
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROPE ATTENTION CAN BE TRAINED IN ALMOST LIN-
EAR TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

The Rotary Position Embedding (RoPE) mechanism has become a powerful en-
hancement to the Transformer architecture, which enables models to capture token
relationships when encoding positional information. However, the RoPE mecha-
nisms make the computations of attention mechanisms more complicated, which
makes efficient algorithms challenging. Earlier research introduced almost linear
time algorithms for the forward computation under specific parameter settings of
bounded entries (i.e., in time n1+o(1) where n is the number of input tokens), but
has not addressed backward computation. In this work, we develop the first almost
linear time algorithm for backward computations in the RoPE-based attention un-
der bounded entries. Our approach builds on recent advancements in fast RoPE
attention computations, utilizing a novel combination of the polynomial method
and the Fast Fourier Transform. Furthermore, we show that with lower bounds
derived from the Strong Exponential Time Hypothesis (SETH), the bounded entry
condition is necessary for subquadratic performance.

1 INTRODUCTION

The GPT-o3 (OpenAI, 2024), Llama 3.3 (Llama Team, 2024; AI, 2024), Claude 3.5 (Anthropic,
2024b) are transformed-based Large Language Models (LLMs), have become important tools in
natural language processing, which enables applications from machine translation to sentiment anal-
ysis. In the Transformer architecture, attention mechanisms, computationally intensive operations,
compute token correlations within the sequence (Vaswani et al., 2017). The efficiency of attention
computations, both in forward computations and backward gradient computations, directly influ-
enced the scalability and feasibility of training LLMs, especially when the size and input context
length of these LLMs continue to grow (Alman & Song, 2024a; 2023). In recent research, Ro-
tating Position Embedding (RoPE) (Su et al., 2024) has become a popular modification to the at-
tention mechanism, and it has enabled models to capture positional relationships between tokens
with better expressiveness. The RoPE mechanism has been adopted in state-of-the-art models,
such as Llama (Touvron et al., 2023a;b; Llama Team, 2024), Claude (Anthropic, 2024b), Apple’s
LLMs (Gunter et al., 2024; McKinzie et al., 2024), and many others, but the implementation of RoPE
complicates attention computation due to the additional structure imposed by position-dependent
rotations (Su et al., 2024). In recent work, (Alman & Song, 2024b) demonstrated an efficient algo-
rithm for forward computation of RoPE attention in the bounded entry regime. However, backward
computation, the process of calculating gradients for model optimization, has been explored less.

Backward computation introduces additional complexity because it requires the evaluation of gra-
dients that involve non-linear transformations of the attention matrix and positional embeddings.
In (Alman & Song, 2023), they present their algorithm to approximate forward computations of fast
attention with bounded entries using the polynomial methods and low-rank approximation. In (Al-
man & Song, 2024c), they propose almost linear time, i.e., n1+o(1) where n is the number of input
tokens, an algorithm to compute backward gradients for fast attention with bounded entries. In recent
work, (Alman & Song, 2024b) proposes an efficient algorithm to perform the forward computation
of RoPE-based attention using the polynomial methods and Fast Fourier Transform. Therefore, it is
natural to raise the key question:

Can backward computations for the RoPE attention match the efficiency of their forward
computations in the bounded entry regime?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we aim to address the question by presenting the first efficient algorithm for backward
computation in RoPE attention under the bounded entry. Our main result shows that the backward
gradient computations for the RoPE attention match their forward version’s efficiency. Therefore,
by leveraging our algorithm in approximating backward computations in the RoPE attention with
the forward algorithm from (Alman & Song, 2024b), we will improve the overall time complexity
of RoPE attention to almost linear time with bounded entries.

To the best of our knowledge, this is the first work to characterize the fine-grained complexity
of backward computations in RoPE attentions, extending prior results on forward computations in
RoPE attention (Alman & Song, 2024b). Our contribution can be described as follows.

• We formulated the closed-form gradient for the RoPE attention (see Lemma 4.1) along with
its exact time complexity (see Theorem 4.2).

• We derive the almost linear time backward approximation (see Theorem 5.7) for RoPE
attention based on the closed-form gradient.

• We show that with lower bounds derived from the SETH, the bounded entry condition is
necessary for subquadratic performance (see Theorem 6.1).

Roadmap. In Section 2, we present some relevant papers. In Section 3, we show essential com-
ponents for the RoPE attention. Section 4 gives the closed form of the RoPE Attention gradient and
discusses the exact time complexity to compute it. Section 5 shows the fast computation of the RoPE
Attention gradient in almost linear time. Section 6 details the lower bounds of hardness. Finally,
Section 7 provides conclusions and avenues for future work.

2 RELATED WORK

Rotary Position Embedding. At a high level, RoPE gives more expressive power to the model in
exchange for making the computational problem more complicated. In particular, many prior algo-
rithms, such as the algorithm of (Alman & Song, 2023), no longer apply to RoPE for fundamental
reasons we will discuss. RoPE was proposed by (Su et al., 2024) and has been used extensively
in large-scale industrial models. Examples which are known to use RoPE include the open-source
models released by Meta such as Llama (Touvron et al., 2023a) (see page 3), Llama 2 (Touvron
et al., 2023b) (see page 5), Llama 3 (Llama Team, 2024) (see page 7), and the close-source LLM
Claude 3.5 (Anthropic, 2024b) released by Anthropic. Apple also incorporates RoPE into their LLM
architecture (see (McKinzie et al., 2024), and page 3 of (Gunter et al., 2024)).

Fast Attention Computation. The attention mechanism has often been criticized for its quadratic
computational complexity concerning context length, a challenge that becomes more pronounced
as the sequence length grows in today’s LLMs (Achiam et al., 2023; OpenAI, 2024; Llama Team,
2024; AI, 2024; Anthropic, 2024a;b). However, this issue can be addressed using polynomial kernel
approximation methods (Aggarwal & Alman, 2022), which facilitate constructing the approximated
attention matrix using low-rank approximations. Such techniques enable substantial improvements
in computation speed, allowing a single attention layer to perform both training and inference nearly
as fast as linear time (Alman & Song, 2023; 2024c). (Liang et al., 2024b) further extends this effi-
ciency to support multi-layer transformer architectures for both training and inference. In addition,
these techniques can generalize to advanced attention mechanisms, such as tensor attention, while
preserving the almost linear time complexity in both training and evaluation phases (Alman & Song,
2024a; Liang et al., 2024c). Beyond this, alternative theoretical methods also exist. For example,
the conv-basis approach introduced in (Liang et al., 2024a) offers another avenue for speeding up
attention computation.

Gradient Approximation. Using low-rank approximation to approximate the gradient is a com-
mon approach for optimizing the training of transformers by reducing the complexity in the com-
putations, such as (Liang et al., 2024b;c; Alman & Song, 2024c; Hu et al., 2024). Specifically,
(Alman & Song, 2024c) extends the low-rank approximation technique developed in (Alman &
Song, 2023), which studies the forward computation of attention to approximate the gradient of the
attention computation. In (Liang et al., 2024b), they further develop the low-rank approximation
technique in (Alman & Song, 2024c) to study multi-layer transformers, showing they can use nearly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

linear time to approximate the backward computations of multi-layer transformers. On the other
hand, (Liang et al., 2024c) generalizes the gradient approximation of (Alman & Song, 2024c) to
another direction: they use it to study the training of the tensor version of attention computation that
develops from the forward computation as in (Alman & Song, 2024a). Finally, (Hu et al., 2024)
leverages the low-rank approximation technique to study the training of Diffusion Transformers
(DiTs).

3 PRELIMINARIES ON ROPE ATTENTION

In Section 3.1, we talk about the notation and foundational concepts. In Section 3.2, we formalize
our problems. In Section 3.3, we talk about the reformulation of the loss function using the tensor
trick and analyze the computational complexity of the reformulated expressions.

3.1 NOTATION

For n ∈ Z+ ∪ {0}, for set {1, 2, · · · , n}, we denote the set by using the notation [n]. Here, we
define the concept of nearly linear time when the time is O(n log n). We introduce the concept of
almost linear time when time is O(n1+o(1)). Given a as any vector, we say the diagonal matrix of
c is diag(c) where ci means the i, i-th entry in the matrix diag(c). For any matrix, we denote the
support of the matrix using the notation supp, that is, the set of entries where the matrix is nonzero.
B⊤ is defined as (B⊤)i,j := Bj,i. Suppose there are two vectors c, d of the same length. We denote
the entry-wise multiplication using the notation c ◦ d; that is, the i-th entry in that vector is cidi.
To denote the Frobenius norm, for any matrix B, we denote it as ∥B∥F :=

√∑
i,j B

2
i,j ; to denote

the maximum norm of matrix B, we use ∥B∥∞ := maxi,j |Bi,j |. Suppose there are two matrices
C,D of the same dimensions. We represent the Hadamard product or the entry-wise multiplication
by using the notation C ◦D, that is, (i, j)-th entry of the matrix is Ci,j ·Di,j . Let C ∈ Rn0×m0 and
D ∈ Rn1×m1 . We define C⊗D is an n0n1×m0m1 matrix, where (C⊗D)(j0−1)n1+j1,(i0−1)m2+i1

is equal to Cj0,i0Dj1,i1 for any j0 ∈ [n0], i0 ∈ [m0], j1 ∈ [n1], i1 ∈ [m1].

3.2 PROBLEM DEFINITION

Let n be the number of input tokens, and let d be the hidden/feature dimensions. We state the
generalization of the standard RoPE attention from (Alman & Song, 2024b).
Definition 3.1 (A General Approximate RoPE Attention Computation, ARAttC, Definition 1.1
in (Alman & Song, 2024b)). Let B > 0 and ϵ > 0 denote two parameters. Given a set
of matrices W−(n−1), · · · ,W−1, W0,W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all
i ∈ {−(n− 1), · · · ,−1, 0, 1, · · · , n− 1}. Here S ⊆ [d]× [d] where |S| = O(d). Given three n× d
matrices Q,K, V with the guarantee that ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B and ∥W∥∞ ≤ 1. We define
matrix A ∈ Rn×n as, for i, j ∈ [n], Ai,j := exp(Qi,∗Wi−jK

⊤
j,∗/d). We define D := diag(A1n).

The goal of General Approximate RoPE Attention Computation is to output a matrix T ∈ Rn×d

such that ∥T − ARAttC∥∞ ≤ ϵ is small, where ARAttC := D−1AV . For matrix M , we use
∥M∥∞ := maxi,j |Mi,j |. Note that the 1/d factor inside exp in the definition of A is a normaliza-
tion factor.

Our focus is to find weights to fit the attention to a desired output. Let Q := A1X1, K := A2X2,
and V := A3Y . We use X1, X2, and X3 to represent the weights WQ, WK and WV , respectively.
We use A1, A2, and A3 to replace the input matrix to handle the more general settings such as cross
attention. Then, the attention matrix is as follows.

A(X1, X2)i,j := exp((A1X1)i,∗Wi−j(A2X2)
⊤
j,∗/d)

= exp(A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗/d).

We define wi−j := vec(Wi−j) ∈ Rd2

and define W such that Wj0,∗ is an 1 × d2 block and
Wi+(j−1)n,∗ := w⊤

i−j . Here, let A := A1 ⊗ A2 ∈ Rn2×d2

and X := X1 ⊗ X2 ∈ Rd2×d2

. We
can show that

A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

= (A1,i,∗ ⊗A2,j,∗)(X1 ⊗X2) vec(Wi−j)

= Ai+(j−1)n,∗Xwi−j ,

where the first step uses the tensor trick, and the second step uses the definitions of wi−j ,A, and X.
Thus we can reformulate the attention matrix A as, for i, j ∈ [n]

A(X)i,j = exp(Ai+(j−1)n,∗︸ ︷︷ ︸
1×d2

X︸︷︷︸
d2×d2

wi−j/d︸ ︷︷ ︸
d2×1

).

Using the tensor trick again, we have

A(X)i,j = exp((Ai+(j−1)n,∗ ⊗ w⊤
i−j)︸ ︷︷ ︸

1×d4

vec(X)/d︸ ︷︷ ︸
d4×1

)

= exp((Ai+(j−1)n,∗ ⊗Wi+(j−1)n,∗)︸ ︷︷ ︸
1×d4

vec(X)/d︸ ︷︷ ︸
d4×1

).

Hence, by definition of row-wise Kronecker product, we have

vec(A(X)) = exp((A⊘W)︸ ︷︷ ︸
n2×d4

vec(X)/d︸ ︷︷ ︸
d4×1

).

We define the matrix D(X) ∈ Rn×n as

D(X) = diag(A(X)︸ ︷︷ ︸
n×n

1n︸︷︷︸
n×1

).

Then, the optimization problem in the context of RoPE attention computation is described as fol-
lows:
Definition 3.2 (Optimize RoPE Attention). Let B > 0 and ϵ > 0 denote two parameters. Given
a set of matrices W−(n−1), · · · ,W−1, W0,W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all
i ∈ {−(n − 1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] × [d] where |S| = O(d). For i, j ∈ [n],
let W ∈ Rn2×d2

such that Wi+(j−1)n,∗ = vec(Wi−j). Here, we suppose four n × d matrices
A1, A2, A3, E, and we have three d×d matrices X1, X2, Y . Let X := X1⊗X2 ∈ Rd2×d2

. We define
the matrix A(X) ∈ Rn×n as the matrix representation of exp((A⊘W)︸ ︷︷ ︸

n2×d4

vec(X)/d︸ ︷︷ ︸
d4×1

) and the n × n

matrix D(X) := diag(A(X)︸ ︷︷ ︸
n×n

1n︸︷︷︸
n×1

). The RoPE attention optimization problem minX∈Rd2×d2 Loss(X)

is formulated as follows:

min
X∈Rd2×d2

0.5∥D(X)−1A(X)A3Y − E∥2F .

Note that we are able to get the gradient computation of Loss with respect to X1 or X2 based on the
chain rule because

dLoss(X1, X2)

dX1
=

dLoss(X)

dX

dX

dX1

=
dLoss(X)

dX

d(X1 ⊗X2)

dX1

=
dLoss(X)

dX
(Id×d ⊗X2).

Our approximation task can be formalized as follows.
Definition 3.3 (The Approx of the gradient of RoPE Attention Loss Function,
ARAttLGC(n, d,B, ϵ)). Let B > 0 and ϵ > 0 denote two parameters. Given a set of
matrices W−(n−1), · · · ,W−1,W0, W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all
i ∈ {−(n − 1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] × [d] where |S| = O(d). For
i, j ∈ [n], let W ∈ Rn2×d2

such that Wi+(j−1)n,∗ = vec(Wi−j). Let X1, X2, Y ∈ Rd×d.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Let X := X1 ⊗ X2 ∈ Rd2×d2

. We have four n × d matrices Let A1, A2, A3, E.
Let A ∈ Rn2×d2

such that A equals to an n2 × d2 matrix from A1 ⊗ A2. Assume
∥A1X∥∞ ≤ B, ∥A2X∥∞ ≤ B, ∥A3Y ∥∞ ≤ B, ∥W∥∞ ≤ 1. Assume that all the log(n)
bits model is applied throughout all numbers in matrices. We define Loss(X) from Def. 3.2. Here,
we define dLoss(X)

dX as the loss function gradient. Then, our target is to output a vector g̃ ∈ Rd4

satisfying:

∥g̃ − dLoss(X)

dX
∥∞ ≤ ϵ.

3.3 REFORMULATION OF THE LOSS FUNCTION

In this section, we are able to reformulate and simplify the loss function based on the definitions
provided in Section B. This reformulation provides a structured representation of the loss in terms
of its components, using the tensor trick to simplify computations and facilitate analysis.

The following lemma formalizes this reformulation, consolidating the expressions for the loss func-
tion and connecting its components:
Lemma 3.4 (Loss Function Formulation). Given three n× d input sequence matrices A1, A2, and
A3, we define A = A1 ⊗ A2 ∈ Rn2×d2

and X = X1 ⊗X2 ∈ Rd2×d2

, where ⊗ denotes Kronecker
product. Given W is a n2 × d2 matrix, we define Ã = A⊘W , where ⊘ is the row-wise Kronecker
product from Fact A.5. Let j0 ∈ [n], we define Ãj0 ∈ Rn×d2

be a block of size n × d2 from Ã. Let
E ∈ Rn×d be a matrix, for j0 ∈ [n] and i0 ∈ [d], we define Ej0,i0 as the (j0, i0)-th entry of the
matrix E. We use Loss function from Definition 3.2. Based on Def. B.6, for j0 in the set [n] and i0
in the set [d], we get Loss(X)j0,i0 . Then, we have

Loss(X) =
∑

j0∈[n]

∑
i0∈[d]

Loss(x)j0,i0 .

Proof. We present the reformulation of the Loss Function using the tensor trick as follows.

Loss(X) = 0.5∥D(X)−1A(X)A3Y − E∥2F

=

n∑
j0=1

d∑
i0=1

0.5 · (⟨⟨exp(Ãj0x),1n⟩−1

exp(Ãj0x), A3Y∗,i0⟩ − Ej0,i0)
2

=

n∑
j0=1

d∑
i0=1

0.5(⟨s(x)j0 , v(y)i0⟩ − Ej0,i0)
2

=

n∑
j0=1

d∑
i0=1

Loss(x)j0,i0

where the 1st equality is based on Def. 3.2, the definition of Frobenius norm derives the 2nd equality,
the 3rd equality is due to Def. B.3 and Def. B.4, and the 4th step is based on Def. B.6.

4 EXACT GRADIENT COMPUTATION TIME

In this section, we provide the gradient computations of RoPE attentions. In Section 4.1, we formu-
late the gradient in its closed form. In Section 4.2, we conduct a time complexity analysis on the
exact computation of RoPE attention gradients.

4.1 REFORMULATE THE GRADIENT INTO ITS CLOSED FORM

In this section, we present the closed-form gradient of RoPE attention.

Lemma 4.1 (Gradient Reformulation, dLoss(x)
dx , Informal Version of Lemma C.4). For every i ∈ [d4],

we choose the following functions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• The Normalized Softmax function s(x)j0 ∈ Rn (see Definition B.3),

• The Error term ℓ(x)j0,i0 ∈ R (see Definition B.5),

• The Loss term Loss(x)j0,i0 ∈ R (see Definition B.6),

• We define β(x)j0 ∈ Rn is A3Y︸︷︷︸
n×d

ℓ(x)⊤j0,∗︸ ︷︷ ︸
d×1

• We define γ(x)j0 ∈ Rn is (diag(s(x)j0)− s(x)j0s(x)
⊤
j0
)β(x)j0

Then, we get dLoss(x)
dx = Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

).

Proof. See full proof at Lemma C.4.

4.2 TIME COMPLEXITY FOR COMPUTING THE GRADIENT OF ROPE ATTENTION

In this section, we provide the time complexity of computing the exact gradient of RoPE attention.

Theorem 4.2 (RoPE attention gradient computation time complexity). We define three n× d input
matrices as A1, A2, A3, and the n× d approximated attention computation matrix as E. We define
several input fixed matrices as X1, X2, Y ∈ Rd×d. We define X = X1⊗X2, A = A1⊗A2. We define
x := vec(X) and try to get the Loss function gradient. Let g := dLoss(X1,X2)

dx where Loss(X1, X2)

from Def. 3.3. Then, it costs O(Tmat(n, d, d) + Tmat(n, d, n)) time to get the gradient g ∈ Rd4

.

Proof. See full proof at Theorem C.8.

Note that O(Tmat(n, d, d) + Tmat(n, d, n)) ≥ Ω(n2). Thus, the naive RoPE attention gradient
computation is a complexity obstacle in practice, as discussed in Section 1. Based on the closed
formulation in Lemma 4.1, we derive our acceleration method, which will be introduced in the
following section.

5 COMPUTE ROPE ATTENTION GRADIENT IN ALMOST LINEAR TIME

In this section, we present our main result. With the low-rank approximation, we can approximate
the RoPE gradient computations in almost linear time.

In Section 5.1, we discuss the techniques we used to develop the almost linear time algorithm. In
Section 5.2, we provide the proof of approximating s(x) in almost linear time. In Section 5.3, we
give the proof to approximate the error term ℓ(x). In Section 5.4, we show how to approximate β(x)
in almost linear time. In Section 5.5, we present our technique to approximate γ(x). In Section 5.6,
we present our main results, which compute RoPE Attention gradient in almost linear time.

5.1 TECHNIQUE OVERVIEW

In recent work (Alman & Song, 2024b), they present an almost linear-time algorithm to compute
forward computations of RoPE attention as follows.

Lemma 5.1 (Theorem 1.3 in (Alman & Song, 2024b)). Suppose d = O(log n) and B = o(
√
log n).

There is an n1+o(1) time algorithm to approximate ArAttC up to ϵ = 1/ poly(n) additive error.

Recall that the closed form gradient of RoPE attention is dLoss(x)
dx = Ã⊤ vec(γ(x)) from Lemma 4.1.

We need to show γ(x) can be low-rank approximated in O(n1+o(1)) time with 1/poly(n) error.

To low rank approximate γ(x), we use the strategy to split γ(x) into two terms, γ1(x) and
γ2(x), and run the approximation separately. From Lemma 4.1, γ(x)j0 ∈ Rn is (diag(s(x)j0) −

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

s(x)j0s(x)
⊤
j0
)β(x)j0 . We define γ1(x)j0 = diag(s(x)j0)β(x)j0and γ2(x)j0 = s(x)j0s(x)

⊤
j0
β(x)j0 ;

thus, we can have γ(x) = γ1(x)− γ2(x).

In the definitions of γ1(x) and γ2(x) provided above, they both contain s(x) and β(x). In order
to find the almost linear time algorithm of γ(x), we need to first show that there exists O(n1+o(1))
time complexity approximation for s(x) and β(x) with ϵ/ poly(n) error first. From Lemma 4.1,
we have β(x)j0 ∈ Rn is A3Y ℓ(x)⊤j0,∗. Based on the β(x) definition, we need to show ℓ(x) can be
approximated in almost linear time first.

Overall, to develop the O(n1+o(1)) time complexity algorithm to compute RoPE gradients
with ϵ/ poly(n) error, we need to prove the existence of almost linear time algorithms for
s(x), ℓ(x), γ(x), and β(x) with low rank approximation.

5.2 APPROXIMATE s USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate the normalized Soft-
max s(x) in almost linear time.
Lemma 5.2 (Low Rank Approximate s(x)). For any B = o(

√
log n), let k1 equals to no(1)

such that: Suppose we have two n × d matrices A1, A2, X1, X2 ∈ Rd×d and X = X1 ⊗
X2 ∈ Rd2×d2

. Assume we can use O(log n) bits to write every entry from s(x). It holds that
max{∥A1X1∥∞, ∥A2X2∥∞} ≤ B, then there are three matrices U1, V1,W1 ∈ Rn×k1 such that
∥U1V

⊤
1 − s(x)∥∞ ≤ ϵ/poly(n). Here s(x) = D−1A ∈ Rn×n where A is defined as the matrix

representation of exp((A⊘W) vec(X)), and D = diag(A/d)1n. Moreover, these matrices U1, V1

can be created explicitly in n1+o(1) time.

Proof. By definition of A(X), we have vec(A(X)) = exp(A⊘W) vec(X).

Hence, using the tensor trick, we have
A(X)i,j = exp((Ai+(j−1)n ⊗Wi+(j−1)n) vec(X)/d)

= exp((Ai+(j−1)n ⊗ w⊤
i−j) vec(X)/d).

We define wi−j := vec(Wi−j) ∈ Rd2

and define W such that Wj0 is an 1 × d2 block and
Wi+(j−1)n := w⊤

i−j . We also define A := A1 ⊗ A2 ∈ Rn2×d2

and X := X1 ⊗ X2 ∈ Rd2×d2

.
We use Aj0 to denote the a 1× d2 subblock of A.

We can reformulate the attention matrix A as, for i, j ∈ [n]

A(X)i,j = exp(Ai+(j−1)n︸ ︷︷ ︸
1×d2

X︸︷︷︸
d2×d2

wi−j/d︸ ︷︷ ︸
d2×1

).

Thus, we can show that Ai+(j−1)nXwi−j = (A1,i,∗ ⊗ A2,j,∗)(X1 ⊗ X2) vec(Wi−j) =

A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗, where 1st equality uses definitions of wi−j ,A, and X, and the second
step uses the tensor trick. We complete our proof after applying Lemma 5.1.

5.3 APPROXIMATE ℓ USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate ℓ(x)

Lemma 5.3 (Low Rank Approximate ℓ(x)). Let d equal O(log n). Suppose we can use O(log n)
bits to write every entry in E, v(y) ∈ Rn×d. Define the ℓ(x) ∈ Rn×d as specified in Def. B.5. Then,
we have U1, V1 ∈ Rn×k1 such that ∥U1V

⊤
1 v(y)− E − ℓ(x)∥∞ ≤ ϵ/ poly(n).

Proof. Here, we present the bound as follows.

∥U1V
⊤
1 v(y)− E − ℓ(x)∥∞ = ∥U1V

⊤
1 v(y)− s(x)v(y)∥∞

= ∥v(y)∥∞ · ∥U1V
⊤
1 − s(x)∥∞

≤ ϵ/ poly(n),

where the 1st is because of Def. B.5, 2nd step is based on the distributive law, and 3rd step is due to
Lemma 5.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.4 APPROXIMATE β USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate β(x)

Lemma 5.4 (Low Rank Approximate β(x)). Let k2 = no(1). We define ℓ(x) ∈ Rn×d based on
Def. B.5, and v(y) ∈ Rn×d based on Def. B.4. We suppose β(x) is equal to v(y)ℓ(x)⊤, which is an
n× n matrix. Let U2, V2 ∈ Rn×k2 such that ∥U2V

⊤
2 − β(x)∥∞ ≤ ϵ/ poly(n). In n1+o(1) time, we

can get U2, V2.

Proof Sketch. We define β̃(x) ≈ β(x) and β̃(x) = v(y)v(y)⊤V1U
⊤
1 − v(y)E⊤. We can first

compute v(y)⊤V1 as it can be computed in n1+o(1) time. Given all low rank matrices, we can have
U2, V2 where k2 = max{d, k}+ d = no(1). Then we can compute ∥β̃(x)− β(x)∥∞ ≤ ϵ/ poly(n).
(See full proof at Lemma D.3)

5.5 APPROXIMATE γ USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate γ(x). Specifically, we
apply the polynomial methods to γ1(x) and γ2(x) where γ(x) = γ1(x)− γ2(x).

First, we show the low-rank approximation of γ1(x).

Lemma 5.5 (Low Rank Approximate γ1(x)). Let k1 = no(1). Let k2 = no(1). We suppose γ1(x)
is diag(s(x))β(x), and U1, V1 be two n× k1 matrices, in which ∥U1V

⊤
1 − f(x)∥∞ ≤ ϵ

poly(n) . We
suppose two n × k2 matrices U2, V2 in which ∥U2V

⊤
2 − β(x)∥∞ ≤ ϵ

poly(n) . Then we have two

n × k3 matrices in which ∥U3V
⊤
3 − γ1(x)∥∞ ≤ ϵ/ poly(n). We can construct U3, V3 in n1+o(1)

time.

Proof Sketch. Let U3 = U1 ⊘ U2 and V3 = V1 ⊘ V2, and we can use n1+o(1) time to get them.
From Lemma 5.2 and Lemma 5.4, we have s̃(x) = U1V

⊤
1 and β̃(x) = U2V

⊤
2 . Based on Fact A.5,

we can compute ∥U3V
⊤
3 − γ1(x)∥∞ ≤ ∥U3V

⊤
3 − diag(s(x))β(x)∥∞ ≤ ϵ

poly(n) (See full proof at
Lemma D.4).

Next, we show the low-rank approximation of γ2(x).

Lemma 5.6 (Low Rank Approximate γ2(x)). Let k1 = no(1). Let k2 = no(1). Let k4 = no(1). Let
γ2(x) ∈ Rn×n where for j0 in set [n], j0 represents j0-th column, γ2(x)j0 = s(x)j0s(x)

⊤
j0
β(x)j0 .

We suppose U1, V1 ∈ Rn×k1 in which ∥U1V
⊤
1 − s(x)∥∞ ≤ ϵ

poly(n) . We suppose two n × k2

matrices U2, V2 in which ∥U2V
⊤
2 − β(x)∥∞ ≤ ϵ

poly(n) . Then, we have U4, V4 ∈ Rn×k4 such that

∥U4V
⊤
4 − γ2(x)∥∞ ≤ ϵ/ poly(n). We can get U4, V4 in n1+o(1) time.

Proof Sketch. Let ρ(x) ∈ Rn be defined by ρ(x)j0 = s(x)j0β(x)j0 . We construct ρ̃(x) so that
(U1V1)

⊤
j0,∗ ≈ s(x)j0 and (U2V2)

⊤
j0,∗ ≈ β(x)j0 , implying ρ̃(x)j0 = (U1V1)j0,∗ · (U2V2)

⊤
j0,∗. Pre-

computing V1V
⊤
2 takes n1+o(1) time, and then computing each ρ̃(x)j0 costs O(k1k2), giving a

total of O(nk1k2) = n1+o(1). Next, we approximate s(x) by s̃(x) = U1V
⊤
1 and define γ̃2(x) =

s̃(x) diag(ρ̃(x)); with U4 = U1 and V4 = diag(ρ̃(x))V1, we have γ̃2(x) = U4V
⊤
4 . To bound

the error, note that ∥γ̃2(x)− γ2(x)∥∞ = maxj0 ∥s̃(x)j0 ρ̃(x)j0 − s(x)j0 ρ(x)j0∥∞ can be split and
bounded via the triangle inequality so that ∥s̃(x)j0 − s(x)j0∥∞ and ∥ρ̃(x)j0 − ρ(x)j0∥∞ are small,
leading to an overall error of at most ϵ/poly(n), which completes the proof. (See full proof at
Lemma D.5)

5.6 FAST COMPUTATION IN ALMOST LINEAR TIME

Based on Section 5.1, we have proved the almost linear time approximation of s(x), ℓ(x), γ(x), and
β(x) in Lemma D.1, D.2, D.3, D.5, and D.4. We are now ready to show our main result, which is to
approximate RoPE gradient computation in almost linear time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Theorem 5.7 (Main result, Low Rank Approximate RoPE Attention Gradient). Assuming the en-
tries of A1, A2, X1, X2, Y, E are represented using O(log n) bits, there is an n1+o(1) time algo-
rithm to solve AAttLGC(n, d = O(log n), B = o(

√
log n)), from Def. 3.3, with the accuracy upper

bounded by 1
poly(n) . To be more specific, a gradient vector g̃ ∈ Rd4

comes out of our algorithm

where ∥dLoss
dx − g̃∥∞ ≤ 1

poly(n) .

Proof Sketch. By Lemma D.5 and Lemma D.4, there exist matrices γ1(x) and γ2(x) such that
γ(x) = γ1(x) − γ2(x). We assume these lemmas follow from the low-rank approximations in
Lemmas D.1–D.3, allowing us to write γ̃1(x) = U3V

⊤
3 and γ̃2(x) = U4V

⊤
4 in n1+o(1) time. From

Lemma 4.1, the reformulated gradient is dLoss(x)
dx = Ã⊤ vec(γ(x)), and hence the total running time

remains n1+o(1). To bound the error, we show that

∥dLoss(x)
dx

− g̃∥∞ = ∥Ã⊤(vec(γ(x))− vec(γ̃(x)))∥∞

≤ ∥Ã⊤∥∞ ∥γ(x)− γ̃(x)∥∞ ≤ ϵ/ poly(n),

This completes the proof. (See full proof at Theorem D.6)

6 HARDNESS

In this section, we provide the lower bound results to compute the gradient of RoPE attention.
The hardness result shows that under the widely accepted SETH, the bounded entries condition is
necessary for achieving subquadratic runtime.

Theorem 6.1 (Lower bound, informal version of Theorem E.1). Assuming SETH, for any q > 0,
for the ARAttLGC(n, d = O(log n), B = ω(

√
log n), there does not exist an algorithm which can

be executed in time O(n2−q) based on Def. 3.3.

Proof. See the full proof at Theorem E.1.

In Theorem 6.1, we show that under the Strong Exponential Time Hypothesis (SETH) (see Hypoth-
esis A.4), computing the gradient of RoPE attention remains computationally hard. Specifically, for
any constant q > 0, no algorithm can compute the gradient in time O(n2−q) when d = O(log n)
and B = ω(

√
log n). This result establishes a lower bound that fundamentally limits the efficiency

of gradient computation for RoPE attention.

7 CONCLUSION

This paper presents the first efficient backward gradient computation, assuming bounded entries for
the RoPE-based attention mechanism. We achieve almost linear time complexity by leveraging poly-
nomial methods and the Fast Fourier Transform, making the forward and backward computations
comparably efficient. Additionally, we demonstrate that conditions exist under which performance
better than quadratic can be realized, consistent with the lower bounds suggested by the Strong
Exponential Time Hypothesis (SETH).

These findings not only improve the computational efficiency of RoPE-based attention mechanisms
but also provide a foundation for exploring sub-gradient computations in other advanced attention
variants of neural networks. This work highlights the connection between algorithm design and
computational complexity theory, unveiling new possibilities for the development of large trans-
former models. Future research could extend these results to cases involving unbounded entries
and assess the real-world implications of these theoretical advancements for large language models.
Furthermore, applying this approach to other positional encoding mechanisms could further enhance
the scalability of state-of-the-art transformer models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1–23, 2022.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. https:
//ai.meta.com/blog/meta-llama-3/.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=v0zNCwwkaV.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. manuscript, 2024b.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024c. URL https://openreview.net/forum?id=up4tWnwRol.

Anthropic. Claude 3.5 sonnet, 2024a. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024b. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Markus Bläser. Fast matrix multiplication. Theory of Computing, pp. 1–60, 2013.

Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity theory.
Grundlehren der mathematischen Wissenschaften, 1997.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat.
ACM Transactions on Algorithms (TALG), 12(3):1–24, 2016.

Google Gemini. Gemini 1.5 pro updates, 1.5 flash debut and 2 new
gemma models. https://blog.google/technology/developers/
gemini-gemma-developer-updates-may-2024/, 2024. Accessed: May 15.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

10

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openreview.net/forum?id=v0zNCwwkaV
https://openreview.net/forum?id=up4tWnwRol
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024c.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024. Accessed: September 12.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lossukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural infor-
mation processing systems, 30, 2017.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447–
3487. World Scientific, 2018.

11

 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix

A PRELIMINARY

In Section A.1, we talk about polynomial approximation of the exponential function. In Section A.2,
we talk about the time complexity of matrix multiplications, setting up the framework for analyzing
efficiency in attention computation. In Section A.3, we talk about the Strong Exponential Time
Hypothesis (SETH). In Section A.4, we talk about mathematical properties and tricks, such as the
tensor trick and row-wise Kronecker products, which enable efficient matrix-vector operations.

A.1 POLYNOMIAL APPROXIMATION OF EXPONENTIAL

Here, we will explain a technical tool for controlling the error dependence of our approximate al-
gorithm. In particular, we will use the following optimal-degree polynomial approximation of the
exponential function.
Lemma A.1 ((Aggarwal & Alman, 2022)). Let B > 1 and suppose ϵ in (0, 0.1). We can
have P , which has input as a scalar and output as a scalar of degree g. g is defined as
Θ(max {log(1/ϵ)/(log(log(1/ϵ)/B)), B}) such that for all x ∈ [0, B], we can get

|P (x)− exp(x)| < ϵ.

Because P ’s coefficients are rational values with numerators and denominators represented using
integers of poly(g)-bit size and these coefficients can be determined in poly(g) time, we can calcu-
late P in an efficient way.

A.2 TIME COMPLEXITY OF MULTIPLICATIONS

Matrix multiplication is a fundamental operation in many algorithms, and understanding its time
complexity is essential for analyzing computational efficiency. Here, we introduce the time com-
plexity of matrix multiplications.
Definition A.2. We suppose n1, n2, n3, denote any three positive integers. We define A ∈ Rn1×n2

and B ∈ Rn2×n3 . It costs Tmat(n1, n2, n3) time to perform AB.

To further analyze the structure of matrix multiplication time complexity, we rely on a well-known
fact from prior research (Bürgisser et al., 1997; Bläser, 2013). This fact provides equivalences
between different permutations of matrix dimensions.
Fact A.3. We suppose n1, n2, n3, denote any three positive integers. Tmat(n1, n2, n3) =
O(Tmat(n1, n3, n2)) = O(Tmat(n2, n1, n3)) = O(Tmat(n2, n3, n1)) = O(Tmat(n3, n1, n2)) =
O(Tmat(n3, n2, n1)).

A.3 SETH HYPOTHESIS

Now, we introduce a fundamental theoretical assumption underpinning many of the results pre-
sented in this paper: the Strong Exponential Time Hypothesis (SETH). This hypothesis serves as a
cornerstone for establishing the hardness of various computational problems.

Our results are built on the common conjecture. (Impagliazzo & Paturi, 2001) introduce the Strong
Exponential Time Hypothesis (SETH) as a stronger form of the P ̸= NP conjecture. It suggests that
our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained
lower bounds for a wide variety of algorithmic problems (Cygan et al., 2016; Williams, 2018).
Hypothesis A.4 (SETH). ∀ϵ > 0, ∃k ∈ Z+ and k greater or equal to 3 such that, even when
utilizing randomized algorithms, within the time of O(2(1−ϵ)n), we cannot solve k-SAT problems
with n variables.

A.4 BASIC FACTS

In this section, we present several basic facts that are used throughout the paper to develop the
proof of our main results. These fundamental properties enable efficient computations of vectors
and matrices products in our paper.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Here, we first introduce the facts about row-wise Kronecker products.
Fact A.5 (Row-wise Kronecker product). Let U1, V1 ∈ Rn×k1 . Let U2, V2 ∈ Rn×k2 . Then we have

(U1V
⊤
1) ◦ (U2V

⊤
2) = (U1 ⊘ U2)(V1 ⊘ V2)

⊤

Here, given U1 ∈ Rn×k1 and U2 ∈ Rn×k2 , we define the row-wise Kronecker product as U1⊘U2 ∈
Rn×k1k2 . That is, (U1 ⊘ U2)i,l1+(l2−1)k1

:= (U1)i,l1Ui,l2 for all i ∈ [n], l1 ∈ [k1] and l2 ∈ [k2]

To simplify the computation of certain matrix operations, we can use a technique known as the tensor
trick, which reformulates matrix products into operations involving vectorized representations and
Kronecker products.

Fact A.6 (Tensor trick). Let X ∈ Rd×d. Let x ∈ Rd2

be the vectorization of X . Let there be two
n× d matrices A1, A2, and we define A = A1 ⊗A2. Then, we can get vec(A1XA⊤

2) = Ax.

Given the above tensor trick fact, we can derive additional properties that extend its applicability to
exponential operations on matrices. These properties can help us compute the exponential of matrix
products efficiently. The properties are presented below.
Fact A.7. Let there be two n × d matrices A1, A2, and we define A = A1 ⊗ A2. Let X ∈ Rd×d.
Let Aj0 ∈ Rn×d2

be a block of A. We introduce x ∈ Rd2

as the vectorization of X . Thus, we get

• (exp(A1XA⊤
2)j0,∗)

⊤ = exp(Aj0x)

• vec(exp(A1XA⊤
2)) = exp(Ax),

For the j0-th row of exp(A1XA⊤
2) ∈ Rn×n, we use the notation exp(A1XA⊤

2)j0,∗.

Proof. From Lemma and Def. A.6, we are able to prove this fact. We omit the details here since the
proof is straightforward.

Fact A.8. We suppose there are three vectors of n dimension x, y, z. Thus, we get

• ⟨x ◦ y, z⟩ = x⊤ diag(y)z.

• ⟨x, y⟩ = ⟨x ◦ y,1n⟩.

Next, we introduce some important properties of inner products that help us to reshape the equations
in the proofs.
Fact A.9 (Inner Products). We suppose n ∈ Z+, and we suppose the n dimension vectors a, b, c and
a scalar d. Then, we have

• ⟨a, b⟩ = ⟨a ◦ b,1n⟩.

• ⟨da, b⟩ = d⟨a, b⟩ = ⟨a, db⟩ = d⟨b, a⟩.

• ⟨a+ c, b⟩ = ⟨a, b⟩+ ⟨c, b⟩.

• ⟨a, b⟩ = a⊤b.

• ⟨a ◦ c, b⟩ = ⟨a, b ◦ c⟩.

• ⟨a ◦ b, c⟩ = b⊤ diag(a)c

B KEY DEFINITIONS OF ROPE ATTENTION

In this section, we decompose RoPE attention into its individual components, each representing a
specific function or operation within the attention mechanism. These definitions provide a structured
framework for understanding and analyzing the properties of RoPE attention in subsequent sections.

We denote the d4-dimensional vector x ∈ Rd4

as the vectorization of a d2 × d2 matrix X. We divide
the RoPE attention to the following components to simplify our calculations and notation.

First, we define u(x) for the softmax operation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Definition B.1 (Softmax u(x)). We suppose there are two n2 × d2 matrices A,W. We define Ã as
A ⊘W, which is an n2 × d4 matrix. We use Ãj0 to denote the an n × d4 subblock of Ã, given that
the total counts of subblocks is n. The function is defined as u(x)j0 maps a d4 dimensional vector
to an n-dimensional vector with every j0 ∈ [n] such that

u(x)j0 := exp(Ãj0x).

Next, we define α(x) for the diagonal matrix.
Definition B.2 (Diagonal matrix α(x)). We suppose two n2 × d2 matrices A,W. Suppose that
Ã := A⊘W ∈ Rn2×d4

. We use Ãj0 to denote the an n× d4 subblock of Ã, given the counts of total
subblocks is n. The function is defined as α(x)j0 maps from a d4-dimensional vector to a scalar
with every j0 ∈ [n] such that

α(x)j0 := ⟨exp(Ãj0x),1n⟩.

We define s(x) for the normalized softmax (D−1 · softmax).
Definition B.3 (Normalized softmax s(x)). From Def. B.1, it defines u(·)j0 , and we have
α(·)j0based on Def. B.2. The function s(x)j0 maps a d4-dimensional vector to an n-dimensional
vector given every j0 ∈ [n] such that s(x)j0 := α(x)

−1
j0

u(x)j0 .

Lastly, we define v(y) for the value matrix in the attention component.
Definition B.4 (Value matrix v(y)). Let A3 ∈ Rn×d be a matrix. We define v(y)i0 as the i0-th
column of v(y). We define the function v(y)i0 maps a d2-dimensional vector to an n-dimensional
vector, given each i0 in the set [d], such that v(y)i0 := A3Y∗,i0 where y ∈ Rd2

is the vectorization
of n× n matrix Y .

Given the definitions of the RoPE attention components, we can now define the loss functions, which
quantify the difference between the computed and target values in the context of RoPE attention.

We first introduce the error ℓ(x)j0,i0 between the exact RoPE attention computation ⟨s(x)j0 , v(y)i0⟩
and approximated RoPE computation Ej0,i0 .
Definition B.5 (RoPE attention error ℓ(x)). From Def. B.3, with every j0 in the set [n], it gives
s(x)j0 as an n-dimensional normalized vector, and we define v(y)i0 based on Def. B.4 given that
each i0 ∈ [d]. Defining a function ℓ(x)j0,i0 maps a d4-dimensional vector to a scalar with each
j0 ∈ [n] and each i0 ∈ [d] such that

ℓ(x)j0,i0 := ⟨s(x)j0 , v(y)i0⟩ − Ej0,i0 .

Here Ej0,i0 is the (j0, i0)-th coordinate of E ∈ Rn×d for each j0 in the set [n] and i0 in the set [d],
that is ℓ(x) = s(x)v(y)− E.

Then, we define the Loss term.
Definition B.6 (Loss term Loss(x)). Here we let Loss(x)j0,i0 := 0.5ℓ(x)2j0,i0 with every j0 in the
set [n] and i0 in the set [d].

C ROPE ATTENTION GRADIENT CALCULATION

In this section, we analyze the time complexity of exact gradient computation. In Section C.1, we
reformulate the closed form of the gradient. In Section C.2, we show the time complexity for s(x)
and v(y). In Section C.3, we show the time complexity for ℓ(x). In Section C.4, we show the time
complexity for β(x) and γ(x). In Section C.5, we show the total time complexity for computing the
gradient of RoPE attention.

In this section, we compute the entry-wise gradient of the RoPE attention loss function from
Lemma 3.4
Lemma C.1. If we have for every i ∈ [d4],

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5), and

• Loss(x)j0,i0 is a real number (Def. B.6).

Then, we have ∀j0 ∈ [n], ∀i0 ∈ [d],

• Part 1.

dÃj0x

dxi
= (Ãj0)∗,i︸ ︷︷ ︸

n×1

.

• Part 2.
du(x)j0
dxi

= u(x)j0 ◦ (Ãj0)∗,i.

• Part 3.
dα(x)j0
dxi

= ⟨(Ãj0)∗,i, u(x)j0⟩.

• Part 4.
ds(x)j0
dxi

= −s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i

• Part 5.
d⟨s(x)j0 , v(y)i0⟩

dxi
= ⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩.

• Part 6.
dℓ(x)j0,i0

dxi
= ⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩.

• Part 7.
dLoss(x)j0,i0

dxi
= ℓ(x)j0,i0⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩.

Proof. To show Part 1,

dÃj0x

dxi
= Ãj0

dx

dxi

= Ãj0︸︷︷︸
n×d4

ei︸︷︷︸
d4×1

= (Ãj0)∗,i,

and we note that the 1st and 2nd equalities are by the basic derivative rule and the 3rd equality is
due to the basis vector definition.

To show Part 2,

du(x)j0
dxi

=
d exp(Ãj0x)

dxi

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

= exp(Ãj0x) ◦
dÃj0x

dxi

= exp(Ãj0x) ◦ (Ãj0)∗,i

= u(x)j0 ◦ (Ãj0)∗,i,

and we note that the 1st equality is by Def. B.1, the 2nd equality is by chain rule, the 3rd equality is
due to Part 1, and the 4th equality is because of Def. B.1.

To show Part 3,

dα(x)j0
dxi

=
d⟨exp(Ãj0x),1n⟩

dxi

= ⟨d exp(Ãj0x)

dxi
,1n⟩+ ⟨exp(Ãj0x),

d1n

dxi
⟩

= ⟨d exp(Ãj0x)

dxi
,1n⟩

= ⟨u(x)j0 ◦ (Ãj0)∗,i,1n⟩

= ⟨(Ãj0)∗,i, u(x)j0⟩,
and we note that the 1st equality is by Def. B.2, the 2nd equality is by product rule, the 3rd equality
is due to d1n

dxi
= 0n, the 4th equality is because of Def. B.1, and 5th equality derives from basic

algebra.

To show Part 4,

ds(x)j0
dxi

=
d(α(x)

−1
j0

u(x)j0)

dxi

=
dα(x)

−1
j0

dxi
u(x)j0 + α(x)

−1
j0

du(x)j0
dxi

= − α(x)
−2
j0

dα(x)j0
dxi

u(x)j0 + α(x)
−1
j0

du(x)j0
dxi

= − α(x)
−2
j0

⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, u(x)j0︸ ︷︷ ︸
n×1

⟩u(x)j0 + α(x)
−1
j0

(u(x)j0︸ ︷︷ ︸
n×1

◦ (Ãj0)∗,i︸ ︷︷ ︸
n×1

)

= − α(x)
−1
j0

s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, u(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i

= − s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, s(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i,

and we note that the 1st equality is by Def. B.3, the 2nd equality is by product rule, the 3rd equality
is due to chain rule, the 4th equality is because of previous parts, the 5th and 6th equalities derive
from Def. B.3.

To show Part 5,
d⟨s(x)j0 , v(y)i0⟩

dxi
= ⟨ds(x)j0

dxi
, v(y)i0⟩+ ⟨s(x)j0 ,

dv(y)i0
dxi

⟩

= ⟨ds(x)j0
dxi

, v(y)i0⟩

= ⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩,

and we note that the 1st equality is due to the product rule, the 2nd equality is by dv(y)i0
dxi

= 0n, and
the 3rd equality is due to the previous part.

To show Part 6,
dℓ(x)j0,i0

dxi
=

d(⟨s(x)j0 , v(y)i0⟩ − Ej0,i0)

dxi

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

=
d⟨s(x)j0 , v(y)i0⟩

dxi

= ⟨−s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, s(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩,

and we note that the 1st equality is by Def. B.5, the 2nd equality is by dEj0,i0

dxi
= 0n, and the 3rd

equality is due to the previous part.

To show Part 7,

dLoss(x)j0,i0
dxi

= 0.5
d(ℓ(x)j0,i0)

2

dxi

= ℓ(x)j0,i0 ·
dℓ(x)j0,i0

dxi

= ℓ(x)j0,i0⟨−s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, s(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩,

and we note that the 1st equality is by Def. B.6, the 2nd equality is by chain rule and the 3rd equality
is due to the previous part.

C.1 REFORMULATE THE GRADIENT INTO ITS CLOSED FORM

In this section, we reformulate the entry-wise gradient of the RoPE loss function from Lemma 4.1
into its matrix form.

We first begin with reformulating the gradient with respect to the entire vector x.

Lemma C.2 (Gradient Reformulation, dLoss(x)j0,i0

dx). If we have for every i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5), and

• Loss(x)j0,i0 is a real number (Def. B.6).

Then, we have

dLoss(x)j0,i0
dx

= ℓ(x)j0,i0 Ã
⊤
j0(diag(s(x)j0)A3Y∗,i0 − s(x)j0s(x)

⊤
j0A3Y∗,i0).

Proof.

dLoss(x)j0,i0
dxi

= ℓ(x)j0,i0⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩

= ℓ(x)j0,i0⟨s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩ − ℓ(x)j0,i0⟨s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩, A3Y∗,i0⟩

= ℓ(x)j0,i0⟨s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩ − ℓ(x)j0,i0⟨(Ãj0)∗,i, s(x)j0⟩⟨s(x)j0 , A3Y∗,i0⟩

= ℓ(x)j0,i0(Ã
⊤
j0)∗,i diag(s(x)j0)A3Y∗,i0 − ℓ(x)j0,i0(Ã

⊤
j0)∗,is(x)j0s(x)

⊤
j0A3Y∗,i0

= ℓ(x)j0,i0(Ã
⊤
j0)∗,i(diag(s(x)j0)− s(x)j0s(x)

⊤
j0)A3Y∗,i0 .

where the 1st step follows from Lemma 4.1, and all other steps follow from Fact A.9.

Then, the gradient can be reformulated as follows.

dLoss(x)j0,i0
dx

= ℓ(x)j0,i0Ã
⊤
j0(diag(s(x)j0)A3Y∗,i0 − s(x)j0s(x)

⊤
j0A3Y∗,i0).

Thus, we complete the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Next, we show our reformulation of the gradient by dropping the index i0 from Loss(x)j0,i0

Lemma C.3 (Gradient Reformulation, dLoss(x)j0
dx). If we have for every i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5),

• Loss(x)j0,i0 is a real number (Def. B.6), and

• β(x)j0 ∈ Rn is A3Y︸︷︷︸
n×d

ℓ(x)⊤j0,∗︸ ︷︷ ︸
d×1

.

Then, we get
dLoss(x)j0

dx
= Ã⊤

j0(s(x)j0 ◦A3β(x)j0)

− Ã⊤
j0s(x)j0⟨s(x)j0 , A3β(x)j0⟩.

Proof. We can get
dLoss(x)j0

dx

=
∑
i0∈[d]

dLoss(x)j0,i0
dx

=
∑
i0∈[d]

Ã⊤
j0(diag(s(x)j0)− s(x)j0s(x)

⊤
j0)ℓ(x)j0,i0A3Y∗,i0

= Ã⊤
j0(diag(s(x)j0)− s(x)j0s(x)

⊤
j0)β(x)j0 ,

and we note that the first equality is because Lemma 3.4, the 2nd equality is due to basic algebra,
and the 3rd equality comes from the lemma statement.

Thus, we complete this proof.

Finally, we reformulate the gradient into its matrix form.

Lemma C.4 (Gradient Reformulation, dLoss(x)
dx , Formal version of Lemma 4.1). If we have for every

i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5),

• Loss(x)j0,i0 is a real number (Def. B.6),

• β(x)j0 ∈ Rn is A3Y︸︷︷︸
n×d

ℓ(x)⊤j0,∗︸ ︷︷ ︸
d×1

, and

• γ(x)j0 ∈ Rn is (diag(s(x)j0)− s(x)j0s(x)
⊤
j0
)β(x)j0

Then, we get
dLoss(x)

dx
= Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. We show that

dLoss(x)

dx
=

∑
j0∈[n]

dLoss(x)j0
dx

=
∑

j0∈[n]

Ã⊤
j0γ(x)j0

= Ã⊤ vec(γ(x)),

where we note that the 1st equality is because of Lemma 3.4, the 2nd equality is based on the lemma
statement, and the 3rd equality derives from basic concepts of vectorization.

Thus, we complete the proof.

C.2 TIME COMPLEXITY FOR COMPUTING s(x) AND v(y) FUNCTIONS

In this section, we use the vector and matrix multiplication time complexity from Definition A.2 and
Fact A.3 to analyze the complexity of computing s(x) and v(y).

Lemma C.5. Pick s(x) and v(y) from Def. B.3 and Def. B.4, then it costs O(Tmat(n, d, d) +
Tmat(n, d, n)) time to get s(x), and it costs Tmat(n, d, d) time to get v(y).

Proof. We first show the time complexity of s(x).

Let A ∈ Rn×n be the RoPE attention matrix. Let D = A1n. Then

s(x) = D−1A.

Then, we need Tmat(n, d, d) + Tmat(n, d, n) time to get A.

Next, we need O(n2) time to get D.

Now, we need O(n2) time to get D−1A.

Therefore, they cost time O(Tmat(n, d, d) + Tmat(n, d, n)) time .

We show the time complexity of v(y).

To get v(y) = A3Y , it costs time Tmat(n, d, d).

Thus, we complete the proof.

C.3 TIME COMPLEXITY FOR COMPUTING ℓ(x) FUNCTIONS

In this section, we use the vector and matrix multiplication time complexity from Definition A.2 and
Fact A.3 to analyze the complexity of computing ℓ(x).

Lemma C.6. We have ℓ(x) from Def. B.5, then it costs Tmat(n, n, d) +O(nd) to calculate ℓ(x).

Proof. We show the time complexity of ℓ(x), where ℓ(x) = s(x)v(y)− E.

It costs Tmat(n, n, d) time to get s(x)v(y).

Then, it requires O(nd) time to get s(x)v(y)− E.

Therefore, they cost time Tmat(n, n, d) +O(nd).

Thus, we complete the proof.

C.4 TIME COMPLEXITY FOR COMPUTING β(x) AND γ(x) FUNCTIONS

In this section, we use the vector and matrix multiplication time complexity from Definition A.2 and
Fact A.3 to analyze the complexity of computing β(x) and γ(x).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma C.7. Let β(x) ∈ Rn×n be defined as β(x) := ℓ(x)v(y)⊤ and γ(x) be defined as γ(x)j0 :=
(diag(s(x)j0 − s(x)j0s(x)

⊤
j0
β(x)j0 ∈ Rn, given that s(x) ∈ Rn×n then β(x) can be computed in

time of O(Tmat(n, n, d)) and γ(x) can be computed in time of O(n2).

Proof. Here we present β(x) as follows: β(x) = ℓ(x)v(y)⊤.

It costs Tmat(n, d, n) time to get ℓ(x)v(y)⊤, which equals to O(Tmat(n, n, d)).

Next, we show the time complexity for γ(x)j0 = (diag(s(x)j0 −s(x)j0s(x)
⊤
j0
)β(x)j0 It costs O(n)

time to get γ(x)j0 . The reason is that s(x)j0s(x)
⊤
j0

is a rank one matrix and diag(s(x)j0) is a
diagonal matrix

Given j0 ∈ [n], the time for γ(x) is O(n2) and we finish the proof.

C.5 TIME COMPLEXITY FOR COMPUTING THE GRADIENT OF ROPE ATTENTION

Theorem C.8 (RoPE attention gradient computation time complexity, Restatement of Theorem 4.2).
We define three n× d input sequence matrices as A1, A2, A3, and the n× d approximated attention
computation matrix as E. We define several input fixed matrices as X1, X2, Y ∈ Rd×d. We define
X = X1 ⊗X2, A = A1 ⊗A2. We define x := vec(X) and try to get the Loss function gradient. Let
g := dLoss(X1,X2)

dx where Loss(X1, X2) from Def. 3.3. Then, it costs O(Tmat(n, d, d)+Tmat(n, d, n))

time to get the gradient g ∈ Rd4

.

Proof. We show the time complexity of g as follows.

1. We need time O(Tmat(n, d, d) + Tmat(n, d, n)) for s(x), v(y) from Lemma C.2.

2. We need time O(Tmat(n, n, d) + Tmat(n, d, d)) for ℓ(x) from Lemma C.3.

3. We need time O(Tmat(n, n, d)) for β(x) from Lemma C.7.

4. We need time O(n2) for γ(x) from Lemma C.7.

Therefore, it costs O(Tmat(n, d, d) + Tmat(n, d, n)) time overall for the gradient computation.

Thus, we complete the proof.

D LOW RANK APPROXIMATION OF ROPE ATTENTION

This section presents the fast running time using the low-rank approximations where the low-rank
matrices are generated from the polynomial method (see Lemma A.1).

D.1 APPROXIMATE s USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate s(x)

Lemma D.1 (Low Rank Approximate s(x)). For any B = o(
√
log n), let k1 equals to no(1)

such that: Suppose we have two n × d matrices A1, A2, X1, X2 ∈ Rd×d and X = X1 ⊗
X2 ∈ Rd2×d2

. Assume we can use O(log n) bits to write every entry from s(x). It holds that
max{∥A1X1∥∞, ∥A2X2∥∞} ≤ B, then there are three matrices U1, V1,W1 ∈ Rn×k1 such that
∥U1V

⊤
1 − s(x)∥∞ ≤ ϵ/poly(n). Here s(x) = D−1A ∈ Rn×n where A is defined as the matrix

representation of exp((A⊘W) vec(X)), and D = diag(A/d)1n. Moreover, these matrices U1, V1

can be created explicitly in n1+o(1) time.

Proof. By definition of A(X), we have

vec(A(X)) = exp(A⊘W) vec(X).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hence, using the tensor trick, we have

A(X)i,j = exp((Ai+(j−1)n ⊗Wi+(j−1)n) vec(X)/d)

= exp((Ai+(j−1)n ⊗ w⊤
i−j) vec(X)/d).

We define wi−j := vec(Wi−j) ∈ Rd2

and define W such that Wj0 is an 1 × d2 block and
Wi+(j−1)n := w⊤

i−j . We also define A := A1 ⊗ A2 ∈ Rn2×d2

and X := X1 ⊗ X2 ∈ Rd2×d2

.
We use Aj0 to denote the a 1× d2 subblock of A.

We can reformulate the attention matrix A as, for i, j ∈ [n]

A(X)i,j = exp(Ai+(j−1)n︸ ︷︷ ︸
1×d2

X︸︷︷︸
d2×d2

wi−j/d︸ ︷︷ ︸
d2×1

).

Thus, we can show that

Ai+(j−1)nXwi−j ,

= (A1,i,∗ ⊗A2,j,∗)(X1 ⊗X2) vec(Wi−j)

= A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗

where 1st equality uses definitions of wi−j ,A, and X, and the second step uses the tensor trick. We
complete our proof after applying Lemma 5.1.

D.2 APPROXIMATE ℓ USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate ℓ(x)

Lemma D.2 (Low Rank Approximate ℓ(x)). Let d equal O(log n). Suppose we can use O(log n)
bits to write every entry in E, v(y) ∈ Rn×d. Define the ℓ(x) ∈ Rn×d as specified in Def. B.5. Then,
we have U1, V1 ∈ Rn×k1 such that ∥U1V

⊤
1 v(y)− E − ℓ(x)∥∞ ≤ ϵ/ poly(n).

Proof. Here, we present the bound as follows.

∥U1V
⊤
1 v(y)− E − ℓ(x)∥∞ = ∥U1V

⊤
1 v(y)− s(x)v(y)∥∞

= ∥v(y)∥∞ · ∥U1V
⊤
1 − s(x)∥∞

≤ ϵ/ poly(n),

where the 1st is because of Def. B.5, 2nd step is based on the distributive law, and 3rd step is due to
Lemma D.1.

D.3 APPROXIMATE β USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate β(x)

Lemma D.3 (Low Rank Approximate β(x)). Let k2 = no(1). We define ℓ(x) ∈ Rn×d based on
Def. B.5, and v(y) ∈ Rn×d based on Def. B.4. We suppose β(x) is equal to v(y)ℓ(x)⊤, which is an
n× n matrix. Let U2, V2 ∈ Rn×k2 such that ∥U2V

⊤
2 − β(x)∥∞ ≤ ϵ/ poly(n). In n1+o(1) time, we

can get U2, V2.

Proof. Let β̃(x) ≈ β(x)

By Lemma D.2, U1V
⊤
1 v(y)− E approximately equals to ℓ(x).

Then we define β̃(x) = v(y)(U1V
⊤
1 v(y)− E)⊤.

We can use the low-rank technique to represent β̃(x) = v(y)v(y)⊤V1U
⊤
1 − v(y)E⊤.

Also, v(y)⊤V1 can be computed at first because it takes n1+o(1) time.

Given that all low-rank matrices, we have U2, V2 ∈ Rn×k2 where k2 = max{d, k}+ d = no(1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Here, we present the proof for obtaining the bound.

∥β̃(x)− β(x)∥∞ = ∥v(y)(U1V
⊤
1 v(y))− E)⊤ − v(y)ℓ(x)⊤∥∞

≤ ∥U1V
⊤
1 v(y))− E − ℓ(x)∥∞ · ∥v(y)∥∞ · d

≤ ϵ/ poly(n)

where the first step is based on the definition of β(x) and β̃(x), the second step is due to the dis-
tributive law, and the third step derives from Lemma D.2.

Thus, we complete the proof.

D.4 APPROXIMATE γ USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate γ(x). Specifically, we
apply the polynomial methods to γ1(x) and γ2(x) where γ(x) = γ1(x)− γ2(x).

First, we show the low-rank approximation of γ1(x).

Lemma D.4 (Low Rank Approximate γ1(x)). Let k1 = no(1). Let k2 = no(1). We suppose γ1(x)
is diag(s(x))β(x), and U1, V1 be two n× k1 matrices, in which ∥U1V

⊤
1 − f(x)∥∞ ≤ ϵ

poly(n) . We
suppose two n × k2 matrices U2, V2 in which ∥U2V

⊤
2 − β(x)∥∞ ≤ ϵ

poly(n) . Then we have two

n × k3 matrices in which ∥U3V
⊤
3 − γ1(x)∥∞ ≤ ϵ/ poly(n). We can construct U3, V3 in n1+o(1)

time.

Proof. Let U3 = U1 ⊘ U2 and V3 = V1 ⊘ V2, and we can use n1+o(1) time to get them.

Let s̃(x) = U1V
⊤
1 and β̃(x) = U2V

⊤
2 .

Then, we have the following by Fact A.5.

∥U3V
⊤
3 − γ1(x)∥∞ ≤ ∥U3V

⊤
3 − diag(s(x))β(x)∥∞

= ∥(U1 ⊘ U2)(V1 ⊘ V2)
⊤ − diag(s(x))β(x)∥∞

= ∥ diag(U1V
⊤
1)(U2V

⊤
2)− diag(s(x))β(x)∥∞

= ∥ diag(s̃(x))β̃(x)− diag(s(x))β(x)∥∞
= ∥ diag(s̃(x))β̃(x)− diag(s̃(x))β(x) + diag(s̃(x))β(x)− diag(s(x))β(x)∥∞
≤ ∥diag(s̃(x))β̃(x)− diag(s̃(x))β(x)∥∞ + ∥ diag(s̃(x))β(x)− diag(s(x))β(x)∥∞
≤ ϵ

poly(n)

where the first inequality is because of the def. of γ1(x), the second equality is due to the def. of
U3, V3, the third equality is based on Fact A.5, the fourth equality is due to the def. of s̃(x) and
β̃(x), the fifth equality is due to simple arithmetic, the sixth inequality is because of the triangle
inequality, and the seventh inequality derives from Lemma D.1 and Lemma D.3.

Next, we show the low-rank approximation of γ2(x).

Lemma D.5 (Low Rank Approximate γ2(x)). Let k1 = no(1). Let k2 = no(1). Let k4 = no(1). Let
γ2(x) ∈ Rn×n where for j0 in set [n], j0 represents j0-th column, γ2(x)j0 = s(x)j0s(x)

⊤
j0
β(x)j0 .

We suppose U1, V1 ∈ Rn×k1 in which ∥U1V
⊤
1 − s(x)∥∞ ≤ ϵ

poly(n) . We suppose two n × k2

matrices U2, V2 in which ∥U2V
⊤
2 − β(x)∥∞ ≤ ϵ

poly(n) . Then, we have U4, V4 ∈ Rn×k4 such that

∥U4V
⊤
4 − γ2(x)∥∞ ≤ ϵ/ poly(n). We can get U4, V4 in n1+o(1) time.

Proof. Let ρ(x) ∈ Rn be ρ(x)j0 := s(x)j0β(x)j0 .

We define ρ̃(x) ≈ ρ(x).

Let (U1V1)
⊤
j0,∗ ≈ s(x)j0 and (U2V2)

⊤
j0,∗ ≈ β(x)j0 .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then, we define ρ̃(x)j0 as the inner product of s̃(x)j0 and β̃(x)j0 , and by Fact A.9, we have ρ̃(x)j0 =
(U1V1)j0,∗ · (U2V2)

⊤
j0,∗

Then, it costs n1+o(1) time if we compute V1V
⊤
2 first.

Now, we show

ρ̃(x)j0 = (U1V1)j0,∗ · (U2V2)
⊤
j0,∗

= (U1)j0,∗︸ ︷︷ ︸
1×k1

V1V
⊤
2︸ ︷︷ ︸

k1×k2

(U2)
⊤
j0,∗︸ ︷︷ ︸

k2×1

Once the V1V
⊤
2 are pre-computed, the above step only takes O(k1k2) time. Given that j0 ∈ [n], we

can have the total time O(nk1k2) = n1+o(1).

We suppose s̃(x) approximates s(x) and set is equal to U1V
⊤
1 . Then, we are able to approximate

γ2(x) using s̃(x) and ρ̃(x) as follows.

We suppose γ̃2(x) equals to s̃(x) diag(ρ̃(x)). U4 and V4 can be obtained since we can use the
low-rank approximation technique to represent s̃(x) and diag(ρ̃(x)) is a diagonal matrix. Basically
U4 = U1 and V4 = diag(ρ̃(x))V1.

Now, we need to control the error. We have

∥U4V
⊤
4 − γ2(x)∥∞ = ∥γ̃2(x)− γ2(x)∥∞

= max
j0∈[n]

∥s̃(x)j0 ρ̃(x)j0 − s(x)j0ρ(x)j0∥∞

= max
j0∈[n]

∥s̃(x)j0 ρ̃(x)j0 − s̃(x)j0ρ(x)j0 + s̃(x)j0ρ(x)j0 − s(x)j0ρ(x)j0∥∞

≤ max
j0∈[n]

∥s̃(x)j0 ρ̃(x)j0 − s̃(x)j0ρ(x)j0∥∞ + ∥s̃(x)j0ρ(x)j0 − s(x)j0ρ(x)j0∥∞

≤ max
j0∈[n]

∥s̃(x)j0∥∞ · ∥ρ̃(x)j0 − ρ(x)j0∥∞ + ∥s̃(x)j0 − s(x)j0∥∞ · ∥ρ(x)j0∥∞

≤ ϵ/poly(n)

where the 1st equality is based on the def. of γ̃2(x), the 2nd equality is due to def. of γ̃2(x) and
γ2(x), the 3rd equality is due to simple mathematical properties, the 4th step is due to the triangle
inequalities, and the 5th step is due to the distributive law.

Thus, we complete the proof.

D.5 FAST COMPUTATION IN ALMOST LINEAR TIME

In this section, we present our main result. With the low-rank approximation, we can approximate
the RoPE gradient computations in almost linear time.

Theorem D.6 (Main result, Low Rank Approximate RoPE Attention Gradient, Restatement of The-
orem 5.7). Assuming the entries of A1, A2, X1, X2, Y, E are represented using O(log n) bits, there
is an n1+o(1) time algorithm to solve AAttLGC(n, d = O(log n), B = o(

√
log n)), from Def. 3.3,

with the accuracy upper bounded by 1
poly(n) . To be more specific, a gradient vector g̃ ∈ Rd4

comes

out of our algorithm where ∥dLoss
dx − g̃∥∞ ≤ 1

poly(n) .

Proof. By Lemma D.5 and Lemma D.4, There are matrices γ(x), γ1(x) ∈ Rn×n and γ2(x), we
have

γ(x) = γ1(x)− γ2(x).

We assume Lemma D.4 and Lemma D.5 are true from Lemma D.1 to Lemma D.3. Thus, we can
have the following based on Lemma D.4 Lemma D.5.

We can use low-rank approximation technique to represent γ̃1(x) = U3V
⊤
3 and γ̃2(x) = U3V

⊤
3 as

the approximation to γ1(x) and γ2(x) respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The cost is n1+o(1) time for every Lemma in Lemmas D.1, D.2, D.3, D.4 and D.5.

We have the reformulated gradient from Lemma C.4 as follows.

dLoss(x)

dx
= Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)

Therefore, n1+o(1) is the total running time.

We show that

∥dLoss(X)

dx
− g̃∥∞ = ∥ Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)− Ã⊤︸︷︷︸
d4×n2

vec(γ̃(x)︸︷︷︸
n×n

)∥∞

= ∥ Ã⊤︸︷︷︸
d4×n2

(vec(γ(x)︸︷︷︸
n×n

)− vec(γ̃(x)︸︷︷︸
n×n

))∥∞

= ∥ Ã⊤︸︷︷︸
d4×n2

∥∞∥ vec(γ(x)︸︷︷︸
n×n

)− vec(γ̃(x)︸︷︷︸
n×n

)∥∞

= ∥ Ã⊤︸︷︷︸
d4×n2

∥∞∥γ(x)− γ̃(x)∥∞

≤ ϵ/ poly(n).

where the first equality is based on Lemma C.4, the second equality is due to the distributive law,
the third equality derives from the definition of ℓ∞ norm, the fourth equality is due to the def. of
vectorization, and the fifth inequality derives from the Lemmas in Lemma D.4 and Lemma D.5.

We choose ϵ = 1
poly(n) .

Thus, we have finished our proof.

Remark D.7. The assumption in Theorem 5.7 is practical. In practice, especially in recent long
context tasks, the n is large, e.g., n = 2×106 for Google’s Gemini 1.5 Pro (Gemini, 2024), while the
model training uses a half-precision floating-point format, e.g., the bit number is 16. Furthermore,
our assumption is “tight”, where if we slightly weaken the assumption, there is no algorithm that
can solve the RoPE attention gradient computation in truly sub-quadratic complexity (Theorem 6.1).

Our Theorem 5.7 accurately approximates (ϵ = 1/ poly(n)) the RoPE attention gradient computa-
tion in almost linear time n1+o(1) under practical assumptions (see the above Remark D.7). Thus,
our methods solve the last puzzle of RoPE attention acceleration. Combined with previous work on
RoPE attention inference (see Lemma 5.1), this may make RoPE attention practical as we overcome
the theoretical quadratic time complexity barrier both in inference and training.

E HARDNESS

In this section, we provide the lower bound results to compute the gradient of RoPE attention.
Theorem E.1 (Lower bound). Assuming SETH, for any q > 0, for the ARAttLGC(n, d =
O(log n), B = ω(

√
log n), there does not exist an algorithm which can be executed in time O(n2−q)

based on Def. 3.3.

Proof. We pick all of the W−(n−1), . . . ,Wn−1 ∈ Rd×d as an identity matrix Id. Therefore, the gra-
dient computation of RoPE attention can be treated as the gradient computation of classic attention.
Thus, our lower bound result can derive from (Alman & Song, 2024c).

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

24

	Introduction
	Related Work
	Preliminaries on RoPE Attention
	Notation
	Problem Definition
	Reformulation of the Loss Function

	Exact Gradient Computation Time
	Reformulate the Gradient into Its Closed Form
	Time Complexity for Computing the Gradient of RoPE Attention

	Compute RoPE Attention Gradient in Almost Linear Time
	Technique Overview
	Approximate f Using Low Rank Approximation
	Approximate c Using Low Rank Approximation
	Approximate q Using Low Rank Approximation
	Approximate Using Low Rank Approximation
	Fast Computation in Almost Linear Time

	Hardness
	Conclusion
	Preliminary
	Polynomial Approximation of Exponential
	Time Complexity of Multiplications
	SETH Hypothesis
	Basic Facts

	Key Definitions of RoPE Attention
	RoPE Attention Gradient Calculation
	Reformulate the Gradient into Its Closed Form
	Time Complexity for Computing f and h Functions
	Time Complexity for Computing c(x) Functions
	Time Complexity for Computing q(x) and p(x) Functions
	Time Complexity for Computing the Gradient of RoPE Attention

	Low Rank Approximation of RoPE Attention
	Approximate f Using Low Rank Approximation
	Approximate c Using Low Rank Approximation
	Approximate q Using Low Rank Approximation
	Approximate Using Low Rank Approximation
	Fast Computation in Almost Linear Time

	Hardness

