
Under review as a conference paper at ICLR 2024

CONDITIONAL MAE: AN EMPIRICAL STUDY OF
MULTIPLE MASKING IN MASKED AUTOENCODER

Anonymous authors
Paper under double-blind review

ABSTRACT

This work aims to study the subtle yet often overlooked element of masked autoen-
coder (MAE): masking. While masking plays a critical role in the performance of
MAE, most current research employs fixed masking strategies directly on the input
image. We introduce a masked autoencoder framework with multiple masking
stages, termed Conditional MAE, where subsequent maskings are conditioned on
previous unmasked representations, enabling a more flexible masking process in
masked image modeling. By doing so, our study sheds light on how multiple mask-
ing affects the optimization in training and performance of pretrained models, e.g.,
introducing more locality to models, and summarizes several takeaways from our
findings. Finally, we empirically evaluate the performance of our best-performing
model (Conditional-MAE) with that of MAE in three folds including transfer learn-
ing, robustness, and scalability, demonstrating the effectiveness of our multiple
masking strategy. We hope our findings will inspire further research in the field
and code will be made available.

1 INTRODUCTION

Self-supervised learning (Chen et al., 2020; Caron et al., 2020; Zbontar et al., 2021; Caron et al.,
2021; He et al., 2021; Chen et al., 2021; Grill et al., 2020; Chen & He, 2021) has great potential to
leverage substantial unlabeled data, and the learned representation is beneficial to downstream tasks.
Among them, one promising approach is masked image modeling (MIM), which partitions an image
into visible patches and masked patches and predicts the masked patches from visible patches (Bao
et al., 2021; He et al., 2017; Chen et al., 2022a). As a representative, masked autoencoder (He et al.,
2021) (MAE) first masks an image, then feeds visible patches into a vision transformer encoder, and
finally reconstructs the masked patches in RGB space via a shallow decoder. After MAE, numerous
masked-based methods have been proposed, leading to an explosion of research in MIM and quickly
spreading to other fields (Tong et al., 2022; Baevski et al., 2022b; Wang et al., 2023a; Baevski et al.,
2022a; Pang et al., 2022; Zhang et al., 2022a), e.g., video and 3D.

A crucial component of the masked autoencoder is the mask ratio, which directly impacts the model’s
performance. For instance, in MAE, the performance gap for fine-tuning accuracy may vary by up to
2% with different mask ratios (He et al., 2021). However, current methods, including MAE, mostly
ablate the mask ratio only on the input image: they mask the input image with various ratios and
select the best-performing ratio after training those model variants. Considering that masking is an
important and flexible operation that can be performed at different stages (e.g., the input image and
different levels of representations) and with different ratios, these approaches may fail to fully exploit
the potential of the autoencoder. Hence, a question naturally raises: Can the masked autoencoder
handle multiple rounds of masking at different levels, and how does multiple masking affect its
optimization in training and performance?

To answer the above question, this work presents a framework called Conditional MAE, which aims
to explore the impact of multiple rounds of masking in the training process and performance. In
Conditional MAE, subsequent maskings are conditioned on previous unmasked representations,
enabling more flexible masking on different granularities of inputs. Based on it, we progressively
conduct a thorough empirical study about multiple masking to address three critical questions: 1)
where to mask, 2) how much to mask, and 3) what’s the impact? In our experiments, we investigate
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one, two, and three-shot masking 1, where each round of masking is considered a shot. Our results
highlight several key takeaways from each shot, which are summarized below:

• In the one-shot case, we find that masking at the beginning is always beneficial for task perfor-
mance. Moreover, it is critical to find a suitable mask ratio. Generally, though the model size is
different, e.g., ViT-S and ViT-B, 75% mask ratio is firstly recommended.

• In the two-shot case, building on the best one-shot setting, increasing the interval of two-shot
masking with a large ratio followed by a small ratio is helpful for fine-tuning. Additionally,
our experiments strongly suggest that there may not exist a positive relationship between linear
probing and fine-tuning. Finally, the second masking brings locality bias into the model and
helps capture low-level features, especially for finer-grained classification

• In the three-shot case, we find that using a greedy-like masking selection strategy, which uses the
best two-shot setting as a starting point, is superior to other three-shot strategies. Simultaneously,
the third masking brings more locality into models than two-shot case.

Based on the above results of our empirical experiments, we select the best-performing model
(Conditional-MAE) and evaluate its transferability to downstream tasks, including image classifica-
tion, object detection, and semantic segmentation. We also verify its robustness to noisy inputs, e.g.,
random occlusion and shuffling, and empirically demonstrate its scalability.

Note that in this research, we are not to propose a state-of-the-art method, but to enhance both the
understanding and performance of MAE by exploring the potential of masking and to inspire future
research. Our contributions are three-fold:

• Building on our proposed flexible framework, i.e., Conditional MAE, we are the first to make an
in-depth analysis of multiple masking and reveal its impact on masked autoencoder’s optimiza-
tion in training and performance.

• Through extensive empirical experiments on multiple masking, we provide several key takeaways
from each shot as shown above. More importantly, we observe a key phenomenon that multiple
masking is capable of introducing locality bias to models.

• We demonstrate the superiority of our Conditional-MAE over MAE in downstream transfer,
robustness against occlusion and shuffling, and scalability.

2 CONDITIONAL MAE

2.1 PRELIMINARIES

Given an image, MAE first partitions it into N patches P = {P 1, P 2, . . . , PN} that are randomly
categorized into two parts, i.e., visible patches Pv = {P 1

v , P
2
v , . . . , P

N1
v } and masked patches

Pm = {P 1
m, P 2

m, . . . , PN2
m }, with a pre-define ratio η1 (N2 = η1 ∗ N and N1 + N2 = N ). Then,

Pv are feed into Encoder that outputs corresponding patch representations Zv = {z1v , z2v , . . . , zN1
v }.

Finally, Zv along with learnable mask token [MASK] 2 are sent into Decoder to predict masked
patches in RGB space. Pm is served as the supervision signal. The whole process is formulated as:

Zv = Encoder(Pv) , (1)

P̂m = Decoder(Zv, [MASK]) , (2)

L = MSE(P̂m, Pm) , (3)

where MSE is the mean square error loss function.

2.2 CONDITIONAL MAE

Our Conditional MAE is derived from MAE and able to perform multiple shots masking on MAE as
shown in Fig 1. We take two-shot masking for example to elaborate why we call it Conditional MAE.
The first masking is implemented on RGB space with a pre-defined mask ratio η1 on image patches,

1Note that we do not study more shots as it is inferior to three-shot masking in our preliminary experiments.
2We omit the operation of adding position embedding for a better description.
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Figure 1: An overview of our Conditional MAE compared with MAE. N1, N3, and N5 indicate the
number of unmasked patches or representations.

which is what MAE does. Afterward, the second masking is conditioned on previous unmasked
representations on a given layer of the encoder, e.g., j. Thus, for visible patch representations
Zj∗

v (output from the j∗-th layer of the encoder, j∗ = j − 1), Conditional MAE mask part of
them with another pre-defined masking ratio η2. We denote the left visible patch representations
as Y j∗

v = {y1v , y2v , . . . , yN3
v } and the masked patch representations as Y j∗

m = {y1m, y2m, . . . , yN4
m }

(N3 +N4 = N1 and N4 = η2 ∗N1). Additionally, we collect the visible patches corresponding to
Y j∗

m from Pv , denote them as P j∗

m = {P 1
m, P 2

m, . . . , PN4
m }, and merge them with Pm as {Pm, P j∗

m }
(||{Pm, P j∗

m }|| = N2 +N4) as our new reconstruction target. Therefore, for two-shot masking, the
whole process can be formulated as:

Zj∗

v = Encoder0→j∗(Pv) , (4)

Y j∗

v , Y j∗

m = Mask(Zj∗

v , η2) , (5)

Zv = Encoderj→11(Y
j∗

v ) , (6)

P̂m = Decoder(Zv, [MASK]) , (7)

L = MSE(P̂m, {Pm, P j∗

m }) , (8)

where Encoder0→j∗ means that the input passes through 0-th layer of the encoder and is outputted
from j∗-th layer.

Compared with MAE, due to the Mask function, the main discrepancies lie in Eq (6) and Eq (8). We
need to reconstruct two targets, i.e., Pm and P j∗

m , with less visible patch representations. Note that
this process cannot be bridged by increasing mask ratio η1 of MAE to remove more visible patches.
We explain it below. For Pm, similar to MAE, it has never been seen by the encoder and thereby
we need infer it via visible patch representations Y j∗

v . For P j∗

m , it has been seen by partial encoder
(i.e., layers before j), resulting in its information involved in Y j∗

v via attention-manner interaction
between Y j∗

v and Y j∗

m before j-th layer. We reconstruct the patches P j∗

m primarily conditioned on
the “borrowed” information involved in Y j∗

v via the interaction above. This is easily generalized to
multiple shots. Particularly, in the two-shot showcase, if j is set to 0 or η2 is 0, Conditional MAE is
reduced to MAE. if η1 (the first mask ratio) is 0, our Conditional MAE is still established with only
reconstruction of Pm removed.

3 EXPERIMENT

3.1 MULTIPLE SHOTS MASKING

In our study, we investigate the Conditional MAE in three different settings by pretraining on
ImageNet100: one-shot masking, two-shot masking, and three-shot masking. We do not explore
settings with more shots, as preliminary experiments have shown them to be inferior to three-shot. For
ease of description, we denote the three mask ratios as η1, η2, η3, and the corresponding layer indexes
as i, j, k, respectively, where masking is applied before inputting. Considering our Conditional MAE
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Figure 2: Results of one-shot masking on ViT-S/16.

Model Size Mask Ratio Linear Probe Fine-tune

ViT-S/16 0.75 45.0 82.5
0.90 44.9 81.3

ViT-B/16 0.75 62.9 86.9
0.90 57.9 85.6

Table 1: Comparisons on ViT-S/16 and ViT-B/16 with different mask ratio.

is derived from MAE, we fix i = 0 to match with MAE. Through exhaustive experiments conducted
below, we aim to address three key questions: where to mask, how much to mask, and what is the
impact? For training details, please refer to the Appendix A.1.

3.1.1 ONE-SHOT MASKING

In the one-shot setting, we only mask patch tokens in the encoder once, allowing us to examine
the impact of different mask positions and mask ratios on encoder performance. Specifically, for
mask positions, we consider four positions at equal intervals: the 0-th, 3-th, 6-th, and 9-th layer
of encoder blocks, denoted as (i, j, k) = (0, 0/3/6/9, 0). We exclude the 12-th layer as it would
cause the denoise autoencoder to degenerate into a vanilla autoencoder. Regarding mask ratios, we
carefully select two representative ratios used in MAE (He et al., 2021), namely 0.75 and 0.9, denoted
as (η1, η2, η3) = (0, 0.75/0.9, 0) 3. The reasons are two-fold: 0.75 is widely used in MAE; For 0.9,
previous work (Riquelme et al., 2021) has shown that even using 10% patch features can still yield
competitive performance in visual recognition. The results on ViT-S/16 are illustrated in Fig 2.

It has been observed that masking at the beginning position (j = 0) is beneficial for both linear
probing and fine-tuning. Conversely, we also notice a significant drop in performance for linear
probing when masking is applied at the other positions. This indicates that the representations
encoded by the fixed encoder at j = 0 are relatively more distinguishable and implies that these
encoders learn comparatively less knowledge compared to the encoder at j = 0. To support this
observation, we visualize the training loss curves of pretraining and linear probing and t-SNE of
output representation in Appendix A.2.1.

Finally, to investigate the impact of mask ratio on models of different sizes, we also conduct
experiments on ViT-B/16 and present the results in Tab 1. Interestingly, we observe that a mask
ratio of 0.75 enhances the performance of ViT-B/16 compared to a mask ratio of 0.9, which is
similar to ViT-S/16. Moreover, our results are consistent with MAE (He et al., 2021) trained on
ImageNet1k (Russakovsky et al., 2015) whose best mask ratio is also 75%.

Conclusion. For one-shot masking, we summarize two useful tips: ① Masking at the beginning is
always beneficial for task performance; ② Finding a suitable mask ratio is critical. Generally, though
the model size is different, e.g., ViT-S and ViT-B, a 75% mask ratio is firstly recommended.

3We set η1 to 0 as its layer index i = 0 is fixed as described at beginning while our mask position should be
flexible.
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3.1.2 TWO-SHOT MASKING

Two-shot masking means we can mask twice in the encoder. We use a step-by-step scheme by
following the conclusion from one-shot and first mask patch tokens at the beginning also with two
representative mask ratios, i.e., 0.75 and 0.9. Therefore, it is critical to figure out where the second shot
masking should be and how much it should mask. The experiments on ViT-S/16 are shown in Fig 3.
L(i, j) (k is omitted) indicates we mask the i-th and j-th Layers (i = 0 and i < j < 12). We use
(η1, η2) (η3 is omitted) to denote the mask ratio of two-shot masking. For example, L(0, 5; 0.75, 0.5)
means that we mask the 0-th layer with mask ratio 0.75 and mask the 5-th layer with mask ratio 0.5.
The dashed line denotes the one-shot baseline with masking ratios of 0.75 respectively.
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Figure 3: Results of two-shot masking on ViT-S/16.
The dashed line is the one-shot baseline (MAE).

For η1 = 0.75, we ablate five combinations
of mask layers for two-shot masking. Three
involve an equal interval for the second mask-
ing layer indexes following the one-shot mask-
ing scheme: L(0, 3), L(0, 6), and L(0, 9); Two
are continuous combinations: L(0, 10) and
L(0, 11) 4. We initially set a larger mask ratio
of η2 (0.5). Considering that the performance
is inferior to the baseline in both linear probing
and fine-tuning, we replace η2 = 0.5 with three
relatively smaller ones containing 0.25, 0.15,
and 0.1. As shown in Fig 3 (a), the performance
of two-shot masking is inferior to the baseline
for linear probing. However, as opposed to linear probing, one can see in Fig 3 (b) that our two-shot
masking shows potential to outperform the baseline in fine-tuning: An apparent trend for fine-tuning
is that the second masking performed at the last several layers (i.e., increasing the interval of two-shot
masking) with a smaller η2 leads to significant improvement compared to baseline, especially at
L(0, 10). The contradictory experiment results imply that there may not exist a positive correlation
between linear probing and fine-tuning. Hence, following (Woo et al., 2023), we would like to pay
more attention to end-to-end fine-tuning because of its practical relevance in transfer learning. We
put two-shot results for η1 = 0.9 in Appendix A.3.1

In light of the superior performance, a question arises: What two-shot masking brings to the
encoder? We dive deep into two-shot masking and analyze its layer representation and attention map.
Layer Representation Analyses. We first leverage Centered Kernel Alignment (CKA) (Cortes et al.,
2012; Nguyen et al., 2020) to analyze the layer representation similarity across pretrained models 5.
As shown in Fig 4, we visualize the layer representation similarity between several two-shot masking
pre-trained models and baseline (0, 0.75) as heatmaps. It is seen an increasing discrepancy between
the representations of two-shot models and that of baseline, especially between the high layer of
two-shot models and shallow layer of baseline. This implies that the second masking introduce
certain bias into pretrained models, rendering the representations varying from that of baselines 6.

Attention Map Analyses. We then analyze the attention maps that reveal the behaviors for aggregating
information in the attention mechanism of ViTs. Following (Wang et al., 2023c) we use two metrics,
i.e., attention distance and attention entropy 7, to analyze two-shot masking and baseline models. We
pick L(0, 10; 0.75, 0.1) as it performs best and illustrate its attention distance and entropy variation
before/after fine-tuning and compare with that of baseline L(0; 0.75) in Fig 5. We see that the second

4In our preliminary experiments, we found that L(0, 9) performs the best in fine-tuning among these three
combinations. To provide a more comprehensive analysis, we include L(0, 10) and L(0, 11). We do not include
L(0, 8) as it performs worse than L(0, 9).

5CKA computes the normalized similarity in terms of the Hilbert-Schmidt Independence Criterion
(HSIC (Song et al., 2012)) between two feature maps or representations.

6Note that the disparity in the heatmap does not necessarily imply whether the learned representation is
advantageous or detrimental. It only reflects **how the representation learned by our two-shot masking model
varies from that of the baseline.** Hence, it would be unreasonable to use the significance of heatmap to assess
the performance after fine-tuning.

7The attention distance reveals how much local vs. global information is aggregated, and a lower distance
means each token focuses more on neighbor tokens. The attention entropy reveals the concentration of the
attention distribution, and lower entropy means each token attends to fewer tokens. We refer the reader of interest
to (Wang et al., 2023c) for detailed formula
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Figure 4: Layer representation similarity between pretrained two-shot masking model and baseline.
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Figure 5: Comparison of two-shot masking L(0, 10; 0.75, 0.1) and baseline model L(0; 0.75) on
attention distance and attention entropy before/after fine-tuning. The lp means pretrained model. The
ft means fine-tuned models.

masking decreases the attention distance and entropy to some extent during pretraining in Fig 5 (a),
bringing locality inductive bias into model and thereby rendering the representations varying from
that of baselines. From the view of reconstruction, we conjecture such adjustment is because the
second masking requires the unmasked patches to recover their parallel neighbor (masked ones) of a
forward. In Fig 5 (b) and (c), compared to pretraining, fine-tuning decreases the attention distance
and entropy in low layer and also elevates attention distance in high layer for both models. Finally
we compare the attention distance and entropy between the two models after fine-tuning in Fig 5
(d) to figure out what makes L(0, 10; 0.75, 0.1) have potential to outperform baseline L(0; 0.75).
We see that L(0, 10; 0.75, 0.1) has similar attention distance and entropy in high layers while more
concentrated and lower attention distance and entropy in low and middle layers. We attribute it to
locality inductive bias brought by the second masking that captures better low-level features. Similar
observations can be found in other two-shot model variants (η1 = 0.75 and 0.9) which we put in
Appendix A.3.2.

Information Leakage and Locality. In the two-shot setting, the second masked patches have been
seen by previous layers, potentially resulting in information leakage. However, it’s important to note
that this leakage does not cause a trivial solution as the presence of η1 and its substantial gap in
magnitude compared to η2 necessitates the model to acquire the ability to infer the masked patch
in the first masking. In contrast, the presence of the second masking necessitates that patches that
interacted in previous layers must recover their corresponding masked neighbors in the forward pass.

Figure 6: Visualization of reversed attentions (showing how much information a second-masked
patch sends to others) in layer 9 of models. Top: single masking model L(0; 0.75) (vanilla MAE).
Bottom: two-shot masking model L(0, 10; 0.75, 0.1). It is evident that these second-masked tokens
tend to send and store the information to their neighbors just prior to being masked, resulting in more
localized and even attention.
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As a result, the model needs to dedicate a portion of its capacity to learn how to infer local neighbors.
This would introduce a certain degree of locality bias, which can be advantageous under some task
conditions (Jiang et al., 2022). To illustrate this, we visualize the reversed attention (Ding et al.,
2023) of pretrained model L(0, 10; 0.75, 0.1) as shown in Fig 6 (bottom), containing the information
flow of second masking, i.e., how much information a second-masked patch sends to other. It
clearly demonstrates that the attention head retains object-related local information. In this way, the
information leakage is controllable, and information of the second-masked patch flows and is stored
in the neighboring patches, to be reconstructed after the second masking. Also, compared with single
masking in Fig 6 (top), the locality of the attention head is enhanced, potentially benefiting some
downstream tasks that require low-level or local representations.

Potential Application. Considering the derived locality on two-shot masking models, it would enable
models to learn local fine-grained features. To verify it, we use L(0, 10; 0.75, 0.1) and L(0; 0.75)

Table 2: Comparisons on fine-grained datasets.
Dataset L(0; 0.75) L(0, 10; 0.75, 0.1)

ImageNet100 82.5 84.6 (+2.1)
Flower102 34.7 37.3 (+2.6)
Standford Dog 51.6 54.3 (+2.7)
CUB-200 48.2 51.1 (+2.9)

conduct fine-grained classification on three
widely-used fine-grained datasets including
Flower102 (Nilsback & Zisserman, 2008), Stan-
ford Dog (Khosla et al., 2011), and CUB-
200 (Wah et al., 2011), and compare the re-
sults with that of ImageNet100 (generic clas-
sification) in Tab 2. We find L(0, 10; 0.75, 0.1)
obtains more enhancement than L(0; 0.75) in
fine-grained classification.

Additionally, a subtle and interesting phenomenon is captured during our experiments. We take
L(0, 10; 0.75, 0.15) and L(0, 10; 0.9, 0.1) for example and in Fig 7, the second reconstruction loss
(orange) of masked patches (2nd shot) unanimously decreases faster than that of the first (blue) (1st
shot). This result indicates the second reconstruction task is relatively easier to optimize than the first.
To some extent, using the same loss weights for them is unreasonable and wastes model’s capability.
Hence, intuitively, we adopt their mask ratios as their new loss weights during training to force the
model to concentrate more on the first reconstruction task. In Tab 3, we find that this adjustment
significantly improves the performance of linear probing but has limited enhancement on fine-tuning.
Since our focus is primarily on the performance of finetuning, we did not adopt this strategy in our
experiments and leave it as a potential avenue for future exploration.

0 50 100 150 200 250 300
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Pretraining loss of L(0, 10), ( 1, 2) = (0.75, 0.15)

Loss of Shot 1
Loss of Shot 2

0 50 100 150 200 250 300
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

Pretraining loss of L(0, 10), ( 1, 2) = (0.90, 0.10)

Loss of Shot 1
Loss of Shot 2

Figure 7: Training loss curves of two-shot.

η1, η2 w1, w2 LP FT

0.75, 0.15 0.5, 0.5 31.0 83.9
0.75,0.15 35.2 83.9

0.9, 0.1 0.5, 0.5 35.5 81.9
0.9,0.1 36.3 82.0

Table 3: Results of different loss weights
i, j η1, η2 FT
L(0) 0.75 86.88

L(0,10) 0.75, 0.1 87.66
L(0,10) 0.75, 0.15 87.46
L(0,11) 0.75, 0.1 87.26

Table 4: Results on ViT-B/16 compared to MAE

Finally, we apply our findings in ViT-S/16 on ViT-B/16, hoping to further improve its performance as
well. Since the performance of η1 = 0.9 for ViT-B/16 in Tab 1 is inferior to that of η1 = 0.75, we
focus primarily on η1 = 0.75 for ViT-B/16 in the experiment. Specifically, we employ the three best
two-shot settings of finetuning performance of ViT-S/16 on ViT-B shown in Tab 4 and compare the
results with MAE. Our two-shot masking strategy unanimously outperforms MAE. And among them,
L(0, 10; 0.75, 0.1) performs best, which also performs best for ViT-S/16.

Conclusion. For two-shot masking, we summarize four useful findings: ① building on one-shot,
increasing the interval of two-shot masking with a large η1 and a small η2 is helpful for fine-tuning in
both ViT-S/16 and ViT-B/16, e.g., L(0, 10) in our experiments; ② it strongly suggests that there may
not exist a positive relationship between linear probing and fine-tuning; ③ the second masking brings
locality bias into model and help capture low-level features, especially for finer-grind classification;
④ adopting a weighted reconstruction loss for different shot masking is helpful for linear probing.
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Table 5: The best results of our step-by-step shots masking.
Different shots masking i, j, k η1, η2, η3 FT

One-shot 0, -, - 0.75, -, - 82.5
Two-shot 0, 10, - 0.75, 0.1, - 84.6

Three-shot 0, 10, 11 0.75, 0.1, 0.1 81.9

Table 6: Downstream performance of Conditional-MAE compared to MAE. CF means CI-
FAR (Krizhevsky et al., 2009). Tiny indicates TinyImageNet (Le & Yang, 2015).

Model Classification Obj Det Sem Seg (mIoU)
DTD CF10 CF100 Tiny APb APm

MAE 57.9 84.5 62.5 63.4 38.9 35.1 38.3

Conditional-MAE 59.1 85.5 63.4 64.1 39.5 35.5 38.9

3.1.3 THREE-SHOT MASKING

We further explore the three-shot masking. Specifically, we leverage a greedy-algorithm-like strategy
by using the best two-shot setting L(0, 10; 0.75, 0.1) and add the third masking on the last layer of
encoder (k = 11) with a small masking ratio η3 = 0.1. We verify the effectiveness of our three-shot
masking by comparing it with various strategies including “Equal interval", “Prefer front layer", and
“Unbalanced interval". Additionally, by visualizing the attention distance and entropy and comparing
with that of two-shot and one-shot masking, we find the third masking introduces a more prominent
locality bias as shown in Fig 20. Similarly, we conduct fine-grained classification in Tab 9 and find
that though the model outperforms the baseline but the enhancement is inferior to that of two-shot.
Intuitively, we speculate that this would be due to the over-locality introduced by the third shot
masking. Due to the limited space, we put all the results in Appendix A.4.

Conclusion. In three-shot masking, we find that a greedy-like masking selection strategy is superior
over a wide range of strategies. And more prominent locality is brought into models.

3.2 TRANSFER LEARNING

To conduct transfer learning in downstream tasks, we compare the best results of one-shot, two-shot,
and three-shot in Tab 5. It is shown that two-shot performs the best. Hence, we pick up the best
two-shot masking pretrained ViT-B/16 model (Conditional-MAE). To verify its effectiveness in
transfer learning, We perform classification on four datasets, object detection on COCO (Lin et al.,
2014), and semantic segmentation on ADE20K (Zhou et al., 2017) following previous works (He
et al., 2021; Chen et al., 2022a; Zhou et al., 2021). As shown in Tab 6, Conditional-MAE generally
produces better performance than MAE in downstream tasks, showing its great transfer capability.

3.3 ROBUSTNESS ANALYSIS

Considering Conditional-MAE suffers extra masking, it should be intuitively more robust than MAE.
To verify it, we use a fine-tuned model to conduct two kinds of perturbation schemes, i.e., occlusion
and shuffling, aiming to simulate the real circumstances. For occlusion, we randomly mask half of
the patches following (Zhou et al., 2021) before inputting the model. For shuffling, we randomly
shuffle the patches as well. As presented in Tab 7, compared to Tab 6, Conditional-MAE suffers less
performance drop than MAE, indicating more excellent robustness.

Table 7: Robustness analysis (occlusion and shuffling) of Conditional-MAE and MAE with four
classification datasets.

Model occlusion shuffling

DTD CF10 CF100 Tiny DTD CF10 CF100 Tiny

MAE 56.3 71.6 48.4 49.9 47.7 68.8 45.6 42.9

Conditional-MAE 57.8 72.8 49.5 51.2 49.1 70.2 47.1 44.0

3.4 SCALABILITY
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Figure 8: Results of scaling Conditional-MAE on
larger model and longer training time.

To verify the scaling capability, we pre-
train Conditional-MAE on ImageNet1K (Rus-
sakovsky et al., 2015), scaling on large model,
i.e., ViT-L, and longer pretraining times, e.g.,
1600 epoch. The result is presented in Fig 8
where the left is training with 300 epochs for
both models and the right uses ViT-B/16. It is
shown that Conditional-MAE meets the scaling
law: pretraining with a longer time and increas-
ing model size can significantly improve per-
formance. Also, Conditional-MAE generally
outperforms MAE, verifying its superiority.

4 RELATED WORK

Masked image modeling. Masked image modeling is the task of predicting the masked part of an
image from the visible part. Inspired by masked language modeling in natural language processing,
BEiT (Bao et al., 2021) is the first to employ this paradigm in computer vision. PeCo (Dong et al.,
2021) further improves the performance of BEiT by involving more semantics in visual tokens.
MAE (He et al., 2021) removes the need for a tokenizer (e.g., d-vae (Ramesh et al., 2021) in BEiT)
by directly predicting the masked part in RGB space. This greatly simplifies the whole pipeline and
improves the model performance simultaneously. CAE (Chen et al., 2022a) adds a regressor between
the encoder and decoder to align masked and visible representations in the same representation space.
iBOT (Zhou et al., 2021) combines masked image modeling with contrastive learning, showing great
potential. Recently, with more effort devoted to this field, numerous works (Dong et al., 2022a;
Gao et al., 2022; Zhang et al., 2022b; Chen et al., 2022b; Kakogeorgiou et al., 2022; Li et al., 2021;
El-Nouby et al., 2021; Liu et al., 2022; Tao et al., 2022; Wei et al., 2022a; Zhang et al., 2022a; Yu
et al., 2022; Assran et al., 2022; Fang et al., 2022; Bachmann et al., 2022; Shi et al., 2022; Wei et al.,
2022b; Huang et al., 2022a;b; Dong et al., 2022b) are proposed including BootMAE (Dong et al.,
2022a), MCMAE (Gao et al., 2022), CAE v2 (Zhang et al., 2022b), SdAE (Chen et al., 2022b),
MST (Li et al., 2021), SplitMask (El-Nouby et al., 2021), dBOT (Liu et al., 2022), SIM (Tao et al.,
2022), etc.

Understanding masked image modeling. Xie et al. shows that masked image modeling brings
rich diversity to the self-attention head and pays more attention to locality compared to supervised
one (Xie et al., 2021b). Additionally, Xie et al. also demonstrates that larger models, more data, and
longer training times are beneficial for masked image modeling (Xie et al., 2021a). CAE (Chen et al.,
2022a) illustrates its attention map and speculates that masked image modeling cares more about the
global including both foreground and background. Kong & Zhang (Kong & Zhang, 2022) point out
that masked image modeling brings occlusion invariant to the model representation. Cao et al. (Cao
et al., 2022) deliver a mathematical understanding of masked image modeling. More recently, Zhu et
al. (Zhu et al., 2023) speculate that masked image modeling is a part-to-part process: the masked
representations are hallucinated from the visible part of an image, thereby leading to self-supervised
models with strong part-aware capability. In this work, we attempt to reveal the impact of multiple
shots masking on masked autoencoder.

Masking in generation modeling. Chang et al. introduce MaskGIT (Chang et al., 2022), which
employs a bidirectional transformer decoder and is capable of learning to predict randomly masked
tokens via attending to tokens in all directions during training. When inference, MaskGIT first
generates all tokens of an image and then refines the generated image iteratively based on the previous
generation. Recently, Chang et al. propose Muse (Chang et al., 2023) and train it to predict randomly
masked image tokens given the text embedding extracted from a pre-trained large language model
(LLM). Leveraging LLM enables Muse to understand fine-grained language, translate to high-fidelity
image generation, etc. Moreover, Muse directly enables inpainting, outpainting, and mask-free
editing without the need to fine-tune or invert the model. Li et al. (Li et al., 2023) propose to use
semantic tokens learned by a vector-quantized GAN at inputs and outputs and combine this with
masking to unify representation learning and image generation. Bandara et al. propose an adaptive
masking strategy called AdaMAE (Bandara et al., 2023). AdaMAE samples visible tokens based
on the semantic context using an auxiliary sampling network and empirically demonstrates the
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efficacy. Xiao et al. introduce a simple yet effective adaptive masking over masking strategy called
AMOM (Xiao et al., 2023) to enhance the refinement capability of the decoder and make the encoder
optimization easier.

Masking. Masking is a key operation in masked image modeling. Trandional masked strategies
include random masking used in MAE (He et al., 2021), and block masking used in BEiT (Bao
et al., 2021) and CAE (Chen et al., 2022a). Besides, previous works also explore extra masking
strategies. MST (Li et al., 2021) masks low-attended patches to enhance the performance without
additional cost. AttMask (Kakogeorgiou et al., 2022) further proves the usefulness of masking highly
attended portions. AMT (Gui et al., 2022) uses the attention map in the last layer of the vision
transformer to guide the masking. SemMAE (Li et al., 2022) leverages a masking with semantics
provided by an additional pretrained model. However, it is worth noticing that almost all of them
mask an image just at the beginning. (Choe & Shim, 2019) leverages self-attention mechanism to
hide the most discriminative part and highlight the informative region to improve the accuracy of
weakly supervised object Localization (WSOL). (Shi et al., 2022) uses an adversarial objective to
consistently improve on state-of-the-art self-supervised learning (SSL) methods. MaskFeat (Wei
et al., 2022a) uses Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, as
reconstruction target, and verifies its effectiveness on video recognition. These studies primarily
focus on studying how to further improve the performance. VideoMAE v2 (Wang et al., 2023b) is the
first to propose to mask MAE and primarily focuses on the benefits obtained in computational cost,
memory consumption, etc., by introducing dual masking. But it is not the first work to dive deep into
the impact of multiple shots masking in MAE. In contrast, our work reveals the secret of multiple
masking on masked autoencoder with different masking positions and ratios.

5 CONCLUSION

In this paper, we reveal how multiple masking affects masked autoencoder’s optimization in training
and performance by using a flexible framework called Conditional MAE. Based on our findings,
we summarize several takeaways from each shot and find that multiple masking can bring locality
bias to models. We also show the superiority of Conditional-MAE over MAE in downstream tasks,
robustness again occlusion and shuffling, and scalability. We hope our findings can inspire more
future work.

6 LIMITATION AND BROADER IMPACT

One limitation of our study is the limited computational resources available. We conducted our
experiments using small, base, and large ViT. Therefore, it would be interesting to extend this study
to larger models e.g., Huge ViT. Our empirical study primarily focuses on the masked autoencoder.
There may not exist any negative effects on itself but on how it is used.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Pretraining. Similar as MAE, we use the original image without color jittering, gradient clip, or
other transformations. For the experiments in multiple shots masking, we conduct pretraining on the
ImageNet-100 dataset, which is a subset of ImageNet-1K and contains 135,000 images from 100
random classes with 224× 224 pixels. The batch size is 256, weight decay is 0.05, warmup epochs
is 40, and the base learning rate is 1.5e− 4 following MAE (He et al., 2021). We train each model
for 300 epochs equally. For pre-training, we use AdamW as the optimizer.

Linear Probe. Following MAE (He et al., 2021), we conduct training of linear probing for 90 epochs
with learning rate 0.1 and 1024 batch size. CLS token is used for classification. The LARS optimizer
is utilized for linear probing.

Fine-tuning. We fine-tune pretrained model for 100 epochs following MAE (He et al., 2021). The
weight decay is 0.05 and layer decay is 0.65. We set drop path to 0.1. We search from three base
learning rates, 1e− 4, 5e− 4, and 1e− 3. The batch size is 256. We use AdamW as the optimizer
with warmup epoch set to 5 and cosine learning rate scheduler. Following MAE (He et al., 2021), we
use global pooled representation for classification. In part classification, we set batch size to 16 for
all datasets and use two base learning rates 7e− 4 and 8e− 4 respectively while maintaining other
setting.

Transfer learning. In downstream transfer, we use the final pretrained checkpoint to initialize model
and then finetune it. For classification, we finetune for 100 epoch using AdamW as optimizer with
weight decay 0.05 and layer decay 0.65. Due to the computation limitation, we use 32×32 for
CIFAR100 and CIFAR10 with batch size 512 and set learning rate to 1.5e− 3. We use 64×64 for
TinyImageNet with batch size 512 and set learning rate to 1.5e− 3. We use 448×448 for DTD with
batch size 16. We use learning rate 2.5e− 3. For semantic segmentation, we following CAE (Chen
et al., 2022a) The input resolution is 512× 512. The batch size is 16 and the layerwise decay rate is
0.65 and the drop path rate is 0.1. We search from three learning rates, 3e− 4, 4e− 4, and 5e− 4. We
conduct fine-tuning for 160K steps. We do not use multi-scale testing. For object detection, we utilize
multi-scale training and resize the image with the size of the short side between 480 and 800 and the
long side no larger than 1333. The batch size is 16. We use learning rate 5e− 4. The layerwise decay
rate is 0.75, and the drop path rate is 0.2. We train the network with the 1× schedule: 12 epochs with
the learning rate decayed by 10× at epochs 9 and 11. We do not use multi-scale testing. The Mask
R-CNN implementation follows MMDetection.

Scalability. We scale the model size including ViT-B/16 and ViT-L/16 with 300 epoch on Ima-
geNet1K. For ViT-B/16, in pretraining, we use 40 warmup epoch, 1.5e− 4 base learning rate, 0.05
weight decay, and 4096 batch size. In fine-tuning, we use 5e − 4 as base learning rate with 0.65
layerwise decay. The batch size is 1024, warmup epoch is 5, and weight decay is 0.05. The drop
path is set to 0.1. For ViT-L/16, in pretraining, we use 30 warmup epoch, 5e− 6 base learning rate.
Due to the limited resource, we only use 1024 batch size. The weight decay is 0.05. In fine-tuning,
we search from three learning rate 1e − 3, 1.1e − 3, and 1.2e − 3 with 0.75 layer decay. We set
the drop path as 0.2. The batch size is set to 1024 as well. Hence, the performance of ViT-L may
not significantly outperforms MAE. We also scale the training time including 800 epoch and 1600
epoch. For 800 epoch ViT-B/16, in pretraining we use use 40 warmup epoch, 1e− 5 base learning
rate, 0.05 weight decay, and 4096 batch size. In fine-tuning, we use 5e− 4 base learning rate, 0.65
layerwise decay, 0.05 weight decay. We set batch size to 1024, warmup epoch to 5, and drop path to
0.12. For 1600 epoch ViT-B/16, in pretraining we use use 40 warmup epoch, 5e− 6 base learning
rate, 0.05 weight decay, and 4096 batch size. As for fine-tuning, we use 5e− 4 base learning rate,
0.65 layerwise decay, 0.05 weight decay. We set batch size to 1024, warmup epoch to 5, and we
search from two drop path 0.1 and 0.12. For optimization, we use the same optimizer as MAE for
both pretraining and fine-tuning.
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Figure 9: Loss curve of pretraining and linear probing with masking at 75% and 90% on the training
tasks. We also illustrate the curves of finetuning in Appendix.

Figure 10: Visualization of the latent representations of the patches before (the first row) and after
finetuning (the second row). Four columns from left to right represent encoders (j = 0, 3, 6, 9),
respectively. Mask ratio η2 is 0.9.

A.2 ONE-SHOT MASKING

A.2.1 REPRESENTATION DISCRIMINATION

We analyze the discrimination of output representation from pretrained model masked at different
postions (j = 0, 3, 6, 9) from two aspects inclduing loss curve and representation visualization.

Loss curve. During pretraining, as depicted in Fig 9(a) and (b), masking at the beginning makes the
optimization more challenging. This difficulty forces the encoder to learn more clues from visible
patches. Consequently, in the linear probing phase (with fixed parameters), as shown in Fig 9(c)
and (d), the encoder at j = 0 is more easily optimized compared with others. This implies that the
representations encoded by the fixed encoder at j = 0 are relatively more distinguishable.

Representation visualization. To further verify this finding, we follow the approach of CAE (Chen
et al., 2022a) and visualize the latent representations of patches from randomly sampled images from
the ADE20K dataset in a 2D space using t-SNE (Van der Maaten & Hinton, 2008), as illustrated in
Fig 10. We adopt t-SNE (Van der Maaten & Hinton, 2008) to visualize the high-dimensional patch
representations output from our pretrained encoder on ADE20K (Zhou et al., 2019). ADE20K has a
total of 150 categories. For each patch in the image, we set its label to be the category that more than
half of the pixels belong to. We collect up to 200 patches for each category from sampled 500 images.
In the first row, the latent representations of the encoder at j = 0 are clustered to some degree for
different categories, while the encoders at j = 3, 6, 9 fail to achieve such clustering. Additionally, in
the second row, finetuning causes the representations of different categories to scatter while those of
the same category cluster together, thereby significantly enhancing the performance of pretrained
encoders.

A.2.2 ATTENTION MAP VISUALIZATION

To figure out what fine-tuning brings to encoders at j = 0, 3, 6, 9, we visualize the attention maps
averaged over attention heads between the class token and the patch tokens in the last layer of
ViT, as shown in Fig 11. It can be observed that fine-tuning narrows the attention scope of the
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Figure 11: Visualization of the mean attention map of all heads in the last block of ViT before (1-8
columns) and after fine-tuning (9-16 columns). The region inside the blue contour is obtained by
thresholding the attention weights to keep 50% of the mass. These images are randomly sampled
from the ImageNet100 val set. The last four rows represent encoders (j = 0, 3, 6, 9), respectively.

encoder at j = 0, potentially removing some noise factors. In contrast, fine-tuning remarkably
expands the attention field of encoders at j = 3, 6, 9, involving more information. Similar results can
also be observed for each attention head in Fig 12 and Fig 13. It can be observed that fine-tuning
narrows the attention scope of the encoder at j = 0, potentially removing some noise factors. In
contrast, fine-tuning remarkably expands the attention field of encoders at j = 3, 6, 9, involving more
information.

Figure 12: Visualization of the attention map of six heads in the last block of transformer encoder
before and after finetuning. Four rows represents encoders (0-th, 3-th, 6-th, and 9-th) respectively.
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Figure 13: Visualization of the attention map of six heads in the last block of transformer encoder
before and after finetuning. Four rows represents encoders (0-th, 3-th, 6-th, and 9-th) respectively.

A.3 TWO-SHOT MASKING

A.3.1 RESULTS OF TWO-SHOT MASKING
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Figure 14: Results of two-shot masking on ViT-S/16. The
dash line is the one-shot baseline (MAE).

For η1 = 0.9, in Fig 14 (c) and Figure 14
(d), using a smaller η2, e.g., 0.1 and 0.05,
helps model obtain superior performance
compared to η2 = 0.25 and 0.15 in both
linear probing and fine-tuning. We also
find that the performance of two-shot
masking is inferior to the baseline for
linear probing. This is in line with ex-
pectation as η1 is considerably large, re-
sulting in quite few patches (clues) left.
The second shot masking further elimi-
nates the visible patches, making it more
challenging to reconstruct the missing
information. However, as opposed to lin-
ear probing, one can see that although
η1 = 0.9 is quite large, our two-shot masking still shows potential to outperform the baseline in
fine-tuning, especially at L(0, 10).

A.3.2 MORE VISUALIZATION

We first visualize We first leverage Centered Kernel Alignment (CKA) to analyze the layer representa-
tion similarity across pretrained models. As illustrated in Fig 15, we visualize the layer representation
similarity between several two-shot masking pre-trained models and baseline (0, 0.9) as heatmaps.
We can see that the representation varies from that of baseline, similar to two-shot models η1 = 0.75.

Then we visualize the attention distance and attention entropy over different two-shot models and
baselines in Fig 16 (η1 = 0.75) and Fig 17 (η1 = 0.9). We see that the second masking decreases the
attention distance and entropy for all two-shot models no matter where the position of the second
masking is.
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Figure 15: Layer representation similarity between pretrained two-shot masking model and baseline.
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Figure 16: Comparison of two-shot masking and baseline model (η1 = 0.75) on attention distance
and attention entropy.

We also present the attention distance and attention entropy before/after fine-tuning for two-shot
model variants (η1 = 0.75) shown in Fig 18. Compared to pretraining, fine-tuning decreases the
attention distance and entropy in low layer and also elevates attention distance in high layer for all
models.

Finally, we compare the attention distance and entropy between baseline and two-shot model variants
after fine-tuning (L(0, 3/6/9/10/11; 0.75, 0.1)) in Fig 19. We see that two-shot model variants have
similar attention distance and entropy in high layers while more concentrated and lower attention
distance and entropy in low and middle layers.

A.4 THREE-SHOT MASKING

We present the three-shot result in Tab 8. The "Equal interval" strategy refers to equally spaced
masking positions, while the "Prefer front layer" indicates that the three-shot masking is performed
in the early layers. The "Unbalanced interval" strategy selects the third masking position based on
the best two-shot masking setting, which could be close to either the first or second masking position.

Among different strategies, we find our three-shot masking method (η1, η2, η3) = (0.75, 0.1, 0.1)
yielded the best results. This highlights the superiority of our step-by-step strategy, which exhibits a
resemblance to the greedy algorithm.
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Figure 17: Comparison of two-shot masking and baseline model (η1 = 0.9) on attention distance and
attention entropy.
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Figure 18: Comparison of two-shot model variants L(0, 3/6/9/10/11; 0.75, 0.1) and baseline model
L(0; 0.75) on attention distance and attention entropy before/after fine-tuning. Lp means pretrained
model. Ft means fine-tuned models.
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Figure 19: Comparison of two-shot model variants (L(0, 3/6/9/10/11; 0.75, 0.1)) and baseline
model on attention distance and attention entropy.
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Table 8: Our step-by-step three-shot masking compared to others three-shot masking strategies.
Different three-shot masking strategy i, j, k η1, η2, η3 FT

Equal interval

0, 4, 8 0.5,0.5, 0.5 66.42

0, 5, 10

0.5, 0.5, 0.5 67.2
0.75, 0.25, 0.25 73.5
0.75, 0.25, 0.1 77.7
0.75, 0.1, 0.1 80.9

0, 6, 11 0.75, 0.25,0.1 77.7
0.75, 0.1, 0.1 80.9

Prefer front layers
0, 3, 6

0.5,0.5, 0.5 64.1
0.75, 0.25,0.1 77.1
0.75, 0.1, 0.1 80.5

0, 2, 4 0.75, 0.1, 0.1 80.3
0, 1, 2 0.75, 0.1, 0.1 81.4

Unbalanced interval

0, 3, 10
0.5, 0.5, 0.5 64.7

0.75, 0.25, 0.1 78.1
0.75, 0.1, 0.1 81.3

0, 2, 10 0.75, 0.1, 0.1 81.4
0, 1, 10 0.75, 0.1, 0.1 81.8

0, 9, 10 0.75, 0.1, 0.1 81.7
0, 8, 10 0.75, 0.1, 0.1 81.6

Our three-shot 0, 10, 11 0.75, 0.1, 0.1 81.9
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Figure 20: Comparison on attention distance and entropy among one-shot, two-shot, and three-shot
masking.

Table 9: Comparisons on fine-grained datasets among one-shot, two-shot, and three-shot masking.
Dataset L(0; 0.75) L(0, 10; 0.75, 0.1) L(0, 10, 11; 0.75, 0.1, 0.1)

ImageNet100 82.5 84.6 (+2.1) 81.9 (-0.6)
Flower102 34.7 37.3 (+2.6) 35.1 (+0.4)
Standford Dog 51.6 54.3 (+2.7) 52.2 (+0.6)
CUB-200 48.2 51.1 (+2.9) 48.7 (+0.5)
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