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ABSTRACT

Generating SQLs according to user queries (text-to-SQL) is a long-standing sequen-
tial challenge, where the accuracy of the initial schema linking significantly impacts
the subsequent SQL generation performance. However, existing models often focus
more on SQL generation and less on the schema linking task, leading to potential
missing or redundant schema linking and suboptimal SQL generation performance.
The underlying reason is that schema linking is not a simple selection problem but
a Knapsack problem, which should consider both the value of the schema linking
in terms of missing important information and the weight of the schema linking
in terms of providing redundant information. Motivated by this, we provide two
tailored SL benchmarks and two tailored metrics to train SL agents and to evaluate
the missing and redundant schema linking. In this paper, we propose the Knapsack
Schema Linking Agent (KaSLA), which can link the most valuable and least
redundant schema element subsets for both tables and columns. KaSLA introduces
an importance score function to predict each schema element’s importance score,
and then utilizes the importance score to estimate the value and the weight of each
schema. Then, by estimating the capacity, the maximum weight the knapsack can
hold, of a given user query from historical SQL records, KaSLA employs efficient
dynamic programming to select the most valuable schema element set within the
estimated capacity. Extensive experiments on two benchmark datasets demonstrate
the superior performance of KaSLA over 12 state-of-the-art baselines. Especially
on the popular and challenging BIRD benchmark, KaSLA can outperform the
baselines by over 5.72%.

1 INTRODUCTION
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Figure 1: The performance com-
parison of the schema linking
methods with a same text-to-
SQL backbone on BIRD-dev.

With the advent of large language models (LLMs) (Achiam et al.,
2023; Dubey et al., 2024), LLM-based text-to-SQL is emerging
as the next-generation interface for database users (Hong et al.,
2024b). Typically, text-to-SQL frameworks employ a two-step
process: first linking user queries to database schema, then gen-
erating the corresponding SQL statement. However, the accurate
SQL statement requires the linking to the correct schema elements
(tables and columns) meaning that fatal errors in earlier stages
inevitably propagate to later ones. For instance, inaccurate schema
linking—such as overlooking crucial tables or linking to irrelevant
tables or columns—will lead to incorrect SQL statements. As
illustrated in Figure 1, current text-to-SQL models still exhibit
a significant performance gap (15.75%) in SQL generation compared with feeding gold standard
schema linking. Consequently, improving the accuracy of schema linking remains a critical challenge
with substantial research value, offering considerable potential for advancement in the field.

Recent state-of-the-art text-to-SQL models tend to focus primarily on final SQL generation while
employing relatively simplistic schema linking strategies. DIN-SQL (Pourreza & Rafiei, 2023)
pioneered the use of LLMs to generate schema linking by inputting the full schema. DAIL-SQL (Gao
et al., 2024) extended this approach by leveraging historical query-SQL pairs as evidence to improve
generative schema linking. DELLM (Hong et al., 2024a) introduced a specialized data expert LLM

1
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Figure 2: Comparison of previous selection schema linking framework and knapsack schema linking
framework. We use table linking as an example. Selection models usually lead to either missing or
redundant items, while knapsack schema linking solves this issue by maximizing the total value of
objects while adhering to the total weight constraint.

to provide additional knowledge for schema linking. DTS-SQL (Pourreza & Rafiei, 2024) fine-tunes
two LLMs for table linking and SQL generation, respectively. TA-SQL (Qu et al., 2024) generates a
dummy SQL and then utilizes LLM to abstract the linked schema from it for the subsequent SQL
generation. In contrast to the above approach, which relies exclusively on the generative capabilities
of LLMs, CodeS (Li et al., 2024b) implemented a recall-based strategy to include semantically
matching schema elements in the input for SQL generation models, albeit at the cost of potentially
introducing un-matching elements. However, as illustrated in Figure 1, both generative and recalled
schema linking strategies have a significant gap against the gold schema linking.

The significant performance gap can be attributed to three key problems:

• Oversimplified Selection Modeling: Existing text-to-SQL models do not impose constraints on
the schema linking process. As shown in Figure 3, current schema linking processes suffer from
either high missing rates, high redundancy rates, or both. Such missing and redundant elements
negatively impact the overall SQL generation performance.

• Missing & Redundancy Seesaw Problem: There exists a seesaw phenomenon between missing
and redundant elements in schema linking. Generative strategies tend to have high missing rates
and low redundancy rates, while recall-based models exhibit the opposite behavior. Reducing
both missing and redundant schema elements simultaneously poses a significant challenge.

• Lack of Benchmarks and Metrics: The field currently lacks a formal definition of the schema
linking problem and standardized evaluation metrics for assessing missing and redundant
elements. This absence hinders consistent evaluation and comparison of different approaches,
impeding progress in the field.
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Figure 3: The comparison
of schema linking models
on missing and redundancy
on BIRD-dev.

From these observations, we highlight that schema linking is not a
simple selection problem but a Knapsack problem, which requires
maximizing total value (low missing rate) while satisfying total weight
constraints (low redundant rate). To address this, we design two tai-
lored schema linking benchmarks and introduce two schema linking
metrics: schema missing rate and schema redundancy rate to as-
sess schema linking performance. Based on these benchmarks, we
propose the Knapsack Schema Linking Agent (KaSLA), a dynamic
programming agent that links the most valuable and least redundant
element sets according to user queries. KaSLA can be applied to both
table and column linking. It introduces a novel nomination-guaranteed
score function to predict the importance score of each element, which
simultaneously assigns high scores to highly confident elements while
ensuring all elements receive basic importance scores to prevent miss-
ing. These importance scores are then used to estimate the value and weight of each element. By
estimating the capacity of a given user query from historical SQL records, KaSLA employs efficient
dynamic programming to select the most valuable element set within the predicted capacity. In
summary, our contributions are as follows:
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• We formally define the schema linking problem as a Knapsack problem. Motivated by this
formulation, we propose the Knapsack Schema Linking Agent (KaSLA) to dynamically select
the least missing and redundant schema elements and enhance mainstream text-to-SQL models.

• We introduce two well-organized benchmarks for schema linking training and evaluation, along
with two metrics. These contributions facilitate future research in schema linking and text-to-
SQL tasks. These benchmarks are anonymously published 1.

• KaSLA offers a novel nomination-guaranteed score function to overcome the missing & re-
dundancy seesaw problems, and then estimate the value, weight, and capacity. This approach
provides a fundamental solution for improving schema linking and text-to-SQL performance.
Codes are public access available 2.

• Extensive experiments demonstrate that KaSLA can enhance schema linking accuracy by
reducing missing and redundant information, as well as improve the final text-to-SQL generation
accuracy. Particularly on the highly challenging BIRD benchmarks, KaSLA surpasses baselines
by more than 5.72% .

2 PRELIMINARIES

Notations. Given a natural language query q and a database schema S = {s1, · · · , s|S|}, where
si represents either a table or a column in the database, conveying the structured representation of
the corresponding database. The database schema S can be further divided into two subsets: the set
of tables T = {t1, · · · , t|T |} and the set of columns C = {c1, · · · , c|C|}, such that S = T ∪ C. For
each table t ∈ T , its corresponding set of columns is denoted as Ct = {c1, · · · , c|Ct|}.

Knapsack Problem of Schema Linking. As discussed in the introduction, schema linking perfor-
mance is negatively impacted by both missing and redundant elements, indicating that schema linking
is not a simple selection problem. For example, directly feeding all schemas into the text-to-SQL
models can capture all possible schemas but will suffer from heavy redundancy. On the other hand,
when the total number of schemas is limited, there is a higher possibility of missing important ones.

Motivated by this, schema linking can be defined as a knapsack problem (Fréville, 2004), where the
objective is to maximize the information contained in the schema linking set while controlling the
total weight of the set. Formally, we have the following definition:
Definition 2.1 (Knapsack Schema Linking Problem). For any given query q, let Cq represent the total
weight capacity of schemas for this query. For each schema s, let Vs,q denote the value of the schema
element given user query q, and let Ws,q denote the weight of the schema given the query.

The optimal schema linking can be achieved by solving the following optimization problem:

S∗ = argmax
S⊆S

∑
s∈S

Vs,q, subject to
∑
s∈S

Ws,q ≤ Cq. (1)

In this formulation, the objective is to maximize the total value of the selected schema elements while
ensuring that the total weight of the selected elements does not exceed the capacity Cq. By solving
this knapsack problem, we can obtain the optimal schema linking set that balances the trade-off
between including relevant information and minimizing redundancy.

To solve the Knapsack Schema Linking Problem, we need to estimate the value Vs,q and weight Ws,q

of each schema element given the user query, as well as determine the capacity Cq for each query. In
the following sections, we will first introduce the schema linking benchmark and then introduce our
proposed KaSLA.

3 SCHEMA LINKING BENCHMARKING

In this section, we first describe the construction of our benchmark dataset and then propose two
specially designed metrics for schema linking evaluation.

1https://anonymous.4open.science/r/iclr2025-SL-benchmark/
2https://anonymous.4open.science/r/iclr2025KaSLA/
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3.1 BENCHMARK CONSTRUCTION

Our schema linking benchmark dataset is designed to facilitate the training and evaluation of schema
linking models, aiming to inspire further research in developing increasingly powerful schema
linking techniques. Each instance in the benchmark comprises a query, a full schema, and the
corresponding ground truth schema linking. Formally, the benchmark dataset can be expressed as
B = {(qi,S,Si)}|B|

i=1, where qi represents the user query, S denotes the full schema, and Si is the
ground truth schema linking result for the i-th sample.

We have compiled two benchmarks based on the widely used Spider (Yu et al., 2018) and BIRD (Li
et al., 2023c) datasets, each containing over ten thousand records.

3.2 SCHEMA LINKING METRICS

Limitations of Previous Studies Previous text-to-SQL research usually overlooked the evaluation
of schema linking (Pourreza & Rafiei, 2023). Other works mentioned schema liking performance still
use classification metrics such as AUC (Li et al., 2023a; 2024b), Recall, Precision, and F1 scores (Qu
et al., 2024). However, any missing of the necessary element will result in wrong SQL generation.
Besides, Recall, Precision, and F1 cannot quantitatively evaluate the actual linking results. AUC is
also not suitable because schema linking is an imbalanced classification task. To this end, we propose
two metrics that evaluate the missing and redundancy rates that directly impact the SQL generation
performance rather than traditional metrics. We provide a detailed discussion of the limitations of
traditional metrics and compare them with the proposed metrics in the Appendix G.

Schema Missing Rate Since the missing of even one necessary schema element will highly impact
the SQL generation performance, theRmiss is designed to be a strict metric. Specifically, for each
instance, if the ground truth schema linking is not included in the predicted schema linking, this
instance gets a fail score of 1. Conversely, if the ground truth schema linking is totally included,
the instance receives a success score of 0, indicating no missing. Formally, given the query q, the
predicted schema linking result Ŝq, and the ground truth schema linking result Sq, the Schema
Missing RateRmiss can be defined as:

Rmiss =
1

|B|
∑

(q,S,S)∈B

1(Sq ⊈ Ŝq), (2)

where 1(·) is an indicator function that returns 1 if the condition inside is satisfied and 0 otherwise.
As defined above, any missing element in Ŝq will result in a failure for that instance.

Schema Redundancy Rate Different from the missing condition, where even minor missing will
result in wrong SQL statements, for redundancy, the LLMs have certain but not much anti-interference
ability, where a slight redundancy will not impact the SQL statement. However, as shown in Figure 1,
heavy redundancy, such as inputting full schema, will have far lower SQL generation performance
compared with inputting schema linkings. Motivated by this, Schema Redundancy Rate (Rredun)
describes how many portions of schemas are redundant, where the formal definition is:

Rredun =
1

|B|
∑

(q,S,S)∈B

(
|Ŝq \ Sq|
|Ŝq|

)

σ

︸ ︷︷ ︸
Redundancy Rate

, σ = 1(Sq ⊆ Ŝq)︸ ︷︷ ︸
Non-missing Indicator

. (3)

Here, |Ŝq \ Sq| is the number of redundant elements which is predicted but not present in the
ground truth. Note that we only consider the redundancy rate of the non-missed prediction, and
the redundancy of the missed prediction will directly be treated as 1, which means a failure. Since
if the prediction is null set Φ, the redundancy will be unreasonably computed as 0. Based on this
formulation, a lowerRredun indicates better schema linking performance with fewer redundancy.

By employing bothRmiss andRredun, we provide a more comprehensive and unbiased evaluation
of schema linking models, ensuring that both completeness and redundancy are adequately assessed.
This approach offers a nuanced understanding of model performance, directly applicable to the task
of SQL generation.

4
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4 KNAPSACK SCHEMA LINKING AGENT (KASLA)

We first introduce the definition and training process of the nomination-guaranteed score function.
Then we discuss the estimation of key knapsack factors using the importance score. Finally, we
present the full hierarchical KaSLA schema linking process.

4.1 NOMINATION-GUARANTEED SCORE FUNCTION

Overview The key factor of KaSLA is evaluating the importance score for each given schema
element. We introduce a hybrid nomination-guaranteed score function to accomplish this task. The
nomination part identifies high-confidence elements using a heuristic approach, while the guaranteed
part provides a basic importance score for each element. Formally, the nomination-guaranteed
function can be expressed as:

Is,q = min(I(s | q,S), 1), I(s | q,S) = Inomi(s | q,S) + αIguar(s | q,S), (4)

where Inomi(s | q,S) returns a {0, 1} value that directly nominates elements, Iguar(s | q,S) assigns
a soft [0, 1] value to each element, and α controls the contribution of the guaranteed score. We set an
upper bound of 1 for Is,q to avoid introducing overly strong contrasting relationships between the
potentially matched elements.

Nomination Scoring Model The nomination scoring model effectively returns a subset given the
full schema, formally expressed as Ŝnomi ⊆ S given the input (q,S). Thus, Inomi(s | q,S) = 1 if
s ∈ Ŝnomi and Inomi(s | q,S) = 0 if s /∈ Ŝnomi.

To best meet these requirements, we employ Large Language Models (LLMs) (Lozhkov et al., 2024)
as the nomination model. Specifically, we utilize StarCoder2, fine-tuning it on our benchmark using
the ground truth schema linking result S as the target for schema prediction. The loss function is
formulated as:

Lnomi = −
∑

(q,S,S)∈|B|

logP (S | q,S). (5)

Guaranteed Scoring Model The guaranteed scoring model Iguar(s | q,S) = P (s ∈ S) assigns
an importance value to any given element, representing the predicted probability of s ∈ S.

We design the guaranteed scoring model from a semantic perspective. First, we use a RoBERTa-Large
model femb(·) to obtain semantic embeddings of all schema elements femb(s), where s ∈ S , and the
query embedding femb(q). Then, following the approach of Li et al. (2023a; 2024b), we employ a
cross-attention network fatt(·) to jointly embed the semantic embeddings of tables and their columns
for each element s ∈ S . The importance score is then predicted as (W ·fatt(femb(s))+b) ·femb(q),
where W and b are learnable parameters.

We train this guaranteed scoring model using our constructed benchmark. Specifically, we use the
presence of s in S as a training objective. The detailed loss function is defined as:

Lguar =
∑

(q,S,S)∈|B|

∑
s∈S

FL(1(s ∈ S), Iguar(s | q,S)), (6)

where FL(·) is the focal loss function (Ross & Dollár, 2017), designed to focus learning on hard
negative samples.

4.2 KNAPSACK FACTOR ESTIMATION

As formulated in Eq. (1), for a given schema element s and query q, KaSLA employs Vs,q and
Ws,q to represent the value and weight of s, respectively. For query q, KaSLA utilizes Cq to denote
the total weight capacity. Unlike traditional knapsack problems Fréville (2004), KaSLA lacks
ground truth values for these factors. This section proposes three estimation functions to predict the
aforementioned factors, enabling KaSLA to select the most valuable element subsets while adhering
to the total weight capacity constraint.

5
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Value Estimation Schemas with higher importance scores should be assigned higher values for
inclusion in KaSLA. Consequently, any positive correlation function can map the importance score
Is,q to the value estimation V̂s,q. For simplicity, we employ an identity transformation as the most
straightforward mapping function:

V̂s,q = fV (s, q) = Is,q. (7)

While more sophisticated value estimation functions could be designed, this simple yet effective
solution proves powerful in practice.

Weight Estimation For weight estimation, elements with higher importance should be assigned
lower weights than those with lower importance scores. Thus, the weight estimation employs a
negative correlation function to map importance scores to weight estimations. Specifically, we define
the element weight Ŵs,q using a reciprocal power function of the importance Is,q to represent the
likelihood that introducing an element will add redundancy to the final schema linking results.

For schema element s ∈ S, the prediction function of W is formulated as:

Ŵs,q = fW (s, q) = ⌊(Is,q − EI≥τ (S, q) + 1)
−1⌋, (8)

where EI≥τ (S, q) is the expectation of element importance scores greater than a hyperparameter τ :

EI≥τ (S, q) = E
[
{Is,q | Is,q ≥ τ}s∈S

]
. (9)

The rounding operation in fW (s, q) is designed to reduce the time and space complexity of subsequent
Knapsack optimization. We use EI≥τ (S, q) to denote the average importance of elements with high
importance scores. fW (s, q) computes the reciprocal of the difference between each element’s
importance Is,q and an expected high importance score. A large negative difference indicates that the
element deviates significantly from other highly important ones, suggesting a higher likelihood of
redundancy.

Capacity Estimation To constrain redundancy in the schema linking process, we define weight
capacity C as the maximum allowable weight for KaSLA. We begin by selecting a top-KC similar
demonstration set D from the training dataset, based on the similarity between the user queries in the
training dataset and the given query q. For each sample d in D, we define a schema element set that
includes all ground truth elements as well as all elements with an estimated importance greater than
the ground truth ones. We denote this set as Knap(d) to represent an assumed full knapsack:

Knap(d) = Sd + {s | Is,qd ≥ min{Iz,qd}z∈Sd
}s∈Sd\Sd

, (10)

where Sd is the ground truth linking set, and Sd is the original schema of d. We then calculate the
sum of the predicted weights of all elements in Knap(d) to represent the assumed capacity of d.
Accordingly, we define the prediction function of C as follows:

Ĉq = fC(q) = γ ·max{
∑

s∈Knap(d)

Ŵs,q}d∈D, (11)

where γ > 0 is a hyperparameter. The maximum capacity among all samples in the most similar
demonstrations of q provides a robust prediction of the capacity.

4.3 HIERARCHICAL KASLA SCHEMA LINKING

Our KaSLA operates in a hierarchical manner to effectively address schema linking challenges.
The process unfolds in two stages: first, KaSLA performs table linking, and subsequently, for each
selected table, it simultaneously accomplishes column linking. This hierarchical approach enables
KaSLA to efficiently reduce the dimensionality of the schema space, thereby enhancing its capability
to handle large-scale and complex schema linking and text-to-SQL generation tasks encountered in
real-world applications.

6
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KaSLA Agent Details The core of KaSLA’s schema linking process is formulated as an optimiza-
tion problem, which we solve using a tailored integer 0-1 knapsack dynamic programming algorithm.
Given the estimated values V̂s,q and weights Ŵs,q for all elements s, and the estimated capacity Ĉq

of the query q, we aim to solve:

S∗ = argmax
S⊆S

∑
s∈S

V̂s,q, subject to
∑
s∈S

Ŵs,q ≤ Ĉq. (12)

This optimization problem is efficiently solved using dynamic programming, leveraging the discrete
nature of the weights and capacity. The algorithm systematically builds an optimal solution by
considering all possible element combinations within the capacity constraint, ensuring that KaSLA
selects the most valuable elements while respecting the query’s capacity limit. This approach not
only guarantees an optimal solution but also provides insights into the trade-offs between element
value and computational capacity, allowing for adaptable and efficient schema linking across diverse
query complexities.

Hierarchical KaSLA Strategy The hierarchical nature of KaSLA allows for a more efficient and
scalable approach to schema linking. This strategy is implemented in two distinct phases: table
linking and column linking. The full algorithm is provided in Appendix D Algorithm 1 and the
complexity analysis is provided in Appendix E.

TABLE LINKING PHASE In the first phase, KaSLA focuses on identifying the relevant tables for
the given query. Let T be the set of all available tables and q be the input query. The table linking
optimization problem is formulated as:

T ∗ = argmax
T⊆T

∑
t∈T

V̂t,q, subject to
∑
t∈T

Ŵt,q ≤ Ĉt
q, (13)

where V̂t,q and Ŵt,q are the estimated value and weight of table t for query q, respectively, and Ĉt
q is

the estimated capacity for tables in query q.

COLUMN LINKING PHASE Following the table linking, KaSLA proceeds to select relevant columns
for each chosen table. For each table t ∈ T ∗, let Ct be the set of columns in table t. The column
linking optimization problem for each table is defined as:

C∗
t = argmax

T ′⊆Tt

∑
c∈T ′

V̂c,q,t, subject to
∑
c∈T ′

Ŵc,q,t ≤ Ĉc
q,t, (14)

where V̂c,q,t and Ŵc,q,t are the estimated value and weight of column c in table t for query q,
respectively, and Ĉc

q,t is the estimated capacity for columns of table t in query q. The final schema
linking result S∗ is the union of all selected tables and the corresponding selected columns:

ŜKaSLA = T ∗ ∪
⋃

t∈T ∗

C∗
t . (15)

Final KaSLA Application In the deployment phase, both during training and inference, KaSLA can
integrate with any text-to-SQL modelM. This flexibility allows KaSLA to enhance the performance
of existing state-of-the-art models while maintaining their underlying strengths. Given an input query
q, KaSLA’s predicted schema linking ŜKaSLA, and the ground truth schema linking result S, the
training process of a SQL generation model is formulated as follows:

ŷ = argmax
y∈Y

PM(y|q, ŜKaSLA ∪ S), (16)

where Y represents the target SQL queries, and PM(y|q, ŜKaSLA∪S) denotes the probability assigned
by modelM to token y in Y , conditioned on the input query q and the unified schema information.
During the inference stage, only the schema linking results generated by KaSLA are used:

Ŷ =M(q, ŜKaSLA), (17)

where Ŷ represents the predicted SQL queries.

7
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5 EXPERIMENTS

We conducted comprehensive experiments on two public text-to-SQL datasets to evaluate KaSLA
and address the following research questions: RQ1: Does KaSLA outperform existing text-to-SQL
baselines? RQ2: Can KaSLA enhance the performance of other text-to-SQL models? RQ3: Does
KaSLA demonstrate better schema linking performance? RQ4: Is KaSLA a solution for real-world
text-to-SQL applications without training data? (We addressed RQ4 in Appendix F.)

5.1 EXPERIMENT SETUP

We conducted experiments on two well-known large-scale text-to-SQL datasets, BIRD (Li et al.,
2023c) and Spider (Yu et al., 2018). We included multiple robust baselines based on LMs, LLMs
with in-context learning, and LLMs with fine-tuning. For evaluation, we used the proposed metrics
Schema Missing Rate (Rmiss) and Schema Redundancy Rate (Rredun) for schema linking, as well
as Execution Accuracy (EX) (Yu et al., 2018; Li et al., 2023c) and Valid Efficiency Score (VES) (Li
et al., 2023c) for text-to-SQL. The detailed experimental settings are presented in Appendix B.

5.2 MAIN RESULTS OF SQL GENERATION

To address RQ1, we conduct experiments to evaluate the SQL generation ability of our KaSLA and
other baselines with Execution Accuracy (EX) and Valid Efficiency Score (VES) on the BIRD-dev
and Spider-dev datasets and report the results in Table 1.

KaSLA’s superior performance. Based on the experimental results, KaSLA demonstrates out-
standing performance across both BIRD-dev and Spider-dev. KaSLA achieves the highest overall
EX (63.75%) and VES (69.68%)on both BIRD-dev and Spider-dev datasets, clearly surpassing all
other approaches. While its scores on Spider-dev are 88.01% EX and 86.06% VES, significantly
outperforming other models.

Comparison with GPT-4 ICL baseline. In comparison to the best In-Context Learning (ICL)
baseline, which uses the powerful GPT-4, KaSLA shows remarkable improvements. On BIRD-dev,
KaSLA outperforms the best ICL baseline by 6.77% in EX and 5.56% in VES. On the Spider-
dev dataset, KaSLA’s EX improvement compared to GPT4-based methods is slightly lower, this
discrepancy can be attributed to the inherently simpler and more regular schema of the Spider-
dev dataset. A simpler schema can be processed well without specially designed linking methods,
thereby making advanced systems like KaSLA appear less dominant in terms of improvement
gains. Consequently, these improvements on BIRD-dev highlight KaSLA’s advanced capabilities,
particularly in more intricate database environments.

Performance across difficulty levels. When evaluating the models based on the difficulty levels,
KaSLA consistently excels across all difficulty levels—easy, medium, and hard. On BIRD-dev,
KaSLA achieves significant EX improvements of 4.20%, 18.50%, and 1.58% over the best ICL
baselines and 2.54%, 12.55%, and 12.28% over the best ICL baselines on easy, medium, and hard
queries, respectively. On Spider-dev, while the overall improvement is smaller, KaSLA still shows
performance enhancements across hard and extra hard queries compared with the best SFT baseline.

5.3 APPLY KASLA TO EXISTING TEXT-TO-SQL MODELS

To address RQ2, we evaluated the impact of integrating KaSLA as a plug-in model into existing text-
to-SQL methods and provided the results in Table 2. For our analysis, we specifically incorporated the
schema elements linked by KaSLA into prominent text-to-SQL baselines. Through this integration,
KaSLA’s enhanced schema linking capabilities are utilized as part of the input prompt for SQL
generation, promising improvements in both EX and VES.

Improvements with KaSLA. As shown in Table 2, integrating KaSLA leads to noticeable improve-
ments. For instance, the combination of CodeS-15B-SFT with KaSLA demonstrates an improvement
in overall EX on the BIRD-dev dataset from 58.08% to 60.95%, alongside a boost in VES from
59.87% to 66.11%. Similar enhancements are observed with DAIL-SQL , E-SQL, and CHESS when
augmented with KaSLA, notably improving EX and VES across various difficulty levels and datasets.
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Table 1: The text-to-SQL performance of our KaSLA and three main types of baselines: regular
LMs, In-Context Learning (ICL) with LLMs, and Supervised Fine-Tuning (SFT) with LLMs, with
Execution Accuracy (EX) (%) and Valid Efficiency Score (VES) (%) on BIRD-dev and Spider-dev
datasets. The numbers in parentheses next to each method (e.g., 23’, 24’) represent the release year
of the respective models or methods. (SC) refers DAIL-SQL with self-consistency.

Type Method Text-to-SQL
Model

BIRD-dev Spider-dev
EX VES EX VES

Easy Medium Hard Total Total Easy Medium Hard Extra Total Total

L
M

s

ResdSQL (23’)
T5-Base 42.27 20.22 15.97 33.12 32.85 91.94 83.63 68.39 51.81 77.95 77.71
T5-Large 46.49 27.96 22.92 38.66 40.62 93.55 85.43 72.41 53.61 80.08 79.72

T5-3B 53.51 33.33 16.67 43.94 44.42 94.76 87.67 72.99 56.02 81.82 80.89

IC
L

C3-SQL (23’) GPT-3.5 58.92 38.49 31.94 50.20 50.77 92.74 85.20 77.59 62.05 82.01 80.09
MAC-SQL (23’)

GPT-4

- - - 57.56 58.76 - - - - 86.75 -
DIN-SQL (23’) - - - 50.72 58.79 92.34 87.44 76.44 62.65 82.79 81.70

DAIL-SQL (23’) 62.49 43.44 38.19 54.43 55.74 91.53 89.24 77.01 60.24 83.08 83.11
DAIL-SQL (SC) 63.03 45.81 43.06 55.93 57.20 91.53 90.13 75.29 62.65 83.56 -
TA-SQL (24’) 63.14 48.82 36.81 56.32 - 93.50 90.80 77.60 64.50 85.00 -

SuperSQL (24’) 66.92 46.67 43.75 58.60 60.62 94.35 91.26 83.33 68.67 87.04 85.92
Dubo-SQL (24’) - - - 59.71 66.01 - - - - - -

SF
T

Pure-SL(24’)

StarCoder2
-15B

56.65 43.23 31.94 50.26 57.09 93.15 87.89 74.71 59.04 82.30 80.63
DTS-SQL (24’) 63.03 46.02 34.72 55.22 64.17 91.94 90.58 78.74 66.87 85.11 85.49

TA-SL (24’) 59.89 45.38 34.72 53.13 60.51 95.56 92.38 79.89 63.25 86.36 85.03
CodeS (24’) 68.00 51.40 39.58 60.30 65.04 94.76 91.26 72.99 64.46 84.72 83.52

KaSLA (Ours) 69.73 57.85 44.44 63.75 69.68 96.77 93.27 82.76 66.27 88.01 86.06
%Improv. vs. the best ICL baseline +4.20% +18.50% +1.58% +6.77% +5.56% +2.56% +2.20% -0.68% -3.49% +1.11% +0.16%
%Improv. vs. the best SFT baseline +2.54% +12.55% +12.28% +5.72% +7.13% +1.27% +0.96% +3.59% +2.81% +1.91% +3.04%

Table 2: The text-to-SQL performance of adding KaSLA as a plug-in model dedicated to schema
linking to other text-to-SQL methods on BIRD-dev and Spider-dev.

Method Text-to-SQL
Model

BIRD-dev Spider-dev
EX VES EX VES

Easy Medium Hard Total Total Easy Medium Hard Extra Total Total
CodeS CodeS-15B-SFT 65.62 49.68 36.81 58.08 59.87 95.97 89.01 75.29 62.05 84.04 81.74

CodeS + KaSLA 68.54 52.04 40.97 60.95 66.11 95.97 90.58 75.86 59.64 84.43 83.06
DTS-SQL StarCoder2-15B 63.03 46.02 34.72 55.22 64.17 91.94 90.58 78.74 66.87 85.11 85.49

DTS-SQL + KaSLA 65.95 49.89 37.50 58.41 65.56 96.37 92.38 79.31 69.28 87.43 85.73
TA-SL StarCoder2-15B 59.89 45.38 34.72 53.13 60.51 95.56 92.38 79.89 63.25 86.36 85.03

TA-SL + KaSLA 65.30 49.46 38.89 58.02 65.88 95.97 92.83 80.46 64.46 86.94 85.58
DAIL-SQL GPT-4 62.49 43.44 38.19 54.43 55.74 91.53 89.24 77.01 60.24 83.08 83.11

DAIL-SQL + KaSLA 64.86 49.89 38.89 57.89 59.39 95.97 90.13 84.48 66.87 86.85 85.51
CHESS GPT-4 69.51 57.20 40.97 63.10 67.23 95.97 93.05 81.61 63.86 87.14 85.66

CHESS + KaSLA 69.84 58.28 43.75 63.89 68.72 97.18 93.50 82.18 66.87 88.20 86.12
E-SQL GPT-4o 70.70 60.43 45.83 65.25 70.01 97.18 93.72 83.33 65.66 88.30 86.38

E-SQL + KaSLA 71.14 61.29 47.22 65.91 70.86 97.58 93.72 83.91 66.87 88.68 86.82

KaSLA’s adaptability and robustness. These results underscore KaSLA’s flexibility and effective-
ness as a plug-in model. The performance uplift attributed to KaSLA supports its invaluable role in
improving complex text-to-SQL tasks, making it a versatile and powerful addition to any existing
system. This adaptability not only confirms KaSLA’s robustness but also promotes its universal
applicability across different models to achieve superior performance outcomes.

5.4 EXPERIMENTAL RESULTS OF SCHEMA LINKING

To answer the RQ3, we conduct the experiments and report the benchmark results of schema linking
methods on BIRD-dev in Table 3 and report the results on Spider-dev in Appendix I Table 12. We
utilize the proposed evaluation metrics: Schema Redundancy Rate (Rmiss) and Schema Redundancy
Rate (Rredun). We also involve a combined metric (Rcorrect = 1−(Rmiss+Rredun)/2) to evaluate
the comprehensive ability of schema linking model to avoid missing and redundancy.

KaSLA’s superior performance. The experimental results demonstrate that our KaSLA method
exhibits significantly lower missing rates and redundancy rates, resulting in higher overall correctness
rates, consistently achieving a superior performance compared to several other schema linking
methods. For instance, on the BIRD-dev dataset, KaSLA attains an impressive Rcorrect of 85.99%
(table) and 75.97% (column), far surpassing other methods such as CodeS-SL or DTS-SL.
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Table 3: Schema linking benchmarks with Rmiss and Rredun on BIRD-dev. We define a comprehen-
sive metricRcorrect = 1− (Rmiss +Rredun)/2 to evaluate the ability of schema linking model to
avoid element missing and redundancy.

D
at

as
et

Metric

Schema linking Method
KaSLA
(Ours)

CodeS-SL 10shot ICL-SL DIN-SL DTS-SL Pure-SL TA-SL
RoBERTa SGPT

-1.3B GPT-3.5 GPT-4 GPT-3.5 GPT-4 StarCoder2-15BBase Large

B
IR

D
-d

ev

Rmiss ↓
table 1.56 0.85 3.59 33.57 31.23 49.61 36.83 35.01 35.01 21.32 5.21

colmn 15.00 12.53 15.94 93.84 91.49 96.18 93.64 35.77 57.54 43.80 5.83

Rredun ↓
table 57.43 56.97 58.48 42.81 35.74 52.31 39.78 39.71 39.71 25.77 22.80

colmn 81.50 80.83 82.13 95.29 92.18 96.49 94.13 83.04 61.75 46.25 42.24

Rcorrect ↑
table 70.50 71.09 68.97 61.81 66.52 49.04 61.69 62.64 62.64 76.46 85.99

colmn 51.75 53.32 50.96 5.44 8.16 3.66 6.12 40.60 40.36 54.97 75.97

Balancing metrics for effectiveness. Despite some methods achieving lower Rmiss or Rredun

individually, they fail to strike a balance between the two metrics. For example, CodeS-SL with a
RoBERTa-Large achieves the lowest Rmiss of 0.85% for table linking on BIRD-dev, yet its Rredun is
quite high at 56.97%, leading to a lower Rcorrect. In contrast, KaSLA not only maintains a low Rmiss

but also substantially reduces Rredun, thus demonstrating its comprehensive capability in schema
linking. This ability to effectively avoid both element missing and redundancy verifies KaSLA’s
robustness and efficacy, making it a reliable choice for schema linking tasks in complex datasets.

6 LIMITATION

A natural limitation of KaSLA is the inference delay. KaSLA uses a fine-tuned StarCoder2-15B to
generate nomination scores for the entire schema, aiming for improved semantic understanding, but
this results in additional time consumption during inference. We analyzed the average processing
time per instance during inference for each component of KaSLA on the BIRD and Spider datasets,
as detailed in Table 4. We found that the nomination model with StarCoder2-15B contributes to this
inference delay, while other components, such as the guaranteed model with RoBERTa-Large and
the hierarchical knapsack optimization using dynamic programming, do not significantly increase
time consumption. In the future, we aim to reduce the time usage of the nomination model when
processing the entire schema, while maintaining accuracy.

Table 4: Inference time cost per instance of each component in KaSLA

Dataset Schema linking
model

Nomination model
with StarCoder2-15B

Guaranteed model
with RoBERTa-Large

Factor estimation and
dynamic programming Text-to-SQL Total

BIRD-dev Full Schema / / / 14.35 s 14.35 s
KaSLA 12.87 s 0.12 s < 0.01 s 8.80 s 21.80 s

Spider-dev Full Schema / / / 9.69 s 9.69 s
KaSLA 9.17 s 0.06 s < 0.01 s 7.89 s 17.13 s

7 CONCLUSION

This paper introduced the Knapsack Schema Linking Agent (KaSLA), a novel approach to address
the schema linking challenges in text-to-SQL tasks. By framing schema linking as a Knapsack
problem, KaSLA effectively balances the trade-off between missing and redundant schema linkages,
significantly enhancing the accuracy of SQL generation. Our proposed benchmarks and metrics
provide a new standard for evaluating schema linking performance, fostering further advancements
in the field. Extensive experiments demonstrate KaSLA’s superiority over existing methods.

These findings highlight KaSLA’s potential to revolutionize schema linking and advance the broader
capabilities of text-to-SQL systems. By effectively reducing both missing and redundant information,
KaSLA not only improves schema linking accuracy but also enhances the overall performance of
SQL generation. The innovation of the nomination-guaranteed score function plays a crucial role
in overcoming the missing and redundancy seesaw problem, offering a robust solution that can be
integrated into mainstream text-to-SQL models. Our contributions pave the way for more precise and
efficient database interactions, underscoring the transformative impact of KaSLA in the field.
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involved in text-to-SQL implementation have undergone a long period of evolution (Hong et al.,
2024b). Early methods in text-to-SQL research largely focused on template and rule-based human
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engineering (Li & Jagadish, 2014; Mahmud et al., 2015; Yu et al., 2021). Subsequently, with the
emergence of deep learning (Katsogiannis-Meimarakis & Koutrika, 2023) and pre-trained language
models (PLMs) (Liu et al., 2019; Devlin et al., 2019), text-to-SQL has further advanced along with
these developments (Yin et al., 2020; Choi et al., 2021; Li et al., 2023b). Most recently, as LLMs
have gained prevalence in both research-oriented papers and industrial projects, text-to-SQL systems
integrating LLMs are now a research hotspot in the NLP and database communities. Our study
follows an LLM-based text-to-SQL paradigm, consisting of in-context learning and fine-tuning
techniques.

A.1 IN-CONTEXT LEARNING-BASED TEXT-TO-SQL

At the inception of LLMs, in-context learning (ICL) and prompt engineering emerged as a core
method driving advancements in the study of LLMs (Reynolds & McDonell, 2021). Early efforts in
LLM-based text-to-SQL studied the effectiveness of ICL with different prompt designs on various
LLMs (Liu et al., 2023). The natural language understanding (NLU) capabilities empowered by
numerous training corpora enable LLMs to perform well in SQL generation with simple prompt
engineering (Rajkumar et al., 2022). With the success of well-designed ICL methods in other NLU
tasks (Wei et al., 2022; 2021), the integration into the text-to-SQL task has also achieved solid
improvement (Tai et al., 2023). Chain-of-Thought (CoT) prompting (Wei et al., 2022) shows great
potential in natural language reasoning tasks. DIN-SQL (Pourreza & Rafiei, 2023) proposed a CoT-
based decomposed ICL framework with self-correction; ACT-SQL () designed a method to generate
automatic CoT exemplars to enhance SQL reasoning. To optimize the prompt towards better quality,
DAIL-SQL (Gao et al., 2024) introduces a few-shot sampling strategy, providing related samples
for LLMs to learn from, and the Knowledge-to-SQL (Hong et al., 2024a) framework is proposed
to generate helpful knowledge to assist SQL generation. Self-consistency (Wang et al., 2023) for
LLM-based text-to-SQL ensures accuracy based on the execution result. The C3 (Dong et al., 2023)
framework conducts a majority vote of consistency; SQL-PaLM (Sun et al., 2023) introduces an
error-filtering-aided consistency decoding based on execution for better SQL generation. Multi-stage
decomposition is also popular in text-to-SQL studies. MAC-SQL (Wang et al., 2024) employs a
multi-agent collaboration framework to generate and refine SQL; TA-SQL (Qu et al., 2024) introduces
a two-stage generation framework incorporating schema linking and logical synthesis. ICL-based
methods are the mainstream paradigm of LLM-based text-to-SQL, which have made significant
progress and continue to be widely studied in the most current work. CHASE-SQL (Pourreza et al.,
2024) proposes an in-context learning prompt for question decomposition and involves a novel
online synthetic example generation method to adapt LLMs to test datasets. Our proposed method
also follows the ICL paradigm for text-to-SQL. Firstly, we generate a schema linking and then use
adaptive evaluation to improve its quality, providing clear guidance to understand the user query and
the corresponding database schema. Then, the LLMs incorporate the provided schema linking to
generate accurate SQL queries.

A.2 FINE-TUNING-BASED TEXT-TO-SQL

Fine-tuning is an intuitive and widely recognized technique for enabling LLMs to perform specific
downstream tasks (Wei et al., 2021). The fine-tuning methods for aligning LLMs with instructional
tasks are gradually evolving towards better performance and greater effectiveness (Rafailov et al.,
2023). Even though code-specific LLMs are trained on massive programming scenarios, they still
struggle when facing challenging user queries and complex database environments (Gan et al.,
2021; Deng et al., 2021; Li et al., 2023c). As a straightforward method, supervised fine-tuning
(SFT) (Wei et al., 2021) is utilized to adapt open-source LLMs for SQL generation, which elicits a
solid improvement (Gao et al., 2024). For well-designed methods, CodeS (Li et al., 2024b) proposes
a two-stage training framework. First, a backbone code-LLM is pre-trained on an incremental
training corpus, followed by SFT on bi-directional augmented query-SQL pairs, achieving impressive
performance with open-source LLMs. Instead of fine-tuning a single model, DTS-SQL (Pourreza &
Rafiei, 2024) fine-tunes two LLMs separately for schema linking generation and SQL generation.
This two-stage generation process elicits higher accuracy. Our work involves fine-tuning the LLMs
and the PLMs based on the schema linking task, then incorporating the generated schema linking to
assist in accurate SQL generation.
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A.3 SCHEMA LINKING

Schema linking is a crucial step in text-to-SQL tasks, involving the identification and association of
natural language query elements with corresponding database schema components, such as tables
and columns. This process significantly influences the overall performance of SQL generation and
has been the focus of extensive research.

With the advent of Large Language Models (LLMs), schema linking has seen considerable innovation
and potential. DIN-SQL (Pourreza & Rafiei, 2023) marked a significant advancement by using LLMs
to generate schema linkages, utilizing the entire schema as input to leverage the LLMs’ contextual
understanding. Building on this, DAIL-SQL (Gao et al., 2024) incorporated historical query-SQL
pairs as evidence, refining schema linking by utilizing past interactions. DELLM (Hong et al., 2024a)
extended these capabilities with a specialized data expert LLM, providing additional knowledge
to improve schema linking in complex scenarios. Similarly, E-SQL (Caferoğlu & Ulusoy, 2024)
introduced a query enrichment method that incorporates relevant database elements to enrich user
queries rather than simplifying the full schema. DTS-SQL (Pourreza & Rafiei, 2024) fine-tuned
LLMs specifically for table linking and SQL generation, ensuring task-focused training at each
process stage. TA-SQL (Qu et al., 2024) introduced the approach of generating a dummy SQL to
abstract linked schemas via an LLM, allowing for iterative refinement before the final SQL generation.
Conversely, CodeS (Li et al., 2024b) implemented a retrieval-based strategy, recalling semantically
matching schema elements as inputs for SQL generation models. CHESS (Talaei et al., 2024) treated
column linking as a binary classification task to eliminate obviously irrelevant columns and then
linked tables and columns from the filtered schema. To address the challenge of missing elements,
RSL-SQL (Cao et al., 2024) proposed bidirectional schema linking, with forward schema linking
identifying potential matching elements from the full schema and backward schema linking extracting
elements from preliminary SQL generated based on these potential matches. Distillery (Maamari
et al., 2024) explored schema linking performance with extremely large LLMs like GPT-4o and
Llama 3.1-405b, finding that these models can effectively process full schema without a schema
linking model, while moderately-sized models, like Llama 3.1-8B, still rely on schema linking.

Effective schema linking demands no missing elements and minimal redundant elements; any missing
schema element can cause SQL generation to fail directly, while redundant elements can confuse the
process and lead to incorrect outputs. This challenge aligns with the knapsack problem—maximizing
value while minimizing weight within constraints. Inspired by this, we formulated schema linking as
a knapsack problem and proposed KaSLA, which aims to link the most relevant and least redundant
schema element sets according to user queries.

B DETAILED EXPERIMENT SETUP

In this section, we provide the experiment setup in the view of datasets, evaluation metrics, and
baselines. We also report the implementation details of the proposed KaSLA and the used input
format of LLMs in Appendix D.3.

Datasets and Evaluation Metrics. We conducted experiments on two well-known large-scale
text-to-SQL datasets, BIRD (Li et al., 2023c) and Spider (Yu et al., 2018). Both datasets feature
human-annotated queries and SQLs, complex database elements, and challenging cross-domain
scenarios meticulously. The statistics for BIRD and Spider are reported in Appendix C Table 5. For
evaluation, we evaluated our approach and baselines on both schema linking and text-to-SQL tasks.
For schema linking evaluation, we employed the metrics introduced in Section 3.2: Schema Missing
Rate (Rmiss) and Schema Redundancy Rate (Rredun). For text-to-SQL evaluation, we measured
performance using two well-established execution-based metrics: Execution Accuracy (EX) (Yu
et al., 2018; Li et al., 2023c) and Valid Efficiency Score (VES) (Li et al., 2023c).

Baselines. To ensure a comprehensive and credible evaluation, we included multiple robust base-
lines from three categories: (i) LMs baselines: ResdSQL (Li et al., 2023a); (ii) LLMs + in-context
learning baselines: C3-SQL (Dong et al., 2023), DIN-SQL (Pourreza & Rafiei, 2023), MAC-
SQL (Wang et al., 2024), DAIL-SQL (Gao et al., 2024), SuperSQL (Li et al., 2024a), Dubo-
SQL (Thorpe et al., 2024), TA-SQL (Qu et al., 2024), E-SQL (Caferoğlu & Ulusoy, 2024), CHESS (Ta-
laei et al., 2024); and (iii) LLMs + fine-tuning baselines: DTS-SQL (Pourreza & Rafiei, 2024),
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CodeS (Li et al., 2024b). We also involve PureSL, which means directly fine-tuning an LLM for
schema linking in our benchmarks without any tailored design. For DIN-SQL, TA-SQL, CodeS, and
DTS-SQL that include a schema linking process in their framework, we denoted them as DIN-SL,
TA-SL, CodeS-SL, and DTS-SL. We reported the overall text-to-SQL performance and schema
linking performance, respectively.

C STATISTICS OF DATASET

We provide the statistics for the BIRD and Spider datasets in Table 5, and the imbalanced proportions
of matching versus non-matching schema elements are illustrated in Figure 4.

As illustrated in Figure 4, schema linking is inherently an imbalanced classification task, where a
small subset of elements matches the natural language query compared to the numerous non-matching
ones. Previous research has primarily utilized metrics such as AUC (Li et al., 2023a; 2024b) for
evaluating schema linking. In this imbalanced classification scenario, a schema linking model can
achieve high AUC scores by predicting mostly irrelevant schema elements, leading to results replete
with redundant elements. Additionally, missing any matching element directly results in incorrect
SQL generation despite causing only minor fluctuations in AUC.

Such biased evaluations lead to sub-optimal outcomes and hinder further advancements in schema
linking and SQL generation. This underscores the significance and potential value of our proposed
Schema Missing Rate (Rmiss) and Schema Redundancy Rate (Rredun), which provide more accurate
and meaningful evaluations in the context of imbalanced schema element distributions.

Dataset N #DB #Table / DB #Column / DB #Table / N #Column / N

Avg. Max Avg. Max Avg. Max Avg. Max

BIRD train 9428 69 7.57 65 51.29 455 2.00 6 4.47 16
dev 1534 11 6.82 13 72.55 199 1.93 4 4.44 12

Spider train 8659 146 5.43 26 27.79 352 1.71 6 3.35 13
dev 1034 20 4.00 11 21.95 56 1.51 4 2.78 8

Table 5: The statistics of datasets. ‘N’ is the total number of samples
in dataset. ‘#’ denotes ‘The number of’. ‘Avg.’ and ‘Max’ represent
the average value and the maximum value, respectively. For example,
‘Avg. #Table / DB’ means the average number of tables per database,
‘Max. #Column / N’ means the maximum number of matching
columns for instances in the dataset.
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Figure 4: The imbalanced
proportion of matching
schema elements with the
non-matching ones.

Algorithm 1: Hierarchical KaSLA Strategy
Input: user query q, schema S

Output: schema linking results ŜKaSLA, including a table linking set T ∗ and the corresponding
column linking set C∗

t for t ∈ T ∗

IT =
{
Ît,q ← fI(t, q)

}
t∈T

, VT =
{
V̂t,q ← fV (t, q)

}
t∈T

,WT =
{
Ŵt,q ← fW (t, q))

}
t∈T

Ĉt
q ← fC(q) for table linking, Ĉc

q,t ← fC(q) for column linking
T ∗ ← KDP(VT ,WT , Ĉt

q) // We present KDP in Algorithm 2

for t ∈ T ∗ do
ICt

=
{
Îc,q,t ← fI(c, q)

}
c∈Ct

, VCt
=

{
V̂c,q,t ← fV (c, q)

}
c∈Ct

,

WCt =
{
Ŵc,q,t ← fW (c, q)

}
c∈Ct

C∗
t ← KDP(VCt ,WCt , Ĉ

c
q,t)

return ŜKaSLA = T ∗ ∪
⋃

t∈T ∗ C∗
t
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D IMPLEMENTATION DETAILS.

D.1 TRAINING AND INFERENCE PROCESS

We implemented the proposed KaSLA and baselines under the following settings: (i) Close-source
LLM-based experiments: We conducted all in-context learning experiments on GPT-4-turbo. For
baselines with publicly available SQL generation results, we directly evaluated them using our
evaluation settings. (ii) Open-source LLM-based experiments: We utilized LoRA (Hu et al., 2021)
for parameter-efficient fine-tuning. In KaSLA, we utilize StarCoder2-15B (Lozhkov et al., 2024) as
the base model and use two LoRA networks: one for the nomination scoring model in the importance
evaluation component and one for the text-to-SQL model in the final SQL generation. The learning
rate was initialized to 1e − 4 with a cosine decay, the batch size was set to 16, and the training
epoch was 3. We used the same settings for all fine-tuning baselines. (iii) Open-source LM-based
experiments: We fine-tuned a RoBERTa-Large (Liu et al., 2019) following (Li et al., 2024b) for the
guaranteed scoring model used in the importance prediction component.

For the knapsack factors prediction, we set the following parameters: For top-Kr used in the filter of
the recall results, we set it to 5 for tables and 6 for columns, as recommended by Li et al. (2024b).
For top-KC used in demonstration conduction, we set it to 30. We set α = 1, τ = 0.5, and γ = 1 in
the prediction of value, weight, and capacity, respectively.

D.2 PROCEDURE OF KASLA

We present the complete procedure of hierarchical KaSLA strategy in Algorithm 1 and illustrate the
details of the dynamic programming algorithm used in KaSLA in Algorithm 2.

Algorithm 2: Dynamic Programming-based 0-1 Knapsack Problem Optimization
Input: value set V , corresponding weight setW , capacity C
Output: selection set Ĥ
n← |V|, Ĥ ← {}
A ← array of (n+ 1)× (C + 1) initialized to 0
keep← array of (n+ 1)× (C + 1) initialized to False
for i← 1 to n do

for w ← 0 to C do
ifW[i− 1] ≤ w then

if (V[i− 1] +A[i− 1][w −W[i− 1]]) > A[i− 1][w] then
A[i][w]← V[i− 1] +A[i− 1][w −W[i− 1]]
keep[i][w]← True

else
A[i][w]← A[i− 1][w]

else
A[i][w]← A[i− 1][w]

k ← C for i← n downto 1 do
if keep[i][k] then
Ĥ.add(i− 1)
k ← k −W[i− 1]

return Ĥ

D.3 INPUT FORMATS

We provided the input formats used in our KaSLA of generation with LLMs in Table 6.

E COMPLEXITY ANALYSIS

The efficiency of KaSLA stems from its hierarchical approach, strategic use of dynamic programming,
and inherent parallelism. KaSLA’s time complexity is determined by two main phases: table linking
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Table 6: Input formats of generation with LLMs

Type Input format

Schema

table department,
columns = [ department id (int | primary key|values: 1), name (text|values: State, Treasury),

ranking (int | values: 1, 2)]
table head,
columns = [ head id (int | primary key | values: 1), name (text | values: Tiger Woods), age (real | values: 67.0)]
table management,
columns = [ department id ( int | primary key | values: 2), head id (int | primary key | values: 5),

temporary acting (text | values: Yes)]
foreign keys: management.head id = head.head id, management.department id = department.department id

Question How many heads of the departments are older than 56?

Schema linking List the relevant columns in each table:

SQL generation Generate SQL to solve the above question:

Model SuperSQL CodeS KaSLA

Original BIRD-dev 58.60 60.30 63.75
Presented BIRD-dev 69.90 67.58 71.92

non-presented BIRD-dev 49.35 51.01 88.01

Table 7: Execution Accuracy (EX) (%) of text-
to-SQL models trained on whole BIRD-train
but evaluated on presented BIRD-dev and non-
presented BIRD-dev.

Model SuperSQL CodeS KaSLA KaSLA
(Transfer) %Improve

BIRD-dev 58.60 60.30 63.75 63.10 -1.02%
Spider-dev 87.40 84.72 88.01 87.23 -0.89%

Table 8: Execution Accuracy (EX) (%) of KaSLA
trained on Spider-train but evaluated on BIRD-dev,
and vice versa, for cross-scenario transfer ability
evaluation.

and column linking within the linked tables. For a database with nt tables and a table capacity of Ct,
the table linking phase has a time complexity of O(ntCt). KaSLA then links columns within the
selected table. Let nc and Cc represent the number of columns and the column capacity of a selected
table, respectively. The time complexity of the column linking phase is O(ncCc). Consequently, the
total time complexity of KaSLA is O(ntCt + nt(ncCc)), indicating that the complexity of KaSLA
scales relevant with the database dimensions.

F TRANSFERABILITY OF KASLA

In real-world scenarios, databases often have different backgrounds and come from various domains,
leading to diverse database contents and user queries. This diversity poses challenges to the transfer-
ability of schema linking models, which are typically pre-trained on public datasets. We conducted
two experiments to evaluate KaSLA’s performance in cross-scenario transfer.

We first selected databases from the BIRD dataset’s dev set with no similar scenarios to those in
the training dataset. We created a non-represented BIRD-dev dataset using the selected databases
whose background knowledge differs from the training dataset. The remaining data was treated as
the presented BIRD-dev dataset. The non-presented dataset helps in assessing the model’s transfer
capability. Since there are only two importance scoring models of KaSLA that need to be trained, we
pre-trained them on the whole BIRD-train data and evaluated the SQL generation performance on the
non-presented dataset and the presented dataset with the same SQL generation model. As shown in
Table 7, KaSLA demonstrates a clear advantage over baselines in dealing with both presented and
non-presented development data.

We also performed transfers between different datasets, such as the Spider and BIRD datasets. We
trained the two importance scoring models on the Spider training dataset and evaluated it on the BIRD
dev dataset, and vice versa, to explore its cross-scenario transfer ability. The results are provided
in Table 8. We can find that pre-training KaSLA on public datasets yields results that outperform
the baselines and are only slightly lower than what domain-specific fine-tuning would achieve. The
above results show that KaSLA demonstrates strong cross-scenario transferability.
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G COMPARISON WITH TRADITIONAL METRICS

Traditional metrics, recall, and precision, are also utilized widely in the schema linking evaluation.
However, they have drawbacks that hinder their usage in schema linking and cannot reflect the actual
schema linking performance.

G.1 LIMITATIONS OF TRADITIONAL METRICS

Recall, Rrecall =
|Ŝq∩Sq|

|Sq| for each instance, can reflect the degree of an element missing, but such
continuous degree can not directly reflect the actual impact of schema linking to SQL generation. Any
missing element, whether more or less, will directly result in incorrect SQL generation. However, it
may not have a noticeable effect on recall cause recall can only measure a continuous degree instead
of a definitive judgment about whether this instance has an element missing or not. For example,
assume Ŝq = {t1, t2, t3, t4} and Sq = {t1, t2, t3, t4, t5} for table linking. This Ŝq will result in
incorrect SQL generation because t5 is missing. However, Rrecall will be 80%, which unjustly gives
a positive evaluation.

Precision, Rprecision =
|Ŝq∩Sq|

|Ŝq|
for each instance, can reflect the degree of redundancy only if

there are no missing elements. However, element missing is still common for current schema
linking methods. Any missing element will directly result in incorrect SQL generation, but the
precision might still give a positive evaluation as long as the number of missing elements is small
compared to the total elements in the linking results. For example, assume Ŝq = {t1, t2, t3} and
Sq = {t1, t2, t3, t4, t5} for table linking. With tables t4 and t5 missing, the SQL generation will
always be incorrect. However, Rprecision will be 100%, a highly positive evaluation, which is
meaningless.

AUC is also unsuitable because schema linking is an imbalanced classification task. As shown
in Figure 4, matching elements are only a small subset of all elements. A schema linking model
can achieve a high AUC score by predominantly predicting non-matching elements and ignoring
matching elements.

G.2 ADVANTAGES OF THE PROPOSED METRICS

Compared with Recall, our schema missing rate, Rmiss in Eq. (2), for each instance, can reflect
the actual impact of schema linking results to SQL generation by a strict evaluation. It considers
an instance a failure if any element is missing, acknowledging success only when no elements are
missing. This aligns with the fact that any missing element leads to incorrect SQL generation.

Compared with Precision, Our schema redundancy rate, Rredun in Eq. (3), can provide a meaningful
evaluation by only calculating redundancy only when all matching elements are present in the linking
results. The main difference between precision and our redundancy rate is the Non-missing indicator.
The prediction with element missing will be judged as failure because, in such cases, redundancy is
not the sole reason for incorrect SQL generation, thus making its evaluation meaningless.

H ABLATION STUDY

We presented the ablation study results for the importance score I with the nomination score Inomi

and the guaranteed score Iguar in Table 9, the results concerning the choice of language model for
the guaranteed scoring model are shown in Table 10, and the results for the hyperparameters α, τ ,
and γ are provided in Table 11.

In Table 9, we observe that using only the soft score Iguar without the binary score Inomi results in
sub-optimal performance. This occurs because the RoBERTa-Large-based guaranteed model provides
only a general representation, which may lack clear differentiation, potentially causing confusion
that the StarCoder2-based nomination model addresses. Additionally, relying solely on the binary
score Inomi also leads to sub-optimal outcomes. The Starcoder2-based nomination model tends to
confirm elements with high confidence, resulting in distinct scoring differences and possibly missing
elements that match with medium confidence. This issue is addressed by the RoBERTa-Large-based
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guaranteed model. These findings emphasize the importance of combining the binary score Inomi

and the soft score Iguar, allowing them to collaborate for accurate importance score estimation.

In Table 10, we compared various models and sizes for the guaranteed scoring model in SQL
generation and found that RoBERTa-Large produced the best results on both datasets. RoBERTa
enhances BERT by employing a more comprehensive training process, leading to improved text
representation abilities (Min et al., 2023). This allows RoBERTa-Large to provide better general-
ization and understanding of language nuances, which are crucial for schema linking tasks where
capturing subtle semantic relationships is important. Moreover, using fewer parameters (BERT-base
or RoBERTa-base) or more parameters (SGPT-1.3B) did not lead to performance improvements,
indicating that RoBERTa-Large is an excellent choice for the guaranteed scoring model.

Regarding the range of hyperparameters, α, τ , and γ, Table 11 shows that these hyperparameters only
slightly affect KaSLA’s performance, yet they offer the potential for optimal results. This highlights
the generalization ability of KaSLA.

Dataset origin
Inomi&Iguar w/o Iguar w/o Inomi

BIRD-dev 63.75 53.13 57.63
Spider-dev 88.01 86.36 85.40

Table 9: Execution Accuracy (EX) (%) of the
ablation study about the importance score I
with Inomi and Iguar.

Dataset BERT
-Base

BERT
-Large

RoBERTa
-Base

RoBERTa
-Large

SGPT
-1.3B

BIRD-dev 61.67 61.92 62.78 63.75 63.75
Spider-dev 86.94 87.33 87.52 88.01 87.72

Table 10: Execution Accuracy (EX) (%) of the ab-
lation study about the choice of language model for
guaranteed scoring model.

Table 11: Execution Accuracy (EX) (%) of the ablation study about the hyperparameters α, τ , and γ.
τ = 0.5, γ = 1 α = 0.1 α = 0.5 α = 1 α = 5

BIRD-dev 63.10 63.69 63.75 61.15
Spider-dev 87.72 88.10 88.01 86.27

α = 1, γ = 1 τ = 0.1 τ = 0.5 τ = 0.7 τ = 0.9
BIRD-dev 63.10 63.75 63.43 63.10
Spider-dev 87.43 88.01 87.81 87.52

α = 1, τ = 0.5 γ = 0.5 γ = 1 γ = 1.5 γ = 2
BIRD-dev 49.02 63.75 63.10 62.84
Spider-dev 57.25 88.01 87.72 87.14

I SCHEMA LINKING BENCHMARK ON SPIDER-DEV

We provide the whole schema linking evaluation results with Rmiss, Rredun and Rcorrect on BIRD-
dev and Spider-dev. Similarly, KaSLA scores a high Rcorrect for column linking on the Spider-dev
dataset, outperforming all other methods by a considerable margin.

Table 12: Schema linking benchmarks with Rmiss, Rredun and Rcorrect on Spider-dev.

D
at

as
et

Metric

Schema linking Method
KaSLA
(Ours)

CodeS-SL 10shot ICL-SL DIN-SL DTS-SL Pure-SL TA-SL
RoBERTa SGPT

-1.3B GPT-3.5 GPT-4 GPT-3.5 GPT-4 StarCoder2-15BBase Large

Sp
id

er
-d

ev Rmiss ↓
table 0.00 0.00 29.00 33.57 31.23 49.61 36.83 6.29 6.29 2.42 1.26

colmn 0.81 0.30 2.12 93.84 91.49 96.18 93.64 6.55 15.62 9.07 2.12

Rredun ↓
table 55.96 55.96 56.13 42.81 35.74 52.31 39.78 9.90 9.90 4.73 6.41

colmn 80.77 80.55 80.97 95.29 92.18 96.49 94.13 69.50 19.23 11.24 12.44

Rcorrect ↑
table 72.02 72.02 71.79 61.81 66.52 49.04 61.69 91.91 91.91 96.43 96.17

colmn 59.21 59.57 58.46 5.44 8.16 3.66 6.12 61.97 82.57 89.84 92.72
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