
APIGen: Automated PIpeline for Generating
Verifiable and Diverse Function-Calling Datasets

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan,
Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang,

Silvio Savarese, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, Caiming Xiong
Salesforce AI Research, USA

{zuxin.liu, thai.hoang, jianguozhang}@salesforce.com

Abstract

The advancement of function-calling agent models requires diverse, reliable, and
high-quality datasets. This paper presents APIGen, an automated data generation
pipeline designed to synthesize high-quality datasets for function-calling applica-
tions. We leverage APIGen and collect 3,673 executable APIs across 21 different
categories to generate diverse function-calling datasets in a scalable and structured
manner. Each data in our dataset is verified through three hierarchical stages:
format checking, actual function executions, and semantic verification, improving
its reliability and correctness. We demonstrate that models trained with our curated
datasets, even with only 7B parameters, can achieve state-of-the-art performance on
the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models.
Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-
Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality
entries, aiming to advance the field of function-calling agent domains. The dataset
is available on Huggingface 1 and the project homepage 2.

1 Introduction

Function-calling agents represent a significant advancement in artificial intelligence, specifically
within the realm of Large Language Models (LLMs). These models, such as GPT4 [1], Gemini [2],
and Mistral [3], have evolved to not only understand and generate human-like text but also to execute
functional API calls based on natural language instructions. For instance, consider a user requesting
the weather in Palo Alto, as illustrated in Fig. 1. The function-calling agent interprets this query,
accesses the relevant API—such as get_weather("Palo Alto", "today")—and retrieves the
weather information, all in real-time. This capability extends the utility of LLMs beyond simple
conversation tasks to include dynamic interactions with a variety of digital services and applications,
ranging from social media platforms to financial services [4, 5, 6, 7, 8, 9, 10].

Despite their growing popularity and potential, the deployment of function-calling agents is often
hampered by the quality of the datasets used for training. Current datasets are largely static and lack
comprehensive verification, leading to potential inaccuracies and inefficiencies of model fine-tuning
in real-world applications [11, 12, 13, 14]. This limitation is particularly evident when models trained
on these datasets encounter new, unseen APIs. For example, a model trained primarily on restaurant
booking APIs may struggle when suddenly tasked with retrieving stock market data, as it lacks the
specific training data or the adaptability to handle new domains.

1https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
2https://apigen-pipeline.github.io/

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k
https://apigen-pipeline.github.io/


Figure 1: Workflow of an LLM-based function-calling agent.

To address these challenges, we introduce APIGen, an Automated PIpeline for Generating verifiable
and diverse function-calling datasets. Our framework is designed to facilitate the fine-tuning of
function-calling LLMs by providing high-quality, diverse datasets that better reflect the variability
and complexity of real-world API use. Crucially, each generated data point undergoes rigorous multi-
stage verification processes—format, execution, and semantic—to improve accuracy and applicability.
We fine-tune function-calling models using the dataset generated by APIGen. The results show
the strong performance of our models, surpassing many existing powerful LLMs with much fewer
parameters, highlighting the effectiveness of APIGen and the high quality of the dataset it produces.

With APIGen, we release a comprehensive dataset containing 60,000 entries with 3,673 APIs across
21 categories. They include various query styles, such as parallel function calling data (asking the
agent to produce multiple concurrent function calls in a single response) [11], which is rarely found in
public datasets, to the best of our knowledge. This large-scale synthetic dataset is intended to catalyze
further research and development in the field of function-calling agents, offering researchers and
developers a foundation for training and testing their models. The data is available on Huggingface
and our project homepage.

The contributions of this work are summarized as follows:

• We introduce APIGen, a function-calling data generation pipeline that features quality, scalability,
and diversity of the data. APIGen is compatible with a range of models and APIs to construct
high-quality synthetic function-calling datasets.

• We train two function-calling models of different sizes, 1.3B and 6.7B, using APIGen-constructed
training data. Extensive experiments demonstrate that the 6.7B model achieves a rank of 3rd on
the Berkeley Function-Calling Leaderboard [11], surpassing GPT-4o and Gemini-1.5-Pro, while
the 1.3B model outperforms GPT-3.5-Turbo.

• We also release a synthetic function-calling dataset containing 60,000 high-quality data generated
by APIGen using several strong open-source LLMs, which can potentially benefit the research
community in developing advanced function-calling models.

2 Related Work

Tool-use Agent. Recent works have developed frameworks and models that enable LLMs to interact
with APIs and tools [15, 16, 17, 18, 19, 20, 21, 22]. RestGPT [23] connects LLMs to RESTful APIs
using a Planner, API selector, and API executor to handle complex instructions. Toolformer [24] is
an early work that enables agents to use tools like Question Answering, Calculator, and Wikipedia
Search through a supervised-finetuned model. [25, 26] propose the xLAM model series, showing
strong tool usage capability across several benchmarks. Octopus-v4 [27] presents a methodology to
incorporate multiple specialized language models to solve corresponding tasks. While NexusRaven
[5] and Gorilla OpenFunctions-v2 [28] are strong open-sourced models that focus on function calling,
neither provides access to their training datasets.

Agent Datasets. Several datasets have been created to support the development of agent models.
AgentInstruct [20] consists of 6 datasets for different agent tasks, including AlfWorld [29], WebShop
[30], Mind2Web [31], Knowledge Graph, Operating System, and Database [32]. APIBank [14]
is a benchmark designed for tool-augmented LLMs, providing a training set containing tool-use
dialogues from various APIs. Toolalpaca [33] constructs a varied and well-structured tool-use dataset
by randomly selecting APIs and generating documentation using ChatGPT. ToolBench [12] creates

2



Figure 2: Illustration of the post-process filters.

an instruction-tuning dataset for tool use by collecting diverse REST APIs and generating their
descriptions using ChatGPT. AgentOhana [26] and Lumos [34] design a unified data and training
pipeline for efficient agent learning, covering multiple different datasets and environments. However,
most of these datasets were not rigorously verified, and usually contain noisy data.

Benchmarks. Recent studies have established several benchmarks to assess agent abilities on various
tasks such as web interactions, reasoning, decision making, function calling, code generation, and
tool usage [30, 8, 32, 7, 35, 12, 13, 36, 37, 9, 38, 39]. Specifically, AgentBoard [37] includes 9
tasks, with ToolOperation and ToolQuery designed to evaluate agent ability on multi-turn interaction
with external tools. ToolEval [12] assesses functional calling capabilities via RapidAPI, containing
around 1,000 test cases and asking GPT-3.5 to assess the Win Rate. Furthermore, the Berkeley
Function-Calling Leaderboard (BFCL) [11] provides a robust and comprehensive framework to
evaluate models’ abilities to call functions, with 1,700 test cases covering a wide range of scenarios.
We use BFCL as our testing ground as it provides the most thorough comparison among popular
LLMs.

3 APIGen Framework

This section introduces the detailed design of APIGen, an Automated PIpeline for Generating
verifiable and diverse function-calling datasets. Our framework is designed with three key factors
in mind: data quality, data diversity, and collection scalability. We achieve these through the key
modules shown in Fig. 2: the multi-stage data verification process ensures data quality, the seed QA
(query-answer) data sampler, API sampler, and various prompt templates ensure diversity, and our
structured modular design using a unified format enables the system to scale to diverse API sources,
including but not limited to Python functions and representational state transfer (REST) APIs.

3.1 Data Generation Overview

Figure 2 outlines the data generation process using the APIGen framework, which begins by sampling
one or more APIs and example query-answer (QA) pairs (seed data) from the library, then formatting
them into a standardized JSON format (see Fig. 3 for examples). A prompt template is selected based
on the desired data generation objectives, which steers the LLM in generating relevant query-answer
pairs. Each answer in the generated pairs is a function call formatted in JSON.

3



Figure 3: JSON data format examples.

The adoption of a standardized JSON format for APIs, function calls, and generator outputs (as shown
in Figure 3) provides several advantages. Firstly, it establishes a structural way to verify whether
the generator’s output contains all necessary fields. Outputs that fail to comply with these format
requirements are discarded. Secondly, the JSON structure enables efficient checking of function
calls for correct parsing and validity of arguments. Calls that include arguments not present in the
API library or hallucinate non-existent functions are excluded, enhancing the overall quality of the
dataset. Another key benefit is the scalability it enables. With this uniform format, APIGen can easily
incorporate data from diverse sources (Python functions, REST APIs, etc) by developing format
converters that adapt them into these basic JSON elements, without modifying other core components,
such as the prompting library, making the framework highly adaptable and extensible.

The generated function calls are subjected to a multi-stage verification process to improve their
correctness and relevance. First, a format checker verifies correct JSON formatting and parseability.
Next, the API execution engine processes the calls and sends the results and queries to a semantic
checker, another LLM, which assesses alignment between the function calls, execution results, and
query objectives. Data points passing all stages are added back to the seed dataset as high-quality
examples to enhance future generation diversity. We detail each checker in the next section.

3.2 Multi-Stage Data Verification

Prioritizing quality is crucial, as previous research has shown that small amounts of high-quality
fine-tuning data can substantially enhance model performance on domain-specific tasks [40]. This
motivates our multi-stage dataset verification process to align large language models effectively.

The key insight driving our framework design is that, unlike synthetic chat data which can be difficult
to evaluate, function-calling answers can be directly executed via their corresponding APIs. This
enables checking if the output API and parameters’ formats are correct, if the generated API calls
are executable, and if execution results match the query’s intent, etc. Based on this observation, we
propose a three-stage verification process:

Stage 1: Format Checker: This stage performs sanity checks to filter out poorly formatted or
incomplete data. The LLM output must strictly follow a JSON format with the "query" and "answer"
fields, as shown in Fig. 3. We usually also include an additional "thought" field, which is known as
the chain-of-thought (CoT) prompting technique [41], to increase the pass rate of the generated data.
The data is discarded if these fields cannot be properly extracted for function calls. Additionally, the
function calls are checked for correct JSON parsing and valid arguments. Generated calls whose
arguments or functions are not present in the given APIs are eliminated to reduce hallucination and
improve data quality.

Stage 2: Execution Checker: Well-formatted function calls from Stage 1 are executed against
the appropriate backend (e.g. Python functions are directly imported and executed in a separate
subprocess, while REST APIs are called to obtain results and status codes). Unsuccessful executions
are filtered out, and fine-grained error messages are provided for failures, including argument type
errors, invalid parameters, runtime errors, timeout, syntax errors, missing arguments, etc.

Stage 3: Semantic Checker: Successful Stage 2 execution results, available functions, and the
generated query are formatted and passed to another LLM to assess if the results semantically align

4



with the query’s objective. Query-answer pairs that execute successfully but produce meaningless
results due to infeasible queries or incorrect arguments are filtered out. The main decision factors
for this stage are: 1) whether the function call aligns with the query’s objective and has proper
arguments; 2) whether the function call and arguments are appropriately chosen from the available
functions; 3) whether the number of function calls matches the user’s intent; 4) whether the execution
results contain errors or indicate unsuccessful function execution; 5) whether the execution results
are relevant and match the query’s purpose. APIGen’s design offers the flexibility to select one
or multiple LLMs as checkers, and the filtering rules can be readily adjusted—either tightened or
relaxed—depending on specific use cases. Though the final stage can not guarantee correctness, the
execution feedback information from stage 2 allows the checker to better assess the quality of the
data, thus improving the decision accuracy.

Data points that pass all three verification stages are regarded as high-quality and added back to
improve future diverse data generation. This multi-stage verification process is the key to ensuring the
APIGen framework produces a dataset that is not only diverse but also of a high degree of confidence
in data quality, enabling more effective fine-tuning of LLMs to domain-specific API-related tasks.

3.3 Methods to Improve Dataset Diversity

Encouraging diversity in training datasets is crucial for developing robust function-calling agents
that can handle a wide range of real-world scenarios. In APIGen, we promote data diversity through
multiple perspectives, including query style diversity, sampling diversity, and API diversity.

Query Style Diversity. APIGen’s dataset is structured into four main categories: simple, multiple,
parallel, and parallel multiple, each designed to challenge and enhance the model’s capabilities in
different usage scenarios. These categories are inspired by the Berkeley function-calling benchmark
[11] and are controlled by corresponding prompts and seed data. We show examples of them in the
supplementary material. The categories are as follows:

• Simple: This query style includes straightforward scenarios where a single function call is made
based on the user’s input with a single provided JSON format API description.

• Multiple: In this style, user queries could be answered by one of several function calls. The
challenge lies in selecting the most appropriate function from multiple provided APIs. It represents
one of the most common real-world use cases.

• Parallel: This query style requires executing multiple function calls simultaneously in response to
a single user query, which may consist of one or more sentences but with only one API provided.
For instance, if the user wants to know the weather in both Palo Alto and Paris, the model
should call the get_weather function twice with corresponding city names in a single response.

• Parallel Multiple: This query style combines the parallel and multiple categories, where multiple
function and API documents are provided, and each function call might be invoked multiple times
based on the query’s requirements.

While there exist publicly available training data for simple and multiple categories [42, 12], however,
to the best of our knowledge, we offer the first large-scale and high-quality datasets that include the
parallel-related function-calling scenario.

Sampling Diversity. APIGen utilizes a sampling system designed to maximize the diversity and
relevance of the generated datasets, which include three main components, as shown in Fig. 2:

• API Sampler: This module extracts one or more function descriptions from executable API
libraries, standardizing them into a uniform JSON format. The diverse sources of APIs ensure a
wide range of function calls are available for inclusion in the training dataset.

• Example Sampler: It samples a specified number of seed examples corresponding to the different
categories. These examples are transformed into structured queries, function descriptions, and
answers, serving as an important few-shot reference for data generation.

• Prompt Sampler: This sampler draws from a diverse prompt library to generate a variety of
query-answer pairs. The prompts for each query style contain different contexts, ranging from
simple, concise query-answer pairs to more realistic scenarios, such as ambiguous or misspelled
user requests, enhancing the model’s ability to handle real-world interactions.

5



We provide some prompt templates and seed data in the supplementary material. In APIGen, the
number of examples and APIs sampled for each dataset iteration is randomly chosen from a predefined
range. This randomization enhances dataset variability by preventing repetitive patterns and ensuring
a broad coverage of scenarios. We next introduce our API diversity.

4 Dataset Preparation and Collection
We begin by discussing our dataset preparation process, which includes selecting and cleaning API
libraries. Then we present our dataset collection setup and an overview of the resulting dataset.

4.1 Dataset API Sources

To ensure a high-quality and diverse dataset, we focused on collecting real-world APIs that could be
readily executed and came with thorough documentation. We primarily sourced APIs from ToolBench
[12], a comprehensive tool-use dataset that includes 16,464 REST APIs across 49 coarse-grained
categories from RapidAPI Hub. This hub is a leading marketplace featuring a vast array of developer-
contributed APIs. To further enhance the usability and quality of the APIs, we perform the following
filtering and cleaning procedures on the ToolBench dataset:

• Data Quality Filtering: We remove APIs with incorrectly parsed documentation and those lacking
required or optional parameters. APIs requiring no parameters were excluded to maintain the
challenge level appropriate for our dataset needs.

• API Accessibility Testing: We tested API accessibility by making requests to each endpoint using
example parameters provided in the dataset and through the Stable Toolbench server [42]. APIs
that could not be executed or returned errors, such as timeouts or invalid endpoints, were discarded.

• Docstring Regeneration: To improve the quality of API documentation, we regenerated docstrings
for the APIs that have noisy and unusable descriptions.

Figure 4: The category distribution of the 3,673 exe-
cutable APIs.

After cleaning, we obtain 3,539 executable
REST APIs with good documentation. Addi-
tionally, we incorporated Python functions as
another API type, inspired by the executable
evaluation categories of the Berkeley function-
calling benchmark [11]. We collected 134 well-
documented Python functions covering diverse
fields such as mathematics, finance, and data
management. Sample API examples are pro-
vided in the supplementary material.

The original ToolBench dataset contained se-
mantically overlapping categories such as
Finance and Financial. We consolidated
these into 21 distinct categories to ensure clarity
and balance across the dataset. Figure 4 illus-
trates the distribution of the 3,673 executable
APIs across these redefined categories, spanning
sectors like technology, social sciences, educa-
tion, and sports. This diverse collection of APIs
provides a strong foundation for synthetic data
generation and is a valuable asset for ensuring
data quality and reliability.

4.2 Collection Setup and Dataset Details

To validate the effectiveness of the APIGen framework, we generated datasets targeting various
query styles as outlined in Section 3.3. We utilized several base LLMs for data generation, including
DeepSeek-V2-Chat (236B) [43], DeepSeek-Coder-33B-Inst [44], Mixtral-8x22B-Inst, and Mixtral-
8x7B-Inst [3]. For each model, our target was to generate 40,000 data points by sampling different
combinations of APIs, seed data, and prompt templates. To foster diversity in the generated responses,

6



we set the generation temperature to 0.7 across all models. Examples of the prompt templates and
APIs used are provided in the supplementary materials for reference.

Table 1 presents statistics for the data generation process with different models, including the total
verified data point count and the number of filtered data points at each verification stage. The filtering
process successfully removes many low-quality data points due to formatting issues, execution errors,
or failure to pass the semantic check. The first two stages, format checker and execution checker,
typically filter out the majority of low-quality data. These data points often have infeasible argument
ranges, incorrect types, missing required parameters, or more severe issues such as hallucination of
function calls or parameters. Our systematic verification process provides a rigorous way to reduce
the occurrence of these situations.

Table 1: Filtering statistics for the generated datasets using different base LLMs.

Model Verified Data Fail Format Fail Execution Fail Semantic Pass Rate

DeepSeek-Coder-33B-Inst 13,769 4,311 15,496 6,424 34.42%
Mixtral-8x7B-Inst 15,385 3,311 12,341 7,963 38.46%

Mixtral-8x22B-Inst 26,384 1,680 5,073 6,863 65.96%
DeepSeek-V2-Chat (236B) 33,659 817 3,359 2,165 84.15%

The semantic checker also plays a crucial role in filtering generated data that does not align with the
query’s objectives. For instance, if a user’s query contains multiple requests, but the returned results
only address one, or if the generated function-call data and execution results do not match the user’s
query, the data point will be filtered out. Including these data points in the training set for model
training could potentially harm the performance, as demonstrated in the experiments.

We observe that stronger models like DeepSeek-V2-Chat and Mixtral-8x22B-Inst have better format-
following capabilities and higher pass rates, while the two relatively smaller models have a much
higher likelihood of producing data that cannot be executed. This suggests that when using weaker
models to generate data, a strict verification process is recommended to filter out low-quality data.

We are releasing approximately 60,000 high-quality function-calling datasets generated from the two
strongest models: Mixtral-8x22B-Inst and DeepSeek-V2-Chat (236B). These datasets include all the
query styles mentioned in Sec. 3.3 and cover a wide range of practical situations, with 3,673 diverse
APIs across 21 categories. Each data point has been verified with high confidence of correctness
using real-world API executions and the semantic checker. We also conducted human inspection on
600 sampled data. The results show that over 95% of the data are correct (details in Appendix A.3),
showing the effectiveness of the framework. By making this dataset publicly available, we aim to
benefit the research community and facilitate future work in this area.

5 Experiments

5.1 Experiment Setup

To evaluate the utility and effectiveness of the collected dataset, we conducted experiments by training
function-calling models with the generated data. Our aim is to answer two key questions: 1) To what
extent can the generated data boost the model’s function-calling capability, and how does it compare
to existing models? 2) How effective is the APIGen framework in filtering out low-quality data?

To address these questions, we train two versions of base models: DeepSeek-Coder-1.3B-instruct
and DeepSeek-Coder-7B-instruct-v1.5 [44] using the xLAM (large action model) training pipeline
proposed in [25, 26]. We refer to these models as xLAM-1B (FC) and xLAM-7B (FC), where FC
stands for the Function-Calling mode, similar to this mode in other existing models that output
JSON-format function calls [1, 28, 45, 4]. We compare the performance of these small-sized models
against state-of-the-art models, including different versions of GPT-4 series [1], Claude-3 series [46],
Gemini series [2], Llama3 [47], Mixtral [3], OpenFunctions-v2 [28], Command R+ [45], etc.

Benchmark. We evaluate the trained models’ performance on the Berkeley Function-Calling
Benchmark (BFCL) [11], which provides a comprehensive evaluation framework for assessing
the function-calling capabilities of LLMs across various programming languages and application
domains. Designed to reflect real-world use cases, the BFCL includes 1,700 testing cases, covering

7



complex scenarios such as parallel and multiple-function calls. The benchmark contains diverse
API sources like Java, JavaScript, and Python, offering a detailed analysis of each model’s ability
to correctly interpret and execute commands under different conditions. BFCL serves as a highly
detailed and scalable benchmark for evaluating LLMs’ function-calling capabilities and provides a
leaderboard to track the most recent and powerful LLMs, both commercialized and open-source.

Evaluation Metrics. The Berkeley Function-Calling Leaderboard (BFCL) evaluates LLMs using
two main categories: Abstract Syntax Tree (AST) Evaluation and Executable Function Evaluation.
The AST evaluation focuses on the syntactic accuracy of the generated function calls, ensuring that
the model’s output matches a predefined function documentation in structure and parameters. This
includes checks for correct function names, required parameters, and appropriate data types. The
Executable Function Evaluation goes a step further by running the generated function calls to verify
their operational correctness. This executable test ensures that the functions not only compile but also
execute correctly, providing the expected results, which is crucial for practical applications where
real-time performance is essential.

5.2 Experiment Results Analysis

Can the generated data improve the model’s function-calling capability and how does it compare
to other most powerful models? The performance of our models, xLAM-7B and xLAM-1B, as
presented in Table 2, highlights the effectiveness of our APIGen framework and the quality of
the datasets produced. Notably, our xLAM-7B model ranks 3rd among the most powerful LLMs
listed on the BFCL leaderboard, surpassing several versions of GPT-4 (GPT-4o, GPT4-Turbo-FC),
Llama3-70B, multiple Claude-3 models, and a series of strong models which are known for their
exceptional capabilities in various tasks, including function-calling. This achievement demonstrates
the significant impact of our high-quality dataset on the model’s function-calling performance.

Table 2: Performance comparison of different models on BFCL leaderboard (as of date 07/18/2024). The rank
is based on the overall accuracy, which is a weighted average of different evaluation categories. “FC" stands for
function-calling mode in contrast to using a customized “prompt" to extract the function calls.

Abstract Syntax Tree (AST) Evaluation Evaluation by Executing APIs
Rank Overall

Accuracy Model
Simple Multiple Parallel Parallel

Multiple Simple Multiple Parallel Parallel
Multiple

Relevance
Detection

1 90.18 Claude-3.5-Sonnet (Prompt) 86.73 95.5 92.5 92 100 96 82 80 85.42
2 88.29 GPT-4-0125-Preview (Prompt) 88.36 95 92 92 99.41 94 84 75 70.42
3 88.24 xLAM-7b-fc-r (FC) 85.64 94 91 87 96.47 88 84 80 84.58
4 87.71 Claude-3-Opus-20240229 (Prompt) 86.73 94 86.5 89 97.65 92 80 75 80.42
5 86.53 Nemotron-4-340b-instruct (Prompt) 83.45 92.5 90.5 85.5 98.24 96 82 77.5 78.33
6 86.35 Gemini-1.5-Pro-Preview-0514 (FC) 80.18 92 91.5 88 91.76 88 76 77.5 89.58
7 85.88 Gemini-1.5-Pro-Preview-0409 (FC) 80 92.5 90.5 87.5 90 90 74 77.5 88.75
8 85.88 GPT-4-1106-Preview (FC) 84 91.5 92.5 86.5 89.41 92 78 67.5 80.42
9 85.88 GPT-4-turbo-2024-04-09 (Prompt) 86.55 95 91 90 97.65 94 80 72.5 62.5

10 84.65 Gorilla-OpenFunctions-v2 (FC) 88 95 87.5 86.5 94.71 94 70 67.5 61.25
11 84.59 GPT-4-0125-Preview (FC) 80.18 93 90.5 84.5 83.53 92 86 77.5 82.92
12 84 Meta-Llama-3-70B-Instruct (Prompt) 81.45 93 91.5 86 91.76 88 84 77.5 69.17
13 83 GPT-4o-2024-05-13 (FC) 78.91 90 88 84.5 86.47 78 82 75 81.25
14 82.94 GPT-4-turbo-2024-04-09 (FC) 74.73 90 90 88 82.94 88 76 67.5 88.75

...

22 80.29 Gemini-1.5-Flash-Preview-0514 (FC) 80.91 93.5 78 73 81.76 90 54 72.5 79.58
23 79.88 Functionary-Small-v2.4 (FC) 82.18 88.5 82 81 78.24 82 80 65 67.92
24 79.76 Command-R-Plus (FC) (Optimized) 79.09 91 88.5 82 81.18 86 74 67.5 63.75
25 78.94 xLAM-1b-fc-r (FC) 81.27 87 78 76 82.94 94 84 75 63.75
26 77.76 Claude-3-Opus (FC tools-2024-04-04) 82.73 91.5 58.5 62 90.59 94 38 62.5 82.5
27 76.71 Claude-instant-1.2 (Prompt) 79.82 85.5 83 69.5 84.71 80 82 65 57.5
28 76.47 Claude-3.5-Sonnet-20240620 (FC) 85.27 92 59 54.5 97.06 88 18 35 78.33
29 74.35 Claude-3-Haiku-20240307 (Prompt) 84.91 91.5 84.5 56 92.94 94 70 25 34.58
30 71.47 Claude-2.1 (Prompt) 80.18 76 55.5 53 71.18 84 46 47.5 83.33
31 70.88 Command-R-Plus (FC) (Original) 74.91 90 82 76 81.76 88 68 55 24.17
32 68.76 Mistral-large-2402 (FC Auto) 66.91 94.5 25.5 72 83.53 96 8 52.5 84.17
33 68.06 Nexusflow-Raven-v2 (FC) 75.27 86 44.5 61 67.06 92 74 62.5 57.5
34 67.06 Gemini-1.0-Pro-001 (FC) 79.09 92.5 30.5 25.5 86.47 84 44 12.5 80
35 66.06 DBRX-Instruct (Prompt) 64 71.5 72.5 60 71.18 86 80 62.5 55.83
36 65.12 Snowflake-arctic-instruct (Prompt) 62.36 69 59 53.5 87.65 86 74 72.5 59.58
37 64.29 Mistral-large-2402 (FC Any) 81.45 93.5 31.5 79 94.71 92 8 65 0
38 63.94 GPT-3.5-Turbo-0125 (FC) 61.45 66 91 81 93.53 80 82 70 2.08

Our smaller xLAM-1B model also shows remarkable results, securing the 25th position and outper-
forming many larger models, such as Claude-3 Haiku [46], Command-R-Plus [45], DBRX-Instruct
[48], Mistral-large [3], and GPT-3.5-Turbo-0125. The results highlight the effectiveness of the
APIGen pipeline in enhancing a model’s function-calling capabilities, even with a much smaller
size. Both xLAM-7B and xLAM-1B demonstrate substantial improvements in handling complex
query types, particularly in the parallel and multiple function-calling scenarios, which are typically

8



underrepresented in existing publicly available dataset. This validates the value of our pipeline and
datasets in addressing practical scenarios involving complex API interactions and multiple concurrent
API calls, especially considering that the base model, DeepSeek-Coder-v1.5, only ranks 45th on the
leaderboard and performs poorly in these categories.

Figure 5: Performance comparison of using different
stage’s datasets from APIGen. “+Fail Semantic Data"
and “+Fail Execution Data" meaning adding the filtered
dataset from stage 3 and stage 2 to the training set.

Next, we answer the question: how effective is
the APIGen framework in filtering out low-
quality data? We conducted an ablation study
by adding the datasets that were filtered out by
stage 3 (semantic checker) and stage 2 (execu-
tion checker) back to the training set, simulating
situations where generated data is used without
the rigorous verification process. The perfor-
mance comparison on the BFCL benchmark,
shown in Fig. 5, reveals that using these filtered
datasets for training harms the final performance,
with a more significant impact on the smaller
model. This indicates that directly using gen-
erated data might not yield the best results and
demonstrates the effectiveness of our APIGen
framework in filtering out low-quality data.

These results provide compelling evidence for
the effectiveness of the APIGen framework in
generating high-quality, diverse datasets for function-calling tasks. The impressive performance
achieved by our small-sized models highlights the efficiency of our approach, demonstrating that by
focusing on data quality and diversity, we can effectively boost the performance of smaller models,
making them competitive with much larger ones in this function-calling agent domain.

6 Conclusion

In this paper, we introduced APIGen, a novel framework that generates reliable and diverse function-
calling datasets by leveraging a multi-stage verification process. Our experiments demonstrate the
effectiveness of APIGen in producing high-quality datasets from a wide range of executable APIs.
This has significant implications for the development of more efficient and accessible language
models, as it shows that high-quality data can be as important as model size in achieving strong
performance. By enabling smaller models to achieve competitive results and significantly enhancing
their function-calling capabilities, our approach and released dataset open up new possibilities for the
development of efficient and powerful language models in the agent tool-use domains.

However, the current version of APIGen and the generated dataset have some limitations. Presently,
the framework and dataset only consider REST APIs and Python functions. Additionally, although
APIGen is a general framework, it currently only implements the generation procedure for single-
turn function calling. Future work will focus on extending APIGen to support more scenarios,
programming languages, and APIs. We also plan to extend the framework to handle multi-turn and
more complex interactions between agents, human users, and tools. Despite these limitations, we
believe that APIGen and the generated dataset represent a significant step forward in the development
of efficient and effective function-calling agents.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

9



[3] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[4] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

[5] Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu, Brian Yu, Damon Mosk-Aoyama, Kurt
Keutzer, Jiantao Jiao, and Jian Zhang. Nexusraven: a commercially-permissive language model
for function calling. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

[6] Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao
Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and
orchestrating llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023.

[7] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. ICLR, 2023.

[8] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

[9] Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei Yang, Zuxin Liu, Juntao Tan, Prafulla K
Choubey, Tian Lan, Jason Wu, Huan Wang, et al. Agentlite: A lightweight library for building
and advancing task-oriented llm agent system. arXiv preprint arXiv:2402.15538, 2024.

[10] Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, et al. Diversity empowers intelligence: Integrating expertise of
software engineering agents. arXiv preprint arXiv:2408.07060, 2024.

[11] Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_leaderboard.html, 2024.

[12] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+
real-world apis. ICLR, 2024.

[13] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

[14] Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. In
The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

[15] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[16] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

[17] Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023.

[18] Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu, Xilun Zhang, Yaru Niu, Tingnan Zhang, Fei
Xia, Jie Tan, and Ding Zhao. Creative robot tool use with large language models. arXiv preprint
arXiv:2310.13065, 2023.

[19] Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou,
Yitao Liu, Tianbao Xie, et al. Lemur: Harmonizing natural language and code for language
agents. arXiv preprint arXiv:2310.06830, 2023.

10

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html


[20] Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang.
Agenttuning: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823,
2023.

[21] Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, and Rasool
Fakoor. Tail: Task-specific adapters for imitation learning with large pretrained models. arXiv
preprint arXiv:2310.05905, 2023.

[22] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. arXiv preprint arXiv:2401.13919, 2024.

[23] Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang,
Cheng Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li. Restgpt: Connecting large language
models with real-world restful apis, 2023.

[24] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

[25] Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao,
Juntao Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to
empower ai agent systems. arXiv preprint arXiv:2409.03215, 2024.

[26] Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang,
Liangwei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training
pipeline for effective agent learning. arXiv preprint arXiv:2402.15506, 2024.

[27] Wei Chen and Zhiyuan Li. Octopus v4: Graph of language models. arXiv preprint
arXiv:2404.19296, 2024.

[28] Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir Patil, Tianjun Zhang, Ion Stoica, and
Joseph Gonzalez. Gorilla openfunctions v2. In https: // gorilla. cs. berkeley. edu/
/blogs/ 7_ open_ functions_ v2. html , 2024.

[29] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

[30] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

[31] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

[32] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

[33] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca:
Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

[34] Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin
Choi, and Bill Yuchen Lin. Lumos: Learning Agents with Unified Data, Modular Design, and
Open-Source LLMs. arXiv preprint arXiv:2311.05657, 2023.

[35] Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128, 2023.

11

https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html


[36] Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang
Hu, Wenhao Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe
reinforcement learning. arXiv preprint arXiv:2306.09303, 2023.

[37] Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. arXiv preprint arXiv:2401.13178, 2024.

[38] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark
for data science code generation. In International Conference on Machine Learning, pages
18319–18345. PMLR, 2023.

[39] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

[40] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma,
Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural
Information Processing Systems, 36, 2024.

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[42] Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu,
Maosong Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on
tool learning of large language models, 2024.

[43] DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

[44] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[45] Cohere. Command r plus: Enhanced retrieval-augmented generation with microsoft
azure. https://cohere.com/blog/command-r-plus-microsoft-azure, 2024. Ac-
cessed: 2024-04-04.

[46] AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

[47] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[48] Databricks. Introducing dbrx: A new state-of-the-art open llm. https://www.databricks.
com/blog/introducing-dbrx-new-state-art-open-llm, 2024. Accessed: 2024-03-27.

12

https://cohere.com/blog/command-r-plus-microsoft-azure
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm


A Dataset Documentation and Accessibility

A.1 Dataset Documentation and Intended Uses

The dataset generated using the APIGen framework is intended for training and evaluating function-
calling agents. The dataset consists of diverse query-answer pairs, where the answers are verified
function calls that could address the requested query with provided APIs. The APIs and function
calls are in a standardized JSON format, as demonstrated in the main paper Fig. 3. More details of
the format and examples are available in Appendix A.2. The dataset covers a wide range of API
categories and includes various query styles, such as simple, multiple, parallel, and parallel multiple
function calls, as introduced in [11].

Hosting, Licensing, and Maintenance Plan. The dataset currently can be viewed and downloaded
from our project homepage 3 or via Huggingface 4. All datasets are licensed under the Creative
Commons Attribution 4.0 License (CC BY). We also plan to open-source the trained models on
Huggingface once after the company’s legal approval. As for maintenance, we have established
a long-term plan to keep the datasets up-to-date, correct any potential issues, and provide support
to users. We also aim to expand these datasets further based on new advances in the field, thus
continually promoting progress in the field of function-calling agent training.

Author Responsibility Statement. As the authors, we hereby affirm that we bear full responsibility
for the datasets provided in this submission. We confirm that to the best of our knowledge, no rights
are violated in the collection, distribution, and use of these datasets.

A.2 JSON Data Format and Examples

This JSON data format is used to represent a query along with the available tools and the corresponding
answers. Here’s a description of the format:

A.2.1 Dataset Structure

The JSON data structure comprises three main keys: query, a string representing the problem
statement; tools, an array of tools each defined by properties such as name, description, and
parameters that further describe each tool’s required and optional parameters with their types and
descriptions; and answers, an array detailing responses with the tool used (name) and the arguments
provided (arguments) for each answer, thereby aligning tools with their respective query intentions.
The detailed description of each data point’s entries is as follows.

• query (string): The query or problem statement.
• tools (array): An array of available tools that can be used to solve the query.

Each tool is represented as an object with the following properties:
– name (string): The name of the tool.
– description (string): A brief description of what the tool does.
– parameters (object): An object representing the parameters required by the tool.

* Each parameter is represented as a key-value pair, where the key is the parameter name
and the value is an object with the following properties:

· type (string): The data type of the parameter (e.g., "integer", "float", "array").
· description (string): A brief description of the parameter.
· required (boolean): Indicates whether the parameter is required or optional.

• answers (array): An array of answers corresponding to the query.
– Each answer is represented as an object with the following properties:

* name (string): The name of the tool used to generate the answer.
* arguments (object): An object representing the arguments passed to the tool to generate

the answer.
· Each argument is represented as a key-value pair, where the key is the parameter name

and the value is the corresponding value.
3https://apigen-pipeline.github.io/
4https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k

13

https://apigen-pipeline.github.io/
https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k


A.2.2 Example Data

Here’s an example JSON data for the simplest scenario.

{
"query": "What is the weather in Palo Alto?",
"tools": [

{
"name": "weather_api.get_current_weather",
"description": "Retrieves the current weather conditions

for a specified location.",
"parameters": {

"location": {
"type": "string",
"description": "The name of the city or geographic

location.",
"required": true

},
"units": {

"type": "string",
"description": "The units for temperature measurement

(e.g., ’Celsius ’, ’Fahrenheit ’).",
"required": false

}
}

}
],
"answers": [

{
"name": "weather_api.get_current_weather",
"arguments": {

"location": "Palo Alto",
"units": "Celsius"

}
}

]
}

In this example, the query asks about the current weather in Palo Alto. The tools array contains a
single entry for weather_api.get_current_weather, describing the tool used to retrieve weather
data, including parameters for location and units. The answers array lists the specific API call made
with the location set as "Palo Alto" and units as "Celsius".

Here’s an example JSON data for the parallel function-calling category, i.e., the user’s query contains
multiple intentions and the answers contain multiple parallel tool calls:

{
"query": "Find the sum of all the multiples of 3 and 5
between 1 and 1000. Also find the product of the first five
prime numbers.",

"tools": [
{

"name": "math_toolkit.sum_of_multiples",
"description": "Find the sum of all multiples of

specified numbers within a specified range.",
"parameters": {

"lower_limit": {
"type": "integer",
"description": "The start of the range (inclusive).",
"required": true

},

14



"upper_limit": {
"type": "integer",
"description": "The end of the range (inclusive).",
"required": true

},
"multiples": {

"type": "array",
"description": "The numbers to find multiples of.",
"required": true

}
}

},
{

"name": "math_toolkit.product_of_primes",
"description": "Find the product of the first n prime

numbers.",
"parameters": {

"count": {
"type": "integer",
"description": "The number of prime numbers to

multiply together.",
"required": true

}
}

}
],
"answers": [

{
"name": "math_toolkit.sum_of_multiples",
"arguments": {

"lower_limit": 1,
"upper_limit": 1000,
"multiples": [3, 5]

}
},
{

"name": "math_toolkit.product_of_primes",
"arguments": {

"count": 5
}

}
]

}

In this example, the query asks to find the sum of multiples of 3 and 5 between 1 and
1000, and also find the product of the first five prime numbers. The available tools are
math_toolkit.sum_of_multiples and math_toolkit.product_of_primes, along with their
parameter descriptions. The answers array provides the specific tool and arguments used to generate
each answer.

A.3 Human Evaluation of Dataset Quality

To ensure that the three-stage verification process employed by APIGen produces a high-quality
dataset, we conduct a human evaluation on a sample of the generated data. We engage three human
evaluators to manually inspect a total of 600 samples from our released dataset. The evaluators
assess the quality of each sample based on factors such as the accuracy of parameter values and the
appropriateness of the number of API calls.

15



The results of the human evaluation reveal that only 28 out of the 600 inspected samples have minor
issues, such as inaccurate parameter values or more API calls than expected. This means that the
majority of the data, approximately 95.3%, are of very high quality. The high quality of the dataset
can be attributed to the format and execution checkers implemented in the APIGen pipeline.

The format checker ensures that the generated data adheres to the specified JSON format and contains
all the necessary fields. This step helps to filter out poorly formatted or incomplete data points. The
execution checker, on the other hand, executes the generated function calls against the appropriate
backend and verifies their successful execution. By providing real execution results, the execution
checker plays a crucial role in filtering out cases that might be difficult to identify by an LLM-based
semantic checker alone.

The combination of these two checkers, along with the final semantic checker, creates a robust
verification process that effectively filters out low-quality data points. The human evaluation results
confirm the effectiveness of this approach, demonstrating that APIGen is capable of generating
high-quality datasets for training function-calling agents.

B Dataset Generation and Experiment Details

B.1 Generator LLM Prompt

Example Prompt for the Generator to Generate Parallel Function-Calling Data

"""
You are a data labeler. The responsibility for you is to

generate a set of diverse queries and corresponding
answers for the given functions in JSON format.

Construct queries and answers that exemplifies how to use
these functions in a practical scenario. Include in each
query specific, plausible values for each parameter. For
instance, if the function requires a date, use a typical
and reasonable date.

Ensure the query:
− Is clear and concise
− Contain multiple parallel queries in natural language for

the given functions, they could use either the same
function with different arguments or different functions

− Demonstrates typical use cases
− Includes all necessary parameters in a meaningful way. For

numerical parameters, it could be either numerals or words
− Across a variety level of difficulties, ranging from

beginner and advanced use cases
− The corresponding result’s parameter types and ranges match

with the functions descriptions.

Ensure the answer:
− Is a list of function calls in JSON format.
− The length of the answer list should be equal to the number

of requests in the query
− Can solve all the requests in the query effectively

Here are examples of queries and corresponding answers for
similar functions:

{examples}

16



Note that the query could be interpreted as a combination of
several independent requests.

Based on these examples and the above instructions, generate
{number} diverse query and answer pairs for the functions
‘{func_name}‘.

The detailed functions description is as follows:
{func_desc}

{format_inst}

Now please generate {number} diverse query and answer pairs
following the above format.

"""

The template provided outlines the prompt for an LLM to generate datasets as data labelers, empha-
sizing the diversity of query types and complexity to ensure thorough coverage of potential real-world
applications. It specifies the importance of generating clear, concise queries and precisely formatted
JSON responses. Sampled data, used to populate the examples field, and API information, filling
the func_name and func_desc fields, enable a structured approach to dataset generation. The
format_inst specifies the enforced JSON output format, as shown below.

Example Format Instruction to Generate Parallel Function-Calling Data

The output MUST strictly adhere to the following JSON format,
and NO other text MUST be included:

‘‘‘
[

{
"query": "The generated query.",
"answers": [

{
"name": "api_name",
"arguments": {

"arg_name": "value",
... (more arguments as required)

}
},
... (more API calls as required)

]
}

]
‘‘‘

The enforced JSON output format facilitates efficient data extraction and cost-effective generation.
By requesting multiple query-answer pairs in a single inference with the number field—referred to
here as a "batching" technique—token usage and costs are significantly reduced.

B.2 Semantic Checker LLM Prompt

We prompted another LLM as the semantic checker to evaluate whether the execution results and the
tool calls align with the user query. We could use multiple LLMs with different prompts as checkers
here to increase the credibility of this verification stage. We provide one example prompt as follows.

17



Example Prompt for the Semantic Checker to Verify the Data

"""
As a data quality evaluator, you must assess the alignment

between a user query, corresponding function calls, and
their execution results.

These function calls and results are generated by other
models, and your task is to ensure these results
accurately reflect the user’s intentions.

Do not pass if:

1. The function call does not align with the query’s
objective, or the input arguments appear incorrect.

2. The function call and arguments are not properly chosen
from the available functions.

3. The number of function calls does not correspond to the
user’s intentions.

4. The execution results are irrelevant and do not match the
function’s purpose.

5. The execution results contain errors or reflect that the
function calls were not executed successfully.

Given Information:
− All Available Functions:

{func_desc}

− User Query: {query}

− Generated Function Calls: {func_call}

− Execution Results: {execution_result}

Note: The query may have multiple intentions. Functions may
be placeholders, and execution results may be truncated
due to length, which is acceptable and should not cause a
failure.

The main decision factor is wheather the function calls
accurately reflect the query’s intentions and the function
descriptions.

Provide your reasoning in the thought section and decide if
the data passes (answer yes or no).

If not passing, concisely explain your reasons in the thought
section; otherwise, leave this section blank.

Your response MUST strictly adhere to the following JSON
format, and NO other text MUST be included.

‘‘‘
{{

"thought": "Concisely describe your reasoning here",
"pass": "yes" or "no"

}}
‘‘‘
"""

18



Here, the func_desc field is the same as the generator, while the func_call and
execution_result are the key fields to determine whether the generated data successfully ad-
dress the query’s intention. We also enforce the model to output a JSON-formatted string, and then
extract whether we should give a pass to this data point.

B.3 Model Training

We train two function-calling models of different sizes, xLAM-1B (FC) and xLAM-7B (FC), using
the dataset generated by APIGen. The training pipeline mainly follows the AgentOhana paper [26].
We use 8 NVIDIA A100 40GB GPUs for training both models.

Since the Berkeley Function-Calling Benchmark [11] contains a relevance detection category, which
evaluates a model’s ability to distinguish non-relevant queries and tools, we extend APIGen to
generate relevance detection data points from the generated datasets. These data points cover two
types of scenarios:

• The provided tools cannot solve the query (e.g., query: "I want to know the weather in Palo Alto
on Dec 25, 2023," provided tool: get_house_price(city)).

• The provided tools are missing key arguments to solve the query (e.g., query: "I want to know the
weather in Palo Alto on Dec 25, 2023," provided tool: get_weather(city)).

In both cases, the correct output is an empty tool call or a concise explanation indicating that the
model should refuse to answer due to insufficient or irrelevant information.

We create 8,000 such data points from the collected dataset by 1) randomly discarding some tools
that will be called in the answer or 2) randomly dropping some required parameters that were
used in the generated tool calls. Then we relabel the answer to be an empty tool call or with a
concise explanation. By incorporating relevance detection data points into our training datasets, we
can enhance the model’s performance in determining when the provided tools are not suitable for
addressing a given query. This enables the training of agents that can effectively assess the relevance
of the available tools and respond appropriately, either by utilizing the relevant tools or by refraining
from answering when the necessary information is lacking.

When training the model, we fill in the sampled query and available tools to the training prompt
template, and then ask the model to predict the corresponding tool calls in specified JSON format.
The training prompt template is as follows:

Model Training Prompt

"""
[BEGIN OF TASK INSTRUCTION]
You are an expert in composing functions. You are given a

question and a set of possible functions.
Based on the question, you will need to make one or more

function/tool calls to achieve the purpose.
If none of the function can be used, point it out and refuse

to answer.
If the given question lacks the parameters required by the

function, also point it out.
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
{func_desc}
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format,

and NO other text MUST be included.

19



The example format is as follows. Please make sure the
parameter type is correct. If no function call is needed,
please make tool_calls an empty list ’[]’

‘‘‘
{{

"tool_calls": [
{{"name": "func_name1", "arguments": {{"argument1": "
value1", "argument2": "value2"}}}},
... (more tool calls as required)

]
}}
‘‘‘
[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
User Query: {query}
[END OF QUERY]
"""

The training hyperparameters for our models include a learning rate of 5× 10−6, four epochs, and
use of the AdamW optimizer. Other settings include a cutoff length of 2048, a per-device batch size
of six, two gradient accumulation steps, a cosine learning rate scheduler with 50 warmup steps, and
the bfloat16 (BF16) data type.

20


	Introduction
	Related Work
	APIGen Framework
	Data Generation Overview
	Multi-Stage Data Verification
	Methods to Improve Dataset Diversity

	Dataset Preparation and Collection
	Dataset API Sources
	Collection Setup and Dataset Details

	Experiments
	Experiment Setup
	Experiment Results Analysis

	Conclusion
	Dataset Documentation and Accessibility
	Dataset Documentation and Intended Uses
	JSON Data Format and Examples
	Dataset Structure
	Example Data

	Human Evaluation of Dataset Quality

	Dataset Generation and Experiment Details
	Generator LLM Prompt
	Semantic Checker LLM Prompt
	Model Training


