrices*, pp. 85–113. Mathematics and Visualization. Springer, 2017. doi: 10.1007/978-3-319-61358-1_5.

597 Katharina Friedl, Noémie Jaquier, Jens Lundell, Tamim Asfour, and Danica Kragic. A Riemannian framework for learning reduced-order Lagrangian dynamics. In *Intl. Conf. on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=RoN6M3i7gJ>.

601 Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In *Neural Information Processing Systems (NeurIPS)*, volume 32, 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf.

605 William R. Hamilton. On a general method in dynamics. *Philosophical Transactions of the Royal Society*, pp. 247–308, 1834. doi: 10.1098/rstl.1834.0017.

608 Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. Sympnets: In-609trinsic structure-preserving symplectic networks for identifying Hamiltonian systems. *Neural Networks*, 132:166–179, 2020. doi: 10.1016/j.neunet.2020.08.017.

611 Pengzhan Jin, Zhen Zhang, Ioannis G. Kevrekidis, and George Em Karniadakis. Learning poisson 612 systems and trajectories of autonomous systems via poisson neural networks. *IEEE Trans. on 613 Neural Networks and Learning Systems*, 34:8271–8283, 2021. doi: 10.1109/tnnls.2022.3148734.

615 Anas Jnini, Lorenzo Breschi, and Flavio Vella. Riemann tensor neural networks: Learning 616 conservative systems with physics-constrained networks. In *Intl. Conf. on Machine Learning 617 (ICML)*, 2025. URL <https://openreview.net/forum?id=cPMhMoJLAX¬eId=I8LbqaDsgw>.

619 Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in PyTorch. 620 *arXiv:2005.02819*, 2020. URL <https://github.com/geoopt/geoopt>.

621 John M. Lee. *Introduction to smooth manifolds*. Springer, 2013. doi: 10.1007/978-1-4419-9982-5.

623 Benedict Leimkuhler and Sebastian Reich. *Simulating Hamiltonian Dynamics*. Cambridge University 624 Press, 2005. doi: 10.1017/CBO9780511614118.

625 Marco Lepri, Davide Bacci, and Cosimo Della Santina. Neural autoencoder-based structure-626 preserving model order reduction and control design for high-dimensional physical systems. *IEEE 627 Control Systems Letters*, 8:133–138, 2024. doi: 10.1109/LCSYS.2023.3344286.

629 Jingyue Liu, Pablo Borja, and Cosimo Della Santina. Physics-informed neural networks to model 630 and control robots: A theoretical and experimental investigation. *Advanced Intelligent Systems*, 6 631 (5), 2024a. doi: 10.1002/aisy.202300385.

632 Ning Liu, Yiming Fan, Xianyi Zeng, Milan Klöwer, Lu Zhang, and Yue Yu. Harnessing the power 633 of neural operators with automatically encoded conservation laws. In *Intl. Conf. on Machine 634 Learning (ICML)*, 2024b. URL <https://proceedings.mlr.press/v235/liu24p.html>.

636 Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear em-637 beddings of nonlinear dynamics. *Nature Communications*, 9(1):4950, 2018. doi: 10.1038/s41467-018-07210-0.

640 Michael Lutter and Jan Peters. Combining physics and deep learning to learn continuous-time 641 dynamics models. *Intl. Journal of Robotics Research*, 42(3):83–107, 2023. doi: 10.1177/02783649231169492.

643 Samuel E. Otto, Gregory R. Macchio, and Clarence W. Rowley. Learning nonlinear projections 644 for reduced-order modeling of dynamical systems using constrained autoencoders. *Chaos: An 645 Interdisciplinary Journal of Nonlinear Science*, 33(11), 2023. doi: 10.1063/5.0169688.

647 Liqian Peng and Kamran Mohseni. Symplectic model reduction of Hamiltonian systems. *SIAM 648 Journal on Scientific Computing*, 38(1):A1–A27, 2016. doi: 10.1137/140978922.

648 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing.
 649 *International Journal of Computer Vision*, 66(1):41–66, 2006. doi: 10.1007/s11263-005-3222-z.
 650

651 Rick Salmon. Hamiltonian fluid mechanics. *Annual Review of Fluid Mechanics*, 20:225–256, 1988.
 652 doi: 10.1146/annurev.fl.20.010188.001301.

653 Sheikh Saqlain, Wei Zhu, Efstathios G. Charalampidis, and Panayotis G. Kevrekidis. Discovering
 654 governing equations in discrete systems using pinns. *Communications in Nonlinear Science and*
 655 *Numerical Simulation*, 126:107498, 2023. doi: <https://doi.org/10.1016/j.cnsns.2023.107498>.
 656

657 Wilhelmus H. A. Schilders, Henk A. Van der Vorst, and Joost Rommes. *Model Order Reduction:*
 658 *Theory, Research Aspects and Applications*, volume 13. Springer Verlag, 2008. doi: 10.1007/
 659 978-3-540-78841-6.

660 Erwin Schrödinger. Quantisierung als eigenwertproblem. *Annalen der Physik*, 384(4):361–376,
 661 1926. doi: 10.1002/andp.19263840404.

663 Harsh Sharma and Boris Kramer. Preserving lagrangian structure in data-driven reduced-order mod-
 664eling of large-scale dynamical systems. *Physica D: Nonlinear Phenomena*, 462:134128, 2024.
 665 doi: 10.1016/j.physd.2024.134128.
 666

667 Harsh Sharma, Hongliang Mu, Patrick Buchfink, Rudy Geelen, Silke Glas, and Boris Kramer. Sym-
 668 plectic model reduction of Hamiltonian systems using data-driven quadratic manifolds. *Computer*
 669 *Methods in Applied Mechanics and Engineering*, 417:116402, 2023. doi: 10.1016/j.cma.2023.
 670 116402.

671 Harsh Sharma, David A. Najera-Flores, Michael D. Todd, and Boris Kramer. Lagrangian operator
 672 inference enhanced with structure-preserving machine learning for nonintrusive model reduction
 673 of mechanical systems. *Computer Methods in Applied Mechanics and Engineering*, 423:116865,
 674 2024. doi: 10.1016/j.cma.2024.116865.
 675

676 Andrew Sosanya and Sam Greydanus. Dissipative Hamiltonian neural networks: Learning dis-
 677 sipative and conservative dynamics separately. *arXiv preprint arXiv:2201.10085*, 2022. doi:
 678 10.48550/arxiv.2201.10085.

679 Molei Tao. Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long
 680 time performance. *Phys. Rev. E*, 94:043303, 2016. doi: 10.1103/PhysRevE.94.043303.
 681

682 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 683 In *IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS)*, pp. 5026–5033, 2012. doi:
 684 10.1109/IROS.2012.6386109.

685 Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
 686 gies in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):A3055–
 687 A3081, 2021. doi: 10.1137/20m1318043.
 688

689 Alan Weinstein. Symplectic manifolds and their Lagrangian submanifolds. *Advances in Mathemat-
 690 ics*, 6(3):329–346, 1971. doi: [https://doi.org/10.1016/0001-8708\(71\)90020-X](https://doi.org/10.1016/0001-8708(71)90020-X).
 691

692 Shiyong Xiong, Yunjin Tong, Xingzhe He, Shuqi Yang, Cheng Yang, and Bo Zhu. Nonseparable
 693 symplectic neural networks. In *Intl. Conf. on Learning Representations (ICLR)*, 2021. URL
 694 <https://openreview.net/forum?id=B5VvQrI49Pa>.

695 Jingdong Zhang, Qunxi Zhu, and Wei Lin. Learning hamiltonian neural koopman operator and
 696 simultaneously sustaining and discovering conservation laws. *Physical Review Research*, 6(1),
 697 2024. doi: 10.1103/PhysRevResearch.6.L012031.
 698

699 Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative SymODEN: Encod-
 700 ing Hamiltonian dynamics with dissipation and control into deep learning. In *ICLR Workshop*
 701 *on Integration of Deep Neural Models and Differential Equations (DeepDiffEq)*, 2020a. URL
<https://openreview.net/pdf?id=knjWFnx6CN>.

702 Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-net: Learning
703 Hamiltonian dynamics with control. In *Intl. Conf. on Learning Representations (ICLR)*, 2020b.
704 URL <https://openreview.net/forum?id=ryxmb1rKDS>.

705 Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Extending Lagrangian
706 and Hamiltonian neural networks with differentiable contact models. In *Neural In-*
707 *formation Processing Systems (NeurIPS)*, volume 34, pp. 21910–21922, 2021. URL
708 https://proceedings.neurips.cc/paper_files/paper/2021/file/b7a8486459730bea9569414ef76cf03f-Paper.pdf.

710 Martin Šípká, Michal Pavelka, Oğul Esen, and Miroslav Grmela. Direct poisson neural networks:
711 learning non-symplectic mechanical systems. *Journal of Physics A: Mathematical and Theoreti-*
712 *cal*, 56(49):495201, 2023. doi: 10.1088/1751-8121/ad0803.

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756

A RIEMANNIAN AND SYMPLECTIC GEOMETRY

758 In this section, we provide a short background on Riemannian and symplectic geometry, which
 759 compose the theoretical backbone of the RO-HNN. We refer the interested reader to (Abraham &
 760 Marsden, 1987; Lee, 2013) for more details.

761 As Riemannian and symplectic manifolds are smooth manifolds with special structures. A smooth
 762 manifold \mathcal{M} of dimension n can be intuitively conceptualized as a manifold that is locally, but not
 763 globally, similar to the Euclidean space \mathbb{R}^n . The smooth structure of \mathcal{M} allows the definition of
 764 derivative of curves on the manifold, which are tangent vectors. The set of all tangent vectors at
 765 a point $\mathbf{x} \in \mathcal{M}$ defines the tangent space $\mathcal{T}_{\mathbf{x}}\mathcal{Q}$ which is a n -dimensional vector space. Tangent
 766 vectors can be represented on an ordered basis of $\mathcal{T}_{\mathbf{x}}\mathcal{Q}$ as $\mathbf{v} = v^i \frac{\partial}{\partial x^i}|_{\mathbf{x}}$. The tangent bundle $\mathcal{T}\mathcal{M}$ is
 767 the disjoint union of all tangent spaces on \mathcal{M} and is $2n$ -dimensional smooth manifold.

768 The cotangent space $\mathcal{T}_{\mathbf{x}}^*\mathcal{M}$ at $\mathbf{x} \in \mathcal{M}$ is the dual of the tangent space $\mathcal{T}_{\mathbf{x}}\mathcal{Q}$, i.e.,
 769 $\mathcal{T}_{\mathbf{x}}^*\mathcal{M} = \{\lambda | \lambda : \mathcal{T}_{\mathbf{x}}\mathcal{Q} \rightarrow \mathbb{R} \text{ linear}\}$. Cotangent vectors can be represented on an ordered basis of
 770 $\mathcal{T}_{\mathbf{x}}^*\mathcal{M}$ as $\lambda = \lambda_i dx^i|_{\mathbf{x}}$. The cotangent bundle $\mathcal{T}^*\mathcal{M}$ is the disjoint union of all cotangent spaces on
 771 \mathcal{M} and is $2n$ -dimensional smooth manifold, similarly as the tangent bundle.

772 A smooth mapping f between two smooth manifolds $\check{\mathcal{M}}$ and \mathcal{M} with $\dim(\check{\mathcal{M}}) = d \ll \dim(\mathcal{M}) = n$
 773 is an immersion if the differential $df|_{\check{\mathbf{x}}} : \mathcal{T}_{\check{\mathbf{x}}}\check{\mathcal{M}} \rightarrow \mathcal{T}_{f(\check{\mathbf{x}})}\mathcal{Q}$. An embedding is an immersion that is
 774 also a homeomorphism onto its image, i.e., it is an injective and structure-preserving map. In this
 775 case, $\check{\mathcal{M}}$ is an embedded submanifold of \mathcal{M} . The pullback of a function $h : \mathcal{M} \rightarrow \mathbb{R}$ by a smooth
 776 mapping $f : \mathcal{N} \rightarrow \mathcal{M}$ between two smooth manifolds \mathcal{N} and \mathcal{M} is a smooth function f^*h with

$$777 \quad f^*h(\mathbf{x}) = h(f(\mathbf{x})) = (h \circ f)(\mathbf{x}). \quad (13)$$

779

A.1 RIEMANNIAN GEOMETRY

780 A Riemannian manifold (\mathcal{M}, g) is a smooth manifold \mathcal{M} endowed with a Riemannian metric g , i.e.,
 781 a smoothly-varying inner product $g_{\mathbf{x}} : \mathcal{T}_{\mathbf{x}}\mathcal{Q} \times \mathcal{T}_{\mathbf{x}}\mathcal{Q} \rightarrow \mathbb{R}$. In coordinates, a Riemannian metric is
 782 represented by a SPD matrix. The Riemannian metric defines the notion of distance on the manifold,
 783 as well as the so-called geodesics, which are length-minimizing curves on the manifold.

784 Learning and optimization methods involving Riemannian data typically take advantage of their
 785 Euclidean tangent spaces to operate. Specifically, the exponential map $\text{Exp}_{\mathbf{x}} : \mathcal{T}_{\mathbf{x}}\mathcal{Q} \rightarrow \mathcal{M}$ and log-
 786 arithmetic map $\text{Exp}_{\mathbf{x}} : \mathcal{M} \rightarrow \mathcal{T}_{\mathbf{x}}\mathcal{Q}$, derived from the Riemannian metric, allows us to map back and
 787 forth between the Euclidean tangent space and the manifold. Moreover, the parallel transport
 788 $\text{PT}_{\mathbf{x} \rightarrow \mathbf{y}} : \mathcal{T}_{\mathbf{x}}\mathcal{Q} \rightarrow \mathcal{T}_{\mathbf{y}}\mathcal{Q}$ move tangent vectors across tangent spaces such that their inner product is
 789 conserved.

790 A Lagrangian system $(\mathcal{M}, g, \mathcal{L})$ is a dynamical system evolving on a Riemannian manifold (\mathcal{M}, g)
 791 according to a smooth Lagrangian function $\mathcal{L} : \mathcal{T}\mathcal{M} \rightarrow \mathbb{R}$.

794

A.2 SYMPLECTIC GEOMETRY

795 A symplectic manifold (\mathcal{M}, ω) is a $2n$ -dimensional smooth manifold \mathcal{M} equipped with a symplectic
 796 form ω , i.e., a closed, non-degenerate, differential 2-form $g_{\mathbf{x}} : \mathcal{T}_{\mathbf{x}}\mathcal{Q} \times \mathcal{T}_{\mathbf{x}}\mathcal{Q} \rightarrow \mathbb{R}$, which satisfies

$$797 \quad \omega(\mathbf{u}, \mathbf{v}) = -\omega(\mathbf{v}, \mathbf{u}), \quad \omega(\mathbf{u}, \mathbf{v}) \forall \mathbf{v} \Rightarrow \mathbf{u} = \mathbf{0}, \quad \text{and} \quad d\omega = 0 \quad (14)$$

798 for all $\mathbf{u}, \mathbf{v} \in \mathcal{T}_{\mathbf{x}}\mathcal{Q}$. In coordinates, a symplectic form is represented by a skew-symmetric matrix
 799 ω . We slightly abuse notation, equivalently denoting symplectic manifolds as (\mathcal{M}, ω) . Notice that
 800 the non-degeneracy of ω implies that all symplectic manifolds are of even dimension.

801 A diffeomorphism $f : (\mathcal{M}, \omega) \rightarrow (\mathcal{N}, \eta)$ between symplectic manifolds is a symplectomorphism
 802 if it preserves the symplectic form, i.e., $f^*\eta = \omega$ with $f^*\eta$ denoting the pullback of η by f . The
 803 Hamiltonian flow $\phi_t : (\mathcal{M}, \omega) \rightarrow (\mathcal{M}, \omega)$ induced by $\mathbf{X}_{\mathcal{H}}$ is a symplectomorphism, as it maps
 804 points $\mathbf{x} \in \mathcal{M}$ along the integral curves of the manifold thus preserving the symplectic form.

805 Following Darboux' theorem, there exists a canonical chart (U, ϕ) , $\mathbf{x} \in U$ for each point $\mathbf{x} \in \mathcal{M}$ in
 806 which the symplectic form is represented as $\omega = \mathbb{J}_{2n}^T$ via the canonical Poisson tensor

$$807 \quad \mathbb{J}_{2n} = \begin{pmatrix} \mathbf{0} & \mathbf{I}_n \\ -\mathbf{I}_n & \mathbf{0} \end{pmatrix}, \quad \text{for which} \quad \mathbb{J}_{2n}^T = \mathbb{J}_{2n}^{-1} = -\mathbb{J}_{2n}.$$

In other words, every symplectic manifold is locally symplectomorphic to $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^T)$. A system $(\mathbb{R}^{2n}, \mathbb{J}_{2n}^T, \mathcal{H})$ is called a canonical Hamiltonian system. Moreover, the cotangent bundle $\mathcal{T}^* \mathcal{Q}$ any n -dimensional smooth manifold \mathcal{Q} carries a canonical symplectic structure, making it a symplectic manifold $(\mathcal{T}^* \mathcal{Q}, \mathbb{J}_{2n})$.

A Hamiltonian system $(\mathcal{M}, \omega, \mathcal{H})$ is a dynamical system evolving on a symplectic manifold (\mathcal{M}, ω) according to a smooth Hamiltonian function $\mathcal{H} : \mathcal{M} \rightarrow \mathbb{R}$.

B RIEMANNIAN MANIFOLDS OF INTEREST

This section provides a brief overview of the Riemannian manifolds of interest for this paper, namely the manifold of SPD matrices \mathcal{S}_{++}^n (App. B.1), and the biorthogonal manifold $\mathcal{B}_{n,d}$ (App. B.2).

B.1 THE MANIFOLD OF SPD MATRICES

We denote the set of $n \times n$ symmetric matrices as $\text{Sym}^n = \{S \in \mathbb{R}^{n \times n} | S = S^T\}$. The set of SPD matrices $\mathcal{S}_{++}^n = \{\Sigma \in \text{Sym}^n | \Sigma \succ 0\}$ forms a smooth manifold of dimension $\dim(\mathcal{S}_{++}^n) = \frac{n(n+1)}{2}$, which can be represented as the interior of a convex cone embedded in Sym^n . The tangent space $\mathcal{T}_\Sigma \mathcal{S}_{++}^n$ at a point $\Sigma \in \mathcal{S}_{++}^n$ is identified with Sym^n .

The SPD manifold can be endowed with various Riemannian metrics, resulting in different theoretical properties and closed-form operations. We utilize the widely-used affine-invariant metric (Pennec et al., 2006), which places symmetric matrices with non-positive eigenvalues at infinite distance from any SPD matrix and prevents the well-known swelling effect (Feragen & Fuster, 2017). The affine-invariant metric defines the inner product $g : \mathcal{T}_\Sigma \mathcal{S}_{++}^n \times \mathcal{T}_\Sigma \mathcal{S}_{++}^n \rightarrow \mathbb{R}$ given two matrices $T_1, T_2 \in \mathcal{T}_\Sigma \mathcal{S}_{++}^n$, as

$$\langle T_1, T_2 \rangle_\Sigma = \text{tr}(\Sigma^{-\frac{1}{2}} T_1 \Sigma^{-1} T_2 \Sigma^{-\frac{1}{2}}). \quad (15)$$

The corresponding geodesic distance, exponential map, logarithmic maps, and parallel transport are computed in closed form as

$$d_{\mathcal{M}}(\Lambda, \Sigma) = \|\log(\Sigma^{-\frac{1}{2}} \Lambda \Sigma^{-\frac{1}{2}})\|_{\text{F}}, \quad (16)$$

$$\text{Exp}_\Sigma(S) = \Sigma^{\frac{1}{2}} \exp(\Sigma^{-\frac{1}{2}} S \Sigma^{-\frac{1}{2}}) \Sigma^{\frac{1}{2}}, \quad (17)$$

$$\text{Log}_\Sigma(\Lambda) = \Sigma^{\frac{1}{2}} \log(\Sigma^{-\frac{1}{2}} \Lambda \Sigma^{-\frac{1}{2}}) \Sigma^{\frac{1}{2}}, \quad (18)$$

$$\text{PT}_{\Sigma \rightarrow \Lambda}(T) = A_{\Sigma \rightarrow \Lambda} T A_{\Sigma \rightarrow \Lambda}^T, \quad (19)$$

where $\exp(\cdot)$ and $\log(\cdot)$ denote the matrix exponential and logarithm functions, and $A_{\Sigma \rightarrow \Lambda} = \Lambda^{\frac{1}{2}} \Sigma^{-\frac{1}{2}}$. These operations are key for the SPD networks encoding the mass-inertia and damping matrices in geometric HNNs (see Sec. 3.2), and for the on-manifold parameter optimization of SPD parameters of the network when training the model (see Sec. 3.4).

B.2 THE BIORTHOGONAL MANIFOLD

The biorthogonal manifold is the smooth manifold $\mathcal{B}_{n,d} = \{(\Phi, \Psi) \in \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} | \Psi^T \Phi = \mathbf{I}_d\}$ formed by pairs of full-row-rank matrices $\Phi, \Psi \in \mathbb{R}^{n \times d}$, with $n \geq d \geq 1$ satisfying the biorthogonality condition $\Psi^T \Phi = \mathbf{I}$ (Otto et al., 2023). The biorthogonal matrix manifold $\mathcal{B}_{n,d}$ is an embedded submanifold of the Euclidean product space $\mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d}$ with dimension $\dim(\mathcal{B}_{n,d}) = 2nd - d^2$. The tangent space at a point $(\Phi, \Psi) \in \mathcal{B}_{n,d}$ is given by

$$\mathcal{T}_{(\Phi, \Psi)} \mathcal{B}_{n,d} = \{(\mathbf{V}, \mathbf{W}) \in \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} : \mathbf{W}^T \Phi + \Psi^T \mathbf{V} = \mathbf{0}\}. \quad (20)$$

A pair of matrices $(\mathbf{X}, \mathbf{Y}) \in \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d}$ can be projected onto the tangent space $\mathcal{T}_{(\Phi, \Psi)} \mathcal{B}_{n,d}$ via the projection operation $\text{Proj}_{(\Phi, \Psi)} : \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \rightarrow \mathcal{T}_{(\Phi, \Psi)} \mathcal{B}_{n,d}$ defined as

$$\text{Proj}_{(\Phi, \Psi)}(\mathbf{X}, \mathbf{Y}) = (\mathbf{X} - \Psi \mathbf{A}, \mathbf{Y} - \Phi \mathbf{A}^T), \quad (21)$$

where \mathbf{A} is a solution to the Sylvester equation $\mathbf{A}(\Phi^T \Phi) + (\Psi^T \Psi) \mathbf{A} = \mathbf{Y}^T \Phi + \Psi^T \mathbf{X}$.

When optimizing the parameters of the geometrically-constrained symplectic AE presented in Sec. 3.1, it is crucial to account for the biorthogonal geometry of the pairs of weight matrices (Friedl et al., 2025). Therefore, we train the model by optimizing pairs of weight matrices via Riemannian optimization on the biorthogonal manifold (see Sec. 3.4). Riemannian optimization algorithms utilize the exponential map and the parallel transport operations, which are difficult to obtain in closed form for the biorthogonal manifold. Therefore, we leverage a first-order approximation of the exponential map, i.e., a retraction map $R_{(\Phi, \Psi)} : \mathcal{T}_{(\Phi, \Psi)} \mathcal{B}_{n,d} \rightarrow \mathcal{B}_{n,d}$, defined as

$$R_{(\Phi, \Psi)}(\mathbf{V}, \mathbf{W}) = \left((\Phi + \mathbf{V}) \left((\Psi + \mathbf{W})^\top (\Phi + \mathbf{V}) \right)^{-1}, (\Psi + \mathbf{W}) \right). \quad (22)$$

Moreover, we use a first-order approximation of the parallel transport operation defined via the successive application of retraction and projection as

$$PT_{(\Phi_1, \Psi_1) \rightarrow (\Phi_2, \Psi_2)} = \text{Proj}_{(\Phi_2, \Psi_2)} \circ R_{(\Phi_1, \Psi_1)}. \quad (23)$$

C SPD NETWORK

As explained in Sec. 3.2, we learn reduced Hamiltonian dynamics in the embedded symplectic submanifold via a latent geometric HNN that parametrizes the inverse mass-inertia and damping matrices via SPD networks that account for their intrinsic geometry. We use a SPD network introduced in (Friedl et al., 2025) composed of (1) Euclidean layers $g_{\mathbb{R}}$, and (2) an exponential map layer g_{Exp} , which we detail next.

Euclidean Layers $g_{\mathbb{R}}$. The SPD network leverages classical fully-connected layers to model functions that return elements on the tangent space of a manifold. The output of the l -th Euclidean layer $\mathbf{x}^{(l)}$ is given by

$$\mathbf{x}^{(l)} = \sigma(\mathbf{A}_l \mathbf{x}^{(l-1)} + \mathbf{b}_l), \quad (24)$$

with $\mathbf{A}_l \in \mathbb{R}^{n_l \times n_{l-1}}$ and $\mathbf{b}_l \in \mathbb{R}^{n_l}$ the weight matrix and bias of the layer l , and σ a nonlinear activation function of choice.

Exponential Map Layer g_{Exp} . The exponential map layer is used to map layer inputs $\mathbf{X}^{(l-1)} \in \text{Sym}^n$ from the tangent space onto the manifold \mathcal{S}_{++}^n . The layer output is given by

$$\mathbf{X}^{(l)} = \text{Exp}_{\mathbf{P}}(\mathbf{X}^{(l-1)}), \quad (25)$$

with $\mathbf{P} \in \mathcal{S}_{++}^n$ denoting the basepoint of the considered tangent space. Following the results of the ablation conducted in (Friedl et al., 2025), we define \mathbf{P} as equal to the identity matrix \mathbf{I} , so that the layer input is assumed to lie in the tangent space at the origin of the cone.

Note that Friedl et al. (2025) additionally consider SPD layers mapping SPD matrices to SPD matrices, analogous to fully-connected Euclidean layers. However, the SPD networks with additional SPD layers were shown to achieve similar performances as those employing solely Euclidean and exponential-map layers. Therefore, we do not integrate such layers in the SPD networks of the RO-HNN.

D ADDITIONAL DETAILS ON THE GEOMETRICALLY-CONSTRAINED SYMPLECTIC AUTOENCODER

D.1 CONSTRAINED AUTOENCODER

The geometrically-constrained symplectic AE presented in Sec. 3.1 builds on the constrained AE architecture introduced in (Otto et al., 2023). Specifically, we learn the embedding $\varphi_{\mathcal{Q}}$ and associated point reduction $\rho_{\mathcal{Q}}$ via a constrained AE with layer pairs (10), and compute their differential to construct the tangent-lifted maps (8), as explained in Sec. 3.1. To guarantee the projection properties, the constrained AE architecture from (Otto et al., 2023) leverages pairs of biorthogonal weight matrices, which are described in Sec. 3.1, and pairs of invertible activation functions, which we introduce next.

918 The nonlinear activation functions σ_- and σ_+ employed in the encoder and decoder network must
 919 satisfy $\sigma_- \circ \sigma_+ = \text{id}$. To do so, they are defined as
 920

$$921 \quad \sigma_{\pm}(x_i) = \frac{bx_i}{a} \mp \frac{\sqrt{2}}{a \sin(\alpha)} \pm \frac{1}{a} \sqrt{\left(\frac{2x_i}{\sin(\alpha) \cos(\alpha)} \mp \frac{\sqrt{2}}{\cos(\alpha)} \right)^2 + 2a}, \quad (26)$$

924 with

$$925 \quad \begin{cases} a &= \csc^2(\alpha) - \sec^2(\alpha), \\ 926 \quad b &= \csc^2(\alpha) + \sec^2(\alpha). \end{cases} \quad (27)$$

927 The activations then resemble smooth, rotation-symmetric versions of the common leaky ReLu ac-
 928 tivations. The parameter $0 < \alpha < \frac{\pi}{4}$ sets the slope of the activation functions. Throughout our
 929 experiments, we set $\alpha = \frac{\pi}{8}$.
 930

931 Otto et al. (2023) proposed to incorporate the biorthogonality of the weight matrices by consider-
 932 ing an overparametrization of the biorthogonal weights along with a soft constraint in the form of
 933 additional penalty losses. However, this approach does not guarantee the biorthogonality condition,
 934 in contrast to the Riemannian approach we use in this paper. Moreover, as shown in (Friedl et al.,
 935 2025), the overparametrized model leads to higher reconstruction errors compared to constrained
 936 AE trained on the biorthogonal manifold.

937 D.2 COMPUTATION OF THE COTANGENT-LIFTED MAPS

939 We construct the cotangent-lifted maps (8) by differentiating the outputs of the encoder $\rho_{\mathcal{Q}}$ and
 940 decoder $\varphi_{\mathcal{Q}}$ networks with respect to their inputs. **To avoid the computational cost related to**
 941 **the automatically-differentiated transposed Jacobian-vector product**, our implementation computes
 942 layer-wise analytical derivatives and obtains the full differentials via the chain rule. **The derivatives**
 943 **of the nonlinear activations σ_{\pm} are given by**

$$944 \quad \sigma'_{\pm}(x_i) = \frac{d}{dx_i} \sigma_{\pm}(x_i) = \frac{b}{a} \pm \frac{2}{a \sin(\alpha) \cos(\alpha)} \frac{\frac{2x_i}{\sin(\alpha) \cos(\alpha)} \mp \frac{\sqrt{2}}{\cos(\alpha)}}{\sqrt{\left(\frac{2x_i}{\sin(\alpha) \cos(\alpha)} \mp \frac{\sqrt{2}}{\cos(\alpha)} \right)^2 + 2a}}, \quad (28)$$

948 thus fulfilling the inverse-derivative property $\sigma'_-(\sigma_+(x_i)) \sigma'_+(x_i) = 1$ by construction.

949 The pullbacks $d\rho_{\mathcal{Q}}|_{\varphi_{\mathcal{Q}}(\tilde{\mathbf{q}})}^{\top} \tilde{\mathbf{p}}$ and $d\varphi_{\mathcal{Q}}|_{\rho_{\mathcal{Q}}(\mathbf{q})}^{\top} \mathbf{p}$ are computed analytically as a composition of trans-
 950 posed layer derivatives $d\rho_{\mathcal{Q}}^{\top} = d\rho_{\mathcal{Q}}^{(L)\top} \circ \dots \circ d\rho_{\mathcal{Q}}^{(1)\top}$ and $d\varphi_{\mathcal{Q}} = d\varphi_{\mathcal{Q}}^{(1)\top} \circ \dots \circ d\varphi_{\mathcal{Q}}^{(L)\top}$, with
 951 $d\rho_{\mathcal{Q}}^{(l)} \in \mathbb{R}^{n_{l-1} \times n_l}$ and $d\varphi_{\mathcal{Q}}^{(l)} \in \mathbb{R}^{n_l \times n_{l-1}}$. From the definition of the layer pairs (10), the transpose
 952 of the layer derivatives are given as
 953

$$954 \quad d\rho_{\mathcal{Q}}^{(l)\top} \Big|_{\mathbf{q}^{(l-1)}} = \Psi_l \text{diag}(\sigma'_-(\mathbf{q}^{(l-1)})) \quad \text{and} \quad d\varphi_{\mathcal{Q}}^{(l)\top} \Big|_{\tilde{\mathbf{q}}^{(l-1)}} = \text{diag}(\sigma'_+(\tilde{\mathbf{q}}^{(l-1)})) \Phi_l^{\top}, \quad (29)$$

955 with $\text{diag}(\mathbf{v}) = \begin{pmatrix} v_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & v_d \end{pmatrix}$.

956 The computation of the layer derivatives requires storing the intermediate reduced and recon-
 957 structed positions $\tilde{\mathbf{q}}^{(l-1)}$ and $\mathbf{q}^{(l-1)}$ for each layer, which are obtained during the forward pass through the
 958 position encoder $\rho_{\mathcal{Q}}$ and decoder $\varphi_{\mathcal{Q}}$. During the momentum forward pass, we store each inter-
 959 mediate $\mathbf{p}^{(l-1)} = d\rho_{\mathcal{Q}}^{(l)\top} \mathbf{p}^{(l)}$ and $\tilde{\mathbf{p}}^{(l)} = d\varphi_{\mathcal{Q}}^{(l)\top} \mathbf{p}^{(l-1)}$. This allows the computational cost of one
 960 momentum forward pass to roughly be equal to that of one forward pass of the position projec-
 961 tion, scaling constantly through the matrix-multiplication of weights with system dimensionality
 962 $\dim(\mathcal{Q})$. We provide wall-clock evaluation times of our geometrically-constrained symplectic AE
 963 on the 600-DoF cloth dataset in App. G.3 .
 964

965 E STRANG-SYMPLECTIC INTEGRATOR

966 As explained in Sec. 3.3, we integrate the learned reduced-order Hamiltonian flow (11) using the
 967 second-order symplectic integrator of (Tao, 2016), which we refer to as Strang-symplectic integrator.

972 The Strang-symplectic integrator approximates the flow of a non-separable Hamiltonian function
 973 $\mathcal{H}(\mathbf{q}, \mathbf{p})$ by considering an augmented Hamiltonian function
 974

$$\bar{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \mathcal{H}_A(\mathbf{q}, \mathbf{y}) + \mathcal{H}_B(\mathbf{p}, \mathbf{x}) + w\mathcal{H}_C(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}), \quad (30)$$

976 in an extended phase space, where $\mathcal{H}_A(\mathbf{q}, \mathbf{y})$ and $\mathcal{H}_B(\mathbf{p}, \mathbf{x})$ are two copies of the original system
 977 with mixed-up positions and momenta, and $\mathcal{H}_C = \frac{1}{2}(\|\mathbf{q}, \mathbf{x}\|^2 + \|\mathbf{p}, \mathbf{y}\|^2)$ is an artificial restraint with
 978 parameter w controlling the binding of $\mathcal{H}_A(\mathbf{q}, \mathbf{y})$ and $\mathcal{H}_B(\mathbf{p}, \mathbf{x})$. The dynamics of the augmented
 979 Hamiltonian $\bar{\mathcal{H}}$ are

$$\dot{\mathbf{q}} = \frac{\partial}{\partial \mathbf{p}} \bar{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \frac{\partial}{\partial \mathbf{p}} H(\mathbf{x}, \mathbf{p}) + w(\mathbf{p} - \mathbf{y}) \quad (31)$$

$$\dot{\mathbf{p}} = \frac{\partial}{\partial \mathbf{q}} \bar{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \frac{\partial}{\partial \mathbf{q}} H(\mathbf{q}, \mathbf{y}) - w(\mathbf{q} - \mathbf{x}) \quad (32)$$

$$\dot{\mathbf{x}} = \frac{\partial}{\partial \mathbf{y}} \bar{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \frac{\partial}{\partial \mathbf{y}} H(\mathbf{q}, \mathbf{y}) + w(\mathbf{y} - \mathbf{p}) \quad (33)$$

$$\dot{\mathbf{y}} = \frac{\partial}{\partial \mathbf{p}} \bar{\mathcal{H}}(\mathbf{q}, \mathbf{p}, \mathbf{x}, \mathbf{y}) = \frac{\partial}{\partial \mathbf{p}} H(\mathbf{x}, \mathbf{p}) - w(\mathbf{x} - \mathbf{q}) \quad (34)$$

989 and leads to the same exact IVP solutions as the original function $\mathcal{H}(\mathbf{q}, \mathbf{p})$. High-order symplectic
 990 integrators can be constructed for each of the components of the augmented Hamiltonian $\bar{\mathcal{H}}$ as

$$\phi_{\mathcal{H}_A}^\delta = \begin{pmatrix} \mathbf{q} \\ \mathbf{p} - \delta \frac{\partial}{\partial \mathbf{q}} H(\mathbf{q}, \mathbf{y}) \\ \mathbf{x} + \delta \frac{\partial}{\partial \mathbf{y}} H(\mathbf{q}, \mathbf{y}) \\ \mathbf{y} \end{pmatrix}, \quad \phi_{\mathcal{H}_B}^\delta = \begin{pmatrix} \mathbf{q} + \delta \frac{\partial}{\partial \mathbf{p}} H(\mathbf{x}, \mathbf{p}) \\ \mathbf{p} \\ \mathbf{x} \\ \mathbf{y} - \delta \frac{\partial}{\partial \mathbf{x}} H(\mathbf{x}, \mathbf{p}) \end{pmatrix}, \quad (35)$$

$$\phi_{w\mathcal{H}_C}^\delta = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} \mathbf{q} + \mathbf{x} \\ \mathbf{p} + \mathbf{y} \end{pmatrix} + \mathbf{R}(\delta) \begin{pmatrix} \mathbf{q} - \mathbf{x} \\ \mathbf{p} - \mathbf{y} \end{pmatrix} \\ \begin{pmatrix} \mathbf{q} + \mathbf{x} \\ \mathbf{p} + \mathbf{y} \end{pmatrix} - \mathbf{R}(\delta) \begin{pmatrix} \mathbf{q} - \mathbf{x} \\ \mathbf{p} - \mathbf{y} \end{pmatrix} \end{pmatrix}, \quad \text{with } \mathbf{R}(\delta) = \begin{pmatrix} \cos(2w\delta) \mathbf{I} & \sin(2w\delta) \mathbf{I} \\ -\sin(2w\delta) \mathbf{I} & \cos(2w\delta) \mathbf{I} \end{pmatrix}. \quad (36)$$

1001 Tao (2016) proposed to construct a numerical symplectic integrator that approximates the flow of $\bar{\mathcal{H}}$
 1002 by composing these maps according to Strang splitting as

$$\phi_{\bar{\mathcal{H}}} = \phi_{\mathcal{H}_A}^{\delta/2} \circ \phi_{\mathcal{H}_B}^{\delta/2} \circ \phi_{w\mathcal{H}_C}^{\delta/2} \circ \phi_{\mathcal{H}_B}^{\delta/2} \circ \phi_{\mathcal{H}_A}^{\delta/2}. \quad (37)$$

1005 The obtained Strang-symplectic integrator preserves the symplectic volume like the exact Hamiltonian
 1006 flow.

1007 The scalar parameter $w \in \mathbb{R}$, binding the two augmented Hamiltonians during the integration pro-
 1008 cess, is obtained as optimization parameter during training. To enforce $w \leq 0$, we do not learn w
 1009 directly. Instead, we learn it using the SoftPlus function with a small numerical offset for stability
 1010 as $\log(1 + e^{\theta_w}) + 10^{-4}$, as part of the HNN network parameters $\theta_w \in \theta$.

F NETWORK TRAINING VIA RIEMANNIAN OPTIMIZATION

1014 Training a neural network corresponds to finding a solution to an optimization problem

$$\min_{\mathbf{x} \in \mathcal{M}} \ell(\mathbf{x}), \quad (38)$$

1017 where ℓ is the loss we aim to minimize, and $\mathbf{x} \in \mathcal{M}$ is the optimization variable, a.k.a the net-
 1018 work parameters. For the RO-HNN, we train the network by minimizing the loss $\ell_{\text{RO-HNN}}$ (12). In
 1019 this case, \mathcal{M} is defined as a product of Euclidean, SPD, and biorthogonal manifolds to jointly op-
 1020 timize the parameters $\{\Phi_l, \Psi_l, \mathbf{b}_l\}_{l=1}^L$ of the AE and $\{\theta_{\tilde{T}}, \theta_{\tilde{V}}, \theta_{\tilde{D}}\}$ of the latent geometric HNN.
 1021 To account for the curvature of the non-Euclidean parameter spaces, we leverage Riemannian opti-
 1022 mization (Absil et al., 2007; Boumal, 2023) to optimize the RO-HNN loss $\ell_{\text{RO-HNN}}$ (12).

1023 Conceptually, each iteration step in a first-order (stochastic) Riemannian optimization method con-
 1024 sists of the three following successive operations:

$$\boldsymbol{\eta}_t \leftarrow h(\text{grad } \ell(\mathbf{x}_t), \boldsymbol{\tau}_{t-1}), \quad \mathbf{x}_{t+1} \leftarrow \text{Exp}_{\mathbf{x}_t}(-\alpha_t \boldsymbol{\eta}_t), \quad \boldsymbol{\tau}_t \leftarrow \text{PT}_{\mathbf{x}_t \rightarrow \mathbf{x}_{t+1}}(\boldsymbol{\eta}_t). \quad (39)$$

Figure 6: Illustration of the latent system used to obtain the dynamics of a 15-DoF augmented pendulum via a symplectomorphism. The latent system consists of an independent 3-DoF planar pendulum and a 12-DoF planar mass-spring mesh.

where (1) given the current parameter estimate \mathbf{x}_t , a search direction $\boldsymbol{\eta}_t \in \mathcal{T}_{\mathbf{x}_t} \mathcal{M}$ is computed based on a function h (determined by the choice of the optimization method) of the Riemannian gradient $\text{grad } \ell$, and of $\boldsymbol{\tau}_{t-1}$, which corresponds to the parallel-transport of the previous search direction on to the new estimate’s tangent space $\mathcal{T}_{\mathbf{x}_t} \mathcal{M}$; (2) the estimate \mathbf{x}_t is updated by projecting the search direction $\boldsymbol{\eta}_t$ scaled by a learning rate learning rate α_t onto the manifold via the exponential map, (3) the current search direction is parallel-transported to the tangent space of the updated estimate to prepare for the next iteration. In this paper, we use the Riemannian Adam (Becigneul & Ganea, 2019) implemented in Geoopt (Kochurov et al., 2020) to optimize the RO-HNN parameters. The relevant manifold operations for the optimization procedure are given in closed-form in App. B.

G ADDITIONAL DETAILS ON EXPERIMENTS

This section presents additional details on the experimental setup of Sec. 4.

G.1 COUPLED PENDULUM OF SECTION 4.1

G.1.1 DATASET

System. Our first set of experiments is conducted on the augmented pendulum, a nonlinear conservative system with $n = 15$ -DoF. The pendulum dynamics are specified from the symplectomorphism of a latent Hamiltonian system composed of two independent subsystems: a 3-DoF planar pendulum, and a 12-DoF planar oscillating mass-spring mesh, see Fig. 6. The pendulum dynamics evolve on a slower timescale and with larger amplitude than the mesh oscillations. Consequently, a surrogate model based solely on the pendulum would capture the dominant behavior of the full system, i.e. the system is well-reducible with a Hamiltonian ROM. As we have access to the ground truth dynamics of the 15-DoF pendulum, this scenario allows for various ablations on the network architecture.

We simulate both subsystems in MUJOCO (Todorov et al., 2012). The pendulum’s links $i = \{1, 2, 3\}$ are modeled as capsules of radius $r_i = 0.025$ m, length $l_i = 0.5$ m, and mass $m_i = 0.5$ kg, connected via hinge joints. The initial configurations and velocities for each DoF are randomly sampled from the intervals $q_{\text{pend},i}(t = 0) \in [-30, 30]^\circ$ and $\dot{q}_{\text{pend},i}(t = 0) \in [-23, 23]^\circ \text{ s}^{-1}$. The mass-spring mesh consists of 6 masses $m_j = 0.005$ kg, equally spaced in a 3×2 grid along the x - and z -axes of the simulation environment. Each mass is connected to its immediate neighbors, and the top three masses are each additionally connected to a fixed anchor point above the grid, via springs of resting length $s_j = 0.5$ m and linear stiffness constants $k_j = 0.01 \text{ N m}^{-1}$. Initial displacements and velocities for each DoF are randomly sampled from the intervals $q_{\text{ms},j}(t = 0) \in [-1, 1] \times 10^{-2}$ m and $\dot{q}_{\text{ms},j}(t = 0) \in [-2, 2] \times 10^{-3} \text{ m s}^{-1}$.

Data generation. Each simulation is recorded for $T = 5$ s at a timestep of $\Delta t = 10^{-2}$ s, yielding $N = 30$ training trajectories $\mathcal{D}_{\text{pend}} = \{\{q_{\text{pend},n,k}, p_{\text{pend},n,k}\}_{k=1}^K\}_{n=1}^N$ and $\mathcal{D}_{\text{ms}} = \{\{q_{\text{ms},n,k}, p_{\text{ms},n,k}\}_{k=1}^K\}_{n=1}^N$ with $K = 500$ observations each. To form the full 15-dimensional dataset, the position and momentum vectors of the pendulum and mass-spring mesh are con-

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
catenated as $\mathbf{q}_{\text{aug}} = (\mathbf{q}_{\text{pend}}^\top, \mathbf{q}_{\text{ms}}^\top)^\top$ and $\mathbf{p}_{\text{aug}} = (\mathbf{p}_{\text{pend}}^\top, \mathbf{p}_{\text{ms}}^\top)^\top$ to obtain a dataset $\mathcal{D}_{\text{aug}} = \{\{\mathbf{q}_{\text{aug},n,k}, \mathbf{p}_{\text{aug},n,k}\}_{k=1}^K\}_{n=1}^N$ with $(\mathbf{q}_{\text{aug},n,k}, \mathbf{p}_{\text{aug},n,k}) \in \mathcal{T}^*(\mathcal{Q}_{\text{pend}} \times \mathcal{Q}_{\text{ms}})$.

To ensure that the reducibility of the augmented dataset is not purely of numerical nature, we transform the observed dynamics of the latent system onto more complex ones via a symplectomorphism $h : (\mathcal{T}^*(\mathcal{Q}_{\text{pend}} \times \mathcal{Q}_{\text{ms}}), \mathbb{J}_{2n}) \rightarrow (\mathcal{T}^*\mathcal{Q}, \mathbb{J}_{2n})$ and obtain the final dataset $\mathcal{D} = \{\{h(\mathbf{q}_{\text{aug},n,k}, \mathbf{p}_{\text{aug},n,k})\}_{k=1}^K\}_{n=1}^N$. Practically, the symplectomorphism h is defined via the cotangent-lifted embedding φ of a map $\rho_{\mathcal{Q}} : \mathcal{Q}_{\text{pend}} \times \mathcal{Q}_{\text{ms}} \rightarrow \mathcal{Q}$, that we parametrize as a 3-layer encoder of the constrained AE from Sec. 3.1 and D. With $l = \{1, 2, 3\}$ layers of constant layer and latent dimension $n_l = n_0 = 15$, weights of each layer Ψ_l initialized as random orthogonal matrices $\mathbf{O} \in \mathbb{R}^{n_l \times n_l}$ sampled from the Haar distribution, and zero biases $\mathbf{b}_l = \mathbf{0}$. Notice that due to the constant dimension through the AE-layers, with decoder weights set to $\Phi_l = \Psi_l = \mathbf{O}$, the position decoder of the constrained AE returns an analytic inverse, and its cotangent lift h^{-1} .

The testing dataset is constructed in the same manner for $N = 10$ trajectories.

G.1.2 MODEL TRAINING

For the experiments of Sec. 4.1, we train a geometric RO-HNN composed of a geometrically-constrained symplectic AE and a latent geometric HNN. As described in Sec. 3.1, the geometrically-constrained symplectic AE is built from the cotangent lift of a constrained AE composed of layer pairs $\rho_{\mathcal{Q}}^{(l)} : \mathbb{R}^{n_l} \rightarrow \mathbb{R}^{n_{l-1}}$ and $\varphi_{\mathcal{Q}}^{(l)} : \mathbb{R}^{n_{l-1}} \rightarrow \mathbb{R}^{n_l}$ as defined in (10) (see Sec. 3.1 and App. D). We use $l = \{1, 2, 3\}$ pairwise biorthogonal encoder and decoder layers of sizes $n_l = \{6, 12, 15\}$ with latent space dimension $n_0 = 3$. The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix $\mathbf{O} \in \mathbb{R}^{n_l \times n_l}$ from the Haar distribution and setting $\Phi = \Psi = \mathbf{O}_{[:, :n_{l-1}]}$, where $\mathbf{O}_{[:, :n_{l-1}]}$ are the first n_{l-1} column entries of \mathbf{O} . Bias vectors are initialized as $\mathbf{b}_l = \mathbf{0}$. For the latent geometric HNN, we parametrize the potential energy network \check{V}_{θ_V} and the Euclidean part $g_{\mathbb{R}}$ of the inverse mass-inertia network $\check{M}_{\theta_T}^{-1}$ each with $L_{\check{V}} = L_{\check{M}_{\mathbb{R}}} = 2$ hidden Euclidean layers of 32 neurons and SoftPlus activation functions. We fix the basepoint of the exponential map layer g_{Exp} to the origin $\mathbf{P} = \mathbf{I}$. Weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$ and bias vector entries set to 1. We train the model on the joint loss (12) with scaling factor $\lambda = 1$ for the latent loss on 3000 uniformly sampled random points from the dataset \mathcal{D} with Strang-symplectic integration (see Sec. 3.3) over a training horizon of $H_{\mathcal{D}} = 12$ timesteps. We use a learning rate of 1.5×10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters. We train the model with Riemannian Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs.

AE baselines. In Sec. 4.1, we compare the geometrically-constrained symplectic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023), and a weakly-symplectic AE (Buchfink et al., 2023). We implement the linear and quadratic SMG projections onto a 3-dimensional symplectic submanifold following (Sharma et al., 2023). We compute the reduction parameters based on a singular value decomposition computed from 3000 randomly sampled training datapoints in \mathcal{D} .

For the weakly-symplectic AE (Buchfink et al., 2023), we train two independent constrained AEs for position and momentum reduction and embedding, i.e., $\rho_{\mathcal{Q}}^{(l)} : \mathbb{R}^{n_l} \rightarrow \mathbb{R}^{n_{l-1}}$, $\varphi_{\mathcal{Q}}^{(l)} : \mathbb{R}^{n_{l-1}} \rightarrow \mathbb{R}^{n_l}$, and $\rho_{\mathcal{P}}^{(l)} : \mathbb{R}^{n_l} \rightarrow \mathbb{R}^{n_{l-1}}$, $\varphi_{\mathcal{P}}^{(l)} : \mathbb{R}^{n_{l-1}} \rightarrow \mathbb{R}^{n_l}$, and compute the embedding and reduction for the symplectic manifold as

$$\varphi(\check{\mathbf{q}}, \check{\mathbf{p}}) = \begin{pmatrix} \varphi_{\mathcal{Q}} \\ \varphi_{\mathcal{P}} \end{pmatrix} \quad \text{and} \quad \rho(\mathbf{q}, \mathbf{p}) = \begin{pmatrix} \rho_{\mathcal{Q}} \\ \rho_{\mathcal{P}} \end{pmatrix}. \quad (40)$$

Note that this architecture also fulfills the projection properties (4) by construction, as the other reduction approaches. However, it does not satisfy the symplecticity property (7). To enforce this property, Buchfink et al. (2023) introduces a symplecticity loss

$$\ell_{\text{symp}} = \frac{1}{N} \sum_{i=1}^N \|\mathbb{J}_{2d} - d\varphi^\top \mathbb{J}_{2n} d\varphi\|_{\text{F}}^2. \quad (41)$$

The weakly-symplectic AE is trained by minimizing the sum of the reconstruction loss ℓ_{AE} from (12) and the symplecticity loss (41).

1134 For the geometrically-constrained symplectic AE, we consider the same architecture as in the
 1135 RO-HNN described above.

1136 All AE architectures consist of $l = \{1, 2, 3\}$ biorthogonal encoder and decoder layers with $n_l =$
 1137 $\{6, 12, 15\}$ with latent space dimension $n_0 = 3$. We train both AE on 3000 samples from the dataset
 1138 \mathcal{D} with Riemannian Adam with a learning rate of 1.5×10^{-2} until convergence at 3000 epochs.
 1139

1140 **HNN baselines.** In Sec. 4.1, we also ablate the choice of latent HNN and integrator. To isolate
 1141 the HNN performance, we consider the low-dimensional dataset $\mathcal{D}_{\text{pend}}$ of the 3-DoF pendulum and
 1142 no reduction. For the Cholesky HNN where the inverse mass-inertia matrix is parametrized via
 1143 a Cholesky network, we implement shared parameters for the inverse mass-matrix and potential
 1144 energy networks, i.e., $\theta_{\tilde{\mathbf{T}}} \cap \theta_{\tilde{\mathbf{V}}}$, following (Lutter & Peters, 2023). The MLP consists of 2 hidden
 1145 Euclidean SoftPlus layers of 64 neurons, while separate output layers return the potential energy
 1146 and the Cholesky decomposition. For the black-box HNNs, we use a single fully-connected MLP to
 1147 model a Hamiltonian function \mathcal{H}_{θ} . We conduct experiments with two black-box HNNs of 2 hidden
 1148 layers with a width of 64, and 256 neurons, respectively. In all cases, the weights are initialized by
 1149 sampling from a Xavier normal distribution with gain $\sqrt{2}$, and the bias vector entries are initialized
 1150 to 1.

1151 We train all architectures on 3000 datapoints of the dataset $\mathcal{D}_{\text{pend}}$ with Riemannian Adam optimizer
 1152 on the HNN term $\ell_{\text{HNN},d}$ of the loss (12) over a training horizon of $H_{\mathcal{D}} = 12$ timesteps. For the
 1153 ablation of the HNN architecture, we use the Strang-symplectic integrator. The geometric HNN and
 1154 Cholesky networks are trained until convergence at 2500 epochs with learning rate set to 7×10^{-4} .
 1155 The black-box HNNs are trained at a learning rate of 2×10^{-3} for 3000 epochs.

1156 For the ablation of the integrator, we use the geometric HNN and compare the Strang-symplectic
 1157 integrator with an explicit Euler integrator, a Runge-Kutta integrator of order 4, and a symplectic
 1158 leapfrog integrator.

1159 **HNKO baseline.** In Sec. 4.1, we compare the RO-HNN against the HNKO proposed by Zhang
 1160 et al. (2024). Moreover, in App. H.1, we evaluate the performance of the RO-HNN against the
 1161 HNKO under noisy observations. Hyperparameters are selected and refined empirically following
 1162 the supplementary material and code provided by Zhang et al. (2024).

1163 The HNKO first maps the $2n = 30$ -dimensional observations into a $d = 100$ -dimensional lifted
 1164 latent space via a fully-connected neural network of 6 hidden layers with Tanh activations. The latent
 1165 dynamics are then propagated on a 50-dimensional sphere via the special orthogonal Hamiltonian
 1166 Koopman operator, implemented by a constrained linear, bias-free layer with 100-dimensional input
 1167 and output. The predicted states are mapped back onto the original space with a fully-connected
 1168 neural network with 3 hidden layers and Tanh activations. The overall model is trained on 3000
 1169 randomly sampled datapoints of the dataset with $\mathcal{D}_{\text{pend}}$, using the Adam optimizer until convergence
 1170 at 15000 epochs. For a fair comparison and for stable predictions over longer horizons, we adjusted
 1171 the loss on the latent Koopman predictions, referred to as $\mathcal{L}_{\text{koop}}$ in (Zhang et al., 2024), to sum over
 1172 a training horizon of $H_{\mathcal{D}} = 12$ timesteps, similar to our latent loss term $\ell_{\text{HNN},d}$ in (12).

1173 G.2 PARTICLE VORTEX OF SECTION 4.2

1174 G.2.1 DATASET

1175 **System.** In Sec. 4.2, we learn the dynamics of an $n = 90$ -dimensional particle vortex, consisting
 1176 of $j = \{1, \dots, N\}$ particles with phase-space coordinates $\mathbf{x}_j = (q_j, p_j)^\top$ and uniform interaction
 1177 strengths $\Gamma_j = 1$. The particle vortex dynamics are governed by the Hamiltonian
 1178

$$1179 \mathcal{H}(\mathbf{q}, \mathbf{p}) = - \sum_{j < k} \log |\mathbf{x}_j - \mathbf{x}_k|, \quad (42)$$

1180 that models the interaction between each $j \neq k$ pair of particles (Xiong et al., 2021). Note that, as
 1181 the particle vortex dynamics are purely determined via the logarithmic interaction, its Hamiltonian
 1182 function does not separate into kinetic and potential energy, in contrast to mechanical systems such
 1183 as the pendulum and the cloth.

1184 **Data generation.** We generate a training dataset $\mathcal{D}_{\text{pv}} = \{\{\mathbf{q}_{n,k}, \mathbf{p}_{n,k}\}_{k=1}^K\}_{n=1}^N$ by simulating $N =$
 1185 20 trajectories of the conservative system over the time interval $\mathcal{I} = [0, 10.0]$ s with timestep $\Delta t =$

1188 10^{-3} s and Strang-symplectic solver with weight parameter $w = 0.1$, resulting in $K = 10000$
 1189 steps per trajectory. For each trajectory, initial conditions are randomly sampled to mimic clustered
 1190 vortex distributions. The particles are evenly split among $j = \{1, 2, 3\}$ clusters. For each cluster,
 1191 we randomly sample a center \mathbf{c}_j within a radius of $R = 6$ m from the origin. Then, a cluster radius
 1192 is sampled uniformly from $r_j \in [0.1, 2]$ m, and particles within a cluster are positioned following
 1193 a Gaussian distribution $\mathcal{N} \sim (\mathbf{c}_j, r_j^2 \mathbf{I})$ around the center \mathbf{c}_j . For the testing dataset, we generate
 1194 $N = 10$ trajectories via the same distribution of initial conditions, but simulating the system over a
 1195 time interval of $\mathcal{I} = [0, 15.0]$ s.

1196 G.2.2 MODEL TRAINING

1197 The results presented in Sec. 4.2 are obtained via RO-HNNs composed of a geometrically-
 1198 constrained symplectic AE and a latent geometric HNN. We conduct experiments with two
 1199 RO-HNN with latent space dimensions $d = 3$ and $d = 6$. The constrained AE is composed of
 1200 $l = \{1, 2, 3, 4\}$ pairwise biorthogonal encoder and decoder layers of sizes $n_l = \{32, 64, 128, 600\}$.
 1201 The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix $\mathbf{O} \in$
 1202 $\mathbb{R}^{n_l \times n_l}$ from the Haar distribution and setting $\Phi = \Psi = \mathbf{O}_{[:, :n_{l-1}]}$, where $\mathbf{O}_{[:, :n_{l-1}]}$ are the first
 1203 n_{l-1} column entries of \mathbf{O} . Bias vectors are initialized as $\mathbf{b}_l = \mathbf{0}$. The latent Hamiltonian network
 1204 \check{V}_{θ_v} is parametrized by 2 hidden Euclidean layers of 32 neurons with SoftPlus activation functions.
 1205 All weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$, and all bias
 1206 vector entries are initialized to 1.

1207 We train the model on the joint loss (12) on 3000 random samples from the dataset \mathcal{D} with Strang-
 1208 symplectic integration over a training horizon $H_{\mathcal{D}} = 8$ timesteps. For better convergence, we scale
 1209 the loss term $\ell_{\text{HNN}, d}$ via a scalar factor $\lambda = 10^3$. The parameters are optimized via Riemannian
 1210 Adam (Becigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of $1.5 \times$
 1211 10^{-2} for the AE parameters and 7×10^{-4} for the HNN parameters.

1212 In Sec. 4.2, we consider a comparison with a RO-HNN with a latent black-box HNN $\check{\mathcal{H}}_{\theta}$ composed
 1213 of 2 layers of 64 neurons. We set the learning rate to 2×10^{-3} . The remaining of the RO-HNN
 1214 architecture and training pipeline are unchanged.

1215 G.3 CLOTH OF SECTION 4.3

1216 G.3.1 DATASET

1217 **System.** Our second set of experiments is conducted on a deformable thin cloth modeled in MUJOCO
 1218 as a flexible composite object with $i = \{1, \dots, 200\}$ masses $m_i = 0.1$ kg, equally spaced over a
 1219 width of 0.1m and length of 0.2m. Generalized coordinates are given by the Cartesian positions
 1220 $\mathbf{q}_i = (x_i, y_i, z_i)^\top$ of each mass’ center of mass in the world frame. The viscous damping coefficient
 1221 is uniformly set to $d_i = 0.01 \text{N s m}^{-1}$.

1222 **Data generation.** Each trajectory captures the cloth falling on a sphere from a height of 0.12m in
 1223 the center above the origin of the sphere. To vary scenarios, the radius of the sphere is randomly-
 1224 sampled from $r \in [0.02, 0.12]$ m. The state evolution is simulated with timestep $\Delta t = 10^{-4}$ s
 1225 over a time interval $\mathcal{I} = [0, 0.3]$ s, resulting in $K = 3000$ samples per trajectory. We generate
 1226 $N = 20$ trajectories for a training dataset $\mathcal{D}_{\text{cloth}} = \{\{\mathbf{q}_{n,k}, \mathbf{p}_{n,k}, \boldsymbol{\tau}_{n,k}\}_{k=1}^K\}_{n=1}^N$, and $N = 10$
 1227 testing trajectories over a longer time interval $\mathcal{I} = [0, 0.5]$ s. When learning the damping force via
 1228 a dissipative HNN, the generalized force vector consists of external constraint forces, i.e., $\boldsymbol{\tau} = \boldsymbol{\tau}_c$.
 1229 The ablation of Sec. 4.3 compares the dissipative geometric HNN against a conservative HNN for
 1230 which all external forces are provided. In this case, the training dataset is composed of generalized
 1231 force vector $\boldsymbol{\tau} = \boldsymbol{\tau}_d + \boldsymbol{\tau}_c$ that contains both the damping forces $\boldsymbol{\tau}_d$ and the constraint forces $\boldsymbol{\tau}_c$.

1232 G.3.2 MODEL TRAINING

1233 For the RO-HNN experiments in Sec. 4.3, we train a RO-HNN composed of a geometrically-
 1234 constrained symplectic AE and a latent dissipative geometric HNN. The underlying constrained AE
 1235 $l = \{1, 2, 3, 4\}$ pairwise biorthogonal encoder and decoder layers of sizes $n_l = \{32, 64, 128, 600\}$
 1236 with latent space dimension $n_0 = 6$ or $n_0 = 10$. The biorthogonal weight matrices are initialized
 1237 by sampling a random orthogonal matrix $\mathbf{O} \in \mathbb{R}^{n_l \times n_l}$ from the Haar distribution and setting

1242 $\Phi_l = \Psi_l = \mathbf{O}_{[:, :n_{l-1}]}$, where $\mathbf{O}_{[:, :n_{l-1}]}$ are the first n_{l-1} column entries of \mathbf{O} . Bias vectors are
 1243 initialized as $\mathbf{b}_l = \mathbf{0}$.

1244 The latent potential energy network $\check{V}_{\theta_{\check{V}}}$ is parametrized with $L_{\check{V}} = L_{T, \mathbb{R}} = 2$ hidden Euclidean
 1245 layers of 32 neurons. The Euclidean part $g_{\mathbb{R}}$ of the inverse mass-inertia network $\check{M}_{\theta_{\check{T}}}^{-1}$ and of the
 1246 damping-matrix network $\check{D}_{\theta_{\check{D}}}$ are composed of 2 hidden layers with 32 neurons. For both networks,
 1247 we fix the basepoint of the exponential map layer g_{Exp} to the origin $\mathbf{P} = \mathbf{I}$. All activation functions
 1248 are SoftPlus, all weights are initialized by sampling from a Xavier normal distribution with gain $\sqrt{2}$,
 1249 and all bias vector entries are initialized to 1.

1250
 1251 We train the model on the joint loss (12) on 3000 samples from the dataset \mathcal{D} with Strang-symplectic
 1252 integration over a training horizon $H_{\mathcal{D}} = 8$ timesteps. The scaling constant on the latent loss term
 1253 $\ell_{\text{HNN}, d}$ is set to $\lambda = 10^4$. We train the RO-HNN with Riemannian Adam (Becigneul & Ganea, 2019)
 1254 until convergence at 3000 epochs with a learning rate of 1.5×10^{-2} for the AE parameters and
 1255 7×10^{-4} for the HNN parameters.

1256
 1257 In Fig. 21, we compare the geometric RO-HNN with a black-box variant where the latent HNN is
 1258 encoded as a single black-box network \mathcal{H}_{θ} corresponding to a fully-connected MLP of 2 hidden
 1259 layers with a width of 256 neurons. The HNN weights are initialized by sampling from a Xavier
 1260 normal distribution with gain $\sqrt{2}$, and the bias vector entries are initialized to 1. This black-box
 1261 RO-HNN is trained with the same parameters as the geometric RO-HNN, except for the learning
 1262 rate of the HNN parameters, which we set as 2×10^{-3} .

1263 **Sequentially-trained baseline.** To assess the effectiveness of the proposed joint training pro-
 1264 cedure, we compare the jointly-trained RO-HNN with a variant that sequentially trains first the
 1265 geometrically-constrained AE, and second the latent HNN. As convergence is difficult to achieve
 1266 when training only the latent HNN on a fully-trained representation of the AE, we first train only
 1267 the AE by optimizing ℓ_{AE} for 3000 epochs with a learning rate of 1.5×10^{-2} . Subsequently, we
 1268 jointly optimize the AE and latent loss (12). We train the networks jointly within the RO-HNN with
 1269 Riemannian Adam (Becigneul & Ganea, 2019) until convergence at learning rates 1.5×10^{-2} for
 1270 the AE parameters and 7×10^{-4} for the HNN parameters.

1271 **Projection and AE baselines.** In App. H.3 (see Fig. 18), we compare the ability of a latent HNN
 1272 to learn accurate dynamics using different reduction methods to obtain the symplectic embedding φ
 1273 and corresponding reduction ρ . We compare the RO-HNN with geometrically-constrained symplec-
 1274 tic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni,
 1275 2016; Sharma et al., 2023), and a weakly-symplectic AE (Buchfink et al., 2023). We compute the
 1276 linear and quadratic SMG projections onto latent spaces of symplectic submanifolds of three differ-
 1277 ent dimensionalities $d = \{2, 6, 10\}$, following (Sharma et al., 2023), via 3000 training datapoints.
 1278 In both cases, we then train a latent HNN on the terms $\ell_{\text{HNN}, n}$ and $\ell_{\text{HNN}, d}$ of the joint loss equa-
 1279 tion (12) on 3000 samples from the dataset \mathcal{D} with Strang-symplectic integration over a training
 1280 horizon $H_{\mathcal{D}} = 8$ timesteps. The model is trained with Riemannian Adam (Becigneul & Ganea,
 1281 2019) until convergence at 3000 epochs with a learning rate of 7×10^{-4} . Note that this essentially
 1282 corresponds to a scenario with pre-trained symplectic submanifolds, as the parameter optimization
 1283 for the linear and quadratic embedding maps happens once in the beginning.

1284 The weakly-symplectic AE consists of two independent constrained AEs for position and momen-
 1285 tum. We use 4 layers of size $n_l = \{32, 64, 128, 600\}$ with varying latent space dimension. We
 1286 train the network jointly on the sum of the losses (12) and (41) via Riemannian Adam (Becigneul
 1287 & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5×10^{-2} for the AE
 1288 parameters and 7×10^{-4} for the HNN parameters.

1289 **Non-symplectic AE baseline.** In App. H.3 (see Fig. 20), we ablate geometrically-constrained sym-
 1290 plectic AE of the RO-HNN in a dissipative scenario. To do so, we train a RO-HNN that utilizes
 1291 a non-symplectic projection-constrained AE instead of geometrically-constrained symplectic AE.
 1292 Specifically, we use a single vanilla constrained AE with latent space dimension $n_0 = 20$ with 4
 1293 pairwise biorthogonal encoder-decoder layers of sizes $n_l = \{64, 128, 256, 1200\}$. Note that we as-
 1294 sume the first 10 output dimensions of the latent space to correspond to reduced position \check{q} and the
 1295 last 10 to correspond to the reduced momentum \check{p} , which are used as inputs for the latent dissipative
 1296 HNN.

1296 **Comparison against reduced-order LNN (RO-LNN).** In App. H.3, we compare the RO-HNNs
 1297 against RO-LNNs (Friedl et al., 2025). The RO-LNNs are trained on the dataset $\mathcal{D}_{\text{cloth, vel}} =$
 1298 $\{\{q_{n,k}, \dot{q}_{n,k}, \tau_{n,k}\}_{k=1}^K\}_{n=1}^N$ obtained from the dataset described in App. G.3.1 by transforming the
 1299 momentum data into velocities via $\dot{q} = M(q)^{-1}p$.

1300 We construct the RO-LNN following the procedure described in (Friedl et al., 2025) and use the
 1301 same architecture for the constrained AE as for the RO-HNN. Specifically, we consider a latent
 1302 space of dimension $n_0 = 10$ and use $l = \{1, 2, 3, 4\}$ pairwise biorthogonal encoder and decoder
 1303 layers of sizes $n_l = \{32, 64, 128, 600\}$. The kinetic and potential energy networks of the latent
 1304 geometric LNN consist of 2 hidden Euclidean layers with 64 neurons and SoftPlus activation
 1305 functions, initialized as for the RO-HNN. Notice that, for the RO-LNN, the dissipation forces τ_d are not
 1306 learned but provided as ground truth in the external input $\tau = \tau_c + \tau_d$.

1307 The RO-LNN is trained on 3000 samples from $\mathcal{D}_{\text{cloth, vel}}$ with a Runge-Kutta integrator of order 4
 1308 over a training horizon $H_D = 8$ timesteps. We train the RO-HNN with Riemannian Adam (Be-
 1309 cigneul & Ganea, 2019) until convergence at 3000 epochs with a learning rate of 5×10^{-2} for the
 1310 AE parameters, 2×10^{-4} for the HNN parameters, and a regularization $\gamma = 2 \times 10^{-5}$ for 3000
 1311 epochs.

1312 In our comparison, we also consider a black-box version of the RO-HNN, hereinafter referred to as
 1313 black-box RO-LNN, where the latent LNN is encoded as a single black-box network \mathcal{L}_θ representing
 1314 the Lagrangian function, which we model via a single fully-connected MLP of 2 hidden layers with
 1315 a width of 256 neurons. The network weights are initialized by sampling from a Xavier normal
 1316 distribution with gain $\sqrt{2}$, and the bias vector entries are initialized to 1. The black-box RO-LNN is
 1317 trained with the same parameters as the original RO-LNN, except for the learning rate for the LNN
 1318 parameters, which is set as of 2×10^{-3} .

H ADDITIONAL EXPERIMENTAL RESULTS

1321 This section presents additional results, complementing those presented in Sec. 4.

H.1 COUPLED PENDULUM OF SECTION 4.1

1322 This section presents additional results on learning the Hamiltonian dynamics of a 15-DoF coupled
 1323 pendulum.

1324 **Learning high-dimensional dynamics.** Fig. 7 complements Fig. 2 by depicting the predicted long-
 1325 term (5s) positions and momenta. For the ease of visualization, we change the prediction coordinates
 1326 and plot the first 3-DoF corresponding to the latent pendulum. We observe that RO-HNN leads to
 1327 accurate long-term predictions similar to those of the 3-DoF HNN. Unlike the 15-dimensional full-
 1328 order HNN, the HNKO yields stable, but inaccurate long-term predictions, exhibiting significantly
 1329 higher deviation from the ground truth trajectory than the predictions of the RO-HNN.

1330 Fig. 8 depicts the original 15-DoF trajectories projected into the 3-DoF latent space learned by
 1331 the RO-HNN, along with its latent dynamic predictions over the full prediction horizon of 5s. We
 1332 observe that the latent predictions are accurate and match the projected original trajectories. As
 1333 expected, the learned latent space does not coincide with the phase-space of the original pendu-
 1334 lum due to the nonlinear dimensionality reduction conducted via the AE, but displays comparable
 1335 frequencies and amplitudes.

1336 **AE architecture.** Figure 9 accompanies and validates the results of Table 2 by displaying the
 1337 median and quartiles of the prediction errors obtained by different symplectic dimensionality reduction
 1338 methods in the intrusive MOR scenario of Sec. 4.1.

1339 **Latent HNN architecture.** Here we further evaluate the impact of HNN architecture. We compare
 1340 the performance of our geometric HNN to learn the low-dimensional dynamics of the latent 3-DoF
 1341 pendulum against (1) a non-geometric variant that parametrizes the inverse mass-inertia matrix via a
 1342 Cholesky network, and (2) two HNNs encoded as a single black-box network \mathcal{H}_θ , where we consider
 1343 two MLPs of 64- and 256-neurons width. Compared to Sec. 4.1, we consider a doubled amount of
 1344 training datapoints with 6000 random samples. As shown in Fig. 10-left, the geometric HNN still
 1345 achieves the lowest reconstruction error, with differences compared to the black-box HNN increased

Figure 7: Reconstructed trajectories of the RO-HNN (blue), 3-DoF HNN (orange), and HNKO (green) compared to ground truth (black). The 15-DoF HNN leads to unstable long-term predictions and is not depicted.

Figure 8: Trajectories of the original 15-DoF pendulum projected into the latent space of the RO-HNN (—), and corresponding dynamic predictions obtained via the latent HNN (....). As expected, they does not coincide directly with the trajectories of the underlying 3-DoF pendulum representation (—).

Figure 9: Prediction errors (↓) of intrusive symplectic dimensionality reduction approaches over 10 test pendulum trajectories.

Figure 10: *Left*: Ablation of the latent HNN architecture on a doubled training set size $|\mathcal{D}| = 6000$ compared to Fig. 10-left. *Middle, right*: Ablation of the latent integrator of the geometric RO-HNN at $|\mathcal{D}| = 3000$ for learning the dynamics of a 15-DoF pendulum. Errors are obtained via short-term prediction horizons $H\Delta t = 0.25$ s.

Table 5: Mean and standard deviation of prediction errors (\downarrow) over $N = 10$ noise-free test pendulum trajectories, comparing the performances of the RO-HNNs and HNKOs trained on noisy observations.

$H\Delta t$ (s)	RO-HNN $c_{\text{noise}} = 0$		RO-HNN $c_{\text{noise}} = 5\%$		RO-HNN $c_{\text{noise}} = 10\%$	
	HNKO	HNKO	HNKO	HNKO	HNKO	HNKO
$\frac{\ \hat{q}_p - q\ }{\ q\ }$	$0.25 \quad (1.66 \pm 1.38) \times 10^{-1}$	$5 \quad (7.08 \pm 7.56) \times 10^{-1}$	$0.25 \quad (5.64 \pm 4.41) \times 10^{-1}$	$5 \quad (1.32 \pm 0.94) \times 10^0$	$0.25 \quad (2.44 \pm 1.94) \times 10^{-1}$	$5 \quad (9.76 \pm 10.48) \times 10^{-1}$
$\frac{\ \hat{p}_p - p\ }{\ p\ }$	$0.25 \quad (5.33 \pm 5.23) \times 10^{-2}$	$5 \quad (1.98 \pm 2.67) \times 10^{-1}$	$0.25 \quad (5.93 \pm 10.73) \times 10^{-1}$	$5 \quad (1.23 \pm 2.08) \times 10^0$	$0.25 \quad (7.02 \pm 7.17) \times 10^{-2}$	$5 \quad (3.34 \pm 4.97) \times 10^{-1}$

compared to the smaller dataset of Fig. 3-left. This showcases the importance of considering both the quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices, for both enhanced performance and data efficiency.

Latent integrator. We compare the Strang symplectic integrator against (1) a symplectic leapfrog integrator that disregards that the Hamiltonian is non-separable, (2) a Runge-Kutta integrator of order 4 that overlooks its symplectic structure, and (3) an explicit Euler integrator that also overlooks the symplectic structure. Compared to Sec. 4.1 (see Fig. 3-middle,right), we consider shorter prediction horizons, feeding the model with ground truth initial conditions every $H\Delta t = 0.25$ s, since the explicit Euler integrator did not lead to stable long-term predictions for $H\Delta t = 5$ s. Figs. 10-middle, right show that the networks trained via the Strang-symplectic integrator achieve the lowest reconstruction error and conserves energy best during integration, showcasing the importance of considering the symplectic structure of the system during numerical integration for stable predictions on short- and long-term time horizons.

Training under noisy observations. To assess the robustness of the RO-HNNs, we evaluate its performance under noisy observations and compare it against the HNKOs baseline, which is reported to be robust to noise in high-dimensional systems.

We generate noisy training data $\{q_i + \epsilon_{q,i}, p_i + \epsilon_{p,i}\}$ corrupted with zero-mean Gaussian noise $\epsilon_{q,i} \sim \mathcal{N}(\mathbf{0}, \sigma_q^2 \mathbf{I})$ and $\epsilon_{p,i} \sim \mathcal{N}(\mathbf{0}, \sigma_p^2 \mathbf{I})$. The noise level c_{noise} is determines the standard deviations, which is also proportional to the maximum entry of the position and momentum, i.e., $\sigma_q = c_{\text{noise}} \max_{j,k} |q_{j,k}|$ and $\sigma_p = c_{\text{noise}} \max_{j,k} |p_{j,k}|$.

Table 5 reports the prediction errors on a testing dataset of 10 noise-free trajectories over time horizons $H\Delta t = \{0.25, 5\}$ s for three noise level $c_{\text{noise}} = \{0, 0.05, 0.1\}$. The noiseless results are repeated from Table 1 for completeness. As expected, the performance of both models decreases with increasing noise magnitude. In each scenario, the RO-HNN outperforms the HNKO baseline. Note that the RO-HNN trained at $c_{\text{noise}} = 0.1$ outperforms the HNKO trained without noise, demonstrating the enhanced accuracy and robustness of the RO-HNN to noisy observations.

H.2 PARTICLE VORTEX (90-DoF) OF SECTION 4.2

This section presents additional results on learning the Hamiltonian dynamics of a 90-DoF particle vortex.

Figure 11: Predicted (\bullet , \circ , \bullet) vs ground truth (\circ , \bullet , \bullet) positions of the particle vortex. The dynamics are learned with RO-HNN with $d = 6$ and $d = 10$. Times beyond 10s are out of the training data distribution.

Figure 12: Predicted (\bullet , \circ , \bullet) vs ground truth (\circ , \bullet , \bullet) reduced positions of the particle vortex in the latent space of the RO-HNN with $d = 6$ and $d = 10$. Times beyond 10s are out of the training data distribution.

Fig. 11 depicts the predicted positions and momenta of the particles along with the ground truth in the high-dimensional state space for RO-HNNs with latent dimension $d = \{6, 10\}$. Fig. 12 depicts the predicted positions and momenta of the particles in the reduced phase space of the AE along with the projected ground truth. We observe that both models accurately predict the particle vortex dynamics, with the $d = 6$ -dimensional model slightly outperforming the 10-dimensional one (see also Table 3 and Fig. 13). This shows that the choice of latent dimension is a trade off between the latent space expressivity and the limitations of HNNs in higher dimensions. In general, we observed that errors initially decrease as the latent dimension increases, suggesting that higher-dimensional latent spaces better capture the original high-dimensional dynamics. The errors then increase beyond a certain latent dimension, indicating that the latent HNN becomes harder to train.

Fig. 13 accompanies and validates the results of Table 3 by displaying the median and quartiles of the prediction errors obtained by different latent HNNs.

Figure 13: RO-HNN prediction errors (\downarrow) for black-box and geometric latent HNNs with latent dimensions $d = 6$ (\blacksquare) and $d = 10$ (\blacksquare) over 10 particle vortex trajectories.

Figure 14: Median and quartiles of the latent and reconstructed prediction errors of 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (—). The gray-shaded area indicates the time horizon beyond the training data support.

H.3 CLOTH (600-DoF) OF SECTION 4.3

This section presents additional results on learning the Hamiltonian dynamics of a 600-DoF thin cloth falling on a sphere.

Learning high-dimensional dynamics with dissipation. Fig. 15 complements Fig. 5 by depicting the predicted cloth configurations for the RO-HNNs with latent dimensions $d = \{6, 10\}$ for a horizon $H\Delta t = 0.5$ s. We observe that both RO-HNNs accurately predict the high-dimensional dissipative dynamics of the cloth, generalizing beyond the data support ($t > 0.3$ s). As also shown in Table 4, the 10-dimensional model slightly outperforms the 6-dimensional one, modeling more details of the cloth, as shown in Fig. 15.

Fig. 14 accompanies Table 4 by visualizing the median and quartiles of the RO-HNN ($d = 10$) reconstructed and latent prediction errors over time for two different parametrization of the reduced dissipation matrix \check{D} . Both dissipative RO-HNN perform similarly to the conservative RO-HNN, showing that the RO-HNN can successfully predict dissipative dynamics in a stable manner, including beyond the training time horizon.

Fig. 16 shows the predictions of the RO-HNNs with different parametrizations of the dissipation matrix \check{D} for selected dimensions of a test trajectory. This shows that the dissipative RO-HNNs successfully learn the dissipation forces, achieving similar prediction errors as the conservative models. Fig. 17 displays the predicted latent energy to be compared with the ground-truth energy projected in the symplectic latent space. Overall, our results demonstrate the ability of the RO-HNN to infer long-term predictions of dissipative systems.

Latent dimension and training ablation. We compare the performance of our dissipative RO-HNN across several latent dimensions $d = \{2, 6, 10\}$ with jointly-trained geometrically-constrained symplectic AE and latent geometric HNN against sequentially-trained architectures. Specifically, we consider (1) linear and (2) quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016; Sharma et al., 2023), (3) a weakly-symplectic AE trained jointly with a latent geometric HNN, and (4) a RO-HNN with pretrained geometrically-constrained AE. Fig. 18 shows that our jointly-trained RO-HNN significantly outperforms all baselines for all dimensions, leading to reduced relative reconstruction, latent prediction, and reconstructed prediction errors. This showcases (1) the higher expressivity of the AEs compared to linear and quadratic projection methods, (2) the importance of structurally-embedding the symplecticity condition, unlike the weakly-symplectic AE, and (3) the importance of joint training, allowing the RO-HNN to jointly learn a symplectic submanifold and the associated dynamics.

Finally, we compare the performance of the dissipative RO-HNN against (1) a conservative RO-HNN, where the dissipation forces τ_d are not learned but provided as ground truth in the external input $\tau = \tau_c + \tau_d$, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized via Cholesky decomposition for latent dimensions $d = \{2, 6, 10\}$. The mass-inertia matrix is parametrized via SPD networks in all cases. Fig. 19 shows the obtained latent prediction and reconstructed prediction errors. Both dissipative HNNs achieve errors close to the conservative HNN where the ground truth dissipative forces are provided, with the geometric HNN slightly outperforming its Cholesky counterpart. However, the effect is less pronounced as when learning the inverse mass-inertia matrix, which we attribute to the reduced influence of damping compared to inertia in the overall dynamics.

1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 15: Predicted positions of the damped cloth with RO-HNNs with $d = \{6, 10\}$ and RO-LNN with $d = 10$ for a $625 \times$ longer horizon than during training. Times beyond 0.3s are out of the training data distribution.

Figure 16: Predicted cloth positions and momenta for 6-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (···), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (···). The grey-shaded areas indicates interval beyond the data support.

Figure 17: *Top*: Ground truth (—) and predicted latent energies for 6-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (···), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth values (···). *Bottom*: Energy errors for the same models. The grey-shaded areas indicate intervals beyond the data support, for which the ground truth is extrapolated from the last observation.

Figure 18: Mean and standard deviation of the relative reconstruction (*left*), latent prediction (*middle*), and reconstructed prediction (*right*) errors over 10 cloth trajectories with $H\Delta t = 0.0025$ s. Our RO-HNN with geometrically-constrained symplectic AE (—) is compared against linear SMG reduction (—●—), quadratic SMG reduction (—●—), a weakly symplectic AE (—×—), and a sequentially-trained RO-HNN with pretrained geometrically-constrained symplectic AE (—×—). The pretrained AE (—×—) is depicted for completeness. Notice that the linear SMG and quadratic SMG projections led to diverging dynamics for $d > 2$ and $d > 6$, respectively, for which results are not depicted.

Figure 19: Mean and standard deviation of the latent prediction (*left*) and reconstructed prediction (*right*) errors for different parametrization of the latent dissipation matrix \check{D} over 10 test cloth trajectories. We compare our SPD network (—) against a Cholesky network (—), and the ground truth parametrization (—).

Figure 20: Prediction errors (\downarrow) of RO-HNNs with geometrically-constrained symplectic or vanilla constrained AE with Strang symplectic integrator (■) or Runge-Kutta integrator of order 4 (□) over 10 testing cloth trajectories.

Figure 21: Median and quartiles of the latent and reconstructed prediction errors of 10-dimensional geometric RO-HNN (—), geometric RO-LNN (—), a RO-HNN with latent black-box HNN (···), and a RO-LNN with latent black-box LNN (···).

Ablation of the symplectic architecture to learn dissipative dynamics. As discussed in Sec. 3.2, the dissipative dynamics do not preserve a symplectic structure. Our proposed RO-HNN features two main symplecticity-preserving components, namely the geometrically-constrained symplectic AE and the Strang-symplectic integrator, which we ablate here. We consider two variations of each components, i.e., (1) our geometrically-constrained symplectic AE and a vanilla projection-constrained AE, and (2) the Strang-symplectic integrator and a Runge-Kutta integrator of order 4. Throughout all experiments, we set the latent dimension $d = 10$. Fig. 20 shows the obtained reconstructed prediction errors. We observe that our geometrically-constrained symplectic AE leads to significantly lower median errors than vanilla projection-constrained AE independently of the choice of integrator, showcasing the benefit of preserving the structure of FOM vector field in the ROM (see Proposition 3). Moreover, despite the dissipative structure, the RO-HNN obtained with the Strang-symplectic integrator outperforms the non-symplectic Runge-Kutta integrator. We hypothesize that this is due to the fact that the evolution of this dissipative system is mostly governed by its Hamiltonian function, especially over the short timesteps taken by the integrators.

Comparison against RO-LNN. The last row of Fig. 15 depicts the predicted cloth configuration for the RO-LNN with latent dimension $d = 10$. Moreover, Fig. 21 compares the latent prediction and reconstructed prediction errors of the geometric and black-box RO-HNN and RO-LNN over time.

Our results show that the geometric RO-HNN outperforms the RO-LNN, leading to more accurate predictions. It is worth noting that the RO-HNN leads to increased performances despite that it also learns the dissipation forces via the latent damping matrix, which are instead provided as ground truth to the RO-LNN. Moreover, Fig. 21 shows that the geometric RO-HNN and RO-LNN featuring geometric latent HNN and LNN outperform their black-box counterparts, showcasing the importance of considering the quadratic energy structure of mechanical systems in both network types.

We hypothesize that the improved accuracy of the RO-HNN compared to the RO-LNN can be attributed to (1) the first-order dynamic formulation stemming from Hamiltonian mechanics, which is easier to learn and optimize than the second-order Lagrangian formulation, (2) the Strang-symplectic integrator which is specifically designed for Hamiltonian systems, in contrast to the Runge-Kutta integrators typically used in the case of continuous-time Lagrangians. This aligns with the discussions in (Liu et al., 2024a), which showed that, by using position and momentum observations, HNNs learn mass-inertia matrices that are close to the physical solutions, while LNNs only learn one of the solutions satisfying the Euler-Lagrange equations.

1728
1729 **Table 6: Evaluation wall clock times for different ODE-solvers on analytic FOM compared to**
1730 **RO-HNN. Runtimes are averaged over 10 forward passes and given in s.**

	pendulum ($n = 15, d = 3$)			cloth ($n = 600, d = 10$)		
	$\Delta t = 10^{-2}$ s	$\Delta t = 10^{-1}$ s	Strang	$\Delta t = 10^{-4}$ s	$\Delta t = 10^{-3}$ s	Strang
FOM, n -DoF	1.29	0.75	0.18	255.24	77.62	109.74
RO-HNN, d -DoF	0.79	—	—	16.01	—	—

1743 **Figure 22: Position prediction errors introduced by various simulation speedup methods: Euler-**
1744 **forward integration (—), Strang integration (—) at larger stepsize, and RO-HNN (—).**

1747 H.4 RUNTIMES

1749 This section compares the runtimes of different models. All experiments were performed locally on
1750 a MacBook Pro with M3 CPU.

1751 **Speedup of simulation via the RO-HNN.** We aim at providing an idea of the computational effort
1752 of the RO-HNN compared to the evaluation of the FOMs. To do so, we symbolically derive the
1753 Hamiltonian equations of motion with known physical quantities of the 15-DoF coupled pendulum
1754 of Sec. 4.1 and obtain the equations of motion of the 600-DoF cloth from Sec. 4.3 from Mujoco. We
1755 compare the wall-clock time of the evaluation of these two FOMs against the respective RO-HNN
1756 averaged over 10 single trajectory roll-outs from the same initial conditions as in the testing dataset.
1757 We consider two different integrators, namely an Euler forward and the Strang symplectic integrator,
1758 and different step size Δt on a time-horizon of $H\Delta t = 5$ s for the pendulum and $H\Delta t = 0.5$ s for
1759 the cloth. The evaluation times for the coupled pendulum and the cloth are given in Table 6, with the
1760 corresponding relative position prediction errors depicted in Fig. 22. We observe a prominent reduction
1761 of the evaluation time for the RO-HNNs compared to the FOMs. This reduction is exacerbated
1762 for higher-dimensional systems, e.g., the cloth, where the evaluation time of the RO-HNN remains
1763 significantly lower than that of the FOM evaluated with the computationally-cheaper forward Eu-
1764 ler integrator or increased step size. Moreover, as shown in Fig. 22, the RO-HNNs exhibit lower
1765 prediction errors than their FOM counterparts in addition to a reduced computational complexity.
1766 This showcases that the RO-HNN not only enable accurate learning of unknown high-dimensional
1767 Hamiltonian dynamics, but also the computationally-efficient and accurate evaluation of known sys-
1768 tems via surrogate dynamics.

1768 **Comparison of runtimes of HNNs and RO-HNNs.** Table 7 reports the averaged runtimes for
1769 the forward pass of the differently-sized network architectures considered in Sec. 4.1. The reported
1770 times correspond to the wall clock time of one forward pass of a batch of 10 initial conditions, pre-
1771 dicted over $H = 10$ timesteps with the Strang-symplectic integrator. We observe that the RO-HNN
1772 speeds up the forward dynamics computation compared to the HNN, highlighting the computational
1773 advantages of ROMs compared to FOMs. Moreover, the black-box HNN is computationally more
1774 efficient than the geometric HNN at the expense of prediction accuracy.

1777 **Table 7: Evaluation wall clock times for different network architectures on the 15-DoF pendulum.**
1778 Runtimes are averaged over 10 forward passes and given in ms.

	15-DoF		3-DoF	
	Geometric HNN	Geometric RO-HNN	Geometric HNN	Black-box HNN
	100.25	26.34	18.10	8.04

1782 Table 8: Evaluation wall clock times of different variants for the AE on the 600-DoF cloth dataset.
 1783 Runtimes are averaged over 10 forward passes and given in ms.

1784	Position-level AE $\varphi_Q \circ \rho_Q(\mathbf{q})$	1785 Geometric AE with analytic lift $\varphi \circ \rho(\mathbf{q}, \mathbf{p})$	1786 Geometric AE with <code>autodiff.vjp</code> lift $\varphi \circ \rho(\mathbf{q}, \mathbf{p})$	1787 AE with naive lift $\varphi_Q \circ \rho_Q(\mathbf{q}, \mathbf{p})$
	16.92	20.93	54.24	19.03

1788
 1789 **Runtimes of the lifted AE.** Table 8 reports the average wall-clock times for one forward pass of
 1790 a batch of 100 states for several projection scenarios on the 600-DoF cloth dataset. We consider
 1791 reduction to a latent space of dimension $d = 10$ via 4 layers of size $n_l = \{32, 64, 128, 600\}$. We
 1792 consider (1) a position-level constrained AE, where only position projections $\tilde{\mathbf{q}} = \varphi_Q \circ \rho_Q(\mathbf{q})$
 1793 are computed via the encoder and decoder layers, (2) a geometric symplectic AE, whose lifted
 1794 mappings (8) are computed analytically as a composition of layer derivatives (see App. D) to project
 1795 both positions and momenta via $(\tilde{\mathbf{q}}, \tilde{\mathbf{p}}) = \varphi \circ \rho(\mathbf{q}, \mathbf{p})$, (3) a geometric symplectic AE whose lifted
 1796 maps are computed via automatic differentiation using Pytorch’s `autograd.vjp` function, and
 1797 (4) a naive constrained AE that jointly projects the positions and momenta in $2d = 20$ -dimensional
 1798 latent space via doubled layer dimensions, i.e., $n_l = \{64, 128, 256, 1200\}$. The first two variants
 1799 were evaluated under `torch.no_grad()`, reflecting a realistic scenario for evaluation of forward
 1800 dynamics in the RO-HNN.

1801 The runtimes reported in Table 8 show that the analytic computation of the lifted mappings is sig-
 1802 nificantly faster than the automatic-differentiation-based implementation. This is expected, as our
 1803 analytic implementation avoids the construction of a backward graph. It is worth emphasizing that
 1804 the geometric AE with analytic lifts requires significantly less than twice the runtime of the position-
 1805 level constrained AE. Therefore, using a single cotangent-lifted AE that jointly projects positions
 1806 and momenta is computationally more advantageous than training two separate AEs for separate
 1807 projections.

1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835