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ABSTRACT

Memory limitation is becoming the prevailing challenge that hinders the deploy-
ment of Federated Learning on mobile/IoT devices in real-world cases. Progres-
sive training offers a promising alternative to surpass memory constraints. Instead
of updating the full model in each training round, progressive training divides
the model into multiple blocks and iteratively updates each block until the full
model is converged. However, existing progressive training approaches suffer
from prominent accuracy degradation as training each block in isolation drives it
to prioritize features that are only beneficial to its specific needs, neglecting the
overall learning objective. To address this issue, we present Honey, a synergis-
tic progressive training approach that integrates the holistic view and block-wise
feedback to facilitate the training of each block. Specifically, the holistic view
broadens the learning scope of each block, ensuring that it operates in harmony
with the global objective and benefits the training of the whole model. Simul-
taneously, block-wise feedback heightens each block’s awareness of its role and
position within the full model, empowering it to make real-time adjustments based
on insights from downstream blocks and facilitating a smooth and consistent infor-
mation flow. Furthermore, to fully harness the heterogeneous memory resources
of participating devices, we develop an elastic resource harmonization protocol.
This protocol authorizes each device to adaptively train specific layers according
to their memory capacity, optimizing resource utilization, sparking cross-block
communication, and accelerating model convergence. Comprehensive experi-
ments on benchmark datasets and models demonstrate that Honey outperforms
state-of-the-art approaches, delivering an exceptional average accuracy improve-
ment of up to 43.9%. Moreover, Honey achieves comparable performance even
with a reduction in peak memory usage of up to 49%.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Wang et al., 2023) is a distributed learning
paradigm that enables multiple mobile and IoT devices to collaboratively train a shared model while
preserving data privacy. Despite the promising benefits, memory limitation of the participating
devices becomes the fundamental and prevailing challenge that hinders the deployment of FL in
real-world cases. Due to the intensive memory footprint of the local training process, the low-end
devices cannot contribute to the shared model with their own private data (Zhan et al., 2024). Sev-
eral works have been proposed to surmount the resource limitation, which can be mainly divided
into the following two categories: 1) model-heterogeneous training and 2) partial training. Model-
heterogeneous training (Li & Wang, 2019; Itahara et al., 2021) customizes local models based on
the memory capacity of devices, employing a high-quality public dataset for model aggregation.
However, such public datasets are frequently hard to retrieve due to privacy concerns. Partial train-
ing tailors the global model through width scaling (Diao et al., 2020; Alam et al., 2022) or depth
scaling (Kim et al., 2022; Liu et al., 2022), and then allocates the sub-models accordingly. However,
width scaling can compromise the model architecture, and depth scaling restricts the complexity of
the global model that can be trained.
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Recently, progressive training (Wu et al., 2024c) offers a promising alternative to break the memory
wall for FL. Unlike traditional FL algorithms (Tian et al., 2024; Ning et al., 2024), progressive
training strategically segments the global model into blocks and trains them in a progressive manner.
Specifically, the process starts by training the first block. Once it converges, this block is frozen,
and the training of the next one is triggered (Wu et al., 2024b). This procedure iterates until the
full model is comprehensively trained. In this way, dedicating each round to training a single block
effectively reduces the memory footprint while addressing the challenges of model-heterogeneous
training and partial training, as it eliminates the need for a shared dataset, preserves the integrity of
the model architecture, and places no limitations on the complexity of the global model.

However, progressive training suffers from performance degradation as training each block in iso-
lation restricts its awareness of subsequent blocks, leading to a narrow and short-sighted learning
scope (Wang et al., 2021). Due to their limited fitting capacity, these blocks tend to extract features
that satisfy their immediate training needs, neglecting the overarching learning objective. This over-
sight results in a significant loss of valuable information. Consequently, the subsequent blocks ex-
perience accuracy stagnation during training (see details in Appendix A.2), struggling to learn more
insightful features because they have to build on a weakened and information-deficient feature set.
Previous efforts in progressive training primarily concentrate on designing local loss functions (Wu
et al., 2024b) or developing new training paradigms (Wu et al., 2024c) to assist each block in learn-
ing the expected feature representation. Nonetheless, these approaches still fail to recognize the
importance of strengthening collaboration between blocks.

Inspired by the above observations, we hypothesize that aligning each block’s training objective is
promising to be a rescue for progressive training. Therefore, we propose Honey, a synergistic pro-
gressive training approach that fuses holistic view and block-wise feedback to promote each block’s
operation in harmony with the global objective while reinforcing block collaboration. Specifically,
for each block, we infuse the global training objective and the impact of the current block’s updates
on downstream blocks into its training objective. These strategies facilitate the model to extract
features in a hierarchical and collaborative manner, fostering a smooth and consistent information
flow. Furthermore, confining each device to train only its designated block results in a considerable
waste of valuable resources. To address this issue, we propose an elastic resource harmonization
protocol, which empowers devices to dynamically choose the number of layers to train according
to their memory capacity. This protocol optimizes resource utilization and breaks gradient isolation
between blocks, cultivating a more resilient training ecosystem.

Comprehensive empirical results demonstrate that Honey outperforms existing memory-
efficient baselines and progressive training approaches on representative datasets, including CI-
FAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),
STL-10 (Coates et al., 2011), and Tiny-ImageNet (Le & Yang, 2015). Moreover, Honey achieves
comparable performance even with a reduction in peak memory usage of up to 49%.

2 MOTIVATION

2.1 THE MEMORY WALL HINDERS THE DEPLOYMENT OF FL

       (a) CIFAR10 (Non-IID).       (b) CIFAR100 (Non-IID).                       

Figure 1: Training ResNet18 on CIFAR10 and CI-
FAR100 datasets in real-world cases.

In this section, we aim to explore the question:
how does the memory wall impact the deploy-
ment of FL? Specifically, we establish a pool
consisting of 100 mobile devices and distribute
the CIFAR10 and CIFAR100 datasets among
them in a Non-IID manner. The Non-IID parti-
tioning follows the Dirichlet distribution (Hsu
et al., 2019) with a concentration parameter
α = 1, and ResNet18 is employed as the global
model. In each training round, 10% of the de-
vices are randomly selected to participate. We adopt the same memory distribution as NeuLite (Wu
et al., 2024b) to simulate real-world conditions and employ the FedAvg (McMahan et al., 2017) to
execute the FL process. For benchmarking, we also evaluate the performance of Oracle FL, which
serves as a theoretical baseline and assumes that all the participating devices have sufficient memory
resources. Figure 1 presents the experimental results, revealing a noticeable performance decline
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in FedAvg compared to Oracle FL. For example, on the CIFAR100 dataset, FedAvg experiences a
24.8% accuracy reduction. This is because the memory wall restricts many low-memory devices
from participating in FL. These results highlight the critical challenge posed by the memory wall,
hindering the successful deployment of FL in real-world scenarios.

2.2 EXPLORING EXISTING APPROACHES

 (a) HeteroFL (Non-IID).           (b) FedRolex (Non-IID).                       

Figure 2: Performance evaluation of different
methods in FL on CIFAR10. No ≤ † means that
devices with a capacity less than or equal to † will
not participate in FL, while All denotes participa-
tion by all devices.

In this section, we examine the existing work in
resource-aware FL and quantitatively analyze
their deficiency. HeteroFL (Diao et al., 2020)
and FedRolex (Alam et al., 2022), both land-
mark approaches designed to address memory
constraints in FL, are considered the foremost
state-of-the-art methods in the field. These ap-
proaches scale the number of channels in con-
volutional layers according to various criteria,
as discussed in Section 5.1, extracting sub-
models of varying complexity to accommodate
the memory constraints of devices. We adopt
the same experimental setup as described in Fe-
dRolex (Alam et al., 2022). Additionally, to simulate memory heterogeneity, we randomly assign
values from the set {1, 0.75, 0.5, 0.25, 0.125} to devices, representing the model complexity each
device can handle (Alam et al., 2022). For example, 0.5 indicates that the device can only train half
of the channels in each layer of the global model.

To investigate how these approaches compromise the model architecture, we apply different thresh-
olds † to determine which devices participate in training. For instance, No ≤ 0.5 excludes devices
with a memory capacity of 0.5 or below from the training process. Figure 2 shows the experimental
results. Interestingly, excluding low-capacity devices does not undermine the model’s performance;
in fact, it leads to improvements. For example, in Figure 2 (b), the accuracy of No ≤ 0.5 surpasses
that of including all devices (All) by 1.5%, even though 60% of the devices are excluded from the
FL process. This suggests that these methods struggle to effectively utilize data from low-memory
devices, and such a partitioning strategy may even compromise the model architecture, degrading
model performance. More experimental analyses are provided in Appendix A.1. Therefore, there is
an urgent need to develop more effective methods to break the memory wall in FL.

3 PROGRESSIVE TRAINING IN FL

Building on the above motivations, we seek to break the memory wall in FL from a new perspec-
tive—progressive training. In this section, we begin with a brief introduction to progressive training,
followed by an explanation of why a straightforward implementation falls short.

3.1 BACKGROUND

Given a global model Θ, the central server initially divides Θ into T ([θ1, θ2, ..., θT ]) blocks, with
each block corresponding to a specific training stage. We define the operational function for block θt
as fθt(·), with θt,F representing the corresponding frozen block. All blocks, except the last one, are
concatenated with an output module θop to facilitate independent training. The progressive training
process, illustrated in Figure 3 (b), primarily consists of the following key steps (Wu et al., 2024b):
1) Model Assembly: The central server assembles the global sub-model Θt([θ1,F , θ2,F , ..., θt, θop])
for the current stage t, starting with stage 1. 2) Device Selection: The server then selects a subset
of devices S to participate in the training round, based on their memory capacity to ensure they
can handle the training of the global sub-model Θt. The assembled sub-model is subsequently
distributed to the selected devices. 3) Local Training: The selected devices conduct local training
on their private datasets and then upload the updated model parameters ([θt, θop]) back to the server.
4) Convergence Assessment: The server aggregates these updates and evaluates whether the current
block has converged. 5) Model Growing: Upon achieving convergence, the server freezes the
converged block θt and concatenates a new block θt+1, constructing the sub-model for the next
stage. These steps iterate until all blocks are fully trained. Compared to vanilla FL, as shown in
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(a) Vanilla FL

(b) Progressive Training in FL
Stage

1

2

3

(c) Honey (Ours)
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Figure 3: The local training process on the device side. (a) and (b) illustrate the paradigms of
vanilla FL and progressive training in FL, where the global model is divided into three blocks. In
vanilla FL, all three blocks are updated simultaneously based on the “end-to-end loss”. Conversely,
in progressive training, all blocks except the last one are trained according to their specific training
objectives. Once the block in the current stage converges, freeze it and concatenate a new block,
progressing to the next training stage. (c) presents the workflow of Honey, where, during the update
of each block, in addition to the local training objective, holistic view—specifically, the “end-to-end
loss”—and block-wise feedback are incorporated. Additionally, each device unfreezes previously
frozen layers according to its memory capacity, known as unfrozen layers, and trains them alongside
the current block. Moreover, model growth is performed in each training round.

Figure 3 (a), which continuously trains the full model in an end-to-end manner, progressive training
concentrates on training one block in each round, notably reducing the memory footprint.

3.2 CHALLENGES IN PROGRESSIVE TRAINING

IID Non-IID
60
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Figure 4: Testing ac-
curacy of ResNet18
on CIFAR10. The
global model is seg-
mented into T blocks.

Though achieving memory reduction, existing progressive training ap-
proaches suffer from performance degradation, especially when dividing
the model into multiple blocks. The following experiments are conducted
to investigate this issue. Specifically, we experiment with dividing the
ResNet18 into T (T ∈ {1, 2, 4, 8}) blocks on CIFAR10, where T = 1 rep-
resents Oracle FL. The experimental results, illustrated in Figure 4, clearly
reveal that model accuracy decreases as the number of blocks increases. For
instance, in the Non-IID scenario, accuracy drops by 4% when the model is
divided into two blocks (T = 2) compared to T = 1. Moreover, this perfor-
mance decline becomes even more pronounced when the model is divided
into eight blocks (T = 8), resulting in a significant 21.7% reduction in ac-
curacy. This is because training each block in isolation drives it to extract
features that are only beneficial to its specific needs, ignoring the existence
and needs of the subsequent blocks. This narrow and short-sighted learning
scope can result in the loss of valuable information during the training of
earlier blocks, preventing subsequent blocks from extracting more discrimi-
native features. As a result, the later blocks experience accuracy stagnation,
ultimately undermining the model’s overall performance. Therefore, naively performing progressive
training is insufficient. More analyses from the perspective of information theory are provided in
Appendix A.2. To address this challenge, we propose Honey, which integrates the holistic view
and block-wise feedback to overcome short-sightedness and strengthen block collaboration.

4 HONEY : A SYNERGISTIC PROGRESSIVE TRAINING APPROACH

Figure 3 (c) presents the workflow of Honey. In this section, we first introduce how to infuse the
holistic view into each block, steering its learning process. Then, a block-wise feedback mechanism

4
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is developed to guarantee that each block remains aware of the subsequent blocks, empowering
it to better serve their needs and fostering a more cohesive training pipeline. Finally, we design
an elastic resource harmonization protocol, which not only optimizes resource utilization but also
breaks gradient isolation between blocks, boosting training efficiency and model performance.

4.1 LEARNING WITH HOLISTIC VIEW

The input to block θt is the output from the preceding block, denoted as Zt−1. After passing through
θt, Zt−1 transforms into Zt, which is represented by Zt = fθt(Zt−1). Subsequently, Zt is processed
by the output module θop, compared with the labels to calculate the empirical loss, Lt, which is
defined as Lt = L(fθop(Zt), Y ). The block θt is then updated according to Eq. (1), where θkt
denotes the parameters from the k-th iteration and η refers to learning rate.

θk+1
t ← θkt − η · ∂Lt

∂θt
(1)

Updating block θt solely based on Eq. (1) is like looking through a keyhole—narrow and
short-sighted (Wang et al., 2021)—missing the bigger picture that includes subsequent blocks
([θt+1, θt+2, ..., θT ]). This myopic learning mechanism drives each block to focus on its immediate
objective, extracting features that may seem beneficial for its own performance but potentially un-
dermine the model’s overall performance. To counteract this shortsightedness, we infuse the holistic
view into the update objective of each block, ensuring its update direction aligns well with the full
model. Specifically, we define ZT as the output of the final block and compute the end-to-end loss
with the labels as LT . By integrating LT into the training objective of block θt, we redefine its
update target as Lt + γt · LT , where γt serves as a weighting factor, striking a balance between
the local objective of each block and the global objective of the model. Consequently, the update
process for block θt can be expressed as:

θk+1
t ← θkt − η · ∂(Lt + γt · LT )

∂θt
(2)

This updating strategy guarantees that each block works in harmony with the global objective. In
this manner, each block not only optimizes its own performance but also contributes positively to the
overall model’s success, enhancing the coherence and effectiveness of the model’s learning process.

4.2 LEARNING WITH BLOCK-WISE FEEDBACK

While incorporating the holistic view through Eq. (2) provides a strategy to update block θt, a critical
challenge remains unaddressed: the transition from the output of block θt, Zt, to the input of the final
block, ZT−1. This transition process remains a black box, offering limited insights and control over
the intermediate representation. To bridge this gap, we propose a more refined updating mechanism
by incorporating block-wise feedback from downstream blocks into the training objective of each
block. This mechanism empowers block θt to be aware of the subsequent blocks and adjust its
behavior in response to the needs of downstream blocks, thereby exercising greater control over the
transformation of information as it propagates through the network. Specifically, the overall update
objective of block θt and the detailed update process are outlined as follows:

Loverall
t = Lt + βt · (Lt+1 + Lt+2 + · · ·+ LT−1) + γt · LT (3)

θk+1
t ← θkt − η ·

∂
(
Loverall
t

)
∂θt

(4)

where βt is a hyperparameter that serves to balance the contribution of block-wise feedback. In this
way, block θt not only broadens its learning scope through the holistic view but also gains awareness
of its specific role and position within the overall model via block-wise feedback. This awareness
enables block θt to make real-time adjustments, responding dynamically to feedback from down-
stream blocks. As a result, each block is better equipped to adapt its behavior to align with the
evolving demands of the full model. This updating mechanism creates a more fluid and responsive
training pipeline, promoting deeper synergy and collaboration among blocks. Furthermore, by facil-
itating communication and alignment across blocks, each block contributes more effectively to the
model’s unified objective. Thus, block-wise feedback transforms the learning process from a series
of isolated updates into a coordinated effort, optimizing the network’s performance systematically.
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4.3 ELASTIC RESOURCE HARMONIZATION

Integrating the holistic view and block-wise feedback greatly improves the training process of each
block. However, progressive training still encounters a significant challenge: the failure to fully
capitalize on the heterogeneous memory resources of participating devices. This shortcoming arises
because, in each training stage, all devices are restricted to training the same block, leading to the
underutilization of high-end devices with larger memory capacity. To address this inefficiency, the
elastic resource harmonization protocol is developed.

This protocol allows each device to extend its training efforts beyond the current training block
θt, depending on its available memory and processing capacity. Specifically, devices with more
resources can break through and unfreeze previously frozen layers, known as unfrozen layers and
denoted as Lbreak. These layers are updated simultaneously with block θt during training. By
dynamically unfreezing and training these layers, we secure that each device makes the most of its
capabilities, thus optimizing resource utilization and enhancing the overall training efficiency. In this
way, we cultivate a more efficient and scalable FL training ecosystem where each device actively
advances the model’s global objective. The complete update process can be formulated as follows:

θk+1
t + θk+1

Lbreak
← (θkt + θkLbreak

)− η · ∂(Loverall
t )

∂(θt + θLbreak
)

(5)

After completing local training, devices only need to upload their updated model parameters to
the central server for aggregation, effectively reducing communication overhead. To prevent high-
end devices from dominating the aggregation process, we design a balanced aggregation strategy.
Particularly, layers that are unfrozen and updated on high-end devices are aggregated with the cor-
responding frozen layers from low-end devices using the FedAvg (McMahan et al., 2017). This
aggregation strategy ensures a fair contribution from all devices, regardless of their resources, pro-
moting a more inclusive and balanced training process. Additionally, as outlined in Eq. (5), both the
current block and previous layers are trained together, effectively breaking gradient isolation and
enhancing collaborative adaptation across blocks (Wu et al., 2024b).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Default Settings. We evaluate the effectiveness of Honey using the following representative
datasets: CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), SVHN (Net-
zer et al., 2011), STL-10 (Coates et al., 2011), and Tiny-ImageNet (Le & Yang, 2015). Addi-
tionally, we employ models from three popular architectures—namely, ResNet (He et al., 2016),
VGG (Simonyan & Zisserman, 2014), and Transformer (Vaswani et al., 2017)—as global models.
The datasets are partitioned in both IID and Non-IID forms among 100 devices, except for STL-10,
distributed among 20 devices. The Non-IID distribution is based on the Dirichlet distribution (Hsu
et al., 2019) with α = 1. In each training round, 10% of the devices are randomly selected to partici-
pate, except for STL-10, where 20% are selected. We use the same memory settings as NeuLite (Wu
et al., 2024b), based on profiling results from various mobile devices. The details are presented in
Appendix A.3. During local training, each device performs five local epochs using SGD as the op-
timizer with a learning rate of 0.01, except for Tiny-ImageNet, which uses AdamW (Loshchilov,
2017) with a learning rate of 0.0001.

Baselines. We employ the following baselines for comparison: 1) AllSmall (Wu et al., 2024c): A
naive baseline that scales down the number of convolutional channels in the global model based on
the device with the smallest memory capacity, creating a model that allows all devices to partici-
pate in training. 2) ExclusiveFL (Liu et al., 2022): This approach restricts participation to devices
with enough memory capacity to train the full model, excluding those with insufficient memory
from the training process. 3) DepthFL (Kim et al., 2022): This method applies depth scaling to
the global model, creating models with varying depths that are assigned to devices based on their
memory capacity. 4) HeteroFL (Diao et al., 2020): A static width scaling algorithm that adjusts
the number of convolutional channels in the global model to obtain sub-models of varying complex-
ity. 5) FedRolex (Alam et al., 2022): Similar to HeteroFL but employs a sliding window to extract
sub-models. 6) TiFL (Chai et al., 2020): This approach stratifies devices based on their training
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Table 1: Performance comparison of various FL methods to train different models across different
datasets. Bold and Underlined indicate the optimal and sub-optimal results, respectively. The −
symbol signifies that the corresponding algorithm fails to work under this setup. For progressive
training methods, the global model is divided into four blocks based on the model architecture.

Method
CIFAR10 CIFAR100

AverageIID Non-IID IID Non-IID
Res18 Res34 Res18 Res34 Res18 Res34 Res18 Res34

Basic
Approach

AllSmall 76.8% 67.0% 69.5% 53.8% 37.5% 27.4% 17.4% 9.4% 44.9%
ExclusiveFL 77.9% - 76.8% - 37.1% - 35.2% - 28.4%

Partial
Training

DepthFL 79.3% 80.1% 65.1% 73.2% 36.5% 47.0% 33.3% 43.1% 57.2%
HeteroFL 82.8% 9.9% 76.7% 10.0% 47.0% 1.1% 34.8% 1.0% 32.9%
FedRolex 84.7% 81.4% 76.6% 71.8% 51.3% 44.3% 35.7% 26.5% 59.0%

Client
Selection

TiFL 81.0% - 73.6% - 40.7% - 37.6% - 29.1%
Oort 76.9% - 75.9% - 41.4% - 35.3% - 28.7%

Progressive
Training

InfoProS 82.1% 83.3% 74.5% 74.0% 52.5% 53.0% 46.7% 47.3% 64.2%
InfoProD 83.5% 85.0% 73.3% 71.9% 53.4% 55.0% 47.3% 48.9% 64.8%

SmartFreeze 82.8% 82.0% 76.7% 72.0% 54.4% 50.7% 48.2% 46.2% 64.1%
NeuLite 87.0% 84.2% 80.4% 74.9% 57.3% 54.8% 51.2% 49.5% 67.4%
Honey 89.5% 87.5% 85.1% 82.0% 63.3% 59.1% 57.7% 53.8% 72.3%

time and selects devices from specific tiers for each training round accordingly. 7) Oort (Lai et al.,
2021): This approach simultaneously accounts for both system and data heterogeneity to select de-
vices. 8) InfoProS (Wang et al., 2021): Although InfoPro is not specifically designed for FL, we
adapt it for FL by introducing an additional reconstruction loss during the training of each block to
reduce information loss. Additionally, model growth is triggered when a block has converged. 9)
InfoProD (Wang et al., 2021): This approach adopts a dynamic model growth strategy, where the
model grows in each training round. 10) SmartFreeze (Wu et al., 2024a): A progressive training
algorithm tailors a dedicated output module for each block. 11) NeuLite (Wu et al., 2024b): An
advanced progressive training approach that customizes the training loss for each block based on
information theory and enhances information interaction from both directions.

5.2 END-TO-END EVALUATION

In this section, we evaluate the effectiveness of Honey from two perspectives: 1) overall perfor-
mance compared to various baselines, and 2) performance comparison with progressive training
approaches under different partitioning schemes.

Overall Performance. Table 1 presents the model performance of various methods under different
experimental settings. We observe that Honey demonstrates significant superiority, with an average
accuracy improvement of up to 43.9%. Specifically, when training ResNet18 on CIFAR10 (IID),
Honey improves accuracy by 12.7% compared to AllSmall. This is because the global model com-
plexity of AllSmall is constrained by the device with the smallest memory capacity, leading to in-
sufficient feature extraction capabilities. Honey outperforms ExclusiveFL with an 11.6% increase
in accuracy, attributed to its inclusive framework. DepthFL shows a 10.2% decrease in accuracy
compared to Honey due to its imbalanced parameter training and inability to effectively utilize
data from low-memory devices. Compared to width scaling methods like HeteroFL and FedRolex,
Honey achieves performance gains of 6.7% and 4.8%, respectively. This is because width scaling
compromises the model architecture. Methods like TiFL and Oort experience up to a 12.6% decrease
in accuracy because they fail to utilize data from low-memory devices. Compared to InfoProS and
InfoProD, Honey still achieves performance gains of 7.4% and 6.0%, respectively. These improve-
ments are due to InfoPro’s increased memory usage from its complex reconstruction module, which
limits its ability to effectively utilize data from low-memory devices. Additionally, it lacks Honey’s
ability for inter-block collaboration to efficiently extract features. Even compared to other progres-
sive training methods like SmartFreeze and NeuLite, Honey improves accuracy by 6.7% and 2.5%,
respectively. This is because Honey exploits the holistic view and block-wise feedback to guide
the training process of each block. At the same time, Honey also fully utilizes the heterogeneous
memory resources of all devices through elastic resource harmonization.
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Table 2: Comparison with progressive training methods. In this set of experiments, memory limi-
tations are not considered, and Honey disables the elastic resource harmonization. The ∗ symbol
indicates Oracle FL, where all devices train the full model end-to-end, serving as the upper bound.
ResNet18 is employed as the global model.

Dataset Distribution Method T=1 T=2 T=4 T=8

CIFAR10

IID
SmartFreeze

92.4%∗
89.1% (↓ 2.0%) 83.6% (↓ 5.2%) 75.6% (↓ 10.2%)

NeuLite 90.2% (↓ 0.9%) 85.5% (↓ 3.3%) 81.8% (↓ 4.0%)
Honey 91.1% 88.8% 85.8%

Non-IID
SmartFreeze

88.8%∗
83.6% (↓ 4.7%) 76.4% (↓ 4.7%) 65.9% (↓ 12.3%)

NeuLite 85.8% (↓ 2.5%) 79.1% (↓ 2.0%) 73.9% (↓ 4.3%)
Honey 88.3% 81.1% 78.2%

CIFAR100

IID
SmartFreeze

68.6%∗
61.7% (↓ 5.6%) 56.4% (↓ 5.8%) 49.8% (↓ 10.3%)

NeuLite 63.6% (↓ 3.7%) 59.7% (↓ 2.5%) 55.7% (↓ 4.4%)
Honey 67.3% 62.2% 60.1%

Non-IID
SmartFreeze

61.2%∗
56.5% (↓ 5.3%) 50.5% (↓ 5.5%) 43.7% (↓ 9.4%)

NeuLite 59.8% (↓ 2.0%) 54.6% (↓ 1.4%) 48.9% (↓ 4.2%)
Honey 61.8% 56.0% 53.1%

SVHN

IID
SmartFreeze

91.9%∗
93.8% (↑ 0.2%) 91.1% (↓ 0.9%) 85.8% (↓ 5.8%)

NeuLite 94.2% (↑ 0.6%) 91.2% (↓ 0.8%) 90.1% (↓ 1.5%)
Honey 93.6% 92.0% 91.6%

Non-IID
SmartFreeze

91.7%∗
92.9% (↑ 0.4%) 90.2% (↓ 0.8%) 83.7% (↓ 6.7%)

NeuLite 93.3% (↑ 0.8%) 89.9% (↓ 1.1%) 88.4% (↓ 2.0%)
Honey 92.5% 91.0% 90.4%

STL-10

IID
SmartFreeze

77.2%∗
73.4% (↓ 3.6%) 68.5% (↓ 4.7%) 65.8% (↓ 5.1%)

NeuLite 77.6% (↑ 0.6%) 72.3% (↓ 0.9%) 69.8% (↓ 1.1%)
Honey 77.0% 73.2% 70.9%

Non-IID
SmartFreeze

75.1%∗
72.3% (↓ 2.5%) 65.6% (↓ 3.9%) 62.3% (↓ 5.3%)

NeuLite 76.3% (↑ 1.5%) 67.9% (↓ 1.6%) 64.6% (↓ 3.0%)
Honey 74.8% 69.5% 67.6%

Comparison with Progressive Training Methods. To demonstrate the superiority of Honey over
other progressive training approaches, we employ different partitioning schemes on the global model
and compare their performance. In this set of experiments, we operate under the assumption of no
memory constraints, and Honey’s elastic resource harmonization protocol is disabled, allowing us
to focus on the effectiveness of the holistic view and block-wise feedback during training. This
practice is intended to highlight the importance of fostering block collaboration within the model.
Specifically, we train ResNet18 on the CIFAR10, CIFAR100, SVHN, and STL-10 datasets, par-
titioning the global model into T (T ∈ {1, 2, 4, 8}) blocks. SmartFreeze and NeuLite serve as
baselines, with the experimental results presented in Table 2.

NeuLiteSmartFreeze

            (a) CIFAR10 (IID).           (b) CIFAR10 (Non-IID).                       

T=1 Honey

Figure 5: nHSIC(Y; Z) of each block on the
CIFAR10 when dividing into eight blocks.

We observe that across all experimental settings,
Honey consistently achieves near-optimal perfor-
mance, particularly when the model is divided into
more blocks. For example, on the CIFAR10 (IID)
dataset, with T = 2, Honey improves accuracy
by 2.0% over SmartFreeze and 0.9% over NeuLite.
At T = 8, the improvements are even more pro-
nounced, with a 10.2% increase over SmartFreeze
and a 4.0% increase over NeuLite. Moreover, on the
SVHN dataset, even with a peak memory reduction
of up to 49% when T = 8, Honey maintains performance on par with Oracle FL. Additionally, for
the CIFAR10 dataset at T = 8, we freeze the global model parameters trained by each algorithm
and compute the nHSIC(Y; Z) (Ma et al., 2020) between each block’s output Z and the labels Y , as
shown in Figure 5. The nHSIC(Y; Z) captures the correlation between the extracted features and the
labels. The results show that while SmartFreeze and NeuLite effectively extract essential features in
the earlier blocks, information loss prevents the later blocks from capturing more critical features. In
contrast, Honey successfully mitigates the short-sightedness of these methods, extracting features
in a hierarchical fashion similar to end-to-end training (T = 1).
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5.3 MEMORY EFFICIENCY

                 (a) Four Blocks.                      (b) Eight Blocks.                       

Figure 6: Peak memory usage of different
methods on the CIFAR10 dataset.

Despite introducing the holistic view and block-wise
feedback, Honey remains a memory-efficient ap-
proach. Taking ResNet models as an example, we
divide them into four and eight blocks and compare
the peak memory usage across different methods. In
this set of experiments, we also disable the elastic
resource harmonization protocol. Figure 6 presents
the results on the CIFAR10 with a batch size of 256,
where Honey shows a significant reduction in peak
memory usage compared to Oracle FL. For instance,
as shown in Figure 6 (b), dividing ResNet34 into eight blocks reduces the peak memory footprint by
up to 53%. Compared to other methods, Honey incurs a negligible additional memory overhead.

5.4 MODEL UNIVERSALITY

         (a) VGG16.                 (b) Vision Transformer.                       

Figure 7: Model Universality. Both datasets
are partitioned in a Non-IID manner, with the
global models divided into {1, 2, 4} blocks.

In this section, we demonstrate the model univer-
sality of Honey by training VGG16 on CIFAR100
and Vision Transformer (ViT) (Dosovitskiy et al.,
2020) on Tiny-ImageNet. Figure 7 presents the ex-
perimental results, showing that Honey achieves
even superior performance compared to Oracle FL
(T = 1) across various training tasks and partition-
ing schemes. For example, on the Tiny-ImageNet,
Honey improves accuracy by 0.9% compared to Or-
acle FL when T = 4. This is because optimizing
models without skip connections in an end-to-end
manner is challenging, whereas Honey efficiently trains each block in a progressive manner. More
experimental results are provided in Appendix A.4.

5.5 SENSITIVITY ANALYSIS

Table 3: Sensitivity Analysis.

Dataset Distribution HoneyC HoneyI HoneyD

CIFAR10 IID 89.6% 90.1% 89.3%
Non-IID 84.9% 85.4% 85.4%

CIFAR100 IID 63.4% 64.1% 63.7%
Non-IID 57.2% 57.5% 56.6%

We then perform a sensitivity analysis
on the hyperparameters βt and γt, us-
ing the ranges βt ∈ [0.1, 0.3] and γt ∈
[0.2, 0.8] as an example. Three strategies
are utilized to determine these hyperpa-
rameters: 1) Constant-HoneyC : fixed val-
ues of βt = 0.2 and γt = 0.5; 2) Gradu-
ally Increasing-HoneyI : βt and γt linearly increase with block index; 3) Gradually Decreasing-
HoneyD: βt and γt linearly decrease with block index. ResNet18 is employed as the global model.
The results, summarized in Table 3, demonstrate that Honey exhibits robustness to hyperparameter
selection. Notably, the strategy of gradually increasing βt and γt yields the best performance.

5.6 ABLATION STUDY

We further conduct a breakdown analysis of the benefit brought by each component, i.e., the holis-
tic view, block-wise feedback, and elastic resource harmonization. Experimental results, as shown
in Table 4, indicate that each component makes a significant contribution to performance improve-
ment. For example, eliminating the holistic view leads to an average accuracy decrease of 1.3%,
while removing block-wise feedback causes an average drop of 0.7%. Furthermore, omitting elastic
resource harmonization results in an average accuracy decline of 1.9%.

6 RELATED WORK

Model-heterogeneous training involves customizing local models of different complexity for par-
ticipating devices according to their memory capacity (Itahara et al., 2021; Zhang et al., 2022; Lin
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Table 4: Ablation Study. w/o HV denotes without the holistic view, w/o BF represents the omis-
sion of block-wise feedback, and w/o ERH indicates removing the elastic resource harmonization.

Method
CIFAR10 CIFAR100

AverageIID Non-IID IID Non-IID
Res18 Res34 Res18 Res34 Res18 Res34 Res18 Res34

w/o HV 87.9% 86.7% 83.5% 81.4% 62.3% 58.1% 56.1% 51.6% 71.0% (↓ 1.3%)
w/o BF 89.3% 87.2% 84.6% 80.9% 63.1% 57.8% 56.9% 52.9% 71.6% (↓ 0.7%)

w/o ERH 88.2% 87.2% 82.6% 78.8% 61.1% 58.3% 54.7% 52.1% 70.4% (↓ 1.9%)
Honey 89.5% 87.5% 85.1% 82.0% 63.3% 59.1% 57.7% 53.8% 72.3%

et al., 2020), with knowledge distillation (Hinton et al., 2015) used for aggregation across different
model architectures. For instance, in FedMD (Li & Wang, 2019), devices upload the logits com-
puted on a shared dataset to facilitate knowledge transfer after completing local training. Similarly,
Fed-ET (Cho et al., 2022) employs a data-aware weighted consensus distillation on a public dataset
to transfer the knowledge from an ensemble of models to the server model. However, retrieving
such public datasets is typically challenging due to data privacy concerns.

Partial training encompasses techniques that employ width scaling or depth scaling on the global
model, producing sub-models of varying complexity. HeteroFL (Diao et al., 2020), a well-
established width scaling approach, scales the number of convolutional channels in the global model
based on the memory capacity of devices, statically extracting sub-models of different complexity.
Unlike HeteroFL, FedRolex (Alam et al., 2022) employs a sliding window to dynamically extract
sub-models. However, this strategy compromises the model architecture, leading to performance
degradation. Conversely, InclusiveFL (Liu et al., 2022) and DepthFL (Kim et al., 2022) are repre-
sentative depth scaling methods that address memory limitations by constructing models of varying
depths. However, these methods typically assume that some devices have sufficient memory to train
the full model, an assumption that is challenging to meet in real-world scenarios.

Progressive training is a new learning paradigm that divides the global model into blocks and trains
them in a progressive manner to reduce memory usage during training. However, this paradigm
typically drives each block to learn features that only benefit itself, overlooking the overall model
performance. To address this challenge, SmartFreeze (Wu et al., 2024a) constructs corresponding
output modules for each block, enabling it to be aware of subsequent blocks. ProFL (Wu et al.,
2024c) decouples model training into two stages, assisting each block in learning the expected fea-
ture representation. Meanwhile, NeuLite (Wu et al., 2024b), from the perspective of information
bottleneck theory (Ma et al., 2020), designs specialized training losses for each block and breaks in-
formation isolation across blocks in both forward and backward directions. However, these methods
still fail to recognize the importance of fostering collaboration between blocks and struggle to fully
harness the heterogeneous memory resources of participating devices.

7 CONCLUSION

In this paper, we propose Honey, a synergistic progressive training approach to break the memory
wall for FL. To assist the training process of each block, we integrate the holistic view and block-
wise feedback into its training objective. Specifically, the holistic view ensures that each block
operates in harmony with the global objective and contributes positively to the overall model’s suc-
cess. Simultaneously, block-wise feedback strengthens block collaboration, facilitating a smooth
and consistent information flow. Furthermore, to optimize the utilization of heterogeneous memory
resources of participating devices, we propose an elastic resource harmonization protocol. This
protocol enables devices to adaptively train specific layers according to their memory capacity,
thereby accelerating model convergence and sparking cross-block communication. Our compre-
hensive experiments on representative datasets and models demonstrate that Honey outperforms
existing memory-efficient methods by a large margin and achieves accuracy comparable to Oracle
FL even with a reduction in peak memory usage of up to 49%. It is worth noting that Honey re-
quires a full forward propagation during the training of each block, which introduces some additional
computation overhead. Minimizing this overhead will be a primary focus of our future work.
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A APPENDIX

A.1 LIMITATIONS OF WIDTH SCALING APPROACHES

Devices participating in FL typically operate with limited resources (Li et al., 2023; Tian et al.,
2022; Li et al., 2022; Wu et al., 2023), making it crucial to account for resource constraints when
designing algorithms. To thoroughly assess the feasibility of existing width scaling methodologies,
these approaches are directly applied to the local training process on each device. The experimental
setup is as follows: The CIFAR10 dataset is distributed across 100 devices, with 10% of devices
randomly selected to participate in each training round, and ResNet18 is employed as the global
model. HeteroFL (Diao et al., 2020), Federated Dropout (Caldas et al., 2018), and FedRolex (Alam
et al., 2022) are selected for evaluation. These algorithms scale the number of channels in the con-
volutional layers based on different criteria to generate sub-models of varying complexity, thereby
meeting diverse memory constraints. Specifically, HeteroFL employs a static approach, Federated
Dropout utilizes a random approach, and FedRolex adopts a sliding window to extract sub-models.
Figure 8 illustrates two rounds of these approaches on two participating clients with heterogeneous
memory capacity. To mimic the scenario of memory heterogeneity, we randomly allocate a number
from the set {1,0.75, 0.5, 0.25, 0.125} to devices, representing the model complexity that can be
trained. Furthermore, we assess the effectiveness of these methods across three key aspects: the
impact of device capacity, the influence of global model complexity, and the effect of high-capacity
devices.

   

       

         

       

         

       

     

                             

Client A

(b) Federated Dropout(a) HeteroFL (c) FedRolex

Round i+1

Round i

Client B Client A Client B Client A Client B

Figure 8: Illustration of how sub-models are extracted by different sub-model extraction schemes.
(a) HeteroFL: static sub-model extraction scheme. (b) Federated Dropout: random sub-model ex-
traction scheme. (c) FedRolex: rolling sub-model extraction scheme.

Table 5 presents the experimental results of the three algorithms under various settings. Regarding
the effect of device capacity on global model performance, it is clear that excluding low-capacity
devices does not negatively impact the global model’s performance and may even lead to improve-
ments. For example, in the case of HeteroFL under Non-IID conditions, No ≤ 0.25 improves
accuracy by 2.22% compared to including all devices (All). This suggests that these algorithms
struggle to effectively leverage data from low-capacity devices, and such partitioning strategies may
even disrupt the model architecture, thereby compromising model performance.

To explore the effect of global model complexity, we conduct experiments by reducing the global
model’s complexity to allow all devices to participate in FL. In this set of experiments, we assume
that all devices’ capacity is aligned with the model’s complexity. For instance, G(0.5) indicates
that the global model’s complexity is reduced to half of its original size. It can be observed that
reducing the complexity of the global model significantly compromises the model’s performance.
For example, when the global model’s complexity is halved, HeteroFL experiences a 7.26% drop in
accuracy under Non-IID conditions. This degradation stems from the diminished feature extraction
capability due to the reduced model complexity, as well as the disruption of the model architecture
caused by width scaling. Furthermore, to assess the effectiveness of these algorithms in more real-
istic FL scenarios where no devices possess sufficient memory to train the full model, we evaluate
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Table 5: Performance evaluation of different memory optimization algorithms in FL on CIFAR10.
No ≤ † means that devices with a capacity less than or equal to † will not participate in FL. G(†)
means that the complexity of the global model is † times that of ResNet18. FD stands for the
Federated Dropout and Bold indicates the optimal results.

Distribution Method Device Capacity Effect Global Model Effect High-Capacity Effect
All No ≤ 0.125 No ≤ 0.25 No ≤ 0.5 No ≤ 0.75 G (1) G (0.75) G (0.5) No capacity 1

IID
HeteroFL 82.23% 81.75% 82.20% 81.47% 79.90% 88.76% 87.37% 84.17% 30.99%(-51.24%)

FD 80.24% 81.28% 82.07% 83.25% 79.01% 87.01% 84.64% 80.85% 74.91%(-5.33%)
FedRolex 83.39% 84.23% 84.73% 84.50% 79.63% 88.81% 87.14% 84.39% 80.16%(-3.23%)

Non-IID
HeteroFL 63.18% 64.26% 65.40% 64.26% 61.75% 76.87% 74.81% 69.61% 8.60%(-54.58%)

FD 42.82% 55.05% 59.59% 63.47% 59.79% 66.95% 65.77% 62.67% 31.78%(-11.04%)
FedRolex 66.23% 67.13% 70.39% 67.68% 61.04% 76.98% 74.51% 70.19% 47.89%(-18.34%)

cases where no device has a capacity of 1. As shown in Table 5, regarding the high-capacity effect,
we observe that these algorithms perform poorly under such scenarios. Notably, HeteroFL suffers
a substantial 54.58% accuracy drop under Non-IID conditions. This sharp decline occurs because,
without devices capable of training the full model, certain channels are not adequately trained. In
conclusion, width scaling algorithms fail to effectively address the memory constraints in FL.

A.2 ANALYSIS OF THE PROGRESSIVE TRAINING PARADIGM

To explore the underlying causes of performance degradation resulting from progressive training, we
employ a strategy similar to those used in InfoPro (Wang et al., 2021) and NeuLite (Wu et al., 2024b)
to analyze the feature representation learned by each block under different block division schemes.
Specifically, we concentrate on three key metrics: testing accuracy, nHSIC(X; Z) (Ma et al., 2020),
and nHSIC(Y; Z) (Ma et al., 2020), to gain deeper insights into the learning dynamics. Testing
accuracy indicates the linear separability of the learned features (Wang et al., 2021), nHSIC(X; Z)
measures the amount of information about the input X contained in the activations Z, and nHSIC(Y;
Z) reflects the correlation between the learned features and the labels. Additionally, to evaluate the
testing accuracy of each block, we freeze the global model parameters obtained from training under
different block division schemes. We then attach an output module to each block to perform linear
probing (Kumar et al., 2022).

    (a) Testing Accuracy.                       (b) nHSIC (X; Z).                        (c) nHSIC (Y; Z).    

Figure 9: Training ResNet18 on the CIFAR10 dataset under different block division schemes. (a):
Testing accuracy of each block. (b): nHSIC(X; Z) of each block indicates the amount of input
information contained in the feature representation extracted by each block. (c): nHSIC(Y; Z) of
each block measures how effectively the features capture label-relevant information.

Figure 9 (a) illustrates the testing accuracy of each block, with the X-axis denoting the block index
and the Y-axis representing the testing accuracy achieved via linear probing for the corresponding
block. Interestingly, when T = 1, we observe a progressive improvement in accuracy across the
blocks, suggesting effective collaboration among them to capture critical features. However, for
T > 1, although the initial blocks achieve higher accuracy, the overall model performance is lower
compared to T = 1. For example, with T = 2, even though the accuracy at block index 4 improves
by 25.4% compared to T = 1, the overall model accuracy still declines by 5.1%. This downward
trend becomes more pronounced as T increases. When T reaches 8, the performance drop reaches
up to 19.6%. Figure 9 (b) shows the nHSIC(X; Z) values for each block. For T = 1, nHSIC(X;
Z) decreases relatively slowly as the block index increases, indicating that input information is pre-
served more effectively. In contrast, for T > 1, a significant amount of input information is lost
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in the earlier blocks, which likely leads to the accuracy stagnation observed in the later blocks in
Figure 9 (a). This phenomenon indicates that dividing the model into more blocks worsens the loss
of valuable input information, ultimately compromising overall performance. Figure 9 (c) illustrates
the nHSIC(Y; Z) values for each block, revealing a pattern similar to the trend in testing accuracy.
When T = 1, each block progressively extracts more discriminative features relevant to the target
Y . However, when T > 1, the blocks are short-sighted, greedily learning features most beneficial to
their immediate training objectives while neglecting the overall model goal. This narrow perspective
ultimately prevents them from extracting more critical features. Therefore, enhancing collaboration
among blocks is essential for effective feature extraction.
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(e) Block1 (T=4).
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(f) Block2 (T=4).
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(h) Block4 (T=4).

Figure 10: Visualization results of intermediate activations for each block under both Oracle FL
(T = 1) and progressive training (T = 4) in FL on CIFAR10 (Non-IID). Different colored asterisks
represent different classes.

We further employ T-SNE (Van der Maaten & Hinton, 2008) to visualize the intermediate activations
of each block under both Oracle FL (T = 1) and progressive training (T = 4), as depicted in
Figure 10. We observe that in Oracle FL, input data is progressively segmented, with each block
learning specific feature representation. Conversely, progressive training (T = 4) separates input
data in a more isolated, greedy manner. Although subsequent blocks in progressive training refine
the features extracted by earlier ones, they fail to achieve the performance of Oracle FL.

These observations highlight two key insights: 1) The model extracts features in a hierarchical
fashion, building complexity layer by layer. 2) Dividing the model into multiple blocks drives each
block to concentrate on learning features that are most beneficial for its training objective, ignoring
the existence and needs of the subsequent blocks. This narrow learning scope can lose valuable
information, undermining the model’s performance. Therefore, for each block, embracing a broader
view and strengthening collaboration among blocks is essential.

A.3 EXPERIMENTAL SETUP

We adopt the same memory settings as NeuLite (Wu et al., 2024b). The device participation rates of
different methods across various training tasks are shown in Tables 6 and 7.

Table 6: The device participation rate of different methods across various training tasks.

Method AllSmall ExclusiveFL DepthFL HeteroFL FedRolex
ResNet18 100% 18% 43% 100% 100%
ResNet34 100% 0% 36% 100% 100%

Table 7: The device participation rate of different methods across various training tasks.

Method TiFL Oort InfoProS InfoProD SmartFreeze NeuLite Honey
ResNet18 18% 18% 100% 100% 100% 100% 100%
ResNet34 0% 0% 100% 100% 100% 100% 100%
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A.4 MODEL UNIVERSALITY

         (a) VGG16.                   (b) Vision Transformer.                       

Figure 11: Model Universality. Both datasets
are partitioned in a IID manner, with the
global models divided into {1, 2, 4} blocks.

In this section, we present the experimental results
under IID conditions, as shown in Figure 11. We
observe that Honey achieves superior performance
compared to Oracle FL, regardless of whether the
global model is divided into two or four blocks. For
example, in Figure 11 (a), dividing VGG16 into two
blocks results in a 2.9% performance improvement
over Oracle FL, while dividing it into four blocks
leads to a 2.8% improvement. This is because opti-
mizing models without skip connections in an end-
to-end manner is challenging, often leading to issues
such as vanishing gradients. In contrast, Honey effectively trains each block in a progressive man-
ner. Not only does Honey reduce memory footprint during training, but it also achieves comparable
performance, which is a remarkable achievement.

17


	Introduction
	Motivation
	The Memory Wall Hinders the Deployment of FL
	Exploring Existing Approaches 

	Progressive Training in FL
	Background
	Challenges in Progressive Training

	Honey: A synergistic Progressive Training Approach
	Learning with holistic view
	Learning with block-wise feedback
	Elastic Resource Harmonization

	Experiments
	Experimental Setup
	End-to-End Evaluation
	Memory Efficiency
	Model Universality
	Sensitivity Analysis
	Ablation Study

	Related Work
	Conclusion
	Appendix
	Limitations of width scaling approaches
	Analysis of the Progressive Training Paradigm
	Experimental Setup
	Model Universality


