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ABSTRACT

By embedding physical intuition, network architectures enforce fundamental
properties, such as energy conservation laws, leading to plausible predictions.
Yet, scaling these models to intrinsically high-dimensional systems remains a
significant challenge. This paper introduces Geometric Reduced-order Hamil-
tonian Neural Network (RO-HNN), a novel physics-inspired neural network that
combines the conservation laws of Hamiltonian mechanics with the scalability
of model order reduction. RO-HNN is built on two core components: a novel
geometrically-constrained symplectic autoencoder that learns a low-dimensional,
structure-preserving symplectic submanifold, and a geometric Hamiltonian neural
network that models the dynamics on the submanifold. Our experiments demon-
strate that RO-HNN provides physically-consistent, stable, and generalizable pre-
dictions of complex high-dimensional dynamics, thereby effectively extending the
scope of Hamiltonian neural networks to high-dimensional physical systems.

1 INTRODUCTION

Learning the unknown governing equations of dynamical systems is of fundamental importance to
model physical processes. In this context, generic neural models lack built-in physical intuition,
thus resulting in limited explainability and poor generalization beyond the data support. Physics-
informed neural networks (Karniadakis et al., 2021)) drastically improve performance by embedding
fundamental physical properties, such as conservation laws and boundary conditions, into neural net-
works. Various models incorporate physical intuition as soft constraints via penalty terms in the loss
function. This often leads to suboptimal enforcement of physical properties and to stiff optimiza-
tion (Wang et all 2021)), motivating the embedding of domain-specific priors as hard constraints
in specialized neural architectures. This allowed recent methods to preserve energy (Greydanus
et al., 2019; |[Cranmer et al., 2020; |[Lutter & Peters| [2023)), conserve mass and momentum (Jnini
et al.| [2025), and strictly enforce general conservation laws (Liu et al.l 2024)), thereby improving
performances, generalization, and stability while yielding physically-consistent predictions.

Hamiltonian mechanics, introduced by |[Hamilton| (1834) as a reformulation of Lagrangian me-
chanics, describe the evolution of a broad range of dynamical systems in robotics (Duong &
Atanasov, 2021)), fluid dynamics (Salmon, [1988)), quantum mechanics (Schrodinger, [1926), and
biology (Duarte et al.l [1998), among others. Hamiltonian systems evolve on a phase space with
symplectic structure, naturally enforcing energy conservation (Abraham & Marsden, [1987). Com-
pared to Lagrangian mechanics, Hamiltonian mechanics provide a first-order formulation of dy-
namics that describes a broader range of physical systems. Hamiltonian neural networks (HNNs)
are gray-box models that embed the Hamiltonian structure as hard constraints in specialized deep
learning architectures. HNNs either directly learn the Hamiltonian function, ensuring conservation
laws by construction (Greydanus et al.,|2019; |Lutter & Peters, [2023)), or learn symplectomorphisms
that preserve the invariants of interest via symplectic flows (Jin et al.| 2020). HNNs were enhanced
by including dissipation (Zhong et al.| 2020a) and contact (Zhong et al., [2021)) models, and utilized
for model-based control (Duong & Atanasov, 2021; |Zhong et al., [2020b). While most HNNs con-
sider Hamiltonians characterized by a canonical symplectic form — exhibited at least locally for
all Hamiltonian systems — few works proposed architectures handling non-canonical forms (Chen
et al.; 2021). Although HNNs yielded drastic performance improvements over generic black-box
models, their application remains limited to low-dimensional systems with 2-5 dimensions.

Learning the dynamics of high-dimensional physical systems, such as robots, continua, or fluids,
is arguably a difficult problem due to the increasing complexity and nonlinearity of their govern-
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ing equations. Several approaches combine data-driven sparse identification of nonlinear dynamics
(SINDy) and dimensionality reduction to discover high-dimensional governing equations (Brunton
et al.| 20165 /Champion et al.,[2019). However, they disregard the apriori-known structures of phys-
ical systems. In contrast,|Sharma & Kramer| (2024); [Friedl et al.[(2025) took inspiration from model
order reduction (MOR) to learn high-dimensional Lagrangian dynamics. MOR addresses the com-
plexity of nonlinear high-dimensional governing equations, so-called full-order model (FOM), by
finding a reduced-order model (ROM), i.e., a computationally-cheaper yet accurate low-dimensional
surrogate model (Schilders et al., [2008). While MOR techniques are typically intrusive, i.e., they
assume entirely-known FOM dynamics, Sharma et al.|(2024) presented a novel non-intrusive MOR-
based approach that learns the parameters of a high-dimensional Lagrangian system in a linear
structure-preserving subspace. In a similar line, [Friedl et al.[ (2025) adopted a Riemannian per-
spective on the problem and introduced a physics-inspired neural architecture that jointly learns
a non-linear embedded submanifold via a biorthogonal Autoencoder (AE) and its associated low-
dimensional conservative dynamics via a geometric Lagrangian neural network (LNN).

This paper proposes a novel physics-inspired geometric deep neural network to learn the dynam-
ics of high-dimensional Hamiltonian systems. In contrast to previous works that learn dynamics
from high-dimensional observations such as images (Greydanus et al., |2019; |Chen et al., 2021}
Botev et al., [2021), we consider systems with intrinsically high-dimensional phase spaces. Tak-
ing inspiration from (Sharma & Kramer} 2024; [Friedl et al.l 2025}, we build on recent advances
in Hamiltonian MOR (Peng & Mohseni, 2016}, Buchfink et al., [2024)) and adopt a differential geo-
metric perspective to embed the high-dimensional Hamiltonian structure as hard constraints in our
architecture. Qur first contribution is a geometrically-constrained symplectic AE that learns a
low-dimensional symplectic submanifold from trajectories of a high-dimensional Hamiltonian sys-
tem. Unlike soft-constrained symplectic networks (Buchfink et al., 2023)), our AE guarantees the
preservation of the symplectic structure of the FOM, including its conservation laws and stability
properties (Lepri et al.,|2024), with increased expressivity compared to linear and quadratic symplec-
tic projections (Bendokat & Zimmermann, 2022;|Sharma et al.| [2023)). Our second contribution is
a geometric HNN that models conservative and dissipative Hamiltonian dynamics while accounting
for the Riemannian geometry of its parameters, and resorts to symplectic integration (Tao, [2016)
for accurate long-term dynamics simulation. Our third contribution is a geometric reduced-order
Hamiltonian neural network (RO-HNN) that jointly learns a low-dimensional symplectic submani-
fold with a geometrically-constrained symplectic AE and the dynamics parameters of the associated
Hamiltonian function with a geometric HNN. We validate our approach on three high-dimensional
Hamiltonian systems: a pendulum, a thin cloth, and a particle vortex. Our experiments demonstrate
that, due to its embedded geometries, RO-HNN predicts accurate, stable, and physically-consistent
trajectories, outperforming traditional HNNs and state-of-the-art reduction approaches.

2 BACKGROUND

We provide a short background on Hamiltonian dynamics, structure-preserving Hamiltonian MOR,
and related neural networks. Preliminaries on Riemannian and symplectic geometry are in App. [A]

2.1 HAMILTONIAN DYNAMICS ON SYMPLECTIC MANIFOLDS

A symplectic manifold (M, w) is a 2n-dimensional smooth manifold M equipped with a symplec-
tic form w, i.e., a closed (dw = 0), non-degenerate, differential 2-form represented by a skew-
symmetric matrix w in coordinates. We slightly abuse notation, equivalently denoting symplectic
manifolds as (M, w). A Hamiltonian system (M, w, ) is a dynamical system evolving on a sym-
plectic manifold (M, w) according to a smooth Hamiltonian function # : M — R. The Hamilto-
nian vector field X3, = w™'dH is uniquely defined and preserves . Trajectories v : Z — M of
the system over a time-interval Z = [t, t¢] are solutions of the initial value problem (IVP)

dyle = Xplyy €TywM,  with  ~(tg) =~ € M. (1)

A diffeomorphism f : (M,w) — (N,n) between symplectic manifolds is a symplectomorphism
if it preserves the symplectic form, i.e., f*n = w with f*7 denoting the pullback of 1 by f.

Following Darboux theorem, there exists a canonical chart (U, ¢), € U for each point € M in
which the symplectic form is represented as w = JJ  via the canonical Poisson tensor

T . _
Jon = <_(} 6‘) , forwhich JI =J,!=—Ja,.. 2)
n
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In other words, every symplectic manifold is locally symplectomorphic to (R**,JJ ). A system
(R?",J3,,H) is called a canonical Hamiltonian system.

In this paper, we consider Hamiltonian systems (M, w, ), on M with simple global chart and
globally valid canonical symplectic form w = JJ . In this case, the phase space M can be modeled
on the cotangent bundle 7*Q of a smooth n-dimensional manifold ©Q with canonical coordinates
(g,p) with position ¢ € Q and conjugate momenta p € 7,;Q. The Hamiltonian vector field
31mphﬁes to (@7, pT)T = Xy = JopdH = (Z2E7,—3%7 ) T. Moreover, the Hamiltonian system
(T*Q, I3, H) relates to a Lagrangian functlon ﬁ T Q — R via the Legendre transform, which
takes Lto H = ¢Tp — L with p = zT and ¢ € T49Q. Mechanical systems often display a
quadratic kinetic energy structure, where the configuration manifold Q is a Riemannian manifold
endowed with the kinetic-energy metric equal to the system’s mass—inertia matrix M (q). In this
case, the Hamiltonian function is given by the sum of the system’s kinetic T'(q, p) and potential
V(q) energies as H = T(q,p) + V(q) = 3pTM ~'(q)p+ V (q) and the momenta is p = M (q)q.

2.2  STRUCTURE-PRESERVING MODEL-ORDER REDUCTION OF HAMILTONIAN SYSTEMS

Given the known parametrized dynamic equations of a high-dimensional system, i.e., a FOM, MOR
aims to construct a low-dimensional surrogate dynamic model, i.e., a ROM, that accurately and ef-
ficiently approximates the FOM trajectories. Structure-preserving MOR preserves the underlying
geometric structure of the FOM, ensuring the preservation of its properties, e.g. stability and en-
ergy conservation, in the ROM. For Hamiltonian systems (M, w, M), the symplectic structure is
preserved by constructing a reduced Hamiltonian (M, @, H) with dim(M) = d < dim(M) = n,
whose vector field X4, approximates the set of solutions S = {~(t) € M |t € T} C M of (T).

Following the geometric perspective of Buchfink et al.| (2024)), the reduced Hamiltonian (M, w, ’H)
is derived by identifying the submanifold M via a smooth embedding ¢ : M — M such that

W= w=dpTwdy, 3)
is non-degenerate. This implies that (M, w) is a symplectic manifold and ¢ is a symplectomor-
phism (Buchfink et al., 2024, Lemma 5.13). Note that structure-preserving Hamiltonian MOR typi-
cally considers a canonical FOM (R?", J7 ) reduced to a canonical ROM (R2%, JT, H) (Peng &
Mohseni| 20165 Sharma et al., [2023; Buchfink et al.}|2023)). The Hamiltonian structure is preserved
by constructing 7 via the pullback of the embedding as H = <p*’H H o . Trajectories (t)
of the reduced-order system are then obtained from the ROM < = XH’ 2 € T5t) M, with

Xg = w~'dH. The reduced initial value 5 = p(v0) € M is Computed via the point reduction
map p : M — M associated with ¢, which must satisfy the projection properties
pop=idy and dp|ys)odple =idr vy, Vi e M. 4)

Trajectories of the original system are finally obtained as the approximation ~y(t) ~ ¢(%(¢)).

The embedding ¢ and point reduction p are key for MOR as they determine the ROM trajectories.
Accurately approximating the FOM requires the minimization of the reconstruction error

N
1
lree = NZ”‘POp(jS) _willz' o)
=1

Exact reconstruction requires dp to be the symplectic inverse of dy, i.e., dp = dpt = &~ 'dpw. In
this paper, we introduce a geometrically-constrained AE that fulfills (3) and @) by design.

2.3 HAMILTONIAN NEURAL NETWORKS

While MOR reduces the dimensionality of systems with known dynamics, HNNs aim to learn the
unknown dynamics of typically low-dimensional systems while ensuring energy conservation. Most
HNNs assume canonical Hamiltonian systems or Hamiltonian systems with canonical symplectic
form ). In this paper, we build on two HNN variants that (/) learn the Hamiltonian function as
a single network Hg(q, p) with parameters 8 (Greydanus et al.l[2019)), or (2) learn the kinetic and
potential energy as two distinct networks, i.e., Ho(q, p) = To.(q, p) + Vo, (q) (Zhong et al.,|2020b;

Lutter & Peters, [2023). Given a set of NV observations {q;, p;, qi,pi}f:l, the networks are trained
to minimize the prediction error of the Hamiltonian vector field via the loss

OHe . OH .
o = 157 @i, i) — il + 175 (@i, p) = Bl ©)
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Figure 1: Flowchart of the forward dynamics of the geometric RO-HNN. The geometrically-
constrained symplectic AE (in blue) is built as the cotangent lift of a constrained AE (top right).
The geometric HNN (in brown) is composed of two SPD networks for the inverse mass-inertia and
damping matrices and one MLP for the potential energy.

3 GEOMETRIC REDUCED-ORDER HAMILTONIAN NEURAL NETWORKS

We present the geometric reduced-order Hamiltonian neural network (RO-HNN) that learns the un-
known dynamics of high-dimensional Hamiltonian systems. We focus on systems (M, JT  H)
evolving on a phase space M with canonical symplectic form JI for which the solutions ~y () of
the FOM (1) can be accurately approximated by a substantially lower dimensional surrogate model.
Our goal is to learn a reduced Hamiltonian system (M, w, H) via non-intrusive structure-preserving
MOR, where we set M as a phase space with @ = J7 54~ Given a set of high-dimensional observations
{q“pz}z 1, we identify low-dimensional dynamics by jointly learning a reduced symplectic mani-
fold (./\/l J3,) via a smooth embedding ¢ and a reduction p, and a latent Hamiltonian function H.

The proposed RO-HNN ensures the preservation of the Hamiltonian structure by fulfilling three
necessary conditions by design: (/) the embedding ¢ is a symplectomorphism, or equivalently

w = Jog = dpTJondy; (7)

(2) the embedding ¢ and reduction map p satisfy the projection properties (); and (3) H is a valid
Hamiltonian function, thus preserving the reduced energy £ = &£ o ¢. The RO-HNN fulfill (7)-
(2) via a novel geometrically-constrained symplectic AE (Sec. [3.1), while (3) is guaranteed by a
reduced-order geometric HNN (Sec.[3.2), whose trajectories are obtained via symplectic integration
(Sec.[3.3). Accurate modeling of the high-dimensional dynamics is achieved by jointly training the
AE and the HNN (Sec.[3.4). The proposed RO-HNN is illustrated in Fig.

3.1 GEOMETRICALLY-CONSTRAINED SYMPLECTIC AUTOENCODER

Preserving the geometric structure of the original Hamiltonian FOM is crucial for the learned ROM
to display similar dynamics. We introduce a geometrically-constrained symplectic AE that projects
a high-dimensional Hamiltonian system (M, J3,,, H) onto a low-dimensional nonlinear symplectic
manifold (M, J],) such that the reduced system strictly retains the Hamiltonian structure of the

FOM. We parametrize the point reduction p : M — M and embedding ¢ : M — M as the
encoder and decoder of an AE designed to satisfy symplecticity (7) and projection properties (@) by
construction. To do so, we leverage the cotangent bundle structure of the phase space M = T*Q.

Given a smooth embedding ¢ : Q — Q and associated point reduction pg : Q — Q satisfying @,
we define the cotangent-lifted embedding ¢ and point reduction p in canonical coordinates as

o e _
¢(q,p) = (dpQILQ(q)) and  p(q,p) = (d%pg(q) (8)

Proposition 1. The reduction map p(q,p) () satisfies the projection properties ().
Proof. Tt is clear that the cotangent-lifted map p fulfills (@) as pg satisfies @) by assumption. [

Proposition 2. The embedding ¢(q,p) @) satisfies the symplecticity property (7).
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. . . . . deg 0
Proof. Proving the statement is equivalent to show that the differential dp = ( a(dpg|lp) dpT
—aq %o

belongs to the symplectic Stiefel manifold Sp(2n,2d) = {U € R**2 | U ], U = Jaq}. A
block matrix U = (4 B) belongs to Sp(2n, 2d) if its block elements satisfy the condition
UTIL U = (AT CT) (0 —In> <A B) _ (CTA—ATC CTB—ATD) _ (0 —Id>
n BT DT I, 0 C D D'A-B'C D'B-B'D I, o )’
i.e., the differential dy must satisfy
T

dpTITdyp = (CTd(‘iprQ;@dQ‘PTQC _d‘P%deQ> — GZ _OId> with C = 8(d;(;gq|qp). ©)
By assumption, pg fulfills the projection properties (@), so that dpgdpg = d(pTdeTQ = I, holds
by construction. It remains to prove CTdpg — dcpTQC = 0. We denote the elements of the
canonical and reduced canonical coordinates as ¢*, p; and ¢%, P, respectively. By definition, we
have (dpg)?, = BT‘f and (dpg)% = %‘jj and the projection properties hold by assumption, i.e.,

(dpo)s (deo)y = 05 Vi € Q, with 65 = 1if a = 8 and 0F = 0 otherwise. Therefore, we have

op; a(d oq’ ~ a(d
pi = (dpo)?Pas and Ciy = §2 = Zo((dpo)pa) = XGPe58pa = LG5 (dpo)pa-

We aim to show that CTdypg is symmetric, i.e., (dpg)5Ciy = (dpg)? Cis. Using the projection

properties, we can write pg = (dgpg)fg(dpg)f‘pa. Differentiating with respect to ¢” yields
_ (dpo)s i (dpo)f ¢’
) - ~ )B . ——Pa
oLkl dqi 0§

_ (dSDQ)% i _ 8qi i
= i + (dpo)pCiny = W}h‘ + (dp)sCiny-

a [3 [ [
0= 5~ ((dpa)s(dpa); pe (dpa)§Pa + (dpo

4

gy
As the Hessian in the first term is symmetric, the equality implies the symmetricity of the second
term, i.e., (dpg)5Ciy = (dpg)?,Cip, and thus (@) holds. O

Note that dpJs,dpT = J24 is shown to hold on ga(M) with similar arguments. Moreover, a similar
proof is presented by Sharma et al.|(2023)) in the context of quadratic symplectic projections.

In practice, we learn the embedding ¢ and point reduction pg via the constrained AE architecture

from [Otto et al| (2023)), and compute their differentials to construct the cotangent-lifted maps ().

The encoder and decoder are given as a composition of feedforward layers pgo = p(Ql) .0 p( )

and oo = <p(QL) o...0 go(Ql) with p) s R — R <,0(Ql) s R™-1 — R™, and n;_1; < ny. The key
to fulfill the projection properties @ is the construction of the layer pairs as

l D)/ <(l— (-

pS@V) =0 (‘I’zT(q“) — bz)) and o0 (G ) = @0 (@) + by, (10)
where (®;, ;) and (0,0_) are pairs of weight matrices and smooth activation functions such
that ¥, ®;, = I,,, , and o_ o oy = id, respectively, and b; are bias vectors. Therefore, each

layer pair (T0) satisfies pQ ) go(Q) idgni—1 and the constrained AE fulfills {@). Following (Friedl
et al., [2025), we ensure that the pairs of weight matrices adhere to the biorthogonality constraint
v, <I>l = I; by accounting for the Riemannian geometry of biorthogonal matrices (see App. -
for a background). Specifically, we consider each pair (®;, ¥;) as an element of the biorthogonal
manifold B, ,,_, ={(®, ¥) € R Xm-1 x RuXni-1 : ¥TH = [,  } and optimize them to min-
imize the reconstruction error @ via Riemannian optimization (Absil et al., [2007; |Boumal, 2023)
(see. App.[F). Note that this Riemannian approach was shown to consistently outperform the over-
parametrization proposed by |Otto et al.| (2023), achieving lower reconstruction errors (Friedl et al.,
2025)). The constraint o_ oo, = id is met by utilizing the smooth, invertible activation functions
defined in (Otto et al.,[2023| Eq. 12). Additional details on the architecture are provided in App.

As will be shown in Sec. [} the resulting geometrically-constrained symplectic AE provides in-
creased expressivity compared to linear and quadratic symplectic projection approaches (Peng &
Mohseni| [2016; |Sharma et al.,[2023)), while guaranteeing the symplectic structure of the latent space
in constrast to weakly-symplectic AEs based on soft constraints (Buchfink et al.,|2023)). In the intru-
sive case, i.e., if the FOM is known, we construct the reduced Hamiltonian function via the pullback
of the cotangent-lifted embedding as H = ¢*H, which yields the Hamiltonian ROM. Instead, in
this paper, we consider the case where the high-dimensional dynamics are unknown, and learn the
reduced-order Hamiltonian function H with a geometric HNN, as explained next.
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3.2 CONSERVATIVE AND DISSIPATIVE HAMILTONIAN REDUCED-ORDER MODELS

We propose to learn the reduced Hamiltonian dynamics in the embedded symplectic submanifold
(M, J3,) via a HNN. For general systems, we encode the reduced-order Hamiltonian function as
a single neural network 7:[9(11, p) with parameters 6, akin to (Greydanus et al, [2019). However,
additional prior knowledge on the structure of the Hamiltonian is often available. For instance,
the Hamiltonian function of mechanical systems sums a quadratic kinetic energy and a potential
term. Leveraging that the learned symplectic submanifold preserves the original system structure,
we propose to model the reduced Hamiltonian function as He (g, p) = %pTMng(d)ﬁ + Vg‘./ (q)

via two neural networks M, (;T_l and ng with parameters @ = {0, 0y, }. Existing HNNs enforce the
symmetric positive-definiteness of the inverse mass-inertia matrix via a Euclidean network encoding
its Cholesky decomposition L, i.e., M~! = LLT. However, as for LNNs (Friedl et al., [2025)), this
parametrization leads to flawed measures of distances in the space of symmetric positive-definite
(SPD) matrices and ultimately results in inaccurate dynamics predictions. To overcome this issue,
we parametrize M, o ! viathe SPD network from|Friedl et al.|(2025) that accounts for the Riemannian

geometry of the SPD manifold ¢, (see Apps E ' The network M ( ) = (gexp © gr)(q) is
composed of (1) a standard Euchdean multilayer perceptron (MLP) g : Rd — RU4+1)/2 that maps

the input configuration to the elements of a symmetric matrix U € Symd and (2) an exponential

map layer ggy, that interprets U as an element of the tangent space TpS ¢ .» and maps it onto Sf e

While classical Hamiltonian dynamics conserve energy, dissipation and external inputs often appear
in real-world systems. Both can be modeled in HNNs by complementing the Hamiltonian vector
field with a force field X , so that the total vector field is X = X4, + X (Sosanya & Greydanus),
2022;[Zhong et al.,[2020a). We propose to leverage the structure-preserving symplectic submanifold
and model dissipation and external inputs as a reduced-order force field X r on (/\/l J 2)- Spe01f-
ically, we model viscous damping via a Rayleigh dissipative function Dy 5(a, q) = 5 Lg DgD( 7)q.
Dissipative HNNs (Zhong et al., 2020a) constraint the dissipation matrix to be positive semi-
definite through its Cholesky decomposition, i.e., D = LLT, thus overlooking its intrinsic geo-
metric structure. Instead, we utilize a second SPD network DgD (@) = (gexp © gr)(q). Moreover,
we embed observed external inputs Ty into the symplectic latent space via the embedding g as
Text = d@Ql} Text- The resulting geometric HNN predicts conservative and dissipative dynamics as
3 OH . _OH JD .
b= W By= s = e e (11

with DgD =0 and 7. =0 in the conservative case. The archltecture is illustrated in Fig. mmzddle

Predicting system trajectories according to the learned reduced-order Hamiltonian dynamics in-
volves (1) integrating the latent predictions (gp, Pp) (L), and (2) decoding the obtained reduced-
order position and momentum (gp, Pp) into the high-dimensional coordinates of the original system
with the point reduction p (), i.e., (@, Pp) = p(dp, Pp). In this paper, we propose to integrate the
learned reduced-order Hamiltonian flow via symplectic integration, as explained next.

3.3 TRAJECTORY PREDICTION VIA SYMPLECTIC INTEGRATION

Symplectic integrators are particularly well suited to integrate Hamiltonian dynamics as they pre-
serve the geometric structure and invariants of the Hamiltonian flow (Leimkuhler & Reichl [2005).
Symplectic integrators were shown to be key to accurately integrate learned HNNs dynamics, thus
preventing long-term drifting of numerical solutions (Chen et al.| 2020; Xiong et al.,[2020).

The Hamiltonian dynamics learned in Sec. are nonseparable, thus prohibiting the usage of stan-
dard explicit integration schemes, e.g., leapfrog (Leimkuhler & Reich| [2005)). Instead, we integrate
the reduced-order Hamiltonian flow (TT)) using the second-order symplectic integrator of (Taol, [2016)
based on Strang splitting, akin to (Xiong et al.,[2020). In a nutshell, the integrator considers an aug-
mented Hamiltonian H(q, p, z,y) = H(q,y) + H(p, ) + 3w(|lq, z||* + ||p, y||*) with extended
phase space, for which high-order separable symplectic integrators with explicit updates can be con-
structed. A numerical integrator approximating H is obtained by composing the obtained explicit
flows, which we refer to as Strang-symplectic integrator. Additional details are provided in App.[E]

3.4 MODEL TRAINING

Finally, we propose to jointly learn the parameters {®;, ¥;, b}/, of the AE and {04, 6y,,0,}
of the latent geometric HNN. As the learned dynamics are expected to predict multiple steps, we
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Table 1: Prediction errors () over 10 test pendulum trajectories.

=
= 10° A
- \| -] ~
HAt (s) RO-HNN 15-DoF HNN = AV \(\,,\(A(\\f‘\[’\ ﬂ\(‘/ "
lg-al 025  (1.66+1.38) x 10-1 (5.334+6.02) x 10~ (1.22+0.92) x 10~ .
Tl 5 (7.08 + 7.56) x 10~ — (5.44 +6.93) x 10~ & 107
IBpl 025  (5.33%£5.23) x 107> (L76£240) x 1071 (2.50 £ 2.96) x 10~2 =
)

Tl 5 (1.98 £2.67) x 1071 — (1.85+3.94) x 1071 0.25 A
Figure 2: Relative error and reconstructed trajectories of the & 0.00 \M/\/\/\\/
RO-HNN (—) and 3-DoF HNN (—) vs. ground truth (—) for a —0.251 . . . .
horizon H At=>5s. The 15-DoF HNN diverges and is not shown. 00 10 20, 30 40 50

Table 2: Mean and standard deviation of reconstruction, prediction, and symplecticity errors ({) of
symplectic dimensionality reduction approaches over 10 test pendulum trajectories.

Linear SMG Quadr. SMG Weakly-sympl. AE ~ Geom. Sympl. AE (ours)

llgd —aqll/llqll (221 +1.17) x 107! (2.84+£4.23) x 10°  (1.43+0.68) x 10~}  (8.84 4 6.22) x 10~2

Iz = 2l/lpl (4.43 £3.99) x 107! (2.754+1.60) x 107+ (1.57 £1.55) x 107!  (4.09 & 3.99) x 10~2

llao —all/llall (2.5842.33) x 107! (3.53£5.18) x 10°  (7.10+7.02) x 107!  (1.13 £0.92) x 10~ 1

Iy — I/ Pl (216 +1.89) x 107! (8.684+1.04) x 107+ (216 £1.89) x 107!  (4.68 +-4.32) x 10~2
12 — deTJande|| 0.0 +£0.0 0.0 £ 0.0 (1.67 £0.35) x 1072 0.0+ 0.0

[ldp — de™ || 0.0 +£0.0 0.0 £ 0.0 (5.32 + 1.45) x 10° (9.53 £5.35) x 10~*

consider a loss that numerically integrates the latent predictions (gp, p,) ([T) via H forward Strang-

symplectic integration steps before decoding. Given sets of observations {q;(Z;), ¢;(Z;), 7:(Z;) }f\il
over intervals Z; = [tz, t; + H At] with constant integration time At, the resulting multi-step loss is

Lro-HNN _HN ZZ G (ti5) = @i(ta )1 + 11Bi(tis) — P(tag) 1 + Mldp,(tis) — @it )7 (12)

=1 j=1

£AE LHNN, d
- ™ 2 ~ 2 ~ 2 2
+ MIPp,i(ts,5) — Di(ta)II” + 1Gp,i(ti,5) — @it i)|I” + [|Pp,i(tis) — it i)™ +v 1012,

LUNN, d LHNN, n

t”

where ¢, ;(t; ; ft " gpdt and pp;(ti ;) = Pp,idt with t; ; = t; + jAt, and loss scaling
A€ R We optlmlze the network parameters v1a Riemannian Adam (Becigneul & Ganeal 2019).

4 EXPERIMENTS

We evaluate the proposed RO-HNN to learn the dynamics of three simulated high-dimensional
Hamiltonian systems: a 15-degrees-of-freedom (DoF) pendulum, a 600-DoF thin cloth, and a 90-
DoF particle vortex. Our experiments showcase that RO-HNNs accurately predict long-term tra-
jectories of high-dimensional Hamiltonian systems, highlighting the importance of embedding ge-
ometric inductive biases as hard constraints in the AE and HNN. Details about datasets, network
architectures, and model training are provided in App. |Gl Additional results are provided in App.

4.1 COUPLED PENDULUM (15 DOF)

We consider a 15-DoF augmented pendulum whose nonlinear dynamics are specified from the sym-
plectomorphism of a latent 3-DoF pendulum augmented with a 12-DoF mass-spring mesh. As the
mesh oscillations are small, the system dynamics are approximately reducible to 3 dimensions.

Learning high-dimensional dynamics. We train a RO-HNN with latent dimension d = 3 and a
conservative geometric HNN with Strang-symplectic integration on 3000 observations {q;, p; } (see
App.[G.T|for details). We compare our RO-HNN with a 15-DoF geometric HNN that directly learns
high-dimensional dynamic parameters. For completeness, we also consider a 3-DoF geometric HNN
trained on observations of the latent system. Notice that this model would not be deployable in
practice as it requires ground truth information, i.e., latent observations, that would not be available.

Short- and long-term relative prediction errors over HAt = {0.25, 5}s are reported in Table[l| The
RO-HNN outperforms the 15-DoF HNN, leading to significantly lower prediction errors. Due to
the high dimensionality, the 15-DoF HNN was difficult to train and did not lead to stable long-term
predictions. As shown in Fig. 2] the RO-HNN achieves similar long-term predictions as the 3-DoF
HNN, which is expected to perform best as trained directly on the low-dimensional system. This val-
idates the RO-HNN ability to jointly learn a latent symplectic submanifold and associated dynamics.

AE architecture. The quality of the learned symplectic submanifold is crucial for learning accu-
rate dynamics, as they may systematically deviate from the ground truth if the submanifold does
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Figure 3: Ablation of the latent HNN architecture (left) and latent integrator (middle, right) of the
RO-HNN to learn the dynamics of a 15-DoF pendulum.
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Figure 4: Predicted (e, e, ®) vs ground truth (¢, e, ®) positions of the particle vortex. Times beyond
10s are out of the training data distribution.

not accurately capture the solution space of the high-dimensional system. We analyze the influ-
ence of the reduction method in the RO-HNN and compare the proposed geometrically-constrained
symplectic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng
& Mohseni, [2016; Sharma et al., [2023) which preserve the symplectic structure by construction,
and a weakly-symplectic AE (Buchfink et al., |2023) which encourages structure preservation via a
penalty term in the loss (see App.[G.Ifor details). We train each approach on 3000 observations
of the 15-DoF pendulum. Here, we consider an intrusive MOR setup and project the known FOM
dynamics onto the learned submanifold to predict new trajectories (H At = 0.25s). Table 2] shows
that, due to their increased expressivity, the AEs outperform the linear and quadratic projections,
with the geometrically-constrained symplectic AEs achieving the lowest reconstruction and predic-
tion errors. Note that only the geometrically-constrained AE yielded stable longer-term predictions
(see Fig. 2). Moreover, only the weakly-symplectic AE results in an error on the symplecticity con-
dition (7), which is expected as both SMG projections and geometrically-constrained symplectic AE
fulfill it by construction. Both SMG projections also ensure by design that the differential dp is the
symplectic inverse of dip, while the geometrically-constrained AE leads to a lower error than the
weakly-constrained one. Note that jointly training the AE with the geometric HNN in the RO-HNN
further reduces this error to (7.42 & 1.21) x 10~}, showcasing the benefit of joint training.

Latent HNN architecture. = We compare the performance of our geometric HNN to learn the
low-dimensional dynamics of the latent 3-DoF pendulum against (/) a non-geometric variant that
parametrizes the inverse mass-inertia matrix via a Cholesky network, and (2) two HNNs encoded
as a single black-box network Hg, where we consider two MLPs of 64- and 256-neurons width.
As shown in Fig. BHeft, the geometric HNN achieves the lowest reconstruction error, followed by
the Cholesky HNN (see also App. [H.I). This showcases the importance of considering both the
quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices.

Latent integrator. We compare the Strang symplectic integrator against a symplectic leapfrog that
disregards that the Hamiltonian is non-separable, and a Runge-Kutta of order 4 that overlooks its
symplectic structure. Fig. B}middle, right show that the Strang symplectic integrator achieves the
lowest reconstruction error and conserves energy best during integration (see also App. [H.T).

4.2 PARTICLE VORTEX (90-DOF)

Next, we learn the dynamics of a particle vortex composed of n = 90 particles with uniform in-
teraction strengths. As the particle vortex dynamics are purely determined via the logarithmic in-
teraction, its Hamiltonian function does not separate into kinetic and potential energies. We train
RO-HNNs with d = {6.10} and (/) a geometric HNN and (2) a black-box HNN Hg, both with
Strang-symplectic integration (see App. [G.2] for details). Fig.[d] depicts the predicted particle po-
sitions and momenta for a prediction horizon of H = 100, showing that the RO-HNN accurately
predicts the particle vortex dynamics and generalizes beyond the data support (¢ > 10s). As shown
in Table[3] the geometric HNNs outperform the black-box HNNs despite the lack of structure of the
ground truth Hamiltonian. This suggests that the AE learns a symplectomorphism to a latent space
where the Hamiltonian can be decomposed into two energy terms, thereby taking advantage of the
additional structure of the geometric HNN. Moreover, the 6-dimensional models outperform the 10-
dimensional ones, showing that the choice of latent dimension trades off between the latent space
expressivity and the limitations of HNNs in higher dimensions (see App. for more results).
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Table 3: RO-HNN prediction errors ({) for different latent HNNs over 10 particle vortex trajectories.

HNN I, — all/lql Py — pl/llpll g, — gll/llgl 1By — pll/lIpl
Black-box  (6.73+2.83) x 107! (6.28 £2.18) x 107! (7.34£3.03) x 107! (7.04 £2.27) x 107}
Geometric  (4.00 £2.01) x 10~1  (4.334+0.14) x 10~!  (4.44+0.60) x 1071 (4.60 £0.32) x 107!
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tion ground truth

o
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o

Figure 5: Predicted positions of the damped cloth with a RO-HNN with d = 10 for a 625x longer
horizon than during training. Times beyond 0.3s are out of the training data distribution.

4.3 CLOTH (600-DOF)

Next, we learn the dynamics of a high-deformable damped system, namely a simulated 600-DoF
thin cloth falling onto spheres of different radius, akin to (Fried! et al., [2025). The system is in-
trinsically damped due to external dissipation forces 4. We train two RO-HNNs with d = {6, 10}
and a dissipative geometric HNN with Strang-symplectic integration on 20 trajectories of 3000 ob-
servations {q;, p;, 7;} each, where T = 7. are measured external constraint forces (see App.
for details). Fig. [5] depicts the predicted cloth configurations for a horizon HAt = 0.5s, show-
ing that the RO-HNN accurately predicts the high-dimensional dissipative dynamics of the cloth,
generalizing beyond the data support (¢ > 0.3s) (see App. for additional results and ablations).

Latent damping. We compare the performance of the dissipative RO-HNN against (/) a conserva-
tive RO-HNN, where the dissipation forces T4 are not learned but provided as ground truth in the ex-
ternal input T =7, + T4, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized
via Cholesky decomposition. Note that the mass-inertia matrix is parametrized via SPD networks
in all cases. Table |4 shows that both dissipative RO-HNNs successfully learn the dissipation forces,
achieving similar prediction errors as the conservative RO-HNN. The geometric HNN slightly out-
performs its Cholesky counterpart, showing the importance of considering geometry. However, the
effect is less pronounced as when learning the inverse mass-inertia matrix, which we attribute to the
reduced influence of damping compared to inertia in the overall dynamics.

5 CONCLUSIONS

This paper proposed a novel physics-inspired neural network, RO-HNN, for learning the dynamics
of high-dimensional Hamiltonian systems from data. Our model provides physically-consistent, ac-
curate, and stable predictions that generalize beyond the data support. To achieve this, our model
systematically integrates geometric inductive bias by defining structure-preserving symplectic em-
beddings, considering the geometry of the dynamics parameters within the model and for opti-
mization, and leveraging structure-preserving symplectic integrators. We showed that the structural
incorporation of these priors in the architecture is essential to learn high-dimensional dynamics,
whereas Euclidean and soft-constrained approaches consistently underperformed. Future work will
extend RO-HNN to Hamiltonian systems with non-canonical symplectic forms. To do so, we plan
to leverage Darboux theorem and explore the development of local RO-HNNs. Moreover, we will
investigate model-based control strategies within the RO-HNN latent space.

Table 4: Mean and standard deviation of RO-HNN reconstruction and prediction errors ({) for
different parametrization of the latent dissipation matrix D over 10 test cloth trajectories.
DoF D g — all/llal 15, — pll/llpl g — qll/llgll I, — pll/lIpl
Cholesky 421£1.07) x 102 4.11+2.93) x 107! 345+ 1.13) x 1072 (6.90 £ 10.90) x 102

6 SPD 4.15+2.10) x 1072 3.58 +3.03) x 107} 3.11 4+ 1.86) x 1072 (8.42 £ 10.40) x 1072
Ground truth 3.18 £0.74) x 1072 3.45 4+ 3.99) x 107} 2.58 +£0.94) x 1072 (4.77 £ 5.36) x 1072
)

( ( (
( ( (
( ( (
Cholesky (2.62+0.74) x 10~2 (3.39+3.01) x 10! (1.86 4 0.69) x 10~2 (3.90 + 4.36) x 10~2
( 3 (
2 ( 1

10 SPD 3.21+1.25) x 1072 (3.334+2.88) x 10! 345+ 1.13) x 1072 (1.96 4 1.10) x 10~2
Ground truth  (2.31 4 0.70) x 10~2 3.44+3.05) x 107! (1.3740.63) x 1072 (4.26 £ 4.58) x 1072
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A RIEMANNIAN AND SYMPLECTIC GEOMETRY

In this section, we provide a short background on Riemannian and symplectic geometry, which
compose the theoretical backbone of the RO-HNN. We refer the interested reader to (Abraham &
Marsden, |1987; Leel, [2013)) for more details.

As Riemannian and symplectic manifolds are smooth manifolds with special structures. A smooth
manifold M of dimension n can be intuitively conceptualized as a manifold that is locally, but not
globally, similar to the Euclidean space R™. The smooth structure of M allows the definition of
derivative of curves on the manifold, which are tangent vectors. The set of all tangent vectors at
a point x € M defines the tangent space 7,Q which is a n-dimensional vector space. Tangent
vectors can be represented on an ordered basis of 7, Q as v = v° 82’7 |- The tangent bundle 7 M is
the disjoint union of all tangent spaces on M and is 2n-dimensional smooth manifold.

The cotangent space T M at © € M is the dual of the tangent space 7,09, ie.,
TiM ={M\: TxQ — R linear}. Cotangent vectors can be represented on an ordered basis of
TiM as X = \;dx|. The cotangent bundle 7* M is the disjoint union of all cotangent spaces on
M and is 2n-dimensional smooth manifold, similarly as the tangent bundle.

A smooth mapping f between two smooth manifolds M and M with dim(M)=d < dim(M)=n
is an immersion if the differential df|s : T3M — Tf5)Q. An embedding is an immersion that is
also a homeomorphism onto its image, i.e., it is an injective and structure-preserving map. In this
case, M is an embedded submanifold of M. The pullback of a function ~ : M — R by a smooth
mapping f : N' — M between two smooth manifolds A/ and M is a smooth function f*h with

fh(z) = h(f(x)) = (ho f)(x). (13)
A.1 RIEMANNIAN GEOMETRY

A Riemannian manifold (M, ¢) is a smooth manifold M endowed with a Riemannian metric g, i.e.,
a smoothly-varying inner product g, : TQ X 7,Q — R. In coordinates, a Riemannian metric is
represented by a SPD matrix. The Riemannian metric defines the notion of distance on the manifold,
as well as the so-called geodesics, which are length-minimizing curves on the manifold.

Learning and optimization methods involving Riemannian data typically take advantage of their
Euclidean tangent spaces to operate. Specifically, the exponential map Exp.7,Q — M and log-
arithmic map Exp.M — 7,Q, derived from the Riemannian metric, allows us to map back and
forth between the Euclidean tangent space and the manifold. Moreover, the parallel transport
PTy sy : ToQ — T, Q move tangent vectors across tangent spaces such that their inner product is
conserved.

A Lagrangian system (M, g, £) is a dynamical system evolving on a Riemannian manifold (M, g)
according to a smooth Lagrangian function £ : T M — R.

A.2 SYMPLECTIC GEOMETRY

A symplectic manifold (M, w) is a 2n-dimensional smooth manifold M equipped with a symplectic
form w, i.e., a closed, non-degenerate, differential 2-form g, : 7, Q X T Q — R, which satisfies

w(u,v) = —ww,u), wu,v)Vo=>u4u=0, and dw=0 (14)
for all u,v € T, Q. In coordinates, a symplectic form is represented by a skew-symmetric matrix
w. We slightly abuse notation, equivalently denoting symplectic manifolds as (M, w). Notice that
the non-degeneracy of w implies that all symplectic manifolds are of even dimension.

A diffeomorphism f : (M,w) — (N, n) between symplectic manifolds is a symplectomorphism
if it preserves the symplectic form, i.e., f*n = w with f*n denoting the pullback of 1 by f. The
Hamiltonian flow ¢; : (M,w) — (M, w) induced by X4 is a symplectomorphism, as it maps
points & € M along the integral curves of the manifold thus preserving the symplectic form.

Following Darboux’ theorem, there exists a canonical chart (U, ¢), € U for each point € M in
which the symplectic form is represented as w = JJ  via the canonical Poisson tensor

0 I . _
n = n for which JI =J;' = —J,.
Ja <—In 0), or which J;, =15, Ja

13
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In other words, every symplectic manifold is locally symplectomorphic to (R**,JJ ). A system
(R2", JT . H) is called a canonical Hamiltonian system. Moreover, the cotangent bundle 7*Q any
n-dimensional smooth manifold Q carries a canonical symplectic structure, making it a symplectic

manifold (7*Q, Ja,,).

A Hamiltonian system (M, w, H) is a dynamical system evolving on a symplectic manifold (M, w)
according to a smooth Hamiltonian function H : M — R.

B RIEMANNIAN MANIFOLDS OF INTEREST

This section provides a brief overview of the Riemannian manifolds of interest for this paper, namely
the manifold of SPD matrices ST, (App. [B.I), and the biorthogonal manifold 3,, 4 (App. B.2).

B.1 THE MANIFOLD OF SPD MATRICES

We denote the set of n X n symmetric matrices as Sym” = {S € R"*"|S = ST}. The set of SPD

matrices S7, = {¥ € Sym" | 3 - 0} forms a smooth manifold of dimension dim(S7, ) = %
which can be represented as the interior of a convex cone embedded in Sym™. The tangent space

T=S?, atapoint ¥ € ST, is identified with Sym™.

The SPD manifold can be endowed with various Riemannian metrics, resulting in different theoret-
ical properties and closed-form operations. We utilize the widely-used affine-invariant metric (Pen-
nec et al.,2006)), which places symmetric matrices with non-positive eigenvalues at infinite distance
from any SPD matrix and prevents the well-known swelling effect (Feragen & Fuster, 2017)). The
affine- invariant metric defines the inner product g : TsS7, x TsS?, — R given two matrices T,
T2 S TZS + +,

(T, Ty)s = w(S:T,X T3 7). (15)

The corresponding geodesic distance, exponential map, logarithmic maps, and parallel transport are
computed in closed form as

M(A, D) = [[log(Z2 A% 2)|, (16)
ExpE(S):E%exp( “I8NTI)N3, (17)
Logs;(A) = 22 log(£ 2 A% 7)%7, (18)

PTs A(T) = Asa T AL, (19)

where exp(-) and log(:) denote the matrix exponential and logarithm functions, and As,_,p =

A2X 2. These operations are key for the SPD networks encoding the mass-inertia and damping
matrices in geometric HNN (see Sec. [3.2), and for the on-manifold parameter optimization of SPD
parameters of the network when training the model (see Sec.[3.4).

B.2 THE BIORTHOGONAL MANIFOLD

The biorthogonal manifold is the smooth manifold B,, 4 = {(®, ¥) € R"*4 x R"*? | ¥ TP = [,}
formed by pairs of full-row-rank matrices ®, ¥ € R™*4 withn > d > 1 satisfying the biorthog-
onality condition WTd = I (Otto et al., [2023). The biorthogonal matrix manifold B,, 4 is an em-
bedded submanifold of the Euclidean product space R™"*¢ x R"*4 with dimension dim (3, 4) =
2nd — d*. The tangent space at a point (®, ¥) € B,, 4 is given by

T@w)Bra={(V,W) e R xR™ . WT&+ ¥V =0}. (20)

A pair of matrices (X,Y) € R"*?4 x R"*4 can be projected onto the tangent space T(®,w)Bn,q via
the projection operation Proj g gy : R"*¢ x R™?* — Tg )B, 4 defined as

Proj ¢y (X,Y) = (X —PA Y —®AT), (21)

where A is a solution to the Sylvester equation A(®'®) + (PTPV)A=Y"® + U'X.
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When optimizing the parameters of the geometrically-constrained symplectic AE presented in
Sec.[3.1] it is crucial to account for the biorthogonal geometry of the pairs of weight matrices (Friedl
et al., 2025). Therefore, we train the model by optimizing pairs of weight matrices via Rieman-
nian optimization on the biorthogonal manifold (see Sec.[3.4). Riemannian optimization algorithms
utilize the exponential map and the parallel transport operations, which are difficult to obtain in
closed form for the biorthogonal manifold. Therefore, we leverage a first-order approximation of
the exponential map, i.e., a retraction map R(s w) : 7(®,w)Bn,a — Bn,a, defined as

R (V. W) = (@+V) (T + W)@+ V) (@+W)). 22)

Moreover, we use a first-order approximation of the parallel transport operation defined via the
successive application of retraction and projection as

PT(®, )~ (®,,%,) = Projis, w,) © R(a, w,)- (23)

C SPD NETWORK

As explained in Sec.[3.2] we learn reduced Hamiltonian dynamics in the embedded symplectic sub-
manifold via a latent geometric HNN that parametrizes the inverse mass-inertia and damping matri-
ces via SPD networks that account for their intrinsic geometry. We use a SPD network introduced
in (Friedl et al.,[2025) composed of (/) Euclidean layers gr), and (2) an exponential map layer ggyp,
which we detail next.

Euclidean Layers gr. The SPD network leverages classical fully-connected layers to model func-
tions that return elements on the tangent space of a manifold. The output of the [-th Euclidean layer
() is given by

2V = o(Ax=Y + b)), (24)
with A; € R™*™-1 and b; € R™® the weight matrix and bias of the layer [, and o a nonlinear
activation function of choice.

Exponential Map Layer gg,,. The exponential map layer is used to map layer inputs X -1 ¢
Sym" from the tangent space onto the manifold 87, . The layer output is given by

XU = Expp(XU~D), (25)

with P € 87, denoting the basepoint of the considered tangent space. Following the results of the
ablation conducted in (Friedl et al.,|2025), we define P as equal to the identity matrix I, so that the
layer input is assumed to lie in the tangent space at the origin of the cone.

Note that [Friedl et al.| (2025)) additionally consider SPD layers mapping SPD matrices to SPD ma-
trices, analogous to fully-connected Euclidean layers. However, the SPD networks with additional
SPD layers were shown to achieve similar performances as those employing solely Euclidean and
exponential-map layers. Therefore, we do not integrate such layers in the SPD networks of the
RO-HNN.

D CONSTRAINED AUTOENCODER

The geometrically-constrained symplectic AE presented in Sec. [3.1] builds on the constrained AE
architecture introduced in (Otto et al., 2023)). Specifically, we learn the embedding ¢ o and associ-
ated point reduction pg via a constrained AE with layer pairs (I0), and compute their differential to
construct the tangent-lifted maps (8)), as explained in Sec.[3.I] To guarantee the projection proper-
ties, the constrained AE architecture from (Otto et al., [2023) leverages pairs of biorthogonal weight
matrices, which are described in Sec. and pairs of invertible activation functions, which we
introduce next.

The nonlinear activation functions o_ and o employed in the encoder and decoder network must
satisfy o_ o 0 = id. To do so, they are defined as

ba; 2 1 2w; o)
oalay =g Y2 41 @m(m ¥ ¢)>+m7 (26)

a  asin(a)  a a)cos(a)  cos(a
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with
a = csc?(a) —sec?(a), 27
b = csc?(a) +sec?(a).

The activations then resemble smooth, rotation-symmetric versions of the common leaky ReLu ac-
s

tivations. The parameter 0 < o < 7 sets the slope of the activation functions. Throughout our

experiments, we set o = %.

Otto et al.| (2023) proposed to incorporate the biorthogonality of the weight matrices by consider-
ing an overparametrization of the biorthogonal weights along with a soft constraint in the form of
additional penalty losses. However, this approach does not guarantee the biorthogonality condition,
in contrast to the Riemannian approach we use in this paper. Moreover, as shown in (Friedl et al.,
2025), the overparametrized model leads to higher reconstruction errors compared to constrained
AE trained on the biorthogonal manifold.

We construct the tangent-lifted maps (8] by differentiating the outputs of the encoder pg and decoder
po networks with respect to their inputs. In our implementation, we take layerwise analytical
derivatives and obtain the full differentials via the chain rule.

E STRANG-SYMPLECTIC INTEGRATOR

As explained in Sec. [3.3] we integrate the learned reduced-order Hamiltonian flow (II)) using the
second-order symplectic integrator of (Tao,[2016), which we refer to as Strang-symplectic integrator.

The Strang-symplectic integrator approximates the flow of a non-separable Hamiltonian function
‘H(g, p) by considering an augmented Hamiltonian function

H(g,p,x,y) = Halq,y) + He(p,x) + wHc(g, p,x,y), (28)

in an extended phase space, where H (g, y) and Hp(p, x) are two copies of the original system
with mixed-up positions and momenta, and He = 3(||q, x||*+ ||p, y||?) is an artificial restraint with
parameter w controlling the binding of 7 4(q, y) and Hp(p, x). The dynamics of the augmented
Hamiltonian # are

.0 - 0
4= g Hapzy) =g Hp)+up-y) (29)
.0 - 0
. 0 - 0
. 0 - 0

and leads to the same exact IVP solutions as the original function #(q, p). High-order symplectic
integrators can be construct for each of the component of the augmented Hamiltonian H as

5ol q+ 04 H(x,p)
TR Lo ALl p , (33)
4 T+ 5@H(q7y) B r
y y — 0o H(z,p)
+x -
s 1 Z+ y)* R() g* Y with R() = ( cos(2wd) I sin(2w6)I>
wHe = o | (g+x) R(5) g—z\ |’ —sin(2wd)I  cos(2wd)I |
Pty b—y

(34)

Tao| (2016) proposed to construct a numerical symplectic integrator that approximates the flow of
by composing these maps according to Strang splitting as

br = B3 0 B3 0 Dl 0 Bt 0 B (35)
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The obtained Strang-symplectic integrator preserves the symplectic volume like the exact Hamilto-
nian flow.

The scalar parameter w € R, binding the two augmented Hamiltonians during the integration pro-
cess, is obtained as optimization parameter during training. To enforce w < 0, we do not learn w
directly. Instead, we learn it using the SoftPlus function with a small numerical offset for stability
as log(1 + €%#) 4+ 1074, as part of the HNN network parameters 8,, € 6.

F NETWORK TRAINING VIA RIEMANNIAN OPTIMIZATION

Training a neural network corresponds to finding a solution to an optimization problem

in {(), (36)
where / is the loss we aim to minimize, and & € M is the optimization variable, a.k.a the net-
work parameters. For the RO-HNN, we train the network by minimizing the loss fro.unN . In
this case, M is defined as a product of Euclidean, SPD, and biorthogonal manifolds to jointly op-
timize the parameters {®;, ¥;, b}~ | of the AE and {07, 6,05} of the latent geometric HNN.
To account for the curvature of the non-Euclidean parameter spaces, we leverage Riemannian opti-
mization (Absil et al.,2007; Boumall 2023) to optimize the RO-HNN loss #ro.unN @])

Conceptually, each iteration step in a first-order (stochastic) Riemannian optimization method con-
sists of the three following successive operations:

ny « h(grad 0(z), 7i—1), @1 < Bxpy, (—aumy), 7t < PToa,,, (M) 37)

where (1) given the current parameter estimate x;, a search direction 7; € 7, M is computed based
on a function h (determined by the choice of the optimization method) of the Riemannian gradient
grad ¢, and of 7_1, which corresponds to the parallel-transport of the previous search direction on
to the new estimate’s tangent space 7T, M; (2) the estimate x; is updated by projecting the search
direction 73; scaled by a learning rate learning rate «; onto the manifold via the exponential map,
(3) the current search direction is parallel-transported to the tangent space of the updated estimate
to prepare for the next iteration. In this paper, we use the Riemannian Adam (Becigneul & Ganeal,
2019) implemented in Geoopt (Kochurov et al., 2020) to optimize the RO-HNN parameters. The
relevant manifold operations for the optimization procedure are given in closed-form in App.[B]

G ADDITIONAL DETAILS ON EXPERIMENTS

This section presents additional details on the experimental setup of Sec.

G.1 COUPLED PENDULUM OF SECTION [4.1]
G.1.1 DATASET

System. Our first set of experiments is conducted on the augmented pendulum, a nonlinear con-
servative system with 7 = 15-DoF. The pendulum dynamics are specified from the symplectomor-
phism of a latent Hamiltonian system composed of two independent subsystems: a 3-DoF planar
pendulum, and a 12-DoF planar oscillating mass-spring mesh, see Fig.[f] The pendulum dynamics
evolve on a slower timescale and with larger amplitude than the mesh oscillations. Consequently,
a surrogate model based solely on the pendulum would capture the dominant behavior of the full
system, i.e. the system is well-reducible with a Hamiltonian ROM. As we have access to the ground
truth dynamics of the 15-DoF pendulum, this scenario allows for various ablations on the network
architecture.

We simulate both subsystems in MUJoCO (Todorov et al.,|2012). The pendulum’s links ¢ = {1, 2, 3}
are modeled as capsules of radius r; = 0.025m, length /; = 0.5m, and mass m; = 0.5 kg, con-
nected via hinge joints. The initial configurations and velocities for each DoF are randomly sampled
from the intervals gpend,; (t = 0) € [—30, 30] ° and gpena,; (t = 0) € [—23, 23] ° s~ 1. The mass-spring
mesh consists of 6 masses m; = 0.005 kg, equally spaced in a 3 x 2 grid along the x— and z—axes
of the simulation environment. Each mass is connected to its immediate neighbors, and the top
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Figure 6: Illustration of the latent system used to obtain the dynamics of a 15-DoF augmented
pendulum via a symplectomorphism. The latent system consists of an independent 3-DoF planar
pendulum and a 12-DoF planar mass-spring mesh.

three masses are each additionally connected to a fixed anchor point above the grid, via springs of
resting length s; = 0.5m and linear stiffness constants k; = 0.01 N m~!. Initial displacements and
velocities for each DoF are randomly sampled from the intervals gms (¢ = 0) € [—1,1] x 107?m
and G j(t = 0) € [=2,2] x 1073ms™ 1,

Data generation. Each simulation is recorded for T = 5s at a timestep of At = 107 2s,
yielding N = 30 training trajectories Dpend = {{@pend.n,k; ppend,mk}f:l}fj:l and Dy, =
{{@ms, k> Pms,nk F iy JA_1 with K = 500 observations each. To form the full 15-dimensional
dataset, the position and momentum vectors of the pendulum and mass-spring mesh are con-
catenated as Gug = (dpena @ms)T and Pug = (Ppeng> Pms)T to obtain a dataset Dyye =

{{qaug,n,kapaug,n,k}le}fq\,lzl with (qaug,n,k;paug,n,k’) S T*(Qpend X Qms)-

To ensure that the reducibility of the augmented dataset is not purely of numerical nature, we
transform the observed dynamics of the latent system onto more complex ones via a symplec-
tomorphism ~ : (7T*(Qpend X Qms),Jon) — (T7T*Q,J2,) and obtain the final dataset D =
{H{I(qaug,n, k> Ioaugm,;c)},{,(:1 N Practically, the symplectomorphism £ is defined via the cotangent-
lifted embedding ¢ of a map pg : Qpend X Qms — <, that we parametrize as a 3-layer encoder of the
constrained AE from Sec. and@ With [ = {1, 2, 3} layers of constant layer and latent dimension
n; = ng = 15, weights of each layer ¥, initialized as random orthogonal matrices O € R™*"™
sampled from the Haar distribution, and zero biases b; = 0. Notice that due to the constant dimen-
sion through the AE-layers, with decoder weights set to ®; = ¥; = O, the position decoder of the
constrained AE returns an analytic inverse, and its cotangent lift A1,

The testing dataset is constructed in the same manner for N = 10 trajectories.

G.1.2 MODEL TRAINING

For the experiments of Sec. we train a geometric RO-HNN composed of a geometrically-
constrained symplectic AE and a latent geometric HNN. As described in Sec.[3.1] the geometrically-
constrained symplectic AE is built from the cotangent lift of a constrained AE composed of layer
pairs p(Ql) : R™ — R™-1 and <p(Ql) : R™-1 — R™ as defined in (T0) (see Sec. and App.@)
We use | = {1,2,3} pairwise biorthogonal encoder and decoder layers of sizes n; = {6,12,15}
with latent space dimension ny = 3. The biorthogonal weight matrices are initialized by sampling a
random orthogonal matrix O € R"*™ from the Haar distribution and setting ® = ¥ = Oy, .,, 1,
where O[:ﬁ;nlfl] are the first n;_1 column entries of O. Bias vectors are initialized as b; = 0. For

the latent geometric HNN, we parametrize the potential energy network ng and the Euclidean part
gr of the inverse mass-inertia network M ' each with Ly, = L g = 2 hidden Euclidean layers

of 32 neurons and SoftPlus activation functions. We fix the basepoint of the exponential map layer
gExp to the origin P = I. Weights are initialized by sampling from a Xavier normal distribution
with gain v/2 and bias vector entries set to 1. We train the model on the joint loss (T2) with scaling
factor A = 1 for the latent loss on 3000 uniformly sampled random points from the dataset D with
Strang-symplectic integration (see Sec. over a training horizon of Hp = 12 timesteps. We use
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a learning rate of 1.5 x 10~2 for the AE parameters and 7 x 10~ for the HNN parameters. We train
the model with Riemannian Adam (Becigneul & Ganeal 2019) until convergence at 3000 epochs.

AE baselines. In Sec. [4.I] we compare the geometrically-constrained symplectic AE with linear
and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni, 2016}, [Sharma
et al., [2023), and a weakly-symplectic AE (Buchfink et al., [2023). We implement the linear and
quadratic SMG projections onto a 3-dimensional symplectic submanifold following (Sharma et al.,
2023)). We compute the reduction parameters based on a singular value decomposition computed
from 3000 randomly sampled training datapoints in D.

For the weakly-symplectic AE (Buchfink et al.}[2023)), we train two independent constrained AEs for

position and momentum reduction and embedding, i.e., p(Ql) cR™ — R™-1, w(gl)  RM-1 5 R™

and pg) R — R™-1, gog) : R™-1 — R™, and compute the embedding and reduction for the

symplectic manifold as

PP PP

Note that this architecture also fulfills the projection properties @) by construction, as the other
reduction approaches. However, it does not satisfy the symplecticity property (7). To enforce this
property, Buchfink et al.[(2023)) introduces a symplecticity loss

0(q,p) = (%) and  p(g,p) = (pQ) : (38)

N
1 2
gsympl = N Zl HJQd - dSDTJQndQO”F' (39)
The weakly-symplectic AE is trained by minimizing the sum of the reconstruction loss g from
and the symplecticity loss (39).

For the geometrically-constrained symplectic AE, we consider the same architecture as in the
RO-HNN described above.

All AE architectures consist of [ = {1, 2,3} biorthogonal encoder and decoder layers with n; =
{6,12, 15} with latent space dimension ng = 3. We train both AE on 3000 samples from the dataset
D with Riemannian Adam with a learning rate of 1.5 x 10~2 until convergence at 3000 epochs.

HNN baselines. In Sec. we also ablate the choice of latent HNN and integrator. To isolate
the HNN performance, we consider the low-dimensional dataset Dyeng 0f the 3-DoF pendulum and
no reduction. For the Cholesky HNN where the inverse mass-inertia matrix is parametrized via
a Cholesky network, we implement shared parameters for the inverse mass-matrix and potential
energy networks, i.e., Oy N Oy, following (Lutter & Peters| [2023). The MLP consists of 2 hidden
Euclidean SoftPlus layers of 64 neurons, while separate output layers return the potential energy
and the Cholesky decomposition. For the black-box HNNs, we use a single fully-connected MLP to
model a Hamiltonian function Hg. We conduct experiments with two black-box HNNs of 2 hidden
layers with a width of 64, and 256 neurons, respectively. In all cases, the weights are initialized by
sampling from a Xavier normal distribution with gain v/2, and the bias vector entries are initialized
to 1.

We train all architectures on 3000 datapoints of the dataset Dpepg With Riemannian Adam optimizer
on the HNN term ¢ynn,q of the loss (I2) over a training horizon of Hp = 12 timesteps. For the
ablation of the HNN architecture, we use the Strang-symplectic integrator. The geometric HNN and
Cholesky networks are trained until convergence at 2500 epochs with learning rate set to 7 x 107
The black-box HNNs are trained at a learning rate of 2 x 103 for 3000 epochs.

For the ablation of the integrator, we use the geometric HNN and compare the Strang-symplectic
integrator with an explicit Euler integrator, a Runge-Kutta integrator of order 4, and a symplectic
leapfrog integrator.

G.2 PARTICLE VORTEX OF SECTION[£.2]
G.2.1 DATASET
System. In Sec. we learn the dynamics of an n = 90-dimensional particle vortex, consisting of

j = {1,..., N} particles with phase ; = (¢;,p;)" and uniform interaction strengths I'; = 1. The
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particle vortex dynamics are governed by the Hamiltonian

H(g,p) = — Y log|e; — mxl, (40)
i<k

that models the interaction between each j # k pair of particles. Note that, as the particle vortex
dynamics are purely determined via the logarithmic interaction, its Hamiltonian function does not
separate into kinetic and potential energy, in contrast to mechanical systems such as the pendulum
and the cloth.

Data generation. We generate a training dataset Dpy = {{qn k, Pnk 11, }27, by simulating N =
20 trajectories of the conservative system over the time interval Z = [0, 10.0]s with timestep At =
1073s and Strang-symplectic solver with weight parameter w = 0.1, resulting in K = 10000
steps per trajectory. For each trajectory, initial conditions are randomly sampled to mimic clustered
vortex distributions. The particles are evenly split among j = {1, 2,3} clusters. For each cluster,
we randomly sample a center ¢; within a radius of R = 6 m form the origin. Then, a cluster radius
is sampled uniformly from r; € [0.1, 2]m, and particles within a cluster are positioned following
a Gaussian distribution N ~ (c;, 72I) around the center c;. For the testing dataset, we generate
N = 10 trajectories via the same distribution of initial conditions, but simulating the system over a
time interval of Z = [0, 15.0]s.

G.2.2 MODEL TRAINING

The results presented in Sec. ff.2] are obtained via RO-HNNs composed of a geometrically-
constrained symplectic AE and a latent geometric HNN. We conduct experiments with two
RO-HNN with latent space dimensions d = 3 and d = 6. The constrained AE is composed of
1 ={1,2,3,4} pairwise biorthogonal encoder and decoder layers of sizes n; = {32,64,128,600}.
The biorthogonal weight matrices are initialized by sampling a random orthogonal matrix O €
R™>™ from the Haar distribution and setting ® = ¥ = O|..,, ], where O, .,, _,) are the first
n;—1 column entries of O. Bias vectors are initialized as b; = 0. The latent Hamiltonian network
ng is parametrized by 2 hidden Euclidean layers of 32 neurons with SoftPlus activation functions.

All weights are initialized by sampling from a Xavier normal distribution with gain v/2, and all bias
vector entries are initialized to 1.

We train the model on the joint loss (12) on 3000 random samples from the dataset D with Strang-
symplectic integration over a training horizon Hp = 8 timesteps. For better convergence, we scale
the loss term fpynng Via a scalar factor A = 103. The parameters are optimized via Riemannian
Adam (Becigneul & Ganeal, [2019) until convergence at 3000 epochs with a learning rate of 1.5 X
10~2 for the AE parameters and 7 x 10~* for the HNN parameters.

In Sec. we consider a comparison with a RO-HNN with a latent black-box HNN g composed
of 2 layers of 64 neurons. We set the learning rate to 2 x 1073, The remaining of the RO-HNN
architecture and training pipeline are unchanged.

G.3 CLOTH OF SECTION[4.]3]
G.3.1 DATASET

System. Our second set of experiments is conducted on a deformable thin cloth modeled in MUJOCO
as a flexible composite object with ¢ = {1, ...,200} masses m; = 0.1kg, equally spaced over a
width of 0.1 m and length of 0.2 m. Generalized coordinates are given by the Cartesian positions
qi; = (x4, Y;,2;)7 of each mass’ center of mass in the world frame. The viscous damping coefficient
is uniformly set to d; = 0.01Nsm™!.

Data generation. Each trajectory captures the cloth falling on a sphere from a height of 0.12m in
the center above the origin of the sphere. To vary scenarios, the radius of the sphere is randomly-
sampled from r € [0.02,0.12] m. The state evolution is simulated with timestep At = 10~%s
over a time interval Z = [0, 0.3]s, resulting in K = 3000 samples per trajectory. We generate
N = 20 trajectories for a training dataset Dgop = {{Qn,k,pn,k,Tn,k}ff:l}ﬁ;l, and N = 10
testing trajectories over a longer time interval Z = [0, 0.5]s. When learning the damping force via
a dissipative HNN, the generalized force vector consists of external constraint forces, i.e., T = 7.
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The ablation of Sec. .3 compares the dissipative geometric HNN against a conservative HNN for
which all external forces are provided. In this case, the training dataset is composed of generalized
force vector T = T4 + T that contains both the damping forces 74 and the constraint forces ..

G.3.2 MODEL TRAINING

For the RO-HNN experiments in Sec. we train a RO-HNN composed of a geometrically-
constrained symplectic AE and a latent dissipative geometric HNN. The underlying constrained AE
I ={1,2,3,4} pairwise biorthogonal encoder and decoder layers of sizes n; = {32,64, 128,600}
with latent space dimension ng = 6 or ng = 10. The biorthogonal weight matrices are initial-
ized by sampling a random orthogonal matrix O € R™*™ from the Haar distribution and setting
®, = ¥, = O.y,_,), Where O, .,,,_,) are the first n;_; column entries of O. Bias vectors are
initialized as b; = 0.

The latent potential energy network ng is parametrized with Ly, = Lj p = 2 hidden Euclidean
layers of 32 neurons. The Euclidean part gg of the inverse mass-inertia network M, 9;1 and of the

damping-matrix network Dgi) are composed of 2 hidden layers with 32 neurons. For both networks,
we fix the basepoint of the exponential map layer ggy, to the origin P = I. All activation functions
are SoftPlus, all weights are initialized by sampling from a Xavier normal distribution with gain v/2,
and all bias vector entries are initialized to 1.

We train the model on the joint loss (I2)) on 3000 samples from the dataset D with Strang-symplectic
integration over a training horizon Hp = 8 timesteps. The scaling constant on the latent loss term
fuNNg IS setto A = 10%. We train the RO-HNN with Riemannian Adam (Becigneul & Ganeal 2019)
until convergence at 3000 epochs with a learning rate of 1.5 x 10~2 for the AE parameters and
7 x 10~* for the HNN parameters.

Sequentially-trained baseline. To assess the effectiveness of the proposed joint training pro-
cedure, we compare the jointly-trained RO-HNN with a variant that sequentially trains first the
geometrically-constrained AE, and second the latent HNN. As convergence is difficult to achieve
when training only the latent HNN on a fully-trained representation of the AE, we first train only
the AE by optimizing g for 3000 epochs with a learning rate of 1.5 x 10~2. Subsequently, we
jointly optimize the AE and latent loss (T2). We train the networks jointly within the RO-HNN with
Riemannian Adam (Becigneul & Ganea, 2019) until convergence at learning rates 1.5 x 10~2 for
the AE parameters and 7 x 10~* for the HNN parameters.

Projection and AE baselines. In App. (see Fig. [T4), we compare the ability of a latent HNN
to learn accurate dynamics using different reduction methods to obtain the symplectic embedding ¢
and corresponding reduction p. We compare the RO-HNN with geometrically-constrained symplec-
tic AE with linear and quadratic symplectic manifold Galerkin (SMG) projections (Peng & Mohseni,
2016; |Sharma et al., 2023)), and a weakly-symplectic AE (Buchfink et al., 2023). We compute the
linear and quadratic SMG projections onto latent spaces of symplectic submanifolds of three differ-
ent dimensionalities d = {2, 6,10}, following (Sharma et al.} 2023), via 3000 training datapoints.
In both cases, we then train a latent HNN on the terms fynn,,, and fynn,q of the joint loss equa-
tion (12) on 3000 samples from the dataset D with Strang-symplectic integration over a training
horizon Hp = 8 timesteps. The model is trained with Riemannian Adam (Becigneul & Ganea,
2019) until convergence at 3000 epochs with a learning rate of 7 x 10~%. Note that this essentially
corresponds to a scenario with pre-trained symplectic submanifolds, as the parameter optimization
for the linear and quadratic embedding maps happens once in the beginning.

The weakly-symplectic AE consists of two independent constrained AEs for position and momen-
tum. We use 4 layers of size n; = {32,64,128,600} with varying latent space dimension. We
train the network jointly on the sum of the losses (I2) and (39) via Riemannian Adam (Becigneul
& Ganea, 2019) until convergence at 3000 epochs with a learning rate of 1.5 x 10~2 for the AE
parameters and 7 x 10~* for the HNN parameters.

H ADDITIONAL EXPERIMENTAL RESULTS

This section presents additional results, complementing those presented in Sec.
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Figure 7: Reconstructed trajectories of the RO-HNN (—) and 3-DoF HNN (—) compared to
ground truth (—). The 15-DoF HNN leads to unstable long-term predictions and is not depicted.
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Figure 8: Left: Ablation of the latent HNN architecture on a doubled training set size |D| = 6000
compared to Fig. B} left. Middle, right: Ablation of the latent integrator of the geometric RO-HNN
at |D| = 3000 for learning the dynamics of a 15-DoF pendulum. Errors are obtained via short-term
prediction horizons HAt = 0.25s.

H.1 COUPLED PENDULUM OF SECTION [4.1]

This section presents additional results on learning the Hamiltonian dynamics of a 15-DoF coupled
pendulum.

Learning high-dimensional dynamics. Fig.[7jcomplements Fig.[2]by depicting the predicted long-
term (Hs) positions and momenta. For the ease of visualization, we change the prediction coordinates
and plot the first 3-DoF corresponding to the latent pendulum. We observe that RO-HNN leads to
accurate long-term predictions similar to those of the 3-DoF HNN.

Latent HNN architecture. Here we further evaluate the impact of HNN architecture. We compare
the performance of our geometric HNN to learn the low-dimensional dynamics of the latent 3-DoF
pendulum against (/) a non-geometric variant that parametrizes the inverse mass-inertia matrix via a
Cholesky network, and (2) two HNNs encoded as a single black-box network Hg, where we consider
two MLPs of 64- and 256-neurons width. Compared to Sec. 4.1} we consider a doubled amount of
training datapoints with 6000 random samples. As shown in Fig. [8Heft, the geometric HNN still
achieves the lowest reconstruction error, with differences compared to the black-box HNN increased
compared to the smaller dataset of Fig. 3} left. This showcases the importance of considering both the
quadratic energy structure of mechanical systems, and the geometry of their mass-inertia matrices,
for both enhanced performance and data efficiency.

Latent integrator. We compare the Strang symplectic integrator against (/) a symplectic leapfrog
integrator that disregards that the Hamiltonian is non-separable, (2) a Runge-Kutta integrator of or-
der 4 that overlooks its symplectic structure, and (3) an explicit Euler integrator that also overlooks
the symplectic structure. Compared to Sec. [i.1] (see Fig. [3}middle,right), we consider shorter pre-
diction horizons, feeding the model with ground truth initial conditions every H At = 0.25s, since
the explicit Euler integrator did not lead to stable long-term predictions for HAt = 5s. Figs. [8}
middle, right show that the networks trained via the Strang-symplectic integrator achieve the lowest
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Table 5: Evaluation wall clock times for different network architectures. Runtimes are averaged
over 10 forward passes and given in ms.

15-DoF 3-DoF
Geometric HNN  Geometric RO-HNN | Geometric HNN  Black-box HNN
100.25 26.34 \ 18.10 8.04
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Figure 9: Predicted (e, e, o) vs ground truth (e, e, ®) positions of the particle vortex. The dynamics
are learned with RO-HNN with d = 6 and d = 10. Times beyond 10s are out of the training data
distribution.

reconstruction error and conserves energy best during integration, showcasing the importance of
considering the symplectic structure of the system during numerical integration for stable predic-
tions on short- and long-term time horizons.

Runtimes.  Table [5 reports the averaged runtimes for the forward pass of the differently-sized
network architectures considered in Sec. 4.1} The reported times correspond to the wall clock time
of one forward pass of a batch of 10 initial conditions, predicted over H = 10 timesteps with
the Strang-symplectic integrator. We observe that the RO-HNN speeds up the forward dynamics
computation compared to the HNN, highlighting the computational advantages of ROMs compared
to FOMs. Moreover, the black-box HNN is computationally more efficient than the geometric HNN
at the expense of prediction accuracy.

H.2 PARTICLE VORTEX (90-DOF) OF SECTION[4.7]

This section presents additional results on learning the Hamiltonian dynamics of a 90-DoF particle
vortex.

Fig. 0] depicts the predicted positions and momenta of the particles along with the ground truth in
the high-dimensional state space for RO-HNNs with latent dimension d = {6, 10}. Fig. [10|depicts
the predicted positions and momenta of the particles in the reduced phase space of the AE along
with the projected ground truth. We observe that both models accurately predict the particle vortex
dynamics, with the d = 6-dimensional model slightly outperforming the 10-dimensional one (see
also Table[3). This shows that the choice of latent dimension is a trade off between the latent space
expressivity and the limitations of HNNs in higher dimensions. In general, we observed that errors
initially decrease as the latent dimension increases, suggesting that higher-dimensional latent spaces
better capture the original high-dimensional dynamics. The errors then increase beyond a certain
latent dimension, indicating that the latent HNN becomes harder to train.

H.3 CLOTH (600-DOF) OF SECTION[4.3]

This section presents additional results on learning the Hamiltonian dynamics of a 600-DoF thin
cloth falling on a sphere.

Learning high-dimensional dynamics with dissipation. Fig. [IT] complements Fig. [5| by depict-
ing the predicted cloth configurations for the RO-HNNs with latent dimensions d = {6, 10} for a
horizon HAt = 0.5s. We observe that that both RO-HNNs accurately predict the high-dimensional
dissipative dynamics of the cloth, generalizing beyond the data support (¢ > 0.3s). As also shown
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Figure 10: Predicted (e, e, ®) vs ground truth (e, e, e) reduced positions of the particle vortex in the
latent space of the RO-HNN with d = 6 and d = 10. Times beyond 10s are out of the training data
distribution.
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Figure 11: Predicted positions of the damped cloth with RO-HNNs with d = {6, 10} for a 625x
longer horizon than during training. Times beyond 0.3s are out of the training data distribution.

in Table ] the 10—dimensional model slightly outperforms the 6-dimensional one, modeling more
details of the cloth, as shown in Fig.

Fig. [TT] shows the predictions of the RO-HNNs with different parametrizations of the dissipation
matrix D for selected dimensions of a test trajectory. This show that the dissipative RO-HNNs suc-
cessfully learn the dissipation forces, achieving similar prediction errors as the conservative models
Fig.[13] displays the predicted latent energy to be compared with the ground-truth energy projected
in the symplectic latent space. Overall, our results demonstrat the ability of the RO-HNN to infer
long-term predictions of dissipative systems.

Latent dimension and training ablation. We compare the performance of our dissipative RO-HNN
across several latent dimensions d = {2, 6, 10} with jointly-trained geometrically-constrained sym-
plectic AE and latent geometric HNN against sequentially-trained architectures. Specifically, we
consider (/) linear and (2) quadratic symplectic manifold Galerkin (SMG) projections (Peng &
Mohseni, [2016; Sharma et al., [2023), (3) a weakly-symplectic AE trained jointly with a latent geo-
metric HNN, and (4) a RO-HNN with pretrained geometrically-constrained AE. Fig.[14]shows that
our jointly-trained RO-HNN significantly outperforms all baselines for all dimensions, leading to re-
duced relative reconstruction, latent prediction, and reconstructed prediction errors. This showcases
(1) the higher expressivity of the AEs compared to linear and quadratic projection methods, (2) the
importance of structurally-embedding the symplecticity condition, unlike the weakly-symplectic
AE, and (3) the importance of joint training, allowing the RO-HNN to jointly learn a symplectic
submanifold and the associated dynamics.

Finally, we compare the performance of the dissipative RO-HNN against (/) a conservative
RO-HNN, where the dissipation forces 74 are not learned but provided as ground truth in the ex-
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Figure 12: Predicted cloth positions and momenta for 6-dimensional RO-HNNs with latent dissi-
pation matrix parametrized with a SPD network (—), a Cholesky network (—), and ground truth
values (----), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized with a SPD
network (—), a Cholesky network (—), and ground truth values (----). The grey-shaded areas in-
dicates interval beyond the data support, for which the ground truth is extrapolated from the last
observation.
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Figure 13: Top: Ground truth (—) and predicted latent energies for 6-dimensional RO-HNNs with
latent dissipation matrix parametrized with a SPD network (—), a Cholesky network (—), and
ground truth values (----), and 10-dimensional RO-HNNs with latent dissipation matrix parametrized
with a SPD network (—), a Cholesky network (—), and ground truth values (----). Bottom: Energy
errors for the same models. The grey-shaded areas indicate intervals beyond the data support, for
which the ground truth is extrapolated from the last observation.
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Figure 14: Mean and standard deviation of the relative reconstruction (left), latent prediction (mid-
dle), and reconstructed prediction (right) errors over 10 cloth trajectories with HAt = 0.0025s.
Our RO-HNN with geometrically-constrained symplectic AE ( 5¢) is compared against linear SMG
reduction (-e-), quadratic SMG reduction (-e-), a weakly symplectic AE ( -<), and a sequentially-
trained RO-HNN with pretrained geometrically-constrained symplectic AE ( 5<). The pretrained
AE ( -x-) is depicted for completeness. Notice that the linear SMG and quadratic SMG projections
led to diverging dynamics for d > 2 and d > 6, respectively, for which results are not depicted.
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Figure 15: Meand and standard deviation of the latent prediction (/eft) and reconstructed prediction
(right) errors for different parametrization of the latent dissipation matrix D over 10 test cloth
trajectories. We compare our SPD network (—) against a Cholesky network (—), and the ground
truth parametrization (—).

ternal input 7 =7, + T4, and (2) a dissipative RO-HNN where the dissipation matrix is parametrized
via Cholesky decomposition for latent dimensions d = {2,6,10}. The mass-inertia matrix is
parametrized via SPD networks in all cases. Fig. [I3] shows the obtained latent prediction and re-
constructed prediction errors. Both dissipative HNNs achieve errors close to the conservative HNN
where the ground truth dissipative forces are provided, with the geometric HNN slightly outperform-
ing its Cholesky counterpart. However, the effect is less pronounced as when learning the inverse
mass-inertia matrix, which we attribute to the reduced influence of damping compared to inertia in
the overall dynamics.
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