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ABSTRACT

The interplay between neural network pruning, a widely adopted approach for
model compression, and adversarial robustness has garnered increasing attention.
However, most existing work focuses on empirical findings, with limited theoretical
grounding. In this paper, we address this gap by providing a theoretical analysis
of how pruning influences adversarial robustness. We first show that the pruning
strategy and associated parameters play a critical role in determining the robustness
of the resulting pruned model. We then examine how these choices affect the
optimality of pruning in terms of maintaining performance relative to the original
model. Building on these results, we formalize the inherent trade-off between
clean accuracy and adversarial robustness introduced by pruning, emphasizing
the importance of balancing these competing objectives. Finally, we empirically
validate our theoretical insights on different models and datasets, reinforcing our
novel understanding of the adversarial implications of pruning. Our findings offer a
principled foundation for designing pruning strategies that not only achieve model
compression but also enhance robustness without additional constraints or cost,
yielding a “free-lunch” benefit.

1 INTRODUCTION

Large-scale neural networks, typically based on the transformer architecture (Vaswani et al., 2017)),
have recently achieved remarkable success, driving advancements across a wide range of applications,
particularly in generative modeling and representation learning. Characterized by billions of param-
eters and extensive training data requirements, these models have set state-of-the-art performance
in diverse fields such as Computer Vision (CV) (Dosovitskiy et al.,[2020; |Liu et al.,2021)), Natural
Language Processing (NLP) (Touvron et al.| 2023} Jiang et al., 2023 Devlin et al.,[2019)), and Time
Series (TS) (Goswami et al.| [2024; [Liang et al., [2024). However, their considerable size leads to
significant computational costs, which not only restrict their deployment in resource-constrained
environments but also raise serious concerns regarding energy efficiency and scalability.

Given that deep learning models often operate in an over-parameterized regime, a substantial body of
research (Han et al.| 2016; |Cheng et al., 2018} |[Dantas et al.,|2024; |Zhu et al., |2024) has focused on
reducing model complexity while maintaining performance. Among the various techniques, model
pruning, consisting of the removal of less important weights from a pre-trained model, has emerged
as a promising approach. By encouraging sparsity in model parameters, pruning techniques aim to
reduce model size with minimal accuracy loss. Strategies for pruning can be applied before (Lee
et al., 2019; |de Jorge et al., [2021)), during (Evci et al) [2020), or after training (Benbaki et al.|
2023 [Sehwag et al., 2020); however, given the widespread reliance on pre-trained large models,
post-training (or no re-training) pruning methods are particularly attractive in the current practical
applications. Different approaches have been proposed to determine which parameters to prune,
ranging from simple magnitude-based methods (Han et al., |2015) to more advanced data-driven and
optimization-based strategies (Cheng et al., 2024), all seeking to balance sparsity and performance.

Parallel to the developments in model compression, another critical concern in deep learning is
the vulnerability of neural networks to adversarial attacks (Goodfellow et al., 2015). Small, often
imperceptible perturbations in input data can cause significant misclassifications, posing serious
risks in safety-critical applications such as autonomous driving, finance, and healthcare. Extensive
research has been conducted on both adversarial attack mechanisms (Tramer et al., 2020; |Costa et al.,
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2024; Biggio et al.,|2013)) and potential defense strategies (Madry et al.| 2017 |Akhtar et al., 2021}
ENNADIR et al.| 2024)), yet the interplay between model compression (specifically pruning) and
adversarial robustness remains an open research question. While some empirical studies suggest that
pruning can either enhance or degrade robustness depending on the strategy employed (Jordao &
Pedrini, [2021)), a rigorous theoretical foundation explaining this phenomenon is still lacking.

In this work, we aim to bridge this gap by conducting a theoretical investigation into the relationship
between pruning and adversarial robustness. Specifically, we examine how the choice of pruning
parameters can influence the robustness and overall performance of the pruned model. To the
best of our knowledge, we are the first to formally establish theoretical upper bounds that connect
adversarial robustness and pruning performance, and consequently formalize the trade-off. We begin
by introducing a framework definition of adversarial robustness in the context of model pruning.
Building on this foundation, we explore how pruning choices affect a model’s resilience to adversarial
attacks and its predictive accuracy. By combining these insights, we characterize the trade-off between
performance and adversarial robustness under model pruning. Our analysis culminates in formulating
this trade-off by providing the corresponding upper-bounds to control it, through which the final
user can identify optimal pruning strategies balancing robustness and accuracy. We validate our
theoretical findings empirically on various models and datasets. The contributions can be summarized
as follows:

* We formally define adversarial robustness in the context of pruned neural networks and
establish theoretical upper bounds linking pruning performance to adversarial robustness.

* We conduct a theoretical analysis of how pruning strategy and associated parameters affect
both robustness and model performance, and consequently characterize the trade-off between
accuracy and adversarial resilience by providing the corresponding upper-bounds.

* We validate our theoretical insights through extensive experiments on various models and
different adversarial attacks using benchmark datasets.

2 RELATED WORK

Pruning. Pruning techniques, as a key approach within the broader field of model compression, have
been extensively studied in the literature (LeCun et al., |1989} [Hagiwara, |1993; |Luo et al., 2017} [Han
et al.| 2015} [He et al.| 2017). The fundamental objective of pruning is to eliminate redundant or
low-importance neural connections while preserving the model’s predictive performance. Various
criteria have been proposed to guide the pruning process. Among the most widely adopted approaches
is magnitude-based pruning, which removes parameters with the smallest absolute values based on
the assumption that they contribute least to the model output (Hagiwara, |1993; |Han et al., [2015]).
Alternatively, score-based pruning methods select parameters according to their sensitivity or their
estimated impact on the network’s performance (Soltani et al 2021} [Lee et al., 2019). Beyond
direct pruning strategies, techniques such as knowledge distillation (Hinton et al., 2015} and neural
architecture search (Mushtaq et al., 2023) have been employed to construct smaller, more efficient
sub-networks that approximate the performance of the original, larger models.

Pruning and Adversarial Robustness. In recent years, a growing body of research has investigated
the relationship between model pruning and the adversarial robustness of deep neural networks.
Notably, prior work (Jordao & Pedrini, |2021)) has empirically demonstrated that pruning can serve
as an implicit regularizer, mitigating overfitting to adversarial perturbations and thereby enhancing
model robustness. Beyond observational studies, several approaches have proposed pruning strategies
explicitly designed to improve adversarial robustness while achieving model compression. For
instance, HYDRA (Sehwag et al.| [2020) introduces a robustness-aware pruning framework by
formulating the pruning process as an empirical risk minimization problem, employing stochastic
gradient descent to optimize weight importance scores and selectively prune parameters that minimally
impact adversarial robustness. Similarly, ANP-VS (Madaan et al., [2020) presents a pruning-based
adversarial defense mechanism by integrating Bayesian pruning with a vulnerability suppression
loss, aiming to remove highly distorted latent features that contribute to adversarial susceptibility.
Finally, HARP (Zhao & Wressnegger, [2023)) proposes a holistic pruning framework that jointly learns
layer-wise compression rates and connection importance scores through an adversarially regularized
min-max optimization, enabling non-uniform, aggressive pruning while preserving both natural
accuracy and adversarial robustness.
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Despite these empirical findings, the theoretical understanding of how pruning affects adversarial
robustness remains limited. While existing studies offer valuable experimental evidence, they do not
provide a formal explanation of why or how pruning influences robustness. Unlike prior works that
propose specific pruning methods to enhance robustness, our focus is different: we aim to bridge this
gap by developing a general theoretical framework that explains the relationship between pruning
strategies and the inherent adversarial robustness of deep neural networks, providing therefore a
strong basis to enhance this line of research.

3 PRELIMINARIES

In this section, we start by introducing some fundamental concepts that will be used afterwards in our
work. Afterward, we formulate our problem setup, which will be considered in our analysis.

Transformer-based Models. Let X € X C R™*? denote a sequence of n tokens, where each
token z; € R?. The backbone of a transformer h : X C R"*¢ — Z C R"*%, as introduced in
(Vaswani et al.| [2017), is the self-attention mechanism, which computes a weighted combination
of all token representations. Specifically, given learnable query, key, and value parameter matrices
WS, WK WV ¢ R4/ H) the output of a single attention head AH for input X is defined as:

(XW)(XWE)T
d/H

AH(X) = softmax( ) (Xw"), (1)

where H denotes the number of parallel attention heads and d/H is the dimension per head. In
practice, multiple attention heads AH; are computed in parallel, then concatenated and projected
using a learnable weight matrix W© € R?*9, yielding the multi-head attention (MHA) operation:

MH(X) = concat(AH,; (X), AHy(X), ..., AHg (X))WO. )

In addition, each Transformer block incorporates a residual connection, layer normalization (Lei Ba
et al.| 2016) and a position-wise feed-forward network (FFN).

Multi-Layer Perceptron (MLP). Let X € X C R” (e.g., a flattened image). An MLP is a sequence
of fully connected layers, where each layer applies an affine and non-linear transformation:

RO = o(WEORED 150 with h(® = X,

Pruning. The central idea behind pruning is that over-parameterized models often contain many
redundant or non-essential neuron connections, which can be removed without significantly affecting
test accuracy. Given a weight matrix T € R¢*9, the goal is to produce a pruned version W’/ € R*¢
with more zero entries. As discussed in Section [2] one widely used strategy is magnitude-based
pruning, which removes weights with small magnitudes under the assumption that larger weights
contribute more significantly to model predictions. Formally, this involves finding a mask M =
Top, (Si,;) € {0,1}¢%4, where S = {||[W; ;| : 1 <i <e,1 <j <d},and Top,(-) selects the top
p% largest entries. Another family of approaches, known as score-based pruning, aims to remove
weights that contribute the least to task-specific metrics, such as accuracy. Typically, this involves
training (or fine-tuning) the model on a given task, computing an importance score for each weight
based on its impact on the training objective, and then pruning accordingly. Concretely, a parallel
score matrix S € R*? is learned during training to assess the importance of each weight, and a
binary mask M € {0, 1}¢*¢ is applied based on these scores. In this work, we focus on these two
families of pruning techniques. To model them in a unified way, we view pruning as a probabilistic
mapping governed by Bernoulli random variables. Specifically, for each weight W; ;, we define:

W — W; ;, with probability p; ;,
0 with probability 1 — p; ;.
) ]

On the probabilistic Aspect. By appropriately defining the probabilities p; ;, we can represent
different pruning strategies. For instance, in magnitude-based pruning that is based on using a
threshold g, we set p; ; = 1if ||IW; ;|| > ¢, and p; ; = 0 otherwise. This formulation can be extended
to smoother variants by setting probabilities as a continuous function of the weight norm, such as
pi,; = 1—exp(—a||W; ;||), where « is a smoothing parameter. In the case of score-based pruning, the
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probabilities p; ; are directly derived from the learned scores S; ; during training. Consequently, the
considered probabilistic representation of pruning is universal and provides a unified representation
of pruning in its different forms and strategies as explored by previous work (Qian & Klabjan, 2021).

Problem Setup. Following the previous discussion, we consider a model f that is either an MLP or
a transformer-based model (TBM), where all components are composed of 1-Lipschitz continuous
functions. This assumption is justified as it holds for most commonly used activation functions, such
as ReLU and Tanh (Virmaux & Scaman|2018)). Without loss of generality, we focus on the space of
images, specifically, we consider the model’s input to be normalized, i.e., X C [0, 1]?*4.

4 PRUNING MEETS ADVERSARIAL ROBUSTNESS

In this section, we aim to theoretically analyze the link between adversarial robustness and model
pruning. We start by introducing the concept of “vulnerability” of a model, and we afterwards provide
an analysis in the case of Transformer-based Models and an MLP. In what follows, ||-|| denotes the
spectral matrix norm (resp. Euclidean norm).

4.1 ADVERSARIAL ROBUSTNESS

Let us consider a trained classifier f : X — ) and let z € X be an input with its associated label
vectors y € ), such that f(z) = y. The objective of an adversarial attack is to generate a perturbed
version of the input Z which is slightly different from the original input =, and whose prediction is
different from the original one. The adversarial aim can therefore be formulated as the search for
a perturbed attributed graph Z within a defined similarity budget e, such that f(Z) # f(z). In this
perspective, we start by defining the neighborhood of an input x with respect to an attack budget e:

B(z,e)={2 € X :|z—zZ|| <€}
In addition, we assume that the model f undergoes a pruning strategy 7, (-) with a set of parameters
p, as introduced in Section 3] resulting in a pruned model denoted by g. Using the notion of input
neighborhoods, we define the expected adversarial risk of the pruned model g as the expected output

behavior of adjacent elements with the considered input’s neighborhood within a budget € under the
pruning transformation. This can be formally written as:

Relf,mp] = E E [ sup dy(9(Z),9(2))]], 3)
g~7p[f] |2€DPx Z€B(z,e)

with dy being any defined distances in the measurable output ). In the current analysis, we consider
{5-norm as our distance metric for both the input and output space. Note that there exists an
equivalence in terms of norm, and therefore, this latter choice can easily be extended to other norms.

Definition 1 (Adversarial Robustness). The pruning strategy T, is said to be (e, y)-robust if its
adversarial risk with respect to the classifier f satisfies: R.[f,Tp] < 7.

In the adversarial setting, the objective is to ensure that the adversarial risk remains small, implying
that model predictions are stable under small perturbations. In this perspective, Definition [I] provides
the notion of adversarial robustness for a pruning strategy.

4.2 ON THE ROBUSTNESS OF PRUNED MODELS

We now theoretically examine the relationship between pruning and adversarial robustness. We begin
by focusing on TBMs, specifically considering f as a one-layer TBM model with H self-attention
heads, as described in Section[3] Lemma [I] characterizes the robustness properties of the original,
non-pruned model f, corresponding to the special case where the pruning probability is set to zero.

Lemma 1. Let f: X — ) be the original TBM-based classifier following the considered problem
setup. We have that the pruning strategy T,—=1 (i. e., no pruning) is (€, y)-robust, with:

d 2
Y= <d—1> C1Cqe,
4

Vd/H

4

with  Cy = (1+ [[Wo [VA max [[WY" | [ [ W [ W[ +1]]) and Ca = (1 + [Wren]))
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Next, we study the effect of applying a uniform pruning strategy, which is based on using the same
pruning probability across different layers and connections. This leads to the following result linking
the robustness of the pruned model g to that of the original model f.

Theorem 1. Let f: X — Y to our original TBM-based classifier following our problem setup. Let g
be its corresponding pruned version using a pruning strategy T,, then 7, is (¢,) — robust with:

v < O,

1 AIWOL T 1 gl Wl _
1+ [|[WO| pVHa L+ Weenllr —

4
IIWV’h|F< IIWQ’hFIIWK’hIIFH)

Va/H

Theorem T]establishes formally a link between adversarial robustness and model pruning. Specifically,
we see that the adversarial risk of the pruned model g is always smaller than its corresponding original
model f. We can therefore conclude that, from a theoretical standpoint, pruning inherently preserves
or enhances adversarial robustness compared to the non-pruned counterpart. The link between these
two elements is illustrated using the constant C' < 1, which depends on the weight norms of the
weight matrices linked to the attention framework, the weight of the concatenation of heads and the
corresponding FFN. While the above analysis specifically targets Transformer-based architectures, the
underlying principles extend to other neural network models, such as convolutional neural networks
(CNNs) and multilayer perceptrons (MLPs) as we will discuss in the next section.

with

and o = m}z}x

Remark. Both the non-pruned and pruned models are analyzed under the same Lipschitz-based
approximation, so comparing their robustness bounds is meaningful despite the true values being
unknown. This parallels statistical learning theory, where a smaller generalization bound is taken as a
principled indication of better performance under identical assumptions. By the same reasoning, a
smaller robustness bound for the pruned model provides theoretical justification for greater robustness,
which is further confirmed by our empirical validation.

On the generalization to Multi-Layers TBMs. We note that the current theoretical analysis focuses
on a single-layer Transformer-based model; nonetheless, the results naturally extend to the multi-
layer case. Specifically, a Transformer model with L layers, denoted as f(%), can be expressed as
a composition of L single-layer functions: f(X)(z) = f(E=1 o f(L=2) ... 0 f(U(z). Under this
formulation, and following standard results from Lipschitz continuity, the overall adversarial risk
bound  becomes a multiplicative composition of the bounds for each individual layer. As a result,
our robustness framework remains applicable in deeper architectures (as validated in the experiments).
Moreover, due to the multiplicative nature of the resulting bound, we expect the robustness effect of
pruning to increase as the depth of the model increases (as observed empirically in Section [6).

5 ON THE CHOICE OF PRUNING PARAMETERS

5.1 PRUNING CHOICES AFFECT ADVERSARIAL ROBUSTNESS

In the previous section, we established a general connection between model pruning and adversarial
robustness in the case of Transformer-based models, showing that pruning can, under certain condi-
tions, enhance robustness. However, the earlier results focused on the transformer-based model and
specifically the special case where p is constant for all weights and neurons. In this section, we seek
to understand how varying the pruning probabilities affects the resulting robustness, providing deeper
insight into how pruning strategies interact with adversarial robustness, and accordingly could be
optimized to enhance a model’s resilience to these perturbations. We consider an L-layer MLP model,
and we consider the general probabilistic pruning model introduced in Section [3| which captures
both magnitude-based and score-based pruning schemes. In this setting, we assume full control over

() at each layer ¢. Understanding how these choices influence robustness

the pruning probabilities p; ;
is crucial: for magnitude pruning, it allows direct parameter selection; for score-based pruning, it
suggests ways to design or regularize the score-learning objectives such as to promote robustness

alongside performance.
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Theorem 2. Let f : X — Y be an L-Layers MLP classifier. Let g be its corresponding pruned

version obtained through our considered pruning strategy with probabilities p([)

6,5°
strategy T is (€,7y)-robust with:

v = PLH”W | 7, with PL_H\/@
=1

Theorem 2] provides an explicit upper bound on the adversarial risk +y for a pruned MLP model, as a
function of the pruning strategy 7. The bound incorporates two key components: the product of the
Frobenius norms of the original model’s weight matrices, and a pruning-dependent term Pr,, which
scales the risk according to the maximum pruning probabilities in each layer. Notably, the bound
reduces to the adversarial risk of the original, non-pruned model when all probabilities are set to one
(i. e., no pruning). This formulation highlights how pruning directly influences robustness: reducing
the number of active weights leads to a smaller Py, and consequently, a lower adversarial risk.

Then the pruning

The insight here parallels our earlier observations in the context of transformers and pooling, where we
have seen that pruning acts as a form of structural regularization that reduces the model’s sensitivity
to input perturbations. In particular, the theorem reveals that pruning individual layers contributes
multiplicatively to the overall robustness. As the pruning probabilities approach zero (i.e., most
weights are removed), the bound tends to zero, corresponding to a degenerate model with no predictive
capacity, consistent with the intuitive behavior of an empty network. This result underscores the
hidden effect of pruning not only for compression but also for improving adversarial robustness in
MLPs and other architectures.

5.2 LINKING PRUNING TO PERFORMANCE

In the previous section, we analyzed how pruning strategies and corresponding parameters influence
adversarial robustness. Specifically, Theorem 2] showed that maximum robustness, corresponding
to a vanishing upper bound, is theoretically achieved as p — 0. However, although aggressive
pruning improves robustness, it can severely degrade the model’s ability to preserve the original
predictive information. In practice, since we do not know a priori if a given input ¢ € X has been
adversarially perturbed, it is essential to maintain a balance: ensuring the model remains robust while
still preserving high accuracy on clean, non-attacked data. Thus, the pruning parameters must be
carefully chosen to avoid sacrificing standard performance for the aim of better robustness. In this
subsection, we aim to formalize and study this trade-off. To this end, we start by introducing the
notion of (-optimality for a considered pruning strategy.

Definition 2 (Optimal Pruning). Let f be a classifier and g its pruned version obtained via a pruning
strategy Tp. The pruning strategy is said to be (-optimal over the input set Xif:

E- [lIf(x) = g()ll] < ¢.

Ideally, we would like the pruned model g to produce outputs close to those of the original model f,
ensuring similar classification performance. Definition [2 captures this objective since the smaller the
value of ¢, the more faithful and closer the pruned model is to the original. Naturally, the quantity
¢ depends on the specific choice of pruning probabilities; we therefore study the optimality of our
considered probabilistic pruning in the case of an L-layer MLP under the same previous setup.

Proposition 1. Let f be an L-layer MLP and g be its corresponding pruned version obtained through

our considered pruning strategy with probabilities pyj) For an input point xo € X, the chosen
pruning strategy is C-optimal, with:

L
- w®
1 (R orstn SO0

The result presented in Proposition[T]offers several important insights into how pruning parameters
influence the performance and optimality of the pruned model. First, the bound ( scales with the
network depth L, indicating that deeper architectures amplify the effects of pruning errors. Moreover,
the bound depends on the pruning probabilities weighted by the magnitudes of the corresponding
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weights, reinforcing the intuitive idea that pruning weights with larger magnitudes leads to greater
performance degradation. Additionally, layers with smaller weight norms ||1¥(©)|| are more vulnerable
to pruning errors, as reflected by the 1/||WW (9 || term appearing in the summation. It is also noteworthy
that ¢ — 0 as p — 1, meaning that as pruning vanishes (no weights are pruned), the pruned model
perfectly recovers the original model’s outputs. This latter observation highlights the existence of an
inverse relationship between adversarial robustness and pruning optimality, formally demonstrating
the existence of a trade-off between robustness and optimality performance.

On the Trade-off between Robustness and Optimality. In the previous section, we established two
key results: (1) pruning improves adversarial robustness by reducing the upper bound +, and (2) it

impacts model optimality, as reflected in the (-optimality criterion. Specifically, more aggressive

pruning (i.e., smaller pg’?) increases sparsity, leading to lower adversarial risk but potentially reducing

the model’s capacity to approximate the target function, resulting in a potential drop in accuracy.

Both robustness and optimality are explicit functions of the pruning probabilities pg? , revealing
an inherent trade-off between the two. Consequently, when pruning to reduce computational or
storage costs, users should carefully balance this trade-off to gain robustness without compromising
performance. Our main finding is that with appropriate choices of pruning parameters, it is possible

to improve robustness without additional constraints or overhead, offering a "free-lunch" gain.

6 EXPERIMENTAL VALIDATION

This section provides empirical validation of our theoretical findings by analyzing the effect of pruning
parameters on both adversarial robustness and clean accuracy. We first describe the experimental
setup, then present an empirical analysis of the adversarial risk, followed by an evaluation of how
these findings translate into clean and attacked accuracy across different pruning configurations.

6.1 EXPERIMENTAL SETUP

Architecture. While our theoretical analysis focused on multilayer perceptrons (MLPs), we seek
to empirically assess the generalization of our conclusions across different model architectures. To
this end, we consider three commonly used architectures in vision tasks: (i) a two-layer MLP, (ii) a
Vision Transformer (ViT) (Vaswani et al.,2017), and (iii) a convolutional neural network (CNN).

Datasets. We conduct experiments on a diverse set of vision-based classification benchmarks,
including MNIST, CIFAR-10, CIFAR-100 (Krizhevsky et al.,2009), and ImageNet-100 (Russakovsky:
et al.,|2015)). Due to the limited capacity of MLPs on more complex datasets, we evaluate MLPs only
on MNIST and CIFAR-10. For each model, we adapted the number of epochs to ensure convergence
towards a satisfactory clean accuracy. Additional implementation details, including hyperparameters,
are provided in Appendix [F] The necessary code to reproduce our experiments is included in the
supplementary materials and will be made publicly available upon publication.

Attacks. In addition to validating our theoretical results using the adversarial risk quantities ~y
and (, we evaluate robustness under two widely used adversarial attacks for image-based models.
Specifically, we consider the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent
(PGD) (whose results are provided in Appendix [E]). Full implementation details, including attack
parameters and configurations, are also available in Appendix [F

6.2 EMPIRICAL ANALYSIS OF THE ROBUSTNESS AND OPTIMALITY

We start our empirical investigation by evaluating the two key quantities introduced in our theoretical
framework. First, we examine the adversarial risk, denoted by ~y in Definition [[]and upper-bounded
in Theorem [2] Second, we assess the optimality of the pruning method, captured by the quantity
¢ in Definition [2| and further analyzed in Proposition |1 Figure [1]illustrates the behavior of these
quantities as functions of the pruning probability p, across different neighborhood sizes defined by e.
To estimate the adversarial risk within each e-neighborhood, we randomly sample K points from the
neighborhood and compute the average divergence in the model’s output. For sufficiently large K,
this empirical average serves as an unbiased estimator of the adversarial risk as defined in Equation 3]
We observe that our experimental results align closely with the theoretical insights. Specifically,
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Figure 1: Empirical Analysis of the effect of the pruning parameters on the adversarial risk (Defini-
tionE[) and the Estimation Error (Equation |Z[) when subject to a range of attack budget ().

when the pruning probability approaches one (i.e., p — 1), corresponding to minimal or no pruning,
the pruning optimality metric satisfies ( = 0, and the adversarial risk ~ reflects the robustness of
the original, non-pruned model. As we gradually decrease p and increase the degree of pruning, we
observe two simultaneous trends: the adversarial risk  decreases, indicating an increasing robustness,
while the optimality ¢ degrades, reflecting a growing deviation from the original model’s behavior.

6.3 ON THE CLEAN/ATTACKED ACCURACY TRADE-OFF
6.3.1 MAGNITUDE-BASED PRUNING

In the previous section, we studied the effect of pruning parameters on the adversarial risk and the
optimality quantities. While this has already shown the existence of the studied trade-off, we are
also interested in seeing how this trade-off translates into clean and attacked accuracy using real
adversarial attacks. In this perspective, we consider the FGSM attack (while the PGD attack is
reported in Appendix [E), and study the effect of the pruning probability p on the resulting clean

accuracy of the pruned model (representing the optimality) and the attacked accuracy (representing
the adversarial vulnerability) when subject to the considered attacks.

MLP - MNIST - FGSM MLP - CIFAR1O - FGSM
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Figure 2: Clean and attacked accuracy of pruned models when subject to the FGSM attack across
varying pruning probabilities and different datasets.

Figure 2]illustrates the trade-off between clean and adversarial accuracy across different pruning ratios
for various model and dataset combinations. We observe a clear trend: as the pruning probability
decreases from 1, adversarial accuracy initially improves, indicating enhanced robustness, while clean
accuracy begins to decline. Beyond a certain point, further pruning causes a drop in both clean and
adversarial accuracy, as the loss in representational capacity outweighs the robustness gains. These
results highlight the presence of a retention "sweet spot" (for instance around p = 0.9 for MLP),
where moderate pruning achieves an effective balance between robustness and clean performance.
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6.3.2 SCORE-BASED PRUNING

To further demonstrate the generality of our theoretical insights, originally derived under probabilistic
pruning, we extend the analysis to score-based pruning, where pruning decisions rely on gradient-
based importance scores. In this setting, we apply pruning to a ViT model and evaluate it using our
standard experimental setup. Figure [3](and Figure[§]- Appendix [E)) shows the clean and attacked
accuracies under FGSM (respectively PGD) for varying pruning ratios. Consistent with our earlier
findings on magnitude-based pruning, we observe that pruning enhances adversarial robustness while
introducing a trade-off with accuracy. Interestingly, in the score-based case, the trade-off occurs at
higher pruning ratios, which we attribute to the greater precision of gradient-based scoring.

ViT - CIFAR10 - FGSM

VIT - CIFAR100 - FGSM

ViT - IMAGENET - FGSM

=

curacy (%)

A
A

b
—

-~

-

bt

0 06
Pruning Probability (p)

0 06
Pruning Probability (p)

0 06
Pruning Probability (p)

Figure 3: Clean and attacked accuracy of a pruned ViT when subject to the FGSM attack across
varying pruning ratios for the CIFAR-10, CIFAR-100 and ImageNet datasets.

6.4 ON THE EFFECT OF MODEL’S SIZE

In the derived upper bounds, both
for adversarial robustness and the
optimality of the pruning, we ob-
serve a dependence on the model’s
size, denoted by the number of lay-
ers L. Specifically, in Theorem
the bound suggests an exponential

100

Accuracy (%)

PGD Attack

Small-MLP Clean
Small-MLP Attacked
—=— Medium-MLP Clean
~=- Medium-MLP Attacked
—+— Large-MLP Clean
-4 Large-MLP Attacked

FGSM Attack

relationship between L and the ex-
pected robustness. To empirically val- ot
idate this dependence, we evaluate DT AT SO
three MLP architectures of increasing Frining Frobabily ()

depth: a 2-layer "small" MLP, a 3-
layer "medium" MLP, and a 4-layer
"large” MLP. For each architecture,
we apply both FGSM and PGD at-
tacks using identical training and attack configurations to ensure fair comparison. The results,
shown in Figure[d] consistently reveal a trade-off between clean and adversarial accuracy as prun-
ing increases. Notably, in larger models, achieving a favorable balance between clean and robust
performance requires a higher pruning rate, thereby empirically supporting the influence of L.

Figure 4: Effect of the model’s size and the pruning parame-
ters on both the clean and attacked accuracy.

7 CONCLUSION

This work investigated the effect of pruning on the adversarial robustness of neural networks. We
analyzed how specific pruning parameters influence robustness by deriving an upper bound that links
these parameters to adversarial risk, thus providing guidance on selecting pruning configurations.
However, tuning pruning parameters solely for robustness may harm the clean accuracy of the
resulting model. To mitigate this, we also examined their impact on pruning optimality, ensuring
the pruned model remains a close and faithful approximation of the original non-pruned model.
By combining the two bounds, our study is the first to reveal a clear trade-off between clean and
adversarial accuracy when subject to pruning, offering actionable insights for balancing both. With
carefully chosen pruning parameters, we can improve robustness without additional constraints or
cost, yielding a “free-lunch” benefit. Our empirical results confirm this trade-off across diverse
models and datasets under various adversarial attack settings. This opens a promising avenue for
future work on designing pruning strategies that are explicitly aware of adversarial robustness.
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Supplementary Material
When Less Is More: Uncovering the Robustness
Advantage of Model Pruning

A  PROOF OF LEMMA[I]

Lemma. Let f: X — Y be the original TBM-based classifier following the considered problem
setup. We have that the pruning strategy T,—=1 (i. e., no pruning) is (e, y)-robust, with:

d 2
Y= <d—1> C1Cqe,

4

with  C1 = (1+ |[Wol|VH max [|W"" | =7

WS IW S 4+1]]) and Ca = (1+ [Wrw])

Proof. Let’s consider our input X € X’ composed of n tokens z; € R%. We consider that our model
f is built using the dot-product self-attention as referred to in Equation|l|and reformulated as:

(XW)(XWH)T

AH(z) = Softmax( YXWV

D

H
=PXWV =h(X)WV,

where W@ WX WV are learnable weights of the model. Let’s consider the function (X ), we can
write:

f(X) = PX = Softmax(X AT XT)X

hi(X)T
f(X)=PX = Softmax (XA'XT) X = : eR™ with:
ha(X)7
WKWQT n
A= ——- eR™ and hi(X)=> Pjuz; with P = Softmax(XAx).
d/H =

By analyzing the partial derivatives, we can directly write the following regarding eh Jacobian matrix
of h:

Jij=X"POE; XA +6; (X" PDX A) + P14,

with:

« PO = diag(P;.) — P, P;., [Softmax derivate]

K2

» Ej; is the (n x n) matrix with a single 1 in position (3, 7).

Based on this, two elements arises:
i#j, Jy=X PYE;XA" +P;I, 4
Ifi=4j Ji=X POE;XAT +X" PO X A+ Pyl 5)
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We recall that the input images are considered to be normalized, and therefore we can write:
X< 1

Additionally, since FP;. is the output of the softmax, then can be considered a probability distribution.
Therefore, 0,q.(diag(p)) < 1 and pp” has rank 1:

IPW|| = |[diag(Ps) — P, P < 2
Case 1. We start by considering the first case ¢ # j, in which we have:
Jij=X" POE;XAT + P,I.
Consequently we have the following:
151l < 1XT PO B X AT||+|| Py |

<2x ||A]+1
< [Al+1

Case 2. For the second case ¢ = j, we have the following:
Ji=X"TPYE;XAT + XT P X A+ Pyl
We apply the same analogy as the previous case:
il < IXTPOE;XAT||+|XT PO X A|l+|| Pl
< 2||A||+2||Alj+1
<A4J|A||+1

So overall, we have the following:

Tl {2 iR
CEPT 4)| A+, if =g

So with our theoretical assumptions, the Jacobian is bounded and we have: £;, < 4| A||+1.

Specifically, for an attention head h, we have the following computation taking into account the
different learnable weights:

4
VAa/H

Since f is represented by H separate attention head, then their concatenated output as explained in
Equation 2]is subject to the following:

Lyu < HWO”\/EHI}?X [Lhead]

Lheaa < W[ W R R |41]

4
Vd/H
Finally, by applying the FFN and LN (with its parameters ¥ = 1 and 8 = 1), and since ReL.U is

1-Lipschitz, we have the following result:

L;<Liny(1+Lyu)(l+ Lrpn)
d

< |[Wo | VH max [[W¥ | W @R R |+1]]

< (H)Q(l + Lyw) (1 + [Wren])
d 4

< (m)Q(l + HWOH\/EIH]?X [IW V| [\/ﬁ\\wQ’hHHWK’hHJFlH)(1 + [[Wrrenl)
d

S (m)201027
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4

JA/H

with Gy = (1-+ [ Wo | V/E max [[WVA | [—— R [0 41]])

Cy = (1 + ”WFFN”)

Let’s now consider a perturbed input & € B(z, €) as defined in Section The previous upper-bound
applies to any given point within that budget, and therefore we have:

sup dy(g(z),9(x)) < Lye
zEB(x,€)

Since we consider that p = 1 (no pruning), then by taking into account the expectancy, we get the
desired result.

O

B PROOF OF THEOREMII]

Theorem. Let f: X — )Y to our original TBM-based classifier following our problem setup. Let g
be its corresponding pruned version using a pruning strategy T,, then 7, is (€,) — robust with:

7' < O,
with _ 1+p2||WOHF\/HOé o 1+ p||Weenll ¢ <1
1+ [|[WO| pvVHa L+ [[Weenllr —
4
and o =max ||[|[WV" weh WER | p+1 .
o 1 u(mn I

Proof. From the proof of Lemma[I]in Appendix[A] we have the following results:
d 2
Li<(——) C1Cy,
< GLrac
4

Va/H

with  Cy = (14 |[Wol VA max [[[WY# | [ W17 1))

Cy = (14 [[Wrrnll)
We consider that the model is pruned with a pruning strategy 7 following the same analogy as the
one provided in Section[3] We start by understanding the effect of such operation on the weight norm

in terms of expectation. Let W be our original weight, and let B; ; be the considered pruning mask
(which is the realization of the pruning probability as explained in Section[3). We can write:

YA
E (WO =E, [|B® o W]

> E[BYW?
T (%] 1]
%,

/Z pgg)WZ_(fﬂ
.3

Since we consider pruning that uses the same parameter p, then we have:

IN

IN

4
E[WOl) < oW |lr
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Based on this, we can use the derived upper-bound and adapt accordingly:

4
/ o / V.,h Q,h K,h
gy <1+ HW(g)”F HIH}?X [||W(g) F<\/d/—H|W(g) |F||W(g) ||F+1> (6)
4
<1 21770 'H V,h Q,h K,h 1 7
=1+p?|W°|rVHa, ®)
where we define:
4
a=max | |[WY"|p | —||W" || p|WE|p+1]] . 9
2 [H F<\/d/—H| |7l 7 )
And similarly, for the second constant:
Cy = 1+ [|[Wen,(9)lI< 1+ p||Ween | £- (10)

Similarly, when considering the original model f, since the spectral norm is always smaller than the
frobenius norm, we can re-write the C'; and Cy accordingly.

Let’s now consider the difference between the two terms for both f and g:

_ 0165 _ 4P WO pVH)(L + p||Ween|lr)

C = = (1D
CiCz L+ WO pvHa) (1 + [[Weenl )
Thus, the final bound on the Lipschitz constant of the pruned model is:
v < C, (12)
where: oo
1 H 1
o LR IWOlevHa 14 p Wl _ 03
1+ [|[WO| pvVHa L+ [|[Ween ||
and:
4
_ V,h Q,h K,h 11 14
o = mpx [IIW F<WTH|W I ) (14
O

C PROOF OF THEOREM

Theorem. Let f : X — Y be an L-Layers MLP classifier. Let g be its corresponding pruned version
obtained through our considered pruning strategy with probabilities pl(? . Then the pruning strategy
7 is (€,)-robust with:

L
L
e i

L
: _ / ()
m, with P = | I H}EXPM
=1 =1

Proof. We start from a classifier f: X — ), with its corresponding weights denoted as W* and
its corresponding pruned version g, with its weights denoted as W’ ) We consider a probabilistic
pruning approach 7 as discussed in Section where each weight Wi(? is independently pruned using
0

a Bernoulli distribution with probability p; .

Hence,

— 4] J?
i, ()

1(£) W) with probability pl(,f)
0, with probability 1 — p; .
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For each layer ¢ < L, the pruning can be formulate as the following:

w'®© = B o W(é), Bi(f) ~ Ber (p@). )

ij

Similar to the previous proof, for each individual weight ¢, considering the linearity of the expected
value, we have in expectancy:

E.[|BY o W“)II] <E, [HB“) oW |F]

IZ B(K)W(€)2

Z E[B Z)W(E)Z

For the model g, we know that:

E-[llg(x) - g(")I] < B, [ [TIW501]

(=1

¢
maxpm Nw O

IN
Nemb

L
V4
<P W e
=1

L
Pr = ,/maxpﬁf-)
131;[1 i

with:

D PROOF OF PROPOSITION ]

Proposition. Let f be a L-layer MLP and g be its corresponding pruned version obtained through
our considered pruning strategy with probabilities p(-e)

43"
pruning strategy is C-optimal, with:

L L
1 ¢
¢= |:co||EHl||W“>||;WUe>”\/Z (=23

For an input point xy € X, the chosen

Proof. Let f be a MLP of L layers with 1-Lipschitz activation functions (such as ReLu and TanH).
We additionally consider a Bernoulli-like pooling such as the one provided in Section[d.I]and which
can be written as:

i, 0,5
i,j (0)

i _ JWi with probability p{’)
0, with probability 1 — p; ;.



Under review as a conference paper at ICLR 2026

We define the following quantity:

AO =w®O _wO with 1=1,...,L.
We can consequently write:
o { 0,  with probability p{*,
Ea —Wi(’lj) otherwise.

Part 1: Let’s consider the model f, since it’s a MLP, we can write the following:
f(z) = 28— ) 5 (1L) (x(Lfl))
= W L) (=D 5 (E=1) (5 (E=2)))
and similarly:
g(z) = 2/ — W(L)O'(L)((E/(L_l))
- (W(L) + A(L))J(L) (x/(Lfl))
We therefore write:
1f(@) = g(@)|| = WP (oB) (57D = o B (2" E7D)) 4 AL H) (/B0
< [WE[|laEY — 2/ ED) | A |5 (21|

We also have by recursion the following (since o is 1-Lipschitz, and by taking = and 0):

L1
AP0 @ D)< ol AS | TTIWD)
j=1

Note that we directly use 7 () in the previous inequality rather than W) since by definition the
original weight is always upper-bounding in terms of norm the pruned weight.

Combining the two inequalities and by recursive iteration again, we find:

-1

I1f(2) — g(@)|| < [WE||xE7D — w’(L‘”IIJrIIxollIINL)IIHIIW”)II (15)
j=1

< w@ 1A% 16

choHHII HZ W (16)

We note that A®) is a random matrix, following the Bernoulli distribution, hence by taking the
expectation on both sides, we get:

o176 - s@] < ||xo||HHW“HZ w11
We additionally have the following:

E[IAY)] <E[Ia®]lr] < \/E[IAG]Z],

where ||-|| ¢ is the Frobenius norm, with:

2
1A©% = Z(A(?)
_Z pgej) W(é)) .
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Combining everything, we get:

2
E[|a®]] < Z — (Wi

And consequently, we get:

B l£(2) = g(a)]| <onHH||W<f llZ el
1
< ol [TV g 0 -0V
=1 /=1 ij

E ADDITIONAL RESULTS

E.1 ESTIMATION OF ADVERSARIAL RISK AND OPTIMALITY

In addition to the provided results in the main paper, we applied the same analysis to other datasets
for each model. Specifically, for the CNN we considered the CIFAR-100 and for the ViT we provided
the CIFAR-10 covering therefore all the datasets for these models. Figure 5| provides the results of
the study. We see that similar insights as the one provided in the main paper are seen, validating
therefore the existence of our discussed trade-off.

CNN - CIFAR-100 ViT - CIFAR-10
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Figure 5: Additional results on the empirical analysis of the effect of the pruning parameters on the
adversarial risk (Definition[I)) and the Estimation Error (Equation[2) when subject to a range of attack
budget (¢).

E.2 COMPLETE RESULTS - MLP

As we previously mentioned, in our analysis we focused on both the FGSM (provided in the main
paper) and the PGD adversarial attack. In this context, Figure [6] provides the analysis on our
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considered MLP model for both the FGSM and PGD using both MNIST and CIFAR-10 Dataset.
We can see that similar insights are seen for both these datasets. Specifically, the existence of the
trade-off and a sweet spot in which the balance between adversarial and clean accuracy is interesting.
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Figure 6: Clean and attacked accuracy of a pruned MLP model when subject to FGSM and PGD
adversarial attacks and different pruning probabilities.

E.3 COMPLETE RESULTS - CNN

In line with the previous section, we also extended the study of the CNN to the PGD attack. Figure
provides such analysis where we can see again similar insights as the one provided in the case of
MLP. Specifically, as we decrease the pruning probability (making the model sparser), the attacked
accuracy start going up, showcasing an enhancement in the adversarial robustness of the model,
before decreasing due to both the optimality of the pruning strategy and the attack itself.
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Figure 7: Clean and attacked accuracy of a pruned CNN model when subject to FGSM and PGD
adversarial attacks and different pruning probabilities.

E.4 COMPLETE RESULTS - VIT

Similar to the other models, in the main paper we only consider the FGSM attack when considering
the ViT model. We therefore report the results using the PGD attack. We recall that for the ViT, we
are rather considering a score-based pruning strategy. Figure [§| provides the resulting results of the
study.

VIT - CIFAR10 - PGD e VIT - CIFAR100 - PGD VIT - IMAGENET - PGD
B GRS S cc i <

DD SE—

PN SEE————

Accuracy (%)
Accuracy (%)
Accuracy (%)

o o' o o o' o] 02 o o'
Pruning Probability (p) Pruning Probability (p) Pruning Probability (p)

Figure 8: Clean and adversarial accuracy of pruned models under PGD attack across varying pruning
probabilities.

F IMPLEMENTATION DETAILS

We start by noting that the necessary code to reproduce the results is provided in the supplementary
materials and shall be made public upon publication. In what follows, we provide experimental
details and hyper-parameters choices.

MLP. The first model considered in our study and in line with our theoretical analysis, is the Multi-
Layer perceptron (MLP). Specifically, for the MNIST dataset, we used a 2-Layers MLP model, while
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for the CIFAR-10 dataset, we had to adapt to a 4-Layers MLP model with hidden dimensions of
(8192, 4096, 2048 and 1024) to reach a satisfactory initial clean accuracy. For MNIST dataset, a
satisfactory accuracy can be reached in 30 epochs, while for the CIFAR-10, we used a 100 training
epochs.

CNN. The second model to be used was a CNN, where we considered a 4-Layers CNN model for
both the CIFAR-10 and CIFAR-100. We have trained the model for 100 epochs to reach convergence.

VIiT. For our third model, we consider a Vision Transformer. Specifically we used a Tiny ViT, which
is composed of 5M parameters. The model is pre-trained on the ImageNet Dataset. We used the
checkpoint provided by the Timm and is publicly available in HuggingFace. For all the results, we
finetuned the model for 10 epochs, which was enough to reach the convergence and a satisfactory
clean accuracy performance.

Training. For the CNN and NLP, all the experiments have been trained using the Adam optimized
Kingma & Ba/(2014) with a learning rate of 1e — 03. For the ViT, we have used the AdamW, with a
learning rate of 5e — 04.

Adversarial Attacks. For the PGD and FGSM attack, we consider e = 4/255. For the PDG attack,
we set the number of iteration to 5. All the experiments were run using a single NVIDIA L4 GPU
and took around 200 GPU hours to obtain all results.
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