WHEN LESS IS MORE: UNCOVERING THE ROBUSTNESS ADVANTAGE OF MODEL PRUNING

Anonymous authorsPaper under double-blind review

ABSTRACT

The interplay between neural network pruning, a widely adopted approach for model compression, and adversarial robustness has garnered increasing attention. However, most existing work focuses on empirical findings, with limited theoretical grounding. In this paper, we address this gap by providing a theoretical analysis of how pruning influences adversarial robustness. We first show that the pruning strategy and associated parameters play a critical role in determining the robustness of the resulting pruned model. We then examine how these choices affect the optimality of pruning in terms of maintaining performance relative to the original model. Building on these results, we formalize the inherent trade-off between clean accuracy and adversarial robustness introduced by pruning, emphasizing the importance of balancing these competing objectives. Finally, we empirically validate our theoretical insights on different models and datasets, reinforcing our novel understanding of the adversarial implications of pruning. Our findings offer a principled foundation for designing pruning strategies that not only achieve model compression but also enhance robustness without additional constraints or cost, yielding a "free-lunch" benefit.

1 Introduction

Large-scale neural networks, typically based on the transformer architecture (Vaswani et al., 2017), have recently achieved remarkable success, driving advancements across a wide range of applications, particularly in generative modeling and representation learning. Characterized by billions of parameters and extensive training data requirements, these models have set state-of-the-art performance in diverse fields such as Computer Vision (CV) (Dosovitskiy et al., 2020; Liu et al., 2021), Natural Language Processing (NLP) (Touvron et al., 2023; Jiang et al., 2023; Devlin et al., 2019), and Time Series (TS) (Goswami et al., 2024; Liang et al., 2024). However, their considerable size leads to significant computational costs, which not only restrict their deployment in resource-constrained environments but also raise serious concerns regarding energy efficiency and scalability.

Given that deep learning models often operate in an over-parameterized regime, a substantial body of research (Han et al., 2016; Cheng et al., 2018; Dantas et al., 2024; Zhu et al., 2024) has focused on reducing model complexity while maintaining performance. Among the various techniques, model pruning, consisting of the removal of less important weights from a pre-trained model, has emerged as a promising approach. By encouraging sparsity in model parameters, pruning techniques aim to reduce model size with minimal accuracy loss. Strategies for pruning can be applied before (Lee et al., 2019; de Jorge et al., 2021), during (Evci et al., 2020), or after training (Benbaki et al., 2023; Sehwag et al., 2020); however, given the widespread reliance on pre-trained large models, post-training (or no re-training) pruning methods are particularly attractive in the current practical applications. Different approaches have been proposed to determine which parameters to prune, ranging from simple magnitude-based methods (Han et al., 2015) to more advanced data-driven and optimization-based strategies (Cheng et al., 2024), all seeking to balance sparsity and performance.

Parallel to the developments in model compression, another critical concern in deep learning is the vulnerability of neural networks to adversarial attacks (Goodfellow et al., 2015). Small, often imperceptible perturbations in input data can cause significant misclassifications, posing serious risks in safety-critical applications such as autonomous driving, finance, and healthcare. Extensive research has been conducted on both adversarial attack mechanisms (Tramer et al., 2020; Costa et al.,

2024; Biggio et al., 2013) and potential defense strategies (Madry et al., 2017; Akhtar et al., 2021; ENNADIR et al., 2024), yet the interplay between model compression (specifically pruning) and adversarial robustness remains an open research question. While some empirical studies suggest that pruning can either enhance or degrade robustness depending on the strategy employed (Jordao & Pedrini, 2021), a rigorous theoretical foundation explaining this phenomenon is still lacking.

In this work, we aim to bridge this gap by conducting a theoretical investigation into the relationship between pruning and adversarial robustness. Specifically, we examine how the choice of pruning parameters can influence the robustness and overall performance of the pruned model. To the best of our knowledge, we are the first to formally establish theoretical upper bounds that connect adversarial robustness and pruning performance, and consequently formalize the trade-off. We begin by introducing a framework definition of adversarial robustness in the context of model pruning. Building on this foundation, we explore how pruning choices affect a model's resilience to adversarial attacks and its predictive accuracy. By combining these insights, we characterize the trade-off between performance and adversarial robustness under model pruning. Our analysis culminates in formulating this trade-off by providing the corresponding upper-bounds to control it, through which the final user can identify optimal pruning strategies balancing robustness and accuracy. We validate our theoretical findings empirically on various models and datasets. The contributions can be summarized as follows:

- We formally define adversarial robustness in the context of pruned neural networks and establish theoretical upper bounds linking pruning performance to adversarial robustness.
- We conduct a theoretical analysis of how pruning strategy and associated parameters affect both robustness and model performance, and consequently characterize the trade-off between accuracy and adversarial resilience by providing the corresponding upper-bounds.
- We validate our theoretical insights through extensive experiments on various models and different adversarial attacks using benchmark datasets.

2 RELATED WORK

Pruning. Pruning techniques, as a key approach within the broader field of model compression, have been extensively studied in the literature (LeCun et al., 1989; Hagiwara, 1993; Luo et al., 2017; Han et al., 2015; He et al., 2017). The fundamental objective of pruning is to eliminate redundant or low-importance neural connections while preserving the model's predictive performance. Various criteria have been proposed to guide the pruning process. Among the most widely adopted approaches is *magnitude-based pruning*, which removes parameters with the smallest absolute values based on the assumption that they contribute least to the model output (Hagiwara, 1993; Han et al., 2015). Alternatively, *score-based pruning* methods select parameters according to their sensitivity or their estimated impact on the network's performance (Soltani et al., 2021; Lee et al., 2019). Beyond direct pruning strategies, techniques such as knowledge distillation (Hinton et al., 2015) and neural architecture search (Mushtaq et al., 2023) have been employed to construct smaller, more efficient sub-networks that approximate the performance of the original, larger models.

Pruning and Adversarial Robustness. In recent years, a growing body of research has investigated the relationship between model pruning and the adversarial robustness of deep neural networks. Notably, prior work (Jordao & Pedrini, 2021) has empirically demonstrated that pruning can serve as an implicit regularizer, mitigating overfitting to adversarial perturbations and thereby enhancing model robustness. Beyond observational studies, several approaches have proposed pruning strategies explicitly designed to improve adversarial robustness while achieving model compression. For instance, HYDRA (Sehwag et al., 2020) introduces a robustness-aware pruning framework by formulating the pruning process as an empirical risk minimization problem, employing stochastic gradient descent to optimize weight importance scores and selectively prune parameters that minimally impact adversarial robustness. Similarly, ANP-VS (Madaan et al., 2020) presents a pruning-based adversarial defense mechanism by integrating Bayesian pruning with a vulnerability suppression loss, aiming to remove highly distorted latent features that contribute to adversarial susceptibility. Finally, HARP (Zhao & Wressnegger, 2023) proposes a holistic pruning framework that jointly learns layer-wise compression rates and connection importance scores through an adversarially regularized min-max optimization, enabling non-uniform, aggressive pruning while preserving both natural accuracy and adversarial robustness.

Despite these empirical findings, the theoretical understanding of how pruning affects adversarial robustness remains limited. While existing studies offer valuable experimental evidence, they do not provide a formal explanation of why or how pruning influences robustness. Unlike prior works that propose specific pruning methods to enhance robustness, our focus is different: we aim to bridge this gap by developing a general theoretical framework that explains the relationship between pruning strategies and the inherent adversarial robustness of deep neural networks, providing therefore a strong basis to enhance this line of research.

3 PRELIMINARIES

In this section, we start by introducing some fundamental concepts that will be used afterwards in our work. Afterward, we formulate our problem setup, which will be considered in our analysis.

Transformer-based Models. Let $X \in \mathcal{X} \subseteq \mathbb{R}^{n \times d}$ denote a sequence of n tokens, where each token $x_i \in \mathbb{R}^d$. The backbone of a transformer $h: \mathcal{X} \subseteq \mathbb{R}^{n \times d} \to \mathcal{Z} \subseteq \mathbb{R}^{n \times d}$, as introduced in (Vaswani et al., 2017), is the *self-attention* mechanism, which computes a weighted combination of all token representations. Specifically, given learnable *query*, *key*, and *value* parameter matrices W^Q , W^K , $W^V \in \mathbb{R}^{d \times (d/H)}$, the output of a single *attention head* AH for input X is defined as:

$$AH(X) = \operatorname{softmax}\left(\frac{(XW^Q)(XW^K)^\top}{\sqrt{d/H}}\right)(XW^V),\tag{1}$$

where H denotes the number of parallel attention heads and d/H is the dimension per head. In practice, multiple attention heads AH_i are computed in parallel, then concatenated and projected using a learnable weight matrix $W^O \in \mathbb{R}^{d \times d}$, yielding the multi-head attention (MHA) operation:

$$MH(X) = \operatorname{concat}(AH_1(X), AH_2(X), \dots, AH_H(X))W^O.$$
(2)

In addition, each Transformer block incorporates a residual connection, layer normalization (Lei Ba et al., 2016) and a position-wise feed-forward network (FFN).

Multi-Layer Perceptron (MLP). Let $X \in \mathcal{X} \subseteq \mathbb{R}^n$ (e.g., a flattened image). An MLP is a sequence of fully connected layers, where each layer applies an affine and non-linear transformation:

$$h^{(\ell)} = \sigma(W^{(\ell)}h^{(\ell-1)} + b^{(\ell)}), \text{ with } h^{(0)} = X.$$

Pruning. The central idea behind pruning is that over-parameterized models often contain many redundant or non-essential neuron connections, which can be removed without significantly affecting test accuracy. Given a weight matrix $W \in \mathbb{R}^{e \times d}$, the goal is to produce a pruned version $W' \in \mathbb{R}^{e \times d}$ with more zero entries. As discussed in Section 2, one widely used strategy is magnitude-based pruning, which removes weights with small magnitudes under the assumption that larger weights contribute more significantly to model predictions. Formally, this involves finding a mask $M = \operatorname{Top}_p(S_{i,j}) \in \{0,1\}^{e \times d}$, where $S = \{\|W_{i,j}\| : 1 \le i \le e, 1 \le j \le d\}$, and $\operatorname{Top}_p(\cdot)$ selects the top p% largest entries. Another family of approaches, known as score-based pruning, aims to remove weights that contribute the least to task-specific metrics, such as accuracy. Typically, this involves training (or fine-tuning) the model on a given task, computing an importance score for each weight based on its impact on the training objective, and then pruning accordingly. Concretely, a parallel score matrix $S \in \mathbb{R}^{e \times d}$ is learned during training to assess the importance of each weight, and a binary mask $M \in \{0,1\}^{e \times d}$ is applied based on these scores. In this work, we focus on these two families of pruning techniques. To model them in a unified way, we view pruning as a probabilistic mapping governed by Bernoulli random variables. Specifically, for each weight $W_{i,j}$, we define:

$${W'}_{i,j} = \begin{cases} W_{i,j}, & \text{with probability } p_{i,j}, \\ 0, & \text{with probability } 1 - p_{i,j}. \end{cases}$$

On the probabilistic Aspect. By appropriately defining the probabilities $p_{i,j}$, we can represent different pruning strategies. For instance, in magnitude-based pruning that is based on using a threshold q, we set $p_{i,j} = 1$ if $||W_{i,j}|| \ge q$, and $p_{i,j} = 0$ otherwise. This formulation can be extended to smoother variants by setting probabilities as a continuous function of the weight norm, such as $p_{i,j} = 1 - \exp(-\alpha ||W_{i,j}||)$, where α is a smoothing parameter. In the case of score-based pruning, the

probabilities $p_{i,j}$ are directly derived from the learned scores $S_{i,j}$ during training. Consequently, the considered probabilistic representation of pruning is universal and provides a unified representation of pruning in its different forms and strategies as explored by previous work (Qian & Klabjan, 2021).

Problem Setup. Following the previous discussion, we consider a model f that is either an MLP or a transformer-based model (TBM), where all components are composed of 1-Lipschitz continuous functions. This assumption is justified as it holds for most commonly used activation functions, such as ReLU and Tanh (Virmaux & Scaman, 2018). Without loss of generality, we focus on the space of images, specifically, we consider the model's input to be normalized, i. e., $\mathcal{X} \subseteq [0, 1]^{n \times d}$.

4 PRUNING MEETS ADVERSARIAL ROBUSTNESS

In this section, we aim to theoretically analyze the link between adversarial robustness and model pruning. We start by introducing the concept of "vulnerability" of a model, and we afterwards provide an analysis in the case of Transformer-based Models and an MLP. In what follows, $\|\cdot\|$ denotes the spectral matrix norm (resp. Euclidean norm).

4.1 ADVERSARIAL ROBUSTNESS

Let us consider a trained classifier $f: \mathcal{X} \to \mathcal{Y}$ and let $x \in \mathcal{X}$ be an input with its associated label vectors $y \in \mathcal{Y}$, such that f(x) = y. The objective of an adversarial attack is to generate a perturbed version of the input \tilde{x} which is slightly different from the original input x, and whose prediction is different from the original one. The adversarial aim can therefore be formulated as the search for a perturbed attributed graph \tilde{x} within a defined similarity budget ϵ , such that $f(\tilde{x}) \neq f(x)$. In this perspective, we start by defining the neighborhood of an input x with respect to an attack budget ϵ :

$$\mathcal{B}(x,\epsilon) = \{\tilde{x} \in \mathcal{X} : ||x - \tilde{x}|| \le \epsilon\}$$

In addition, we assume that the model f undergoes a pruning strategy $\tau_p(\cdot)$ with a set of parameters p, as introduced in Section 3, resulting in a pruned model denoted by g. Using the notion of input neighborhoods, we define the *expected adversarial risk* of the pruned model g as the expected output behavior of adjacent elements with the considered input's neighborhood within a budget ϵ under the pruning transformation. This can be formally written as:

$$\mathcal{R}_{\epsilon}[f, \tau_p] = \mathbb{E}_{g \sim \tau_p[f]} \left[\mathbb{E}_{x \in \mathcal{D}_{\mathcal{X}}} \left[\sup_{\tilde{x} \in \mathcal{B}(x, \epsilon)} d_{\mathcal{Y}}(g(\tilde{x}), g(x)) \right] \right], \tag{3}$$

with $d_{\mathcal{Y}}$ being any defined distances in the measurable output \mathcal{Y} . In the current analysis, we consider ℓ_2 -norm as our distance metric for both the input and output space. Note that there exists an equivalence in terms of norm, and therefore, this latter choice can easily be extended to other norms.

Definition 1 (Adversarial Robustness). The pruning strategy τ_p is said to be (ϵ, γ) -robust if its adversarial risk with respect to the classifier f satisfies: $\mathcal{R}_{\epsilon}[f, \tau_p] \leq \gamma$.

In the adversarial setting, the objective is to ensure that the adversarial risk remains small, implying that model predictions are stable under small perturbations. In this perspective, Definition 1 provides the notion of adversarial robustness for a pruning strategy.

4.2 On the Robustness of Pruned Models

We now theoretically examine the relationship between pruning and adversarial robustness. We begin by focusing on TBMs, specifically considering f as a one-layer TBM model with H self-attention heads, as described in Section 3. Lemma 1 characterizes the robustness properties of the original, non-pruned model f, corresponding to the special case where the pruning probability is set to zero.

Lemma 1. Let $f: \mathcal{X} \to \mathcal{Y}$ be the original TBM-based classifier following the considered problem setup. We have that the pruning strategy $\tau_{p=1}$ (i. e., no pruning) is (ϵ, γ) -robust, with:

$$\gamma = \left(\frac{d}{d-1}\right)^2 C_1 C_2 \epsilon,$$
 with $C_1 = \left(1 + \|W_O\|\sqrt{H} \max_h \left[\|W^{V,h}\|\left[\frac{4}{\sqrt{d/H}}\|W^{Q,h}\|\|W^{K,h}\|+1\right]\right]\right)$ and $C_2 = \left(1 + \|W_{FFN}\|\right)$

Next, we study the effect of applying a uniform pruning strategy, which is based on using the same pruning probability across different layers and connections. This leads to the following result linking the robustness of the pruned model g to that of the original model f.

Theorem 1. Let $f: \mathcal{X} \to \mathcal{Y}$ to our original TBM-based classifier following our problem setup. Let g be its corresponding pruned version using a pruning strategy τ_p , then τ_p is (ϵ, γ) – robust with:

$$\gamma' \leq C\gamma$$

$$\begin{split} & \textit{with} \quad C = \frac{1 + p^2 \|W^O\|_F \sqrt{H}\alpha}{1 + \|W^O\|_F \sqrt{H}\alpha} \times \frac{1 + p\|W_{FFN}\|_F}{1 + \|W_{FFN}\|_F} \leq 1 \\ & \textit{and} \quad \alpha = \max_h \left\lceil \|W^{V,h}\|_F \left(\frac{4}{\sqrt{d/H}} \|W^{Q,h}\|_F \|W^{K,h}\|_F + 1\right) \right\rceil. \end{split}$$

Theorem 1 establishes formally a link between adversarial robustness and model pruning. Specifically, we see that the adversarial risk of the pruned model g is always smaller than its corresponding original model f. We can therefore conclude that, from a theoretical standpoint, pruning inherently preserves or enhances adversarial robustness compared to the non-pruned counterpart. The link between these two elements is illustrated using the constant $C \leq 1$, which depends on the weight norms of the weight matrices linked to the attention framework, the weight of the concatenation of heads and the corresponding FFN. While the above analysis specifically targets Transformer-based architectures, the underlying principles extend to other neural network models, such as convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) as we will discuss in the next section.

Remark. Both the non-pruned and pruned models are analyzed under the same Lipschitz-based approximation, so comparing their robustness bounds is meaningful despite the true values being unknown. This parallels statistical learning theory, where a smaller generalization bound is taken as a principled indication of better performance under identical assumptions. By the same reasoning, a smaller robustness bound for the pruned model provides theoretical justification for greater robustness, which is further confirmed by our empirical validation.

On the generalization to Multi-Layers TBMs. We note that the current theoretical analysis focuses on a single-layer Transformer-based model; nonetheless, the results naturally extend to the multi-layer case. Specifically, a Transformer model with L layers, denoted as $f^{(L)}$, can be expressed as a composition of L single-layer functions: $f^{(L)}(x) = f^{(L-1)} \circ f^{(L-2)} \circ \cdots \circ f^{(1)}(x)$. Under this formulation, and following standard results from Lipschitz continuity, the overall adversarial risk bound γ becomes a multiplicative composition of the bounds for each individual layer. As a result, our robustness framework remains applicable in deeper architectures (as validated in the experiments). Moreover, due to the multiplicative nature of the resulting bound, we expect the robustness effect of pruning to increase as the depth of the model increases (as observed empirically in Section 6).

5 ON THE CHOICE OF PRUNING PARAMETERS

5.1 Pruning Choices Affect Adversarial Robustness

In the previous section, we established a general connection between model pruning and adversarial robustness in the case of Transformer-based models, showing that pruning can, under certain conditions, enhance robustness. However, the earlier results focused on the transformer-based model and specifically the special case where p is constant for all weights and neurons. In this section, we seek to understand how varying the pruning probabilities affects the resulting robustness, providing deeper insight into how pruning strategies interact with adversarial robustness, and accordingly could be optimized to enhance a model's resilience to these perturbations. We consider an L-layer MLP model, and we consider the general probabilistic pruning model introduced in Section 3, which captures both magnitude-based and score-based pruning schemes. In this setting, we assume full control over the pruning probabilities $p_{i,j}^{(\ell)}$ at each layer ℓ . Understanding how these choices influence robustness is crucial: for magnitude pruning, it allows direct parameter selection; for score-based pruning, it suggests ways to design or regularize the score-learning objectives such as to promote robustness alongside performance.

Theorem 2. Let $f: \mathcal{X} \to \mathcal{Y}$ be an L-Layers MLP classifier. Let g be its corresponding pruned version obtained through our considered pruning strategy with probabilities $p_{i,j}^{(\ell)}$. Then the pruning strategy τ is (ϵ, γ) -robust with:

$$\gamma = P_L \prod_{\ell=1}^L \lVert W_f^{(\ell)}
Vert_F$$
, with $P_L = \prod_{\ell=1}^L \sqrt{\max_{i,j} p_{ij}^{(\ell)}}$

Theorem 2 provides an explicit upper bound on the adversarial risk γ for a pruned MLP model, as a function of the pruning strategy τ . The bound incorporates two key components: the product of the Frobenius norms of the original model's weight matrices, and a pruning-dependent term P_L , which scales the risk according to the maximum pruning probabilities in each layer. Notably, the bound reduces to the adversarial risk of the original, non-pruned model when all probabilities are set to one (i. e., no pruning). This formulation highlights how pruning directly influences robustness: reducing the number of active weights leads to a smaller P_L , and consequently, a lower adversarial risk.

The insight here parallels our earlier observations in the context of transformers and pooling, where we have seen that pruning acts as a form of structural regularization that reduces the model's sensitivity to input perturbations. In particular, the theorem reveals that pruning individual layers contributes multiplicatively to the overall robustness. As the pruning probabilities approach zero (i.e., most weights are removed), the bound tends to zero, corresponding to a degenerate model with no predictive capacity, consistent with the intuitive behavior of an empty network. This result underscores the hidden effect of pruning not only for compression but also for improving adversarial robustness in MLPs and other architectures.

5.2 Linking Pruning to Performance

In the previous section, we analyzed how pruning strategies and corresponding parameters influence adversarial robustness. Specifically, Theorem 2 showed that maximum robustness, corresponding to a vanishing upper bound, is theoretically achieved as $p \to 0$. However, although aggressive pruning improves robustness, it can severely degrade the model's ability to preserve the original predictive information. In practice, since we do not know a priori if a given input $x_0 \in \mathcal{X}$ has been adversarially perturbed, it is essential to maintain a balance: ensuring the model remains robust while still preserving high accuracy on clean, non-attacked data. Thus, the pruning parameters must be carefully chosen to avoid sacrificing standard performance for the aim of better robustness. In this subsection, we aim to formalize and study this trade-off. To this end, we start by introducing the notion of ζ -optimality for a considered pruning strategy.

Definition 2 (Optimal Pruning). Let f be a classifier and g its pruned version obtained via a pruning strategy τ_p . The pruning strategy is said to be ζ -optimal over the input set $\mathcal{X}if$:

$$\mathbb{E}_{\tau_n}[\|f(x) - g(x)\|] \le \zeta.$$

Ideally, we would like the pruned model g to produce outputs close to those of the original model f, ensuring similar classification performance. Definition 2 captures this objective since the smaller the value of ζ , the more faithful and closer the pruned model is to the original. Naturally, the quantity ζ depends on the specific choice of pruning probabilities; we therefore study the optimality of our considered probabilistic pruning in the case of an L-layer MLP under the same previous setup.

Proposition 1. Let f be an L-layer MLP and g be its corresponding pruned version obtained through our considered pruning strategy with probabilities $p_{i,j}^{(\ell)}$. For an input point $x_0 \in \mathcal{X}$, the chosen pruning strategy is ζ -optimal, with:

$$\zeta = \prod_{\ell=1}^{L} \|W^{(\ell)}\| \sum_{\ell=1}^{L} \frac{1}{\|W^{(\ell)}\|} \sqrt{\sum_{i,j} (1 - p_{i,j}^{(\ell)}) (W_{i,j}^{(\ell)})^{2}}.$$

The result presented in Proposition 1 offers several important insights into how pruning parameters influence the performance and optimality of the pruned model. First, the bound ζ scales with the network depth L, indicating that deeper architectures amplify the effects of pruning errors. Moreover, the bound depends on the pruning probabilities weighted by the magnitudes of the corresponding

weights, reinforcing the intuitive idea that pruning weights with larger magnitudes leads to greater performance degradation. Additionally, layers with smaller weight norms $\|W^{(\ell)}\|$ are more vulnerable to pruning errors, as reflected by the $1/\|W^{(\ell)}\|$ term appearing in the summation. It is also noteworthy that $\zeta \to 0$ as $p \to 1$, meaning that as pruning vanishes (no weights are pruned), the pruned model perfectly recovers the original model's outputs. This latter observation highlights the existence of an inverse relationship between adversarial robustness and pruning optimality, formally demonstrating the existence of a trade-off between robustness and optimality performance.

On the Trade-off between Robustness and Optimality. In the previous section, we established two key results: (1) pruning improves adversarial robustness by reducing the upper bound γ , and (2) it impacts model optimality, as reflected in the ζ -optimality criterion. Specifically, more aggressive pruning (i.e., smaller $p_{i,j}^{(\ell)}$) increases sparsity, leading to lower adversarial risk but potentially reducing the model's capacity to approximate the target function, resulting in a potential drop in accuracy.

Both robustness and optimality are explicit functions of the pruning probabilities $p_{i,j}^{(\ell)}$, revealing an inherent trade-off between the two. Consequently, when pruning to reduce computational or storage costs, users should carefully balance this trade-off to gain robustness without compromising performance. Our main finding is that with appropriate choices of pruning parameters, it is possible to improve robustness without additional constraints or overhead, offering a "free-lunch" gain.

6 EXPERIMENTAL VALIDATION

This section provides empirical validation of our theoretical findings by analyzing the effect of pruning parameters on both adversarial robustness and clean accuracy. We first describe the experimental setup, then present an empirical analysis of the adversarial risk, followed by an evaluation of how these findings translate into clean and attacked accuracy across different pruning configurations.

6.1 EXPERIMENTAL SETUP

Architecture. While our theoretical analysis focused on multilayer perceptrons (MLPs), we seek to empirically assess the generalization of our conclusions across different model architectures. To this end, we consider three commonly used architectures in vision tasks: (i) a two-layer MLP, (ii) a Vision Transformer (ViT) (Vaswani et al., 2017), and (iii) a convolutional neural network (CNN).

Datasets. We conduct experiments on a diverse set of vision-based classification benchmarks, including MNIST, CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-100 (Russakovsky et al., 2015). Due to the limited capacity of MLPs on more complex datasets, we evaluate MLPs only on MNIST and CIFAR-10. For each model, we adapted the number of epochs to ensure convergence towards a satisfactory clean accuracy. Additional implementation details, including hyperparameters, are provided in Appendix F. The necessary code to reproduce our experiments is included in the supplementary materials and will be made publicly available upon publication.

Attacks. In addition to validating our theoretical results using the adversarial risk quantities γ and ζ , we evaluate robustness under two widely used adversarial attacks for image-based models. Specifically, we consider the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) (whose results are provided in Appendix E). Full implementation details, including attack parameters and configurations, are also available in Appendix F.

6.2 EMPIRICAL ANALYSIS OF THE ROBUSTNESS AND OPTIMALITY

We start our empirical investigation by evaluating the two key quantities introduced in our theoretical framework. First, we examine the adversarial risk, denoted by γ in Definition 1 and upper-bounded in Theorem 2. Second, we assess the optimality of the pruning method, captured by the quantity ζ in Definition 2 and further analyzed in Proposition 1. Figure 1 illustrates the behavior of these quantities as functions of the pruning probability p, across different neighborhood sizes defined by ϵ . To estimate the adversarial risk within each ϵ -neighborhood, we randomly sample K points from the neighborhood and compute the average divergence in the model's output. For sufficiently large K, this empirical average serves as an unbiased estimator of the adversarial risk as defined in Equation 3. We observe that our experimental results align closely with the theoretical insights. Specifically,

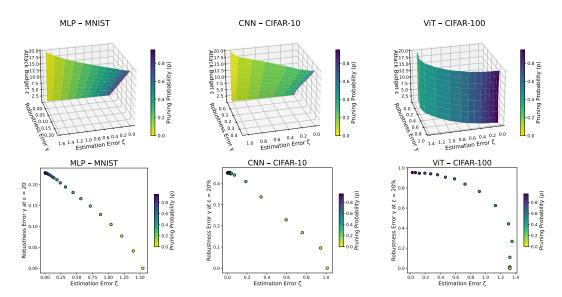


Figure 1: Empirical Analysis of the effect of the pruning parameters on the adversarial risk (Definition 1) and the Estimation Error (Equation 2) when subject to a range of attack budget (ϵ).

when the pruning probability approaches one (i. e., $p \to 1$), corresponding to minimal or no pruning, the pruning optimality metric satisfies $\zeta = 0$, and the adversarial risk γ reflects the robustness of the original, non-pruned model. As we gradually decrease p and increase the degree of pruning, we observe two simultaneous trends: the adversarial risk γ decreases, indicating an increasing robustness, while the optimality ζ degrades, reflecting a growing deviation from the original model's behavior.

6.3 ON THE CLEAN/ATTACKED ACCURACY TRADE-OFF

6.3.1 Magnitude-Based Pruning

In the previous section, we studied the effect of pruning parameters on the adversarial risk and the optimality quantities. While this has already shown the existence of the studied trade-off, we are also interested in seeing how this trade-off translates into clean and attacked accuracy using real adversarial attacks. In this perspective, we consider the FGSM attack (while the PGD attack is reported in Appendix E), and study the effect of the pruning probability p on the resulting clean accuracy of the pruned model (representing the optimality) and the attacked accuracy (representing the adversarial vulnerability) when subject to the considered attacks.

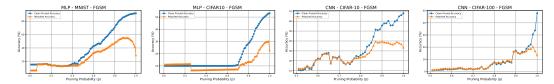
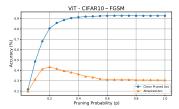


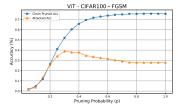
Figure 2: Clean and attacked accuracy of pruned models when subject to the FGSM attack across varying pruning probabilities and different datasets.

Figure 2 illustrates the trade-off between clean and adversarial accuracy across different pruning ratios for various model and dataset combinations. We observe a clear trend: as the pruning probability decreases from 1, adversarial accuracy initially improves, indicating enhanced robustness, while clean accuracy begins to decline. Beyond a certain point, further pruning causes a drop in both clean and adversarial accuracy, as the loss in representational capacity outweighs the robustness gains. These results highlight the presence of a retention "sweet spot" (for instance around p=0.9 for MLP), where moderate pruning achieves an effective balance between robustness and clean performance.

6.3.2 Score-Based Pruning

To further demonstrate the generality of our theoretical insights, originally derived under probabilistic pruning, we extend the analysis to score-based pruning, where pruning decisions rely on gradient-based importance scores. In this setting, we apply pruning to a ViT model and evaluate it using our standard experimental setup. Figure 3 (and Figure 8 - Appendix E) shows the clean and attacked accuracies under FGSM (respectively PGD) for varying pruning ratios. Consistent with our earlier findings on magnitude-based pruning, we observe that pruning enhances adversarial robustness while introducing a trade-off with accuracy. Interestingly, in the score-based case, the trade-off occurs at higher pruning ratios, which we attribute to the greater precision of gradient-based scoring.





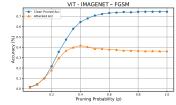


Figure 3: Clean and attacked accuracy of a pruned ViT when subject to the FGSM attack across varying pruning ratios for the CIFAR-10, CIFAR-100 and ImageNet datasets.

6.4 On the Effect of Model's Size

In the derived upper bounds, both for adversarial robustness and the optimality of the pruning, we observe a dependence on the model's size, denoted by the number of layers L. Specifically, in Theorem 2, the bound suggests an exponential relationship between L and the expected robustness. To empirically validate this dependence, we evaluate three MLP architectures, we evaluate three MLP architectures of increasing depth: a 2-layer "small" MLP, a 3-layer "medium" MLP, and a 4-layer "large" MLP. For each architecture, we apply both FGSM and PGD at-

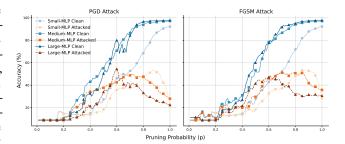


Figure 4: Effect of the model's size and the pruning parameters on both the clean and attacked accuracy.

tacks using identical training and attack configurations to ensure fair comparison. The results, shown in Figure 4, consistently reveal a trade-off between clean and adversarial accuracy as pruning increases. Notably, in larger models, achieving a favorable balance between clean and robust performance requires a higher pruning rate, thereby empirically supporting the influence of L.

7 CONCLUSION

This work investigated the effect of pruning on the adversarial robustness of neural networks. We analyzed how specific pruning parameters influence robustness by deriving an upper bound that links these parameters to adversarial risk, thus providing guidance on selecting pruning configurations. However, tuning pruning parameters solely for robustness may harm the clean accuracy of the resulting model. To mitigate this, we also examined their impact on pruning optimality, ensuring the pruned model remains a close and faithful approximation of the original non-pruned model. By combining the two bounds, our study is the first to reveal a clear trade-off between clean and adversarial accuracy when subject to pruning, offering actionable insights for balancing both. With carefully chosen pruning parameters, we can improve robustness without additional constraints or cost, yielding a "free-lunch" benefit. Our empirical results confirm this trade-off across diverse models and datasets under various adversarial attack settings. This opens a promising avenue for future work on designing pruning strategies that are explicitly aware of adversarial robustness.

ETHICS STATEMENT

This work does not involve human subjects and therefore does not require IRB approval. All datasets used are publicly available and appropriately licensed. Although adversarial attacks are employed, they are standard, publicly available methods used solely to evaluate and improve model robustness. In this context, our aim is to develop defense strategies that mitigate potential harm. To the best of our knowledge, this research does not raise ethical concerns related to discrimination, bias, privacy, or security. No conflicts of interest or legal compliance issues are associated with this work. We additionally note that LLMs were used only to assist with text refinement.

REPRODUCIBILITY STATEMENT

We have made an effort to ensure that our results can be reproduced by others. All datasets and pretrained models we use are publicly available and are clearly referenced in the paper. In addition, the code to reproduce our results is included in the Supplementary Materials and shall be made public upon publication. The experimental setup, including how the models are trained and how adversarial evaluations are carried out, is described in detail in the main text and the Appendix F. Additional proofs, derivations, and extended results are included in the appendix.

REFERENCES

- Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. Advances in adversarial attacks and defenses in computer vision: A survey. *IEEE Access*, 9:155161–155196, 2021.
- Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul Mazumder. Fast as chita: Neural network pruning with combinatorial optimization. In *International Conference on Machine Learning*, pp. 2031–2049. PMLR, 2023.
- Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Śrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In *Machine learning and knowledge discovery in databases: European conference, ECML pKDD 2013, prague, czech Republic, September 23-27, 2013, proceedings, part III 13*, pp. 387–402. Springer, 2013.
- Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep neural networks: The principles, progress, and challenges. *IEEE Signal Processing Magazine*, 35 (1):126–136, 2018.
- Joana C Costa, Tiago Roxo, Hugo Proença, and Pedro RM Inácio. How deep learning sees the world: A survey on adversarial attacks & defenses. *IEEE Access*, 2024.
- Pierre Vilar Dantas, Waldir Sabino da Silva Jr., Lucas Carvalho Cordeiro, and Celso Barbosa Carvalho. A comprehensive review of model compression techniques in machine learning. *Applied Intelligence*, 54(22):11804–11844, 2024.
- Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip Torr, Grégory Rogez, and Puneet K. Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=9GsFOUyUPi.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423/.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2020.

- Sofiane ENNADIR, Johannes F. Lutzeyer, Michalis Vazirgiannis, and El houcine Bergou. If you want to be robust, be wary of initialization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=nxumYwxJPB.
- Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets winners. In *International conference on machine learning*, pp. 2943–2952. PMLR, 2020.
- Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *International Conference on Learning Representations (ICLR)*, 2015.
- Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski. Moment: A family of open time-series foundation models. *arXiv preprint arXiv:2402.03885*, 2024.
- Masafumi Hagiwara. Removal of hidden units and weights for back propagation networks. In *Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan)*, volume 1, pp. 351–354. IEEE, 1993.
- Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. *Advances in neural information processing systems*, 28, 2015.
- Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2016.
- Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In *Proceedings of the IEEE international conference on computer vision*, pp. 1389–1397, 2017.
- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
- Artur Jordao and Hélio Pedrini. On the effect of pruning on adversarial robustness. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1–11, 2021.
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint* arXiv:1412.6980, 2014.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information processing systems*, 2, 1989.
- Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.
 - Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *ArXiv e-prints*, pp. arXiv–1607, 2016.

- Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 6555–6565, 2024.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
 - Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. In *Proceedings of the IEEE international conference on computer vision*, pp. 5058–5066, 2017.
 - Divyam Madaan, Jinwoo Shin, and Sung Ju Hwang. Adversarial neural pruning with latent vulnerability suppression. In *International conference on machine learning*, pp. 6575–6585. PMLR, 2020.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
 - Erum Mushtaq, Chaoyang He, Jie Ding, and Salman Avestimehr. SPIDER: Searching personalized neural architecture for federated learning, 2023. URL https://openreview.net/forum?id=BW9KtL-bott.
 - Xin Qian and Diego Klabjan. A probabilistic approach to neural network pruning. In *International Conference on Machine Learning*, pp. 8640–8649. PMLR, 2021.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115:211–252, 2015.
 - Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversarially robust neural networks. *Advances in Neural Information Processing Systems*, 33:19655–19666, 2020.
 - Mohammadreza Soltani, Suya Wu, Jie Ding, Robert Ravier, and Vahid Tarokh. On the information of feature maps and pruning of deep neural networks. In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6988–6995. IEEE, 2021.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
 - Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial example defenses. *Advances in neural information processing systems*, 33:1633–1645, 2020.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30, pp. 5998–6008. Curran Associates, Inc., 2017.
 - Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient estimation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf.
 - Qi Zhao and Christian Wressnegger. Holistic adversarially robust pruning. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=sAJDi9lD06L.
 - Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large language models. *Transactions of the Association for Computational Linguistics*, 12:1556–1577, 2024.

Supplementary Material When Less Is More: Uncovering the Robustness Advantage of Model Pruning

A PROOF OF LEMMA 1

Lemma. Let $f: \mathcal{X} \to \mathcal{Y}$ be the original TBM-based classifier following the considered problem setup. We have that the pruning strategy $\tau_{p=1}$ (i. e., no pruning) is (ϵ, γ) -robust, with:

$$\gamma = \left(\frac{d}{d-1}\right)^2 C_1 C_2 \epsilon,$$

with
$$C_1 = \left(1 + \|W_O\|\sqrt{H}\max_h\left[\|W^{V,h}\|\left[\frac{4}{\sqrt{d/H}}\|W^{Q,h}\|\|W^{K,h}\|+1\right]\right]\right)$$
 and $C_2 = \left(1 + \|W_{FFN}\|\right)$

Proof. Let's consider our input $X \in \mathcal{X}$ composed of n tokens $x_i \in \mathbb{R}^d$. We consider that our model f is built using the dot-product self-attention as referred to in Equation 1 and reformulated as:

$$\begin{split} \mathbf{AH}(x) &= \mathrm{Softmax}\big(\frac{(XW^Q)(XW^K)^T}{\sqrt{\frac{D}{H}}}\big)XW^V \\ &= PXW^V = h(X)W^V, \end{split}$$

where W^Q, W^K, W^V are learnable weights of the model. Let's consider the function h(X), we can write:

$$f(X) = PX = \text{Softmax}(XA^TX^T)X$$

$$f(X) = PX = \operatorname{Softmax}\left(XA^{\top}X^{\top}\right)X = \begin{bmatrix} h_1(X)^{\top} \\ \vdots \\ h_n(X)^{\top} \end{bmatrix} \in \mathbb{R}^{n \times d}, \text{ with:}$$

$$A = \frac{W^K W^{Q^\top}}{\sqrt{d/H}} \in \mathbb{R}^{d \times d} \quad \text{and} \quad h_i(X) = \sum_{j=1}^n P_{ij} x_j \quad \text{with} \quad P_i^\top = \operatorname{Softmax}(X A x_i).$$

By analyzing the partial derivatives, we can directly write the following regarding eh Jacobian matrix of h:

$$J_{ij} = X^{\top} P^{(i)} E_{ii} X A^{\top} + \delta_{ij} (X^{\top} P^{(i)} X A) + P_{ij} I_d,$$

with:

- $P^{(i)} = \operatorname{diag}(P_{i:}) P_{i:}^{\top} P_{i:}$, [Softmax derivate]
- E_{ii} is the $(n \times n)$ matrix with a single 1 in position (j, i).

Based on this, two elements arises:

If
$$i \neq j$$
, $J_{ij} = X^{\top} P^{(i)} E_{ji} X A^{\top} + P_{ij} I$, (4)

If
$$i = j$$
, $J_{ii} = X^{\top} P^{(i)} E_{ii} X A^{\top} + X^{\top} P^{(i)}, X, A + P_{ii}I.$ (5)

We recall that the input images are considered to be normalized, and therefore we can write:

Additionally, since P_i : is the output of the softmax, then can be considered a probability distribution. Therefore, $\sigma_{max}(diag(p)) \leq 1$ and pp^T has rank 1:

$$||P^{(i)}|| = ||\operatorname{diag}(P_{i:}) - P_{i:}^{\top} P_{i:}|| \le 2$$

Case 1. We start by considering the first case $i \neq j$, in which we have:

$$J_{ij} = X^{\top} P^{(i)} E_{ji} X A^{\top} + P_{ij} I.$$

Consequently we have the following:

$$||J_{ij}|| \le ||X^{\top} P^{(i)} E_{ji} X A^{\top}|| + ||P_{ij} I||$$

$$\le 2 \times ||A|| + 1$$

$$\le ||A|| + 1$$

Case 2. For the second case i = j, we have the following:

$$J_{ii} = X^{\top} P^{(i)} E_{ii} X A^{\top} + X^{\top} P^{(i)} X A + P_{ii} I.$$

We apply the same analogy as the previous case:

$$||J_{ii}|| \le ||X^{\top} P^{(i)} E_{ii} X A^{\top}|| + ||X^{\top} P^{(i)} X A|| + ||P_{ii} I||$$

$$\le 2||A|| + 2||A|| + 1$$

$$\le 4||A|| + 1$$

So overall, we have the following:

$$||J_{ij}||_{op} \le \begin{cases} 2||A||+1, & \text{if } i \neq j, \\ 4||A||+1, & \text{if } i = j. \end{cases}$$

So with our theoretical assumptions, the Jacobian is bounded and we have: $\mathcal{L}_h \leq 4\|A\|+1$.

Specifically, for an attention head h, we have the following computation taking into account the different learnable weights:

$$\mathcal{L}_{head} \le \|W^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W^{Q,h}\| \|W^{K,h}\| + 1 \right]$$

Since f is represented by H separate attention head, then their concatenated output as explained in Equation 2 is subject to the following:

$$\mathcal{L}_{MH} \leq \|W_O\|\sqrt{H} \max_{h} \left[\mathcal{L}_{head}\right]$$

$$\leq \|W_O\|\sqrt{H} \max_{h} \left[\|W^{V,h}\|\left[\frac{4}{\sqrt{d/H}}\|W^{Q,h}\|\|W^{K,h}\|+1\right]\right]$$

Finally, by applying the FFN and LN (with its parameters $\gamma=1$ and $\beta=1$), and since ReLU is 1-Lipschitz, we have the following result:

$$\mathcal{L}_{f} \leq L_{LN}^{2} (1 + \mathcal{L}_{MH}) (1 + L_{FFN})$$

$$\leq \left(\frac{d}{d-1}\right)^{2} (1 + \mathcal{L}_{MH}) (1 + \|W_{FFN}\|)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} (1 + \|W_{O}\|\sqrt{H} \max_{h} \left[\|W^{V,h}\| \left[\frac{4}{\sqrt{d/H}} \|W^{Q,h}\| \|W^{K,h}\| + 1\right]\right]) (1 + \|W_{FFN}\|)$$

$$\leq \left(\frac{d}{d-1}\right)^{2} C_{1} C_{2},$$

with
$$C_1 = (1 + ||W_O||\sqrt{H} \max_h [||W^{V,h}|| [\frac{4}{\sqrt{d/H}} ||W^{Q,h}|| ||W^{K,h}|| + 1]])$$

 $C_2 = (1 + ||W_{FFN}||)$

Let's now consider a perturbed input $\tilde{x} \in \mathcal{B}(x, \epsilon)$ as defined in Section 4.1. The previous upper-bound applies to any given point within that budget, and therefore we have:

$$\sup_{\tilde{x} \in \mathcal{B}(x,\epsilon)} d_{\mathcal{Y}}(g(\tilde{x}), g(x)) \le \mathcal{L}_f \epsilon$$

Since we consider that p=1 (no pruning), then by taking into account the expectancy, we get the desired result.

Proof of Theorem 1

Theorem. Let $f: \mathcal{X} \to \mathcal{Y}$ to our original TBM-based classifier following our problem setup. Let gbe its corresponding pruned version using a pruning strategy τ_p , then τ_p is (ϵ, γ) – robust with:

$$\gamma' < C\gamma$$
.

$$\begin{split} & \textit{with} \quad C = \frac{1 + p^2 \|W^O\|_F \sqrt{H}\alpha}{1 + \|W^O\|_F \sqrt{H}\alpha} \times \frac{1 + p\|W_{FFN}\|_F}{1 + \|W_{FFN}\|_F} \leq 1 \\ & \textit{and} \quad \alpha = \max_h \left\lceil \|W^{V,h}\|_F \left(\frac{4}{\sqrt{d/H}} \|W^{Q,h}\|_F \|W^{K,h}\|_F + 1\right) \right\rceil. \end{split}$$

Proof. From the proof of Lemma 1 in Appendix A, we have the following results:

$$\mathcal{L}_f \leq \left(\frac{d}{d-1}\right)^2 C_1 C_2,$$

with
$$C_1 = (1 + ||W_O||\sqrt{H} \max_h [||W^{V,h}||[\frac{4}{\sqrt{d/H}}||W^{Q,h}||||W^{K,h}||+1]])$$

 $C_2 = (1 + ||W_{FFN}||)$

We consider that the model is pruned with a pruning strategy τ following the same analogy as the one provided in Section 3. We start by understanding the effect of such operation on the weight norm in terms of expectation. Let W be our original weight, and let $B_{i,j}$ be the considered pruning mask (which is the realization of the pruning probability as explained in Section 3). We can write:

$$\mathbb{E}_{\tau}[\|W_{g}^{(\ell)}\|] = \mathbb{E}_{\tau}[\|B^{(\ell)} \odot W_{f}^{(\ell)}\|]$$

$$\leq \sqrt{\sum_{i,j} \mathbb{E}_{\tau}[B_{ij}^{(\ell)} W_{ij}^{(\ell)2}]}$$

$$\leq \sqrt{\sum_{i,j} p_{ij}^{(\ell)} W_{ij}^{(\ell)2}}$$

Since we consider pruning that uses the same parameter p, then we have:

$$\mathbb{E}[\|W_q^{(\ell)}\|] \le \sqrt{p} \|W_f^{(\ell)}\|_F$$

Based on this, we can use the derived upper-bound and adapt accordingly:

$$C_1' \le 1 + \|W_{(g)}^O\|_F \sqrt{H} \max_h \left[\|W_{(g)}^{V,h}\|_F \left(\frac{4}{\sqrt{d/H}} \|W_{(g)}^{Q,h}\|_F \|W_{(g)}^{K,h}\|_F + 1 \right) \right]$$
 (6)

$$\leq 1 + (p)^{2} \|W^{O}\|_{F} \sqrt{H} \max_{h} \left[\|W^{V,h}\|_{F} \left(\frac{4}{\sqrt{d/H}} \|W^{Q,h}\|_{F} \|W^{K,h}\|_{F} + 1 \right) \right]$$
 (7)

$$=1+p^{2}\|W^{O}\|_{F}\sqrt{H}\alpha,$$
(8)

where we define:

$$\alpha = \max_{h} \left[\|W^{V,h}\|_{F} \left(\frac{4}{\sqrt{d/H}} \|W^{Q,h}\|_{F} \|W^{K,h}\|_{F} + 1 \right) \right]. \tag{9}$$

And similarly, for the second constant:

$$C_2' = 1 + \|W_{\text{FFN},(q)}\| \le 1 + p\|W_{\text{FFN}}\|_F.$$
 (10)

Similarly, when considering the original model f, since the spectral norm is always smaller than the frobenius norm, we can re-write the C_1 and C_2 accordingly.

Let's now consider the difference between the two terms for both f and g:

$$C = \frac{C_1' C_2'}{C_1 C_2} = \frac{(1 + p^2 \|W^O\|_F \sqrt{H}\alpha)(1 + p\|W_{\text{FFN}}\|_F)}{(1 + \|W^O\|_F \sqrt{H}\alpha)(1 + \|W_{\text{FFN}}\|_F)}.$$
 (11)

Thus, the final bound on the Lipschitz constant of the pruned model is:

$$\gamma' \le C\gamma,\tag{12}$$

where:

$$C = \frac{1 + p^2 \|W^O\|_F \sqrt{H}\alpha}{1 + \|W^O\|_F \sqrt{H}\alpha} \times \frac{1 + p\|W_{\text{FFN}}\|_F}{1 + \|W_{\text{FFN}}\|_F} \le 1.$$
 (13)

and:

$$\alpha = \max_{h} \left[\|W^{V,h}\|_{F} \left(\frac{4}{\sqrt{d/H}} \|W^{Q,h}\|_{F} \|W^{K,h}\|_{F} + 1 \right) \right]. \tag{14}$$

C PROOF OF THEOREM 2

Theorem. Let $f: \mathcal{X} \to \mathcal{Y}$ be an L-Layers MLP classifier. Let g be its corresponding pruned version obtained through our considered pruning strategy with probabilities $p_{i,j}^{(\ell)}$. Then the pruning strategy τ is (ϵ, γ) -robust with:

$$\gamma = P_L \prod_{\ell=1}^L \lVert W_f^{(\ell)}
Vert_F$$
, with $P_L = \prod_{\ell=1}^L \sqrt{\max_{i,j} p_{ij}^{(\ell)}}$

Proof. We start from a classifier $f: \mathcal{X} \to \mathcal{Y}$, with its corresponding weights denoted as W^{ℓ} and its corresponding pruned version g, with its weights denoted as $W'^{(\ell)}$. We consider a probabilistic pruning approach τ as discussed in Section 3, where each weight $W_{i,j}^{(\ell)}$ is independently pruned using a Bernoulli distribution with probability $p_{i,j}^{(\ell)}$. Hence,

$${W'}_{i,j}^{(\ell)} = \begin{cases} W_{i,j}^{(\ell)} & \text{with probability } p_{i,j}^{(\ell)}, \\ 0, & \text{with probability } 1 - p_{i,j}^{(\ell)}. \end{cases}$$

For each layer $\ell \leq L$, the pruning can be formulate as the following:

$$W'^{(\ell)} = B^{(\ell)} \odot W^{(\ell)}, \qquad B_{ij}^{(\ell)} \sim \text{Ber}(p_{ij}^{(\ell)}).$$
 (1)

Similar to the previous proof, for each individual weight ℓ , considering the linearity of the expected value, we have in expectancy:

$$\begin{split} \mathbb{E}_{\tau} \big[\| B^{(\ell)} \odot W^{(\ell)} \| \big] &\leq \mathbb{E}_{\tau} \big[\| B^{(\ell)} \odot W^{(\ell)} \|_{F} \big] \\ &\leq \mathbb{E}_{\tau} \big[\sqrt{\sum_{i,j} B^{(\ell)}_{ij} W^{(\ell)2}_{ij}} \big] \\ &\leq \sqrt{\sum_{i,j} \mathbb{E} \big[B^{(\ell)}_{ij} W^{(\ell)2}_{ij} \big]} \\ &\leq \sqrt{\sum_{i,j} p^{(\ell)}_{ij} W^{(\ell)2}_{ij}} \\ &\leq \sqrt{\max_{i,j} p^{(\ell)}_{ij}} \sqrt{\sum_{i,j} W^{(\ell)2}_{ij}} \\ &\leq \sqrt{\max_{i,j} p^{(\ell)}_{ij}} \| W^{(\ell)} \|_{F} \end{split}$$

For the model q, we know that:

$$\mathbb{E}_{\tau} [\|g(x) - g(x')\|] \leq \mathbb{E}_{\tau} [\prod_{\ell=1}^{L} \|W_{g}^{(\ell)}\|]$$

$$\leq \prod_{\ell=1}^{L} \|\sqrt{\max_{i,j} p_{ij}^{(\ell)}} \|W_{f}^{(\ell)}\|_{F}$$

$$\leq P_{L} \prod_{\ell=1}^{L} \|W_{f}^{(\ell)}\|_{F}$$

with:

$$P_L = \prod_{\ell=1}^{L} \sqrt{\max_{i,j} p_{ij}^{(\ell)}}$$

D PROOF OF PROPOSITION 1

Proposition. Let f be a L-layer MLP and g be its corresponding pruned version obtained through our considered pruning strategy with probabilities $p_{i,j}^{(\ell)}$. For an input point $x_0 \in \mathcal{X}$, the chosen pruning strategy is ζ -optimal, with:

$$\zeta = \|x_0\| \prod_{\ell=1}^L \|W^{(\ell)}\| \sum_{\ell=1}^L \frac{1}{\|W^{(\ell)}\|} \sqrt{\sum_{i,j} (1 - p_{i,j}^{(\ell)}) \left(W_{i,j}^{(\ell)}\right)^2}.$$

Proof. Let f be a MLP of L layers with 1-Lipschitz activation functions (such as ReLu and TanH). We additionally consider a Bernoulli-like pooling such as the one provided in Section 4.1 and which can be written as:

$$\hat{W}_{i,j}^{(l)} = \begin{cases} W_{i,j}^{(\ell)} & \text{with probability } p_{i,j}^{(\ell)}, \\ 0, & \text{with probability } 1 - p_{i,j}^{(\ell)}. \end{cases}$$

We define the following quantity:

$$\Delta^{(l)} = \hat{W}^{(l)} - W^{(l)}, \text{ with } l = 1, \dots, L.$$

We can consequently write:

$$\Delta_{i,j}^{(l)} = \begin{cases} 0, & \text{with probability } p_{i,j}^{(\ell)}, \\ -W_{i,j}^{(l)} & \text{otherwise.} \end{cases}$$

Part 1: Let's consider the model f, since it's a MLP, we can write the following:

$$f(x) = x^{(L)} = W^{(L)}\sigma^{(L)}(x^{(L-1)})$$

= $W^{(L)}\sigma^{(L)}(W^{(L-1)}\sigma^{(L-1)}(x^{(L-2)}))$

and similarly:

$$\begin{split} g(x) &= x'^{(L)} = \hat{W}^{(L)} \sigma^{(L)} (x'^{(L-1)}) \\ &= (W^{(L)} + \Delta^{(L)}) \sigma^{(L)} (x'^{(L-1)}) \end{split}$$

We therefore write:

$$\begin{split} \|f(x) - g(x)\| &= \|W^{(L)}(\sigma^{(L)}(x^{(L-1)}) - \sigma^{(L)}(x'^{(L-1)})) + \Delta^{(L)}\sigma^{(L)}(x'^{(L-1)})\| \\ &\leq \|W^{(L)}\| \|x^{(L-1)} - x'^{(L-1)}\| + \|\Delta^{(L)}\|\sigma^{(L)}(x'^{(L-1)})\| \end{split}$$

We also have by recursion the following (since σ is 1-Lipschitz, and by taking x and 0):

$$\|\Delta^{(l)}\| \|\sigma^{(l)}(x'^{(l-1)})\| \le \|x_0\| \|\Delta^{(L)}\| \prod_{j=1}^{L-1} \|W^{(j)}\|.$$

Note that we directly use $W^{(j)}$ in the previous inequality rather than $\hat{W}^{(j)}$ since by definition the original weight is always upper-bounding in terms of norm the pruned weight.

Combining the two inequalities and by recursive iteration again, we find:

$$||f(x) - g(x)|| \le ||W^{(L)}|| ||x^{(L-1)} - x'^{(L-1)}|| + ||x_0|| ||\Delta^{(L)}|| \prod_{i=1}^{l-1} ||W^{(i)}||$$
(15)

$$\leq \|x_0\| \prod_{i=1}^L \|W^{(i)}\| \sum_{i=1}^L \frac{\|\Delta^{(i)}\|}{\|W^{(i)}\|}. \tag{16}$$

We note that $\Delta^{(\ell)}$ is a random matrix, following the Bernoulli distribution, hence by taking the expectation on both sides, we get:

$$\mathbb{E}_{\mathcal{P}}\Big[\|f(x) - g(x)\|\Big] \le \|x_0\| \prod_{\ell=1}^{L} \|W^{(\ell)}\| \sum_{\ell=1}^{L} \frac{1}{\|W^{(\ell)}\|} \mathbb{E}\Big[\|\Delta^{(\ell)}\|\Big].$$

We additionally have the following:

$$\mathbb{E}[\|\Delta^{(\ell)}\|] \le \mathbb{E}[\|\Delta^{(\ell)}\|_F] \le \sqrt{\mathbb{E}[\|\Delta^{(\ell)}\|_F^2]},$$

where $\|\cdot\|_F$ is the Frobenius norm, with:

$$\|\Delta^{(\ell)}\|_F^2 = \sum_{i,j} (\Delta_{i,j}^{(\ell)})^2$$
$$= \sum_{i,j} (1 - p_{i,j}^{(\ell)}) (W_{i,j}^{(\ell)})^2.$$

Combining everything, we get:

$$\mathbb{E} \big[\| \Delta^{(\ell)} \| \big] \leq \sqrt{\sum_{i,j} (1 - p_{i,j}^{(\ell)}) \big(W_{i,j}^{(\ell)} \big)^2}.$$

And consequently, we get:

$$\mathbb{E}_{\mathcal{P}}\Big[\|f(x) - g(x)\| \Big] \le \|x_0\| \prod_{\ell=1}^L \|W^{(\ell)}\| \sum_{\ell=1}^L \frac{1}{\|W^{(\ell)}\|} \mathbb{E}\Big[\|\Delta^{(\ell)}\| \Big]$$

$$\le \|x_0\| \prod_{\ell=1}^L \|W^{(\ell)}\| \sum_{\ell=1}^L \frac{1}{\|W^{(\ell)}\|} \sqrt{\sum_{i,j} (1 - p_{i,j}^{(\ell)}) \left(W_{i,j}^{(\ell)}\right)^2}.$$

E ADDITIONAL RESULTS

E.1 ESTIMATION OF ADVERSARIAL RISK AND OPTIMALITY

In addition to the provided results in the main paper, we applied the same analysis to other datasets for each model. Specifically, for the CNN we considered the CIFAR-100 and for the ViT we provided the CIFAR-10 covering therefore all the datasets for these models. Figure 5 provides the results of the study. We see that similar insights as the one provided in the main paper are seen, validating therefore the existence of our discussed trade-off.

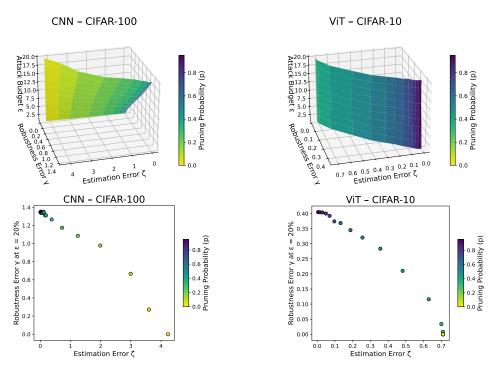


Figure 5: Additional results on the empirical analysis of the effect of the pruning parameters on the adversarial risk (Definition 1) and the Estimation Error (Equation 2) when subject to a range of attack budget (ϵ).

E.2 COMPLETE RESULTS - MLP

As we previously mentioned, in our analysis we focused on both the FGSM (provided in the main paper) and the PGD adversarial attack. In this context, Figure 6 provides the analysis on our

considered MLP model for both the FGSM and PGD using both MNIST and CIFAR-10 Dataset. We can see that similar insights are seen for both these datasets. Specifically, the existence of the trade-off and a sweet spot in which the balance between adversarial and clean accuracy is interesting.

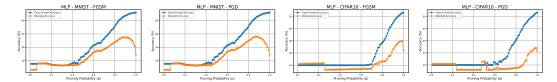


Figure 6: Clean and attacked accuracy of a pruned MLP model when subject to FGSM and PGD adversarial attacks and different pruning probabilities.

E.3 COMPLETE RESULTS - CNN

In line with the previous section, we also extended the study of the CNN to the PGD attack. Figure 7 provides such analysis where we can see again similar insights as the one provided in the case of MLP. Specifically, as we decrease the pruning probability (making the model sparser), the attacked accuracy start going up, showcasing an enhancement in the adversarial robustness of the model, before decreasing due to both the optimality of the pruning strategy and the attack itself.

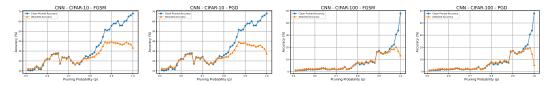


Figure 7: Clean and attacked accuracy of a pruned CNN model when subject to FGSM and PGD adversarial attacks and different pruning probabilities.

E.4 COMPLETE RESULTS - VIT

Similar to the other models, in the main paper we only consider the FGSM attack when considering the ViT model. We therefore report the results using the PGD attack. We recall that for the ViT, we are rather considering a score-based pruning strategy. Figure 8 provides the resulting results of the study.

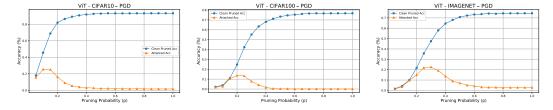


Figure 8: Clean and adversarial accuracy of pruned models under PGD attack across varying pruning probabilities.

F IMPLEMENTATION DETAILS

We start by noting that the necessary code to reproduce the results is provided in the supplementary materials and shall be made public upon publication. In what follows, we provide experimental details and hyper-parameters choices.

MLP. The first model considered in our study and in line with our theoretical analysis, is the Multi-Layer perceptron (MLP). Specifically, for the MNIST dataset, we used a 2-Layers MLP model, while

for the CIFAR-10 dataset, we had to adapt to a 4-Layers MLP model with hidden dimensions of $(8192,\,4096,\,2048$ and 1024) to reach a satisfactory initial clean accuracy. For MNIST dataset, a satisfactory accuracy can be reached in 30 epochs, while for the CIFAR-10, we used a 100 training epochs.

CNN. The second model to be used was a CNN, where we considered a 4-Layers CNN model for both the CIFAR-10 and CIFAR-100. We have trained the model for 100 epochs to reach convergence.

ViT. For our third model, we consider a Vision Transformer. Specifically we used a Tiny ViT, which is composed of 5M parameters. The model is pre-trained on the ImageNet Dataset. We used the checkpoint provided by the Timm and is publicly available in HuggingFace. For all the results, we finetuned the model for 10 epochs, which was enough to reach the convergence and a satisfactory clean accuracy performance.

Training. For the CNN and NLP, all the experiments have been trained using the Adam optimized Kingma & Ba (2014) with a learning rate of 1e - 03. For the ViT, we have used the AdamW, with a learning rate of 5e - 04.

Adversarial Attacks. For the PGD and FGSM attack, we consider $\epsilon = 4/255$. For the PDG attack, we set the number of iteration to 5. All the experiments were run using a single NVIDIA L4 GPU and took around 200 GPU hours to obtain all results.