
Under review as a conference paper at ICLR 2024

UNDERSTANDING GRAPH TRANSFORMERS BY GEN-
ERALIZED PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers (GTs) have recently shown stellar performance on various
graph learning benchmarks, which is typically attributed to their underlying global
self-attention mechanism. In this paper, we use generalized propagation graphs,
constructed through two abstract configurable functions and offering a unified
view across various GNN models used in the literature. We show that by con-
figuring the two abstract functions governing the generation of propagation graph,
one could recover the most popular GNN models including graph gransformers,
message-passing neural networks (MPNNs), as well as various forms of graph
rewiring. We show that the expressivity of the instances of our framework depends
on one of the governing functions (the adjacency function). Empirical results con-
firm our theory: by keeping the adjacency function while removing self-attention,
the state-of-the-art GT maintains its performance. In other words, by designing
appropriate adjacency functions, one could construct novel GNN models with di-
verse expressive power. We also study the geometric properties of the propagation
graphs across a wide range of models, using a novel extension of the Ollivier-Ricci
curvature to weighted digraphs.

1 INTRODUCTION

Graph-structured data is ubiquitous across diverse domains of science, such as biomedicine (Zitnik
et al., 2018), physics (Shlomi et al., 2021), chemistry (Duvenaud et al., 2015), material science, chip
design, and social networks. Analyzing such datasets with data-driven methods has been the focus
of geometric deep learning (Bronstein et al., 2021). Pioneering studies in graph neural networks
(GNNs) aimed to generalize recurrent (Gori et al., 2005; Scarselli et al., 2009) and convolutional
(Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017) architectures to graphs. These
methods were later shown to be special instances of the message-passing architecture (Gilmer et al.,
2017), which acts by propagating information between adjacency nodes of the input graph. Today,
message-passing neural networks (MPNNs) and their variants (Hamilton et al., 2017; Veličković
et al., 2018; Monti et al., 2017) are arguably the most common GNN architecture (Veličković, 2022)
and have reached outstanding performance in various graph learning tasks.

However, MPNNs are known to suffer from over-squashing (Alon & Yahav, 2020) and over-
smoothing (Chen et al., 2020; Oono & Suzuki, 2019) phenomena. Furthermore, the expressive
power of message passing is bounded by the first-order Weisfeiler-Lehman test (1-WL) (Xu et al.,
2019; Chen et al., 2019), which makes it impossible to discriminate between certain non-isomorphic
graph pairs. Various methods have been proposed to overcome those limitations. Graph rewiring
approaches (Topping et al., 2022; Gutteridge et al., 2023) decouple the input graph from the compu-
tational one, in order to make the graph ‘friendlier’ for message passing and alleviate over-squashing
phenomena. Higher-order GNNs follow more expressive k-WL tests (Maron et al., 2019; Morris
et al., 2019b). Subgraph GNNs (Bevilacqua et al., 2022; Alsentzer et al., 2020; Frasca et al., 2022)
operate on a collection of subgraphs extracted by some policy, in order to achieve higher expressiv-
ity.

On the other hand, Transformers (Vaswani et al., 2017b), which have become predominant in natural
language processing and computer vision, can also be seen in principle as MPNNs on a complete
graph that is learned through the attention mechanism. However, since Transformers do not directly
work well for graphs (Dwivedi & Bresson, 2021), recent works have studied various Graph Trans-

1

Under review as a conference paper at ICLR 2024

former (GT) architectures, from integrating with MPNNs (Kreuzer et al., 2021b; Rampášek et al.,
2022; Chen et al., 2022; Gutteridge et al., 2023) to introducing various positional encoding (Ying
et al., 2021; Zhang et al., 2023b; Ma et al., 2023; Kim et al., 2022). While these efforts have yielded
superior performance on various benchmarks and diverse heuristics, we still lack an understanding
of how graph Transformers work and when they are advantageous over MPNNs.

Main contributions. In this paper, we introduce a unified view by giving a definition to the gen-
eralized propagation graph, a weighted directed graph constructed from the input graph but not
necessarily identical to it. More specifically, propagation construction is governed by two functions
– adjacency function f(A) and entry-wise function π(Xu,Xv, f(A)), where A is the adjacency
matrix of the input graph and Xu,Xv denote the features of nodes u and v. By configuring f and π,
we unify the various GNN families, from MPNNs, graph rewiring, and SubgraphGNNs to GTs, into
a general framework, generalized propagation neural networks (GPNNs). Rooting from GPNN, we
develop two theoretical contributions.

We show that the expressiveness of models within GPNN framework sorely depends on f(A). This
result could be used in two ways: (i) by designing adjacency functions, one could explore novel
graph models with diverse expressive power; and (ii) by inspecting f(A) of an existing model, one
can decide its expressiveness upper-bound.

Second, we show that GPNN facilitates comparative analysis of their strengths and weaknesses by
studying the geometric properties (in particular, discrete curvature that has previously been used for
graph rewiring (Topping et al., 2022)) of the propagation graphs and how information flows on
them. For this purpose, we extend the Ollivier-Ricci (OR) curvature (Ollivier, 2009) to weighted
directed graphs. To facilitate direct comparison across models and graphs, our design enjoys two
benign analytical properties: continuity and scale-free. Thus we name our extended OR curvature
as Continuous Unified Ricci Curvature (CURC).

Third, to test that expressiveness solely depends on f(A), we introduce a variant of GPNN we call
GPNN-PE by keeping the adjacency function while removing self-attention (as a special design of
π) from one of the state-of-the-art GTs, GRIT (Ma et al., 2023). We show that on a wide range of
benchmarks, GPNN-PE matches the performance of GRIT with fewer parameters and less compu-
tation, being consistent with our theory. It is worth noting that our empirical findings question the
belief that graph transformers benefit from global self-attention (Vaswani et al., 2017a; Park & Kim,
2021).

Finally, utilizing CURC, we visualize the curvature distribution of learned propagation and compare
it with MPNN propagation, revealing the information flow of the underlying model. Such quantita-
tive investigation across a wide range of GTs - to the best of our knowledge - has not been studied
in the literature.

2 PRELIMINARY AND BACKGROUND

(a) Attention (b) Curvature

Figure 1: The Demonstration of Top-10/20/30% Attention and CURC-curvature on a ZINC
graph (Irwin et al., 2012). The attention is obtained with the GPNN-PE(1-head) model.

Let G = (V, E) be a graph with nodes V = {1, . . . , n} and edges E ⊆ V × V . The structure of
the graph is represented by the n × n adjacency matrix A where auv = 1 iff (u, v) ∈ E and zero
otherwise. We further assume the graph to be attributed and represent by X ∈ Rn×d and E ∈
Rn2×d the node and edge attributes, respectively, which we assume w.l.o.g. to be d-dimensional.
Unless specified, the dimension d is excluded from matrix multiplication or tensor contraction. Any

2

Under review as a conference paper at ICLR 2024

operations involving dimension d will be explicitly denoted with a superscript, e.g., Wd represents
a linear operator solely on the d-dimension, broadcast across other dimensions.

3 GENERALIZED PROPAGATION FRAMEWORK

3.1 GENERALIZED PROPAGATION GRAPH

We start with the definition of propagation graph 1 which lies in the center of our framework. A
propagation graph is a generalized abstraction of both the attention in graph transformers as well as
message passing graphs in MPNNs.
Definition 3.1 (Propagation Graph). A propagation graph is an edge-weighted directed graph (di-
graph) defined by a triplet P = (V, E , ω) consisting of the vertex set V , the set of directed edges
with self-loops E ⊆ V2 and the weight function ω : V2 7→ R+.

In this work, we do not discriminate between (u, v) /∈ E and ω(u, v) = 0. Thus one can always
assume that E = V2 and leave the definition of the propagation graph to the weight function. The
definition is valid for both undirected graphs and unweighted graphs since they could be regarded
as subsets of weighted digraphs. Undirected graphs impose the restriction of symmetric weight,
ω(u, v) = ω(u, v). Unweighted graphs impose the restriction of binary weight, ω : V1 7→ {0, 1}.
Note that the propagation graph is uniquely defined by its weight function and space of weight
functionsW = Hom(V2,R+) being isomorphic to R+n2

. Thus the propagation is uniquely defined

by the matrix P ∈ R+n2

.

3.2 GENERALIZED PROPAGATION NEURAL NETWORK (GPNN)

Here, we introduce the adjacency function and entries-wise function governing the generation of
propagation graphs. The definition will depend on the permutation equivariant mapping over some
tensor power space Rnk

. We refer readers to Appendix A.1 for a detailed introduction. First, we
define adjacency function, denoted as f , as a permutation equivariant mapping from A to Rn2×d.
Then, we define entry-wise function, denoted as π, as a mapping from Rd to R.

Other parameterized functions in our framework are ϕd : Rd 7→ Rd only on feature dimension d.
By applying ϕd to each feature in X , we define ϕ : Rn×d 7→ Rn×d. And ρ, which represents the
normalized function. And an update function U : Rn×d×Rn×d 7→ Rn×d, applies node-wise update
similar to MPNN.

Now we define the GPNN layer which takes the adjacency and node feature A as the input X and
produces the updated node features X ′. Here, we show the single layer and single head version:

X ′ = U(ρ(P)× ϕ(X),X)

where Puv = π(Xu,Xv, f(A)u,v)
(1)

where × denotes the matrix multiplication between normalized propagation ρ(P) and ϕ(X). Just
like self-attention, we can also define the multi-head GPNN as

X l+1 = U([ρ(P h)× ϕh,l(X)]hconcat,X)

where P h
uv = πh,l(X l

u,X
l
v, f

h,l(A)u,v)
(2)

and []concath denotes concatenating tensors indexed by h along the feature dimension. In Table 1,
we list three examples of casting existing methods into the GPNNs framework. More results can be
fined in Appendix D.

3.3 EXPRESSIVENESS OF GPNNS

The expressiveness of GPNNs varies based on what exact functions are used. Thus a general ex-
pressiveness assessment based on abstract form would not be much of interest. However, to ease

1The propagation in our context follows the forward-propagation concept introduced in previous literature
(Pearl, 1988; Minka, 2001; Yedidia et al., 2003; Hamilton et al., 2017) and differs from back-propagation
algorithm (Rumelhart et al., 1986)

3

Under review as a conference paper at ICLR 2024

the expressiveness assessment for methods falling into the GPNN category, we derive two expres-
siveness results for two prototypical GPNN models. First, we consider the GPNNs with identical
adjacency functions for different heads and layers. We refer to the resulting model as Homogeneous
GPNNs. The layer update of Homogeneous GPNNs is identical to 2 except

fh,l = f (3)
For generality, we also consider the case when multiple adjacency function f is used in the model.
An extra prototype model is defined with recurrence as Layer-recurrent GPNNs by defining:

fh,l = f l

f l+p = f l
(4)

In order to reach the upper-bounded expressiveness, the model would be assumed with a sufficient
number of heads and two MLPs with a sufficient layer and width for π and ϕ, and update function
U .
Proposition 3.1. Homogeneous GPNNs Suppose a Homogeneous GPNN model has a fixed prop-
agation function f(A), with sufficient heads and layers, the expressiveness of Homogeneous GPNN
is upper-bounded by the iterative color-refinement

X t+1
G (v) = hash{{(X t

G(u), f(A)vu) : u ∈ V}} (5)
Proposition 3.2. Layer-recurrent GPNNs Suppose a Layer-recurrent GPNN model M has a layer-
dependent propagation function f l(A), repeats every p layer: f l = f l+p. With sufficient heads and
layers, by stacking repetitions of such repetition, the expressiveness of M is upper-bounded by the
iterative color refinement

X t+1
G (v) = hash{{

(
X t

G(u),
(
f1(A)vu, f

2(A)vu, . . . , f
p(A)vu

))
: u ∈ V}} (6)

For detailed proof, see Appendix C.2 and C.2. Here, we would like to highlight that Homogenous
GPNNs contain interesting variants like MPNNs, Graphormer, or layer-independent graph rewiring,
while Layer-recurrent GPNNs contain GraphGPS (Rampášek et al., 2022). By configuring f(A),
one can easily modify the upper-bounding color refinement iteration (see Appendix C.1 for more
details). The WL test appears to be too coarse to be used to evaluate the expressive power of current
graph models, covered by (Morris et al., 2022). Other than the color refinement algorithm, a new
expressiveness hierarchy has been proposed (Puny et al., 2023; Zhang et al., 2023a; Zhou et al., 2023;
Geerts & Reutter, 2022). Moreover, we would like to particularly emphasize the connection between
equivariant polynomials with the propagation function f(A). Since f is any permutation equivariant
function in Rn2 7→ Rn2

, it can be approximated uniformly by the equivariant polynomial.

MPNNs
(Xu et al., 2019)

Rewiring
(Gutteridge et al., 2023)

GraphTransformer
(Ying et al., 2021)

π(Xu,Xv, f(A)) f(A)u,v 1{k}(dG(A))(diag(A1)−1/2 A diag(1⊺A)−1/2) exp
(
(W1X(u))

⊺(W2X(v)) + f(A)(u,v)
)

f(A) A 1{k}(dG(A))(diag(A1)−1/2 A diag(1⊺A)−1/2) SP(A)

ρ(P) diag(P1)−1/2 P diag(1⊺P)−1/2 P diag(P1)−1 P

Table 1: We pick three methods from existing literature coming from three different model families
to showcase the generality of the GPNN framework. We show that by defining different adjacency
function f and entry-wise function π (with the help of ρ to rescale) we can recover GIN, DREW,
and Graphormer. SP(A) denotes the shortest path distance of graph.

4 CONTINUOUS UNIFIED RICCI CURVATURE

To analyze the over-squashing and bottlenecks in MPNNs, prior work (Topping et al., 2022) intro-
duces the Balanced Forman curvature for measuring information flow in observed graphs. How-
ever, such curvature is limited to unweighted-undirected graphs, hindering our understanding of
weighted-directed propagation graphs in the GPNN framework. Hence, we propose a continu-
ous extension of the Ollivier-Ricc curvature applicable to any strongly-connected weighted-directed
graphs.

4

Under review as a conference paper at ICLR 2024

4.1 CONNECTION BETWEEN CURC AND MESSAGE-PASSING

We identify the inherent relationship between information flow in a message-passing framework on
graphs G = (V, E) and curvatures depending on optimal transportation like Ollivier-Ricci (OR)
curvature. For nodes x, y, OR-curvature, represented as κOR(x, y), evaluates the ratio of Wasser-
stein to graph distance, signifying the cost of moving uniform mass across edges. In this framework,
information from each node x diminishes as it spreads to neighboring nodes due to the nested aggre-
gation function. Such diminishing impact is akin to the cost in Wasserstein distance. By normalizing
this, we assert OR-curvature as a metric to measure the difficulty of information flow between nodes.
This approach, unique compared to Forman-Ricci and resistance curvature, motivates us to develop a
tool to study information flow in strongly-connected weighted-directed graphs G = (V, E , ω) within
GPNN.

Information flow in GPNN inherently differs from its MPNN counterpart for the following reasons:

• The distribution of information emanating from each node is uneven.
• Traversing different edges causes different extent of diminishing effect on information flow.
• Weighted-directed graphs exhibit distinct geometric and spectral properties when compared

to unweighted-undirected graphs.

To address these distinctions and accurately model information propagation on weighted-directed
graphs, we introduce the Continuous Unified Ricci Curvature as an extension to the Ollivier-ricci
curvature, specifically designed for strongly-connected weighted-directed graphs. In the context of
graph curvature, we adopt the conventional notations of x and y for nodes, as opposed to u and v.

4.2 CONSTRUCTION OF CURC

Definition 4.1. On a strongly-connected weighted-directed graph G = (V, E , ω), where |V| = n.
We define the function ω : V×V 7→ R≥0 as edge weights. Note that ω is not necessarily symmetric,
and we let ω(x, y) = 0 to indicate x ̸→ y. We define weighted out-degree matrixD := diag(ωi)

n
i=1,

where ωi :=
∑n

j=1 ωij and W := D−1ω to be the random walk matrix. According to the Perron-
Frobenius theorem, there exists a strictly positive left eigenvector vpf ∈ Rn of W . We define the
Perron measure m : V 7→ (0, 1] by normalizing vpf :

m :=
vpf
∥vpf∥

.

Hence, we define the mean transition probability kernel µ : V × V 7→ [0, 1] by

µx(y) = µ(x, y) :=

{
1
2 [W (x, y) + m(y)

m(x)W (y, x)] if y ̸= x

0 if y = x
(7)

where
∑

y∈V µ(x, y) =
∑

y∈V µx(y) = 1 for fixed x ∈ V .

Definition 4.2. Let ε be a small positive real number, then the ε-masked weighted edge length
lε : V × V 7→ R>0 ∪ {∞} is defined by

lε(x, y) :=

{
1

ω(x,y) if ω(x, y) ≥ ε
1
ε if ω(x, y) < ε

We define the corresponding ε-masked distance function dε : V × V 7→ R>0 ∪ {∞} as

dε := shortest weighted path with lε as edge length,

where dε is a possibly asymmetric distance function on V .
Definition 4.3. Let G = (V, E , ω) be a strongly-connected weighted-directed graph, equipped with
the ε-masked weighted distance function dε. For distinct x, y ∈ V , we define the ε-masked Contin-
uous Unified Ricci Curvature by

κεCURC(x, y) := 1− W
ε
1 (µx, µy)

dε(x, y)
,

5

Under review as a conference paper at ICLR 2024

where the Wasserstein distanceWε
1 is based on dε. Hence, the Continuous Unified Ricci Curvature

(CURC) is defined as
κCURC(x, y) := lim

ε→0
κεCURC(x, y).

CURC measuring GPNN In the GPNN framework, information propagation depends on the mag-
nitude of edge weights rather than uniform distribution as in MPNN. The concept of mean tran-
sition probability encapsulates this property, effectively accounting for both stable distribution and
the influence of outward edge weights. Throughout intermediate propagation steps, employing the
reciprocal of edge weights as edge distances (costs) reflects the phenomenon that information atten-
uates more rapidly when traversing edges with lower weights. Furthermore, the incorporation of the
Perron measure as a stable probability distribution imbues CURC with a geometric interpretation
related to bottlenecking within weighted-directed graphs

4.3 ALGEBRAIC AND GEOMETRIC PROPERTIES OF CURC

Proposition 4.1. The Continuous Unified Ricci Curvature κCURC admits the following properties:

• For connected unweighted-undirected graph G = (V, E), for any node pair x, y ∈ V , we
have κCURC(x, y) = κOR(x, y), where κOR is the Ollivier-ricci curvature.

• If we perceive κCURC(x, y) as a function of ω ∈ Rn×n, then κCURC(x, y) is continuous
w.r.t. ω entry-wise.

• For strongly-connected weighted-directed graph G = (V, E , ω), when all edge weights ω
are scaled by an arbitrary positive constant λ, the value of κCURC(x, y) for any node pair
x, y ∈ V is invariant.

Implication of algebraic properties of CURC The first and second properties collectively establish
CURC as a continuous extension of the canonical Ollivier-Ricci curvature, as originally introduced
in (Ollivier, 2009). The third property further signifies that within the GPNN framework, if we
uniformly scale all information propagations, the relative information flow remains unchanged, as
evidenced by the invariance of curvature values.

Theorem 4.2. Let G = (V, E , ω) be a strongly-connected weighted-directed graph with (asymmet-
ric) distance function d : V × V 7→ R≥0 satisfying triangle inequality and admits d(x, x) = 0 for
all x ∈ V . Then for probability measure µ, ν : V 7→ [0, 1], the Kantorovich duality holds. Namely,

inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y) = sup
f∈Lip1(V)

∑
f(z) (µ− ν) . (8)

π ∈ Π(µ, ν) is a coupling between µ, ν and f : V 7→ R ∈ Lip1(V), if for all x, y ∈ V , f(y) −
f(x) ≤ d(x, y).

Implication of KR duality We pinpoint this specific condition for the choice of distance measures
on G that enables KR duality to take effect and this transformation shifts the optimal transportation
problem into a linear programming problem. Additionally, we offer two lower-bound estimations
for CURC under distinct assumptions in proposition B.17 and B.19, with computational costs of
O(n3) and O(n4), respectively.

Definition 4.4. For a non-empty Ω ⊂ V , its boundary Perron-measure is defined as

m(∂Ω) :=
∑
y∈Ω

∑
z∈V \Ω

myz,

where myz := m(y)µ(y, z) and m(Ω) =
∑

x∈Ω m(x). Then the Dirichlet isoperimetric constant
IDV on V is defined by

IDV := inf
Ω

m(∂Ω)

m(Ω)
.

Theorem 4.3. Let G = (V, E , ω) be a strongly-connected weighted-directed graph and ER(x) :=
{y ∈ V | d(x, y) ≥ R}. Fix x ∈ V , we assume infy∈V\{x} κCURC(x, y) ≥ K for some K ∈ R

6

Under review as a conference paper at ICLR 2024

and −
∑

y∈V µ(x, y)f(y) ≥ Λ for some Λ ∈ (−∞, 0). For D > 0, we further assume that for all
y ∈ V , d(x, y) ≤ D. Then the Dirichlet isoperimetric constant admits the following lower bound:

IDER(x) ≥
KR+ Λ

D
.

Geometric implication of CURC The Dirichlet isoperimetric constant, calculated utilizing the
Perron measure, acts as an extension of the Cheeger constant for weighted-directed graphs. This
constant is instrumental in delineating community information and in measuring bottleneck phe-
nomena within these graphs. Intuitively, we can control the magnitude of IDV when global CURC
is bounded below by a positive number. This observation implies that as the CURC value increases,
the likelihood of significant bottlenecking or the division of communities diminishes.

5 EXPERIMENT

5.1 THEORY-GUIDED DESIGN

Table 2: Test performance on LRGB (Dwivedi
et al., 2022b). Shown is the mean±s.d. of 4 runs.
Highlighted are the top first, second, and third re-
sults. # Param ∼ 500K for both datasets.

Model Peptides-func Peptides-struct

AP↑ MAE↓
GCN 0.5930± 0.0023 0.3496± 0.0013
GINE 0.5498± 0.0079 0.3547± 0.0045
GatedGCN 0.5864± 0.0035 0.3420± 0.0013
GatedGCN+RWSE 0.6069± 0.0035 0.3357± 0.0006

Transf.+LapPE 0.6326± 0.0126 0.2529± 0.0016
SAN+LapPE 0.6384± 0.0121 0.2683± 0.0043
SAN+RWSE 0.6439± 0.0075 0.2545± 0.0012
GPS 0.6535± 0.0041 0.2500± 0.0012
GRIT 0.6988± 0.0082 0.2460± 0.0012

GPNN-PE 0.6954± 0.0023 0.2474± 0.0010
GPNN-PE(shareP) 0.6955± 0.0057 0.2454± 0.0003
GPNN-PE(1-head) 0.6874± 0.0161 0.2473± 0.0013

In sec. 3.3, we theoretically demonstrate that
the expressive power on distinguishing graphs
of GPNN solely depends on the adjacency
function f . We would like to show how such in-
tuition could be utilized to design novel models.
We propose a simplified variant of the state-
of-the-art graph transformers - GRIT, termed
GPNN-PE, which drops the irrelevant compo-
nents to the adjacency function in the general-
ized propagation architecture. This model be-
longs to the Homogeneous GPNN family with
f(A) = RRWP (A) which is a relative po-
sitional encoding based on random walk (see
Appendix E.1.2). According to Prop. 3.1, the
removal of self-attention would not change the
adjacency function and, thus would not change
its expressiveness power. The empirical results
are shown in Table 3 and Table 2, showcas-
ing that even with fewer learnable parameters
and computation, GPNN-PE reaches compara-
ble performance with GRIT in most cases. Further details concerning the experimental setup and
hyperparameters can be found in Appendix E.2.

5.2 ABLATION: THE EFFECT OF SHARING π

We change the π function by making it share weights across layers or share across layer and heads,
leading to two more variants: GPNN-PE(share P) and GPNN-PE(1-head). By the results in Table
3 and 2, we further confirmed that the design of π is less important. Models with shared π remains
competitive compared with baseline, with much less parameters and computation expense.

5.2.1 EVALUATION

We evaluate models on five datasets from the Benchmarking GNNs work (Dwivedi et al., 2022a)
and two datasets from the Long-Range Graph Benchmark (LRGB) (Dwivedi et al., 2022b). These
datasets are among the most widely used graph benchmarks and cover diverse graph learning tasks,
including node classification, graph classification, and graph regression, with a focus on graph struc-
ture and long-range dependencies. Further details concerning the experimental setup can be found
in Appendix E.2.

7

Under review as a conference paper at ICLR 2024

Table 3: Test performance in five benchmarks from (Dwivedi et al., 2022a). Shown is the mean ±
s.d. of 4 runs with different random seeds. Highlighted are the top first, second, and third results.
Param ∼ 500K for ZINC, PATTERN, CLUSTER and ∼ 100K for MNIST and CIFAR10. ∗

indicates statistically significant difference against the second-best result from the two-sample one-
tailed t-test.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN 0.367± 0.011 90.705± 0.218 55.710± 0.381 71.892± 0.334 68.498± 0.976
GIN 0.526± 0.051 96.485± 0.252 55.255± 1.527 85.387± 0.136 64.716± 1.553
GAT 0.384± 0.007 95.535± 0.205 64.223± 0.455 78.271± 0.186 70.587± 0.447
GatedGCN 0.282± 0.015 97.340± 0.143 67.312± 0.311 85.568± 0.088 73.840± 0.326
GatedGCN-LSPE 0.090± 0.001 − − − −
PNA 0.188± 0.004 97.94± 0.12 70.35± 0.63 − −
DGN 0.168± 0.003 − 72.838± 0.417 86.680± 0.034 −
GSN 0.101± 0.010 − − − −
CIN 0.079± 0.006 − − − −
CRaW1 0.085± 0.004 97.944± 0.050 69.013± 0.259 − −
GIN-AK+ 0.080± 0.001 − 72.19± 0.13 86.850± 0.057 −
SAN 0.139± 0.006 − − 86.581± 0.037 76.691± 0.65
Graphormer 0.122± 0.006 − − − −
K-Subgraph SAT 0.094± 0.008 − − 86.848± 0.037 77.856± 0.104
EGT 0.108± 0.009 98.173± 0.087 68.702± 0.409 86.821± 0.020 79.232± 0.348
Graphormer-URPE 0.086± 0.007 − − − −
Graphormer-GD 0.081± 0.009 − − − −
GPS 0.070± 0.004 98.051± 0.126 72.298± 0.356 86.685± 0.059 78.016± 0.180
GRIT 0.059± 0.002 98.108± 0.111 76.468± 0.881 87.196± 0.076 80.026± 0.277

GPNN-PE 0.063± 0.002 98.165± 0.077 75.505± 0.642 87.083± 0.035 78.878± 0.152
GPNN-PE (share-P) 0.064± 0.002 98.018± 0.024 75.050,0.282 87.045± 0.032 78.830± 0.127
GPNN-PE (1-head) 0.066± 0.005 97.560± 0.090 72.042± 0.714 86.965± 0.043 78.373± 0.212

Graphormer SAN GRIT GPNN-PE

Initial

Learned

Figure 2: The KDE plot of CURC for initial/learned propagation graphs (red) and the input graphs
(grey).

5.3 ANALYZE PROPAGATION GRAPHS WITH CURC

5.3.1 CURC DISTRIBUTION SHIFT

We analyze the learning dynamic of the propagation graphs via the CURC distribution. Comparing
Graphormer (Ying et al., 2021), SANs (Kreuzer et al., 2021a), GRIT (Ma et al., 2023) and GPNN-
PE on sampled graphs from ZINC datasets, the kernel density estimate (KDE) plots of CURC for the
initial and learned propagation graphs are shown in Fig. 2. For pure transformers like Graphormer
and GRIT, as well as GPNN-PE, the initial propagation graphs resemble a smoothed complete graph
resulting in a right-skewed CURC distribution with nearly all positive curvatures. After epochs of
training, the learned propagation graphs recover several negative curvatures, indicating the geomet-
ric patterns learned from the graphs. As a hybrid graph transformer, SAN owes an initial CURC

8

Under review as a conference paper at ICLR 2024

distribution close to input graphs. However, after epochs of training, SAN acquires a CURC dis-
tribution close to other graph transformers. One potential explanation is that there might exist an
optical CURC distribution for learning graphs, balancing the risk of over-squashing (many edges of
negative curvatures) and the danger of over-smoothing (many edges of large positive curvatures).

6 RELATED WORK

Graph Rewiring has been introduced to combat the over-squashing phenomenon in MPNN. Top-
ping et al. (2022) proposed an iterative graph rewiring algorithm based on Balanced Forman Ricci
curvature to mitigate the effect of negatively-curved edges on bottlenecks. Gutteridge et al. (2023)
introduced a delayed message passing mechanism, which dynamically performs rewiring on graphs
in the form of k-hop skip connections. Brüel-Gabrielsson et al. (2022) employed the strategy to
rewire the node to all the other nodes in a receptive field and use positional encoding to describe the
original graph structure.

Graph Positional Encoding is first proposed to enhance the performance of MPNNs (Zhang et al.,
2021; Lim et al., 2023; Wang et al., 2022; Dwivedi et al., 2021; Bouritsas et al., 2022a). and be-
comes a crucial component in graph transformers (Dwivedi & Bresson, 2021; Kreuzer et al., 2021a;
Rampášek et al., 2022; Ying et al., 2021; Zhang et al., 2023b; Ma et al., 2023).

Expressivity is an eternal topic of graph neural networks (GNNs) research. Xu et al. (2019) first
points out the expressiveness limitation of MPNNs bounded by 1-WL algorithm on the graph iso-
morphism test. Follow-up works have attempted to breakthrough via higher-order-GNNs (Morris
et al., 2019a; Bodnar et al., 2022; 2021), structural and positional encoding (Bouritsas et al., 2022a;
Zhang et al., 2023b) and subgraph aggregation (Bevilacqua et al., 2022; Zhou et al., 2023).

Ollivier-Ricci curvature. There are various works investigating the sole mathematical properties of
OR-curvatures proposed by Ollivier (2009). Jost & Liu (2014) reveals OR-curvature’s connection
with local clustering coefficient on undirected graphs where Topping et al. (2022) utilized to obtain
a lower bound estimation for performing graph rewiring. Without restricting it to an unweighted-
undirected graph, Bai et al. (2020) extends OR-curvature to weighted graphs by using the weighted
graph Laplacian and carries the discussion to continuous-time Ollivier-Ricci flow. Ozawa et al.
(2020) extends OR-curvature to strongly-connected weighted-directed graph using Perron measure
with canonical shortest distance function, and we extend the curvature to weighted distance function
to obtain CURC.

7 CONCLUSION AND FUTURE WORK

In this work, we introduce Generalized Propagation Neural Networks (GPNNs), a framework that
formulates GTs along with various GNN families in a unified way. By studying the expressiveness of
GPNNs, we reveal that the expressiveness of GPNNs primarily depends on the adjacency function.
Providing a useful tool for future exploration in this direction. The introduction of Continuous Uni-
fied Ricci Curvature (CURC) enables in-depth analysis of propagation graphs, and empirical studies
challenge the common belief regarding the benefits of global self-attention in graph transformers.
For future work, exploring the implications of these findings, further refining the GPNN framework,
and conducting additional empirical studies could yield more insights and advancements in the field
of graph neural networks.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, and Marinka Zitnik. Subgraph Neural
Networks. arXiv:2006.10538 [cs, stat], November 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. In International Conference on Learning Representations
(ICLR), 2015.

9

Under review as a conference paper at ICLR 2024

Shuliang Bai, Yong Lin, Linyuan Lu, Zhiyu Wang, and Shing-Tung Yau. Ollivier ricci-flow on
weighted graphs. arXiv preprint arXiv:2010.01802, 2020.

Dominique Beani, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Lió. Directional Graph Networks. In Proc. Int. Conf. Mach. Learn., pp. 748–758. PMLR, July
2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant Subgraph Aggregation
Networks. In Proc. Int. Conf. Learn. Representations, March 2022.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F. Montufar, Pietro Lió, and
Michael Bronstein. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Net-
works. In Proc. Int. Conf. Mach. Learn., pp. 1026–1037. PMLR, July 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar, and
Michael M. Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. In Adv. Neural Inf.
Process. Syst., January 2022.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022a.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving Graph
Neural Network Expressivity via Subgraph Isomorphism Counting. IEEE Trans. Pattern Anal.
Mach. Intell., pp. 1–1, 2022b. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3154319.

Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv, April 2018.

Marc Brockschmidt. GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation.
In Proceedings of the 37 Th International Conference on Machine Learning, June 2020.

Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph Attention Networks? In Proc.
Int. Conf. Learn. Representations), 2022.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges. May 2021.

Rickard Brüel-Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional en-
codings for graph neural networks. arXiv preprint arXiv:2201.12674, 2022.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Lo-
cally Connected Networks on Graphs. In International Conference on Learning Representations
(ICLR), May 2014.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-Aware Transformer for Graph
Representation Learning. In Proc. Int. Conf. Mach. Learn., pp. 3469–3489, June 2022.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with GNNs. In Adv. Neural Inf. Process. Syst.,
pp. 15894–15902, Red Hook, NY, USA, December 2019. Curran Associates Inc.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
Neighbourhood Aggregation for Graph Nets. In Adv. Neural Inf. Process. Syst., December 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. In Adv. Neural Inf. Process. Syst., 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In NeurIPS, 2015.

10

Under review as a conference paper at ICLR 2024

Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to Graphs.
In Proc. AAAI Workshop Deep Learn. Graphs: Methods Appl., January 2021.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph Neural Networks with Learnable Structural and Positional Representations. In Proc. Int.
Conf. Learn. Representations, September 2021.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking Graph Neural Networks. J. Mach. Learn. Res., December 2022a.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long Range Graph Benchmark. In Adv. Neural Inf. Process. Syst., De-
cember 2022b.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding and
Extending Subgraph GNNs by Rethinking Their Symmetries. In Advances in Neural Information
Processing Systems, October 2022.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. arXiv preprint arXiv:2204.04661, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In IJCNN, 2005.

Alexander Grigor’yan. Introduction to analysis on graphs, volume 71. American Mathematical
Soc., 2018.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252–12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Adv. Neural Inf. Process. Syst., volume 30. Curran Associates, Inc., 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Netw., 2(5):359–366, 1989.

Weihua Hu, Bowen Liu*, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for Pre-training Graph Neural Networks. In Proc. Int. Conf. Learn. Repre-
sentations, March 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-
lsc: A large-scale challenge for machine learning on graphs. In Adv. Neural Inf. Process. Syst.
Datasets Benchmarks Track, 2021.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global Self-Attention
as a Replacement for Graph Convolution. In Proc. ACM SIGKDD Int. Conf. Knowl Discov. Data
Min. (KDD), August 2022. doi: 10.1145/3534678.3539296.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. ZINC:
A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model., 52(7):1757–1768, July
2012. ISSN 1549-9596. doi: 10.1021/ci3001277.

Jürgen Jost and Shiping Liu. Ollivier’s ricci curvature, local clustering and curvature-dimension
inequalities on graphs. Discrete & Computational Geometry, 51(2):300–322, 2014.

Jinwoo Kim, Dat Tien Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure Transformers are Powerful Graph Learners. In Adv. Neural Inf. Process
Syst., October 2022.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In Proc. Int. Conf. Learn. Representations, 2017.

11

Under review as a conference paper at ICLR 2024

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021a.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking Graph Transformers with Spectral Attention. In Adv. Neural Inf. Process.
Syst., May 2021b.

Peter D Lax. Linear algebra and its applications, volume 78. John Wiley & Sons, 2007.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and Basis Invariant Networks for Spectral Graph Representation Learning.
In Proc. Int. Conf. Learn. Representations, 2023.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your transformer
may not be as powerful as you expect. In Adv. Neural Inf. Process. Syst., 2022.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
arXiv preprint arXiv:2305.17589, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Thomas P Minka. Expectation propagation for approximate bayesian inference. In Proceedings of
the Seventeenth conference on Uncertainty in artificial intelligence, pp. 362–369, 2001.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model CNNs. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neu-
ral Networks. In Proc. AAAI Conf. Artif. Intell., volume 33, pp. 4602–4609, July 2019a. doi:
10.1609/aaai.v33i01.33014602.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609,
2019b.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. In International Conference on Machine Learn-
ing, pp. 16017–16042. PMLR, 2022.

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Ryunosuke Ozawa, Yohei Sakurai, and Taiki Yamada. Geometric and spectral properties of di-
rected graphs under a lower ricci curvature bound. Calculus of Variations and Partial Differential
Equations, 59:1–39, 2020.

Namuk Park and Songkuk Kim. How Do Vision Transformers Work? In Proc. Int. Conf. Learn.
Representations, September 2021.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
kaufmann, 1988.

Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant polynomials
for graph neural networks. In International Conference on Machine Learning, pp. 28191–28222.
PMLR, 2023.

12

Under review as a conference paper at ICLR 2024

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In Adv. Neural Inf.
Process. Syst., May 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 2009.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. In MLST, 2021.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d convolu-
tions on random walks. arXiv preprint arXiv:2102.08786, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Proc. Int.
Conf. Learn. Representations, March 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Adv. Neural Inf. Process.
Syst., volume 30. Curran Associates, Inc., 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017b.

Petar Veličković. Message passing all the way up. arXiv preprint arXiv:2202.11097, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In Proc. Int. Conf. Learn. Representations, February 2018.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and Stable Positional Encoding
for More Powerful Graph Neural Networks. In Proc. Int. Conf. Learn. Representations, May
2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In Proc. Int. Conf. Learn. Representations, February 2019.

Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. Understanding belief propagation and its
generalizations. Exploring artificial intelligence in the new millennium, 8(236-239):0018–9448,
2003.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do Transformers Really Perform Badly for Graph Representation? In Adv. Neural
Inf. Process. Syst., 2021.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hier-
archy for subgraph gnns via subgraph weisfeiler-lehman tests. arXiv preprint arXiv:2302.07090,
2023a.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
via graph biconnectivity. In Proc. Int. Conf. Learn. Representations, 2023b. URL https:
//openreview.net/forum?id=r9hNv76KoT3.

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, and Wenwu Zhu. Eigen-GNN: A Graph Structure
Preserving Plug-in for GNNs. IEEE Trans. Knowl. Data Eng., pp. 1–1, 2021. ISSN 1558-2191.
doi: 10.1109/TKDE.2021.3112746.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. In Proc. Int. Conf. Learn. Representations, 2021.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. From relational pooling to subgraph gnns: A universal
framework for more expressive graph neural networks. arXiv preprint arXiv:2305.04963, 2023.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. In Bioinformatics, 2018.

13

https://openreview.net/forum?id=r9hNv76KoT3
https://openreview.net/forum?id=r9hNv76KoT3

Under review as a conference paper at ICLR 2024

Appendices

A Background 15

A.1 permutation equivariance . 15

A.2 Ollivier-Ricci Curvature . 15

B Theoretical Details 16

B.1 Properties of Continuous Unified Ricci Curvature 16

B.2 Geometric property Continuous Unified Ricci Curvature 22

C Expressiveness of GPNNs 28

C.1 Color refinement(CR) . 28

C.2 Prototypical GPNNs . 28

D Generality of GPNN framework 31

D.1 MPNNs as special cases of GPNNs . 31

D.2 Graph rewiring as special cases of GPNNs . 31

D.3 Graph Transformers as special cases of GPNNs 32

E Experimental Details 33

E.1 Details of GPNN-PE . 33

E.2 Details of Experimental Setup . 33

E.3 Visualization of Curvature . 34

14

Under review as a conference paper at ICLR 2024

A BACKGROUND

A.1 PERMUTATION EQUIVARIANCE

Learning on graphs involves modeling a function that exhibits permutation equivariance on G. For-
mally, for each element σ in the symmetry group Sn, an equivariant function f : Rnp 7→ Rnk

adheres to
f(σ ·X) = σ · f(X) (9)

Suppose X ∈ Rnp

and · denotes the action of permutation on the tensor power space of Rn. Note
that whenever additional dimensions for attributes appear, e.g. f : Rnp×d 7→ Rnk×d, the action of
permutation does not affect d. In the case when k = 0, the trivial action can be omitted, yielding

f(σ ·X) = f(X) (10)

This denotes a specific instance of permutation invariance.

A.2 OLLIVIER-RICCI CURVATURE

In differential geometry, Ricci curvature is a fundamental concept related to volume growth and al-
lowing to classify the local characteristic of the space (roughly, whether it is sphere- or hyperboloid-
like). Curvature also determines the behavior of parallel lines (whether they converge or diverge),
known as geodesic dispersion. Discrete curvatures are analogous constructions for graphs (or more
generally, metric spaces) trying to mimic some properties of the continuous curvature.

Ollivier (2009) introduced a notion of curvature for metric spaces that measures the Wasserstein
distance between Markov chains, i.e. random walks, defined on two nodes. Let G be a graph with
a distance metric dG , and µv be a probability measure on G for node v ∈ V . The Ollivier–Ricci
curvature of any pair {(i, j)|(x, y) ∈ V2, x ̸= y} is defined as

κOR(x, y) := 1− 1

dG(x, y)
W1 (µx, µy) , (11)

where W1 refers to the first Wasserstein distance between µi and µj .

Ollivier-ricci curvature is the most prominent discrete curvature on metric spaces which quantifies
how the geometry of the manifold deviates from flat (Euclidean) space in terms of the metric struc-
ture. Other choices of discrete curvatures include the Forman–Ricci Curvature

κFR(x, y) := 4− dx − dy + 3 |#∆|

and the Resistance Curvature
κR(x, y) :=

2 (px + py)

Rxy
.

Specifically, we build on our the framework of OR-curvature, due to its intrinsic relation with MPNN
and its geometric and spectral properties relating to graph structure.

15

Under review as a conference paper at ICLR 2024

B THEORETICAL DETAILS

B.1 PROPERTIES OF CONTINUOUS UNIFIED RICCI CURVATURE

Kantorovich-Rubinstein duality is an important result in the field of optimal transportation, which
establishes the connection between transportation problem and Linear programming problem. While
the most used form of duality is stated in the context of Polish metric space, in the setting up of our
κGOR, the distance function as weighted shortest distance is not necessarily symmetric, which fails
to define a metric space. Luckily, the duality still holds under weaker assumption and we will give a
short proof of Kantorovich-Rubinstein duality for the sake of completeness.
Definition B.1. Let d : X×X 7→ R≥0 be an asymmetric distance function onX , we say f : X 7→ R
is L-Lipschitz w.r.t. d if

∀x, y ∈ X , f(y)− f(x) ≤ Ld(x, y).
Definition B.2. Let X be a finite set and µ : X 7→ [0, 1] be a corresponding probability measure,
we define the support of µ by

supp(µ) = {x ∈ X : µ(x) > 0}
Definition B.3. Suppose µ and ν to be two probability distribution on finite sets X and Y respec-
tively. Let Π(µ, ν) denotes the set of couplings between µ and ν. We say π : X × Y 7→ [0, 1]
∈ Π(µ, ν) is a coupling if ∑

y∈V

π(x, y) = µ(x),
∑
x∈V

π(x, y) = ν(y).

Definition B.4. Let X and Y be two sets and c : X × Y 7→ R ∪ {+∞}. A function f : X 7→
R ∪ {+∞} is c-convex if it is not identically +∞, and there exists ψ : Y 7→ R ∪ {+∞} such that

∀x ∈ X , f(x) = sup
y∈Y

(ψ(y)− c(x, y)).

Then its corresponding c-transform is the function ψc defined by

∀y ∈ Y, f c(y) = inf
x∈X

(ψ(x) + c(x, y)).

Lemma B.1. Let f : X 7→ R be a function defined on a set X . Let d : X × X 7→ R≥0 to be a
distance function on X that satisfies the following properties:

• ∀x ∈ X , d(x, x) = 0

• ∀x ̸= y ∈ X , d(x, y) > 0

• ∀x, y, z ∈ X , d(x, z) + d(z, y) ≥ d(x, y)

Then function f is d-convex ⇐⇒ f is 1-Lipschitz w.r.t. distance function d.

Proof. We first suppose f is d-convex, we want to show that ∀x, y ∈ X , f(x)− f(y) ≤ d(y, x). By
the definition of c-convex, ∃ function ψ : X 7→ R, such that f(x) = supz∈X [ψ(z) − d(x, z)] and
f(x) = supz∈X [ψ(z)− d(y, z)]. Suppose z0 = argsupz∈X [ψ(z)− d(x, z)]

f(x)− f(y) = sup
z∈X

[ψ(z)− d(x, z)]− sup
z∈X

[ψ(z)− d(y, z)]

≤ [ψ(z0)− d(x, z0)]− [ψ(z0)− d(y, z0]
= d(y, z0)− d(x, z0)
≤ d(y, x) by triangular inequality

Now, suppose f is 1-Lipschitz w.r.t. distance function d. We note that f c(y) = infx∈X [f(x) +
d(x, y)]. By 1-Lipschitz, we have that

f(y)− f(x) ≤ d(x, y)
⇒f(x)− f(y) ≥ −d(x, y)
⇒f(x) ≥ f(y)− d(x, y)
⇒f(x) ≥ sup

y∈X
[f(y)− d(x, y)]

16

Under review as a conference paper at ICLR 2024

by taking x = y in the supremum and d(x, x) = 0, we have the following equality:

f(x) = sup
y∈X

[f(y)− d(x, y)]

By the exact same argument, we can derive a bonus property that

f c(y) = inf
x∈X

[f(x) + d(x, y)] = f(y).

Therefore, on a set X with asymmetric distance function that satisfies triangle inequality, function f
is d-convexity ⇐⇒ f is 1-Lipschitz w.r.t. distance function d. And its c-transform is itself.

Theorem B.2. Let V be a discrete finite set equipped with a possibly asymmetric distance function
d : V × V 7→ R≥0 that satisfies triangle inequality. Suppose µ and ν to be two probability measure
on V . Then we have the Kantorovich–Rubinstein duality:

inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y) = sup
f∈Lip(1)

∑
x∈V

f(x)(ν(x)− µ(x)), (1)

where Π(µ, ν) denotes the coupling between probability measure µ and ν. f ∈ Lip(1) denotes that
f : V 7→ R is 1-Lipschitz w.r.t. distance function d.

Proof. We prove equation 1 by first showing that

inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y) ≥ sup
f∈Lip(1)

∑
x∈V

f(x)(ν(x)− µ(x)). (2)

Then we provide a specific construction of 1-Lipschitz function f : V 7→ R showing the converse,

inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y) ≤ sup
f∈Lip(1)

∑
x∈V

f(x)(ν(x)− µ(x)). (3)

Firstly, take arbitrary π ∈ Π(µ, ν) and f 1-Lipschitz, we have the following algebraic property:

∑
x∈V

f(x)(ν(x)− µ(x)) =
∑

x,y∈V
f(x)π(x, y)−

∑
x,y∈V

f(y)π(x, y)

=
∑

x,y∈V
[f(y)− f(x)]π(x, y)

≤
∑

x,y∈V
d(x, y)π(x, y)

Therefore,

inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y) ≥
∑
x∈V

f(x)(ν(x)− µ(x))

⇒ inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y) ≥ sup
f∈Lip(1)

∑
x∈V

f(x)(ν(x)− µ(x)),

which is exactly equation 2.

Secondly, we construct a function with the help of c-convexity introduced in definition B.4. For a
fixed m ∈ N, we can pick a sequence (xi, yi)mi=0 ∈ supp(π). Note that this choice of m is finite and
m ≤ |V|2. We construct our function f by

f(x) := sup
m∈N

sup
(xi,yi)mi=0

{
m−1∑
i=0

[d(xi, yi)− d(xi+1, yi)] + [d(xm, ym)− d(x, ym)]}. (4)

We now want to show that f c(y)− f(x) = d(x, y) almost surely for (x, y) ∈ supp(π). Note that

f c(y) = inf
x∈X

[f(x) + d(x, y)]

⇒f c(y) ≤ f(x) + d(x, y)

⇒f c(y)− f(x) ≤ d(x, y).

17

Under review as a conference paper at ICLR 2024

By lemma B.1, we have that f c(y) = f(y), which implies that this choice of f guarantees 1-
Lipschitz.
Suppose (x, y) ∈ supp(π), and in the choice of sequence (xi, yi)mi=0 we can let (xm, ym) := (x, y).
Therefore,

f(z) ≥ sup
m∈N

sup
(xi,yi)mi=0

{
m−2∑
i=0

[d(xi, yi)− d(xi+1, yi)] + [d(xm−1, ym−1)− d(x, ym−1)]

+ [d(x, y)− d(z, y)]}
=f(x) + d(x, y)− d(z, y).

The last equality comes from the fact that in the definition of f , taking supremum over m or m− 1
does not matter. Hence,

f(z) + d(z, y) ≥ f(x) + d(x, y)

⇒ inf
z∈V

[f(z) + d(z, y)] ≥ f(x) + d(x, y)

⇒f c(y) ≥ f(x) + d(x, y)

⇒f c(y)− f(x) ≥ d(x, y)

Therefore, we have that ∀(x, y) ∈ supp(π), fc(y)− f(x) = d(x, y) ⇐⇒ f(y)− f(x) = d(x, y)
by using lemma B.1 again. For clarity, we will denote this choice of f to be f∗. Using this result,
we have ∀π ∈ Π(µ, ν) ,

sup
f∈Lip(1)

∑
x∈V

f(x)(ν(x)− µ(x)) ≥
∑
x∈V

f∗(x)(ν(x)− µ(x))

=
∑

x,y∈V
[f∗(y)− f∗(x)]π(x, y)

=
∑

x,y∈V
d(x, y)π(x, y)

≥ inf
π∈Π(µ,ν)

∑
x,y∈V

d(x, y)π(x, y)

Therefore, we have both equations 2 and 3 hold, hence we have proven the Kantorovich–Rubinstein
duality under the weaker assumption that distance function d : V × V 7→ R≥0 is not necessarily
symmetric.

Corollary B.3. Suppose V to be a discrete finite set equipped with a possibly asymmetric distance
function d : V × V 7→ R≥0 that satisfies triangle inequality. Suppose µ and ν to be two probability
measure on V with support on {x1, x2, . . . , xn} and {y1, y2, . . . , ym} respectively. Then solving the
Wasserstein distanceW1(µ, ν) = infπ∈Π(µ,ν)

∑
x,y∈V d(x, y)π(x, y) is equivalent with

W1(µ, ν) = sup
f∈Lip(1)

∑
i

f (xi) ν (xi)−
∑
j

f (yj)µ (yj)

 , (5)

which is further equivalent to the following Linear programming problem
W1(µ, ν) = sup

Af⪯c
mT f, (6)

with the following construction of matrix and vectors
m := (µ (x1) , . . . , µ (xn) , ν (y1) , . . . , ν (ym))T ∈ Rn+m,

ϕ := (f (x1) , . . . , f (xn) ,−f (y1) , . . . ,−f (ym))T ∈ Rn+m,

c := (d (x1, y1) , . . . , d (x1, ym) , d (x2, y1) , . . . , d (xn, y1) , . . . , d (xn, ym) ,

d (y1, x1) , . . . , d (ym, x1) , d (y1, x2) , . . . , d (y1, xn) , . . . , d (ym, xn))
T ∈ Rnm,

A :=

(
A1

A2

)
,where A1 :=

a1 Im
a2 Im
...

...
an Im

 , A2 := −A1, ai ∈ Rm×n with all ones i-th column.

18

Under review as a conference paper at ICLR 2024

Lemma B.4. We say a matrixA ∈ Rn×n is regular if for some k ≥ 1,Ak > 0. Or equivalently, ma-
trix A has non-negative entries and is strongly connected in our context. Then by Perron-Frobenius
theorem:

• There exists a unique positive unit left eigenvector vpf of A called Perron-Frobenius left
eigenvector, whose corresponding eigenvalue λpf is real and has the largest norm among
all eigenvalues.

• Let λpf be the corresponding eigenvalue of vpf , for any other eigen

• λpf is simple, i.e. has multiplicity one

Proof. Perron-Frobenius theorem is well-known in the field of linear algebra, and has different
forms on non-negative matrices, non-negative regular matricesa and postivie matrices. We only
need it for non-negative regular matrices.

Lemma B.5. Let A(t) be a differentiable matrix-valued function of t, a(t) an eigenvalue of A(t) of
multiplicity one. Then we can choose an eigenvector h(t) of A(t) pertaining to the eigenvalue a(t)
to depend differentiably on t.

Proof. For the purpose of our proof, we only need continuity of h(t) on t, but we present this
stronger statement, cf. Theorem 8, p130 in (Lax, 2007).

Lemma B.6. Suppose ω ∈ Rn×n is a non-negative regular matrix. Then its Perron-Frobenius left
eigenvector vpf depend continuously on the ω w.r.t. small perturbation ε entry-wise, where W is
still a non-negative regular matrix after the perturbation.

Proof. Let Eij denotes a matrix with zero entries except for entry (i, j). Let A(ε) := ω + Eijε,
which is obviously a matrix-valued function differentiable w.r.t. ε. Suppose |ε| is small such that we
are only dealing with non-negative regular A(ε). Therefore by Perron-Frobenius theorem B.4, there
exists λpf (ε) and vpf (ε) for A(ε), which has multiplicity 1. Therefore, by lemma B.5, we have that
vpf (ε) continuously depends on ε. Note that this eigenvector unnecessarily has unit length. But
fortunately, the 2-norm of a positive continuous vector function is also continuous w.r.t. ε, we have
that the Perron-measure m :=

vpf (ε)
∥vpf (ε)∥ is continuous w.r.t. ε element-wise.

Lemma B.7. The mean transition probability µx for node x defined in equation 7 is continuous
w.r.t. weight matrix ω entry-wise with ω still non-negative and regular.

Proof. By lemma B.6, we have that the Perron-measure m is a continuous function w.r.t. ω entry-
wise. While m is a vector-valued function of ω, each entry can be viewed as a continuous function of
ω entry-wise. Since ∀ x ∈ V , m(x) > 0, we have ∀x, y ∈ V , m(y)

m(x) is continuous w.r.t. ω entry-wise.
Now we consider normalized weightW . WLOG, we suppose a perturbation of δ on ω in entry (i, j),
which only influences the i-th row of W . Denote this perturbed normalized weight matrix by W ∗,
and we have that

W ∗(x, y) =

W (x,y)
1+δ if x = i, y ̸= j

W (x,y)+δ
1+δ if x = i, y = j

W (x, y) if x ̸= i

Therefore if we choose to perturb the (i, j) entry of W , the value of W (x, y) is indifferent to this
entry, hence continuous. For W (i, y) where y ̸= j, we pick ε > 0. By choosing δ ≤ ε

W (i,y)−ε ,

we ensure W (x, y) − W (x,y)
1+ε ≤ ε, hence W (i, y) is continuous w.r.t. ω entry-wise. For W (i, j),

we also pick ε > 0, and we choose δ ≤ ε
1−W (i,j)−ε to get the entry-wise continuity. Therefore,

∀x ∈ V , the mean transition measure µx

µx(y) :=
1

2
[W (x, y) +

m(y)

m(x)
W (y, x)],

is a continuous function w.r.t. ω entry-wise, as summation and product of two continuous function
is still continuous.

19

Under review as a conference paper at ICLR 2024

Lemma B.8. Consider the convex optimization problem with a valid solution:

M := inf
Af⪯c(t)

mT f, (7)

whereA ∈ Rn×m, f ∈ Rm×1,m ∈ Rn×1, and c(t): R 7→ Rn×1 being a vector-valued function that
depends continuously on t ∈ R. We claim thatM also depends continuously on t.

Proof. Note that equation 7 is a convex optimization problem and admits a feasible solution. There-
fore the optimization problem admits strong duality from the Slater’s condition and is equivalent to
the following dual problem:

maximize − c(t)T g
subject to AT g +m = 0, g ⪰ 0.

In particular, the maximization problem has M as the optimal value. From the strong duality of
convex optimization problem, we move the continuous function c(t) from the constraint to the ob-
jective. Note that −c(t)T g is a continuous function of t, therefore the supremum over −c(t)T g is
also a continuous function.

Lemma B.9. Consider the convex optimization problem with a valid solution:

M := inf
Af⪯c(t)

m(t)T f,

where A ∈ Rn×m, f ∈ Rm×1 and m(t) : R 7→ Rn×1 and c(t) : R 7→ Rn×1 being vector-valued
functions that depend continuously on t ∈ R. We claim thatM depends continuously on t.

Proof. We extend the lemma to the case where the objective is also a continuous function of t. Let
δ > 0 be a small perturbation, andM∗ = infAf⪯c(t+δ)m(t+ δ)T f . Therefore, we have that

|M−M∗| = | inf
Af⪯c

mT f − inf
Af⪯c∗

m∗T f |

= | inf
Af⪯c

mT f − inf
Af⪯c∗

mT f + inf
Af⪯c∗

mT f − inf
Af⪯c∗

m∗T f |

≤ | inf
Af⪯c

mT f − inf
Af⪯c∗

mT f |+ | inf
Af⪯c∗

mT f − inf
Af⪯c∗

m∗T f |

By lemma B.8 and continuity of supremum over continuous function,M depends continuously on
variable t.

The following is the proof of three important properties of CURC, the first one and the third one are
natural results from the construction of κCURC, but we stress that the second note on continuity of
κCURC is non-trivial and new.
Proposition B.10. We have the following properties for κGOR:

• For connected unweighted-undirected graph G = (V, E), for any pair of nodes x, y ∈ V ,
we have κCURC(x, y) = κOR(x, y).

• If we perceive κCURC(x, y) as a function of ω ∈ Rn×n, then κCURC(x, y) is continuous
w.r.t. ω entry-wise.

• For strongly-connected weighted-directed graph G = (V, E , ω), when all edge weights ω
are scaled by an arbitrary positive constant λ, the value of κCURC(x, y) for any x, y ∈ V
is unchanged.

Proof. We prove the properties by sequential order.

1. Proof of the first property
SupposeA to be the adjacency matrix (binary) of unweighted-undirected graph G = (V, E)
and we are interested in κCURC for x, y ∈ V . LetM := the length of the longest shortest
path. Intuitively, by the definition of the ε-masked CURC, we may pick ε sufficiently small,

20

Under review as a conference paper at ICLR 2024

such that none of the “virtual edges” masked as edge length 1
ε will be picked in calculating

the weighted shortest distance. By picking ϵ < 1
M , the “virtual edges” have length even

more than the longest distance in G, resulting ∀x, y ∈ V , d(x, y) is independent of these
“virtual edges”.
When G is unweighted-undirected, the adjacency matrix A is symmetric. Therefore the
Perron-measure m(x) for each node x is proportional to the inverse degree 1

dx
. By direct

calculation, we have W (x, y) = 1
dx

and W (y, x) = 1
dy

. Therefore, the mean transition
distribution

µx(y) =
1

2
[
1

dx
+

dy
dx × dy

] =
1

dx
,

which is equivalent to the initial mass placement in the construction of κOR.
Since the initial mass distribution according for κCURC and κOR is the same and we choose
ϵ sufficiently small, namely when ϵ < 1

M , the masked and unmasked Wasserstein distances
are equal: Wε

1(µx, µy) =W1(µx, µy).
It is straightforward that the shortest weighted distance d is positively related to ε. Hence
κεCURC is a decreasing function in ε. But for a fixed graph G, κεCURC is invariant when
ε < 1

M . Therefore the limit of κεCURC indeed tends to κCURC as ε→ 0.

2. Proof of the second property
To prove the entry-wise continuity of CURC w.r.t. weight matrix ω under the assumption
that perturbation ensures ω to be non-negative and regular, we use the supremum form of
Wasserstein distance from the Kantorovich–Rubinstein duality:

Wε
1 (µx, µy) = sup

f∈Lip(1)

∑
z∈V

f(z) (µy(z)− µx(z)) , (8)

where ∀x, y ∈ V, f(y) − f(x) ≤ dε(x, y) as f ∈ Lip(1). We may exploit the limit
definition ofWε

1 and take ε sufficiently small so that dϵ andWε
1 is independent of ε, hence

we may abuse the notation, denote dε(x, y) as d(x, y) andWε
1(µx, µy) asW1(µx, µy) for

x, y ∈ V . We first show that ∀x ̸= y ∈ V , d(x, y) is continuous entry-wise w.r.t. ω.
LetM be the diameter w.r.t. edge length as inverse edge weights 1

ω , and for edge with 0
weight we treat the edge length as +∞. Suppose there is a small perturbation of δ on an
arbitrary entry of ω after which the weight matrix is still non-negative regular, we denote
the new weight matrix as ωδ and distance function as dδ on this perturbed matrix. WLOG,
we assume the perturbation is smaller than the smallest positive entry and we let ωmin to
be this minimal positive entry of ω. With this small perturbation, we have

|d(x, y)− dδ(x, y)| ≤ 1

ωmin − δ
− 1

ωmin
.

Therefore, ∀ε0, let δ ≤ ω2ε0
1+ωε0

, we have |d(x, y)− dδ(x, y)| ≤ ε0, hence d(x, y) is contin-
uous entry-wise w.r.t. ω.
We will prove the continuity of

W1(µx, µy)

d(x, y)
= sup

f∈Lip(1)

∑
z∈V

f(z)
µy(z)− µx(z)

d(x, y)
,

which is sufficient for the overall continuity of CURC. By corollary B.3, we have that

W1(µx, µy) = sup
Af⪯c

mT f.

By previous argument, m as a function of mean transition measure µ and c as a function
of distance function d are both continous w.r.t. ω entry-wise. Therefore, W1(µx, µy) is
indeed a continuous function w.r.t. ω entry-wise by lemma B.9. Since d(x, y) is positive
and continuous entry-wise, we conclude that κCURC is continuous entry-wise w.r.t. ω.

3. Proof of the third property
The third property is straightforward from the construction of the edge length function lε.
Suppose G(V, E , ω) to be the unscaled strongly-connected weighted-directed graph and
G∗(V, E , ω∗) be the scaled one, where ω∗ = λω. LetM andM∗ be the diameter of G and

21

Under review as a conference paper at ICLR 2024

G∗ respectively w.r.t. the inverse edge weight. Note we are not considering the ε-masked
edge weight in the sense that for non-existent edges, the edge length is +∞. M andM∗

are well-defined due to strongly-connectivity.
After a scaling of λ, the eigenvalues of ω and ω∗ differ by a factor of λ. By Perron-
Frobenius theorem, the corresponding Perron-measure m and m∗ are the same. Similarly,
it is straightforward the weighted graph laplacian matrices W and W ∗ are also the same.
Therefore the initial measure µ of G coincides with µ∗ of G∗.
Since λ > 0, we can find ϵ small enough, so that 1

ϵ < min{M,M∗}, ensuring the distance
function dε and dε∗ are independent of ε. Hence, ∀x ̸= y ∈ V , dε∗(x, y) = λdε(x, y) By
Kantorovich–Rubinstein duality B.2, we have that

Wε∗
1 (x, y) = inf

π∈Π(µx,µy)

∑
x,y∈V

d∗(x, y)π(x, y)

= inf
π∈Π(µx,µy)

∑
x,y∈V

λd(x, y)π(x, y)

= λWε
1(x, y).

Therefore,
κ∗CURC = lim

ε→0
κε∗CURC(x, y)

= lim
ε→0

(1− W
ε∗
1 (µx, µy)

dε∗(x, y)
)

= lim
ε→0

(1− λWε
1 (µx, µy)

λdε(x, y)
)

= lim
ε→0

(1− W
ε
1 (µx, µy)

dε(x, y)
)

= κCURC ,

as required. Therefore, our CURC is free of scale.

B.2 GEOMETRIC PROPERTY CONTINUOUS UNIFIED RICCI CURVATURE

To reveal the geometric connection between Continuous Unified Ricci Curvature and graphs, we in-
troduce the concept of Dirichlet isoperimetric constant IDV , which is the analogy of the well-known
cheeger constant in strongly-connected weighted-directed graphs. We perceive IDV as a measure of
bottlenecking on weighted graphs and state that when CURC has a lower bound K, IDV has a lower
bound that is positively related to K. Our proof draws its foundation from the derivation presented
in (Ozawa et al., 2020), where they prove the result on strongly-connected weighted-directed graph
with unit edge length. Few minor modifications are required to adapt the result to our scenario
concerning weighted edge lengths. We will identify and elucidate the key elements that require
clarification, while also presenting the results that remain unchanged.
Definition B.5. Let G = (V, E , ω) be a finite strongly-connected weighted directd-graph and f :
V 7→ R. Suppose µ : V×V 7→ [0, 1] is a probability kernel satisfying

∑
y∈V µ(x, y) = 1 for all x ∈

V . The Chung Laplacian L on function f associated with µ is defined as

Lf(x) := f(x)−
∑
y∈V

µ(x, y)f(y).

Let d : V × V 7→ R≥0 be a distance function (asymmetric). For each node x ∈ V , the asymptotic
mean curvatureHx is defined by

Hx := Lρx(x),
where ρx : V → R is the distance from x defined as ρx(y) := d(x, y). Note that with weighted
shortest distance d,Hx ∈ (−∞, 0).
For each node x ∈ V , the InRadx V of V at node x is defined by

InRadx V := sup
y∈V

ρx(y),

22

Under review as a conference paper at ICLR 2024

And for any x ∈ V and R > 0, we set ER(x) := {y ∈ V | ρx(y) ≥ R}.
Definition B.6. Let G = (V, E , ω) be a finite strongly-connected weighted-directed graph, µ :
V ×V 7→ [0, 1] be the mean transition kernel and m : V 7→ [0, 1] be the Perron-measure in definition
4.1. Based on the Perron-measure m, we define m : V × V 7→ [0, 1] by

m(x, y) :=
1

2
(m(x)µ(x, y) +m(y)µ(y, x)) = m(x)µ(x, y),

where we abbreviate m(x, y) as mxy . Note that mxy = myx is symmetric and µ(x, y) = mxy

m(x) .

Definition B.7. For a non-empty Ω ⊂ V , its boundary measure is defined as

m(∂Ω) :=
∑
y∈Ω

∑
z∈V \Ω

myz,

where myz is defined in B.6 and m(Ω) =
∑

x∈Ω m(x). Then the Dirichlet isoperimetric constant
IDV on V is defined by

IDV := inf
Ω

m(∂Ω)

m(Ω)
,

which is analogous to cheeger constant on weighted-directed graph.
Definition B.8. Exploiting definition 4.3 on Continuous Unified Ricci Curvature , we introduce
a limit version of CURC concerning idleness for theoretical derivation. Define the α-idle Mean
Transition probability Kernel by

µα
x(y) = µα(x, y) :=

{
1
2α[W (x, y) + m(y)

m(x)W (y, x)] if y ̸= x

(1− α) if y = x
(9)

We use the same ε-masked weighted edge length for calulating Wasserstein distance. Then we
define the α-idle ε-masked Continuous Unified Ricci Curvature and α-idle Continuous Unified Ricci
Curvature by

κεαCURC(x, y) := 1−
Wε

1

(
µα
x , µ

α
y

)
dε(x, y)

,

καCURC(x, y) := lim
ε→0

κεαCURC(x, y)

α

Hence, we define the idle-CURC by

κICURC(x, y) := lim
ε→0

lim
α→0

κεαCURC(x, y)

α
.

Theorem B.11. Let G = (V, E , ω) be a strongly-connected weighted-directed graph, we have that
for all x ̸= y ∈ V ,

κICURC(x, y) ≥ κCURC(x, y).

Proof. Using the trick mentioned in the proof of B.10, we choose ε sufficiently small such that
κεαCURC(x, y) is independent of ε. WLOG, we abbreviate κεαCURC(x, y) as καCURC(x, y). By lemma
3.2 from (Ozawa et al., 2020), καCURC(x, y) is concave inα ∈ [0, 1] and κα

CURC(x,y)
α is non-increasing

in α ∈ (0, 1]. Note that κCURC(x, y) is nothing but κα
CURC(x,y)

α taking α = 1. Therefore by
monotonicity, κICURC(x, y) ≥ κCURC(x, y).

Proposition B.12. Let Ω ⊂ V be a non-empty subset. Then for all function f0, f1 : V → R,∑
x∈Ω

Lf0(x)f1(x)m(x) =
1

2

∑
x,y∈Ω

(f0(y)− f0(x)) (f1(y)− f1(x))mxy

−
∑
x∈Ω

∑
y∈V \Ω

(f0(y)− f0(x)) f1(x)mxy.

Proof. The proof is a merely a calculation similar to integration by part. We stress that the result
only depends on fact that ⇕ is symmetric. (c.f. Theorem 2.1 in (Grigor’yan, 2018))

23

Under review as a conference paper at ICLR 2024

Lemma B.13. Let x, y ∈ V with x ̸= y. Then

καCURC(x, y) = inf
f∈Lip1(V)

(
1

α
(1−∇xyf) +∇xyLf

)
,

where∇xyf := f(y)−f(x)
d(x,y) .

Proof. We refer to lemma 3.9 in (Ozawa et al., 2020), which is essentially similar. It is worth
noticing that we are using a different weighted distance function, but there is no restriction on the
distance function in the proof.

Proposition B.14. Let x, y ∈ V with x ̸= y. Suppose Fxy := {f ∈ Lip1(V) | ∇xyf = 1}. Then
we have

κICURC(x, y) = inf
f∈Fxy

∇xyLf.

Proof. We refer to theorem 3.10 in (Ozawa et al., 2020), where the only part worth mentioning is
that we require

Lip1,x(V) := {f ∈ Lip1(V) | f(x) = 0} ,

to be compact w.r.t. the canonical topology on Rn. Let ω∗ := infx,y∈V ω(x, y) > 0, then d(x, y) ≤
n
ω∗ , which is bounded for fixed weight matrix ω. As we restrict f(x) = 0, the 1-Lipshitz function
f w.r.t. the weighted shortest distance function d is still bounded. Therefore, changing the distance
function does not break compactness w.r.t. Rn.

Theorem B.15. Let x ∈ V . For K ∈ R we assume infy∈V \{x} κ
I
CURC(x, y) ≥ K. For Λ ∈

(−∞, 0) we further assumeHx ≥ Λ. Then on V \{x}, we have

Lρx ≥ Kρx + Λ

Proof. Fix a node x ∈ V . Note that the distance function ρx ∈ Fxy defined in proposition B.14, as
∇xyρx = ρx(y)−ρx(x)

d(x,y) = 1. Hence, for all y ∈ V\{x},

K ≤ κICURC(x, y) ≤ ∇xyLρx =
Lρx(y)− Lρx(x)

d(x, y)
≤ Lρx(y)− Λ

d(x, y)
.

When y = x, the result is direct fromHx ≥ Λ. Hence, Lρx ≥ Kρx + Λ.

Theorem B.16. Let x ∈ V . For K ∈ R we assume infy∈V \{x} κCURC(x, y) ≥ K. For Λ ∈
(−∞, 0) we also assume Hx ≥ Λ. For D > 0 we further assume InRadx V ≤ D. Then for every
R > 0 with KR+ Λ > 0, we have

IDER(x) ≥
KR+ Λ

D

Proof. The proof is analogue to Proposition 9.6 in (Ozawa et al., 2020), while we include the
proof utilizing previous results for completeness. By theorem B.11, κCURC(x, y) ≥ K implies
κICURC(x, y) ≥ K. Let Ω ⊂ ER(x) be a non-empty vertex set. By Proposition B.12, we have

−
∑
y∈Ω

Lρx(y)m(y) =
∑
y∈Ω

∑
z∈V \Ω

(ρx(z)− ρx(y))myz

≥ −
∑
y∈Ω

∑
z∈V \Ω

ρx(y)myz

≥ −Dm(∂Ω)

By theorem B.15, for all y ∈ Ω,

Lρx(y) ≥ Kρx(y) + Λ ≥ KR+ Λ

24

Under review as a conference paper at ICLR 2024

Therefore, ∑
y∈Ω

[Lρx(y)− (KR+ Λ)]m(y) ≥ 0

⇒
∑
y∈Ω

Lρx(y)m(y) ≥
∑
y∈Ω

KRm(y) = (KR+ Λ)m(Ω).

Note that we have
∑

y∈Ω Lρx(y)m(y) ≤ Dm(∂Ω), which combined together yields

Dm(∂Ω) ≥ (KR+ Λ)m(Ω)

⇒m(∂Ω)

m(Ω)
≥ (KR+ Λ)

D

⇒IDER(x) ≥
KR+ Λ

D

Before we end the discussion of properties of Continuous Unified Ricci Curvature, we point out
that computing optimal-transportation based graph curvature can be computational intensive from
solving a Linear programming problem similar to corollary B.3. In (Topping et al., 2022) they
provide a lower bound as estimation for the Ollivier-ricci graph curvature. Likewise, we provide a
universal lower bound for CURC using Kantorovich-Rubinstein duality and a more precise lower
bound for CURC under stronger assumptions.

Proposition B.17. Based on the construction of CURC, we choose ε sufficiently small s.t. distance
function dε is independent of ε and denote it as d. Let D(x, y) := max{d(x, y), d(y, x)} be the
largest weighted distance between nodes x and y. For distinct node x, y ∈ V , we have

κCURC(x, y) ≥ −
2D(x, y)
d(x, y)

(1− µ(x, y)− µ(y, x))+ +
1

d(x, y)
(d(x, y) +D(x, y)−H(y, x))

− D(x, y)− d(y, x)
d(x, y)

(µ(x, y) + µ(y, x)),

whereH(x, y) is defined by

H̃(x) := −
∑
y∈V

µ(x, y)d(y, x)

H(x) := −
∑
y∈V

µ(x, y)d(x, y)

H(x, y) := −
∑
y∈V

µ(x, y)d(x, y)−
∑
y∈V

µ(x, y)d(y, x) = H̃(x) +H(x).

Proof. The proof is a simple calculation of the Kantorovich-Rubinstein duality and we present the
proof along the line of Proposition 6.1 in (Ozawa et al., 2020). By theorem B.2, we have

W1(µx, µy) = sup
f∈Lip(1)

∑
z∈V

f(x)(µx(z)− µy(z))

= sup
f∈Lip(1)

{ ∑
z∈V \{x}

(f(z)− f(y))µ(y, z)

−
 ∑

z∈V \{y}

(f(z)− f(x))µ(x, z)

+ (f(y)− f(x)) (1− µ(x, y)− µ(y, x))

}
.

For an arbitrary function f ∈ Lip(1) w.r.t. d, we have that

f(z)− f(y) ≤ d(y, z), f(z)− f(x) ≥ −d(z, x), |f(y)− f(x)| ≤ D(x, y),

25

Under review as a conference paper at ICLR 2024

Therefore,

W1 (µx, µy) ≤
∑

z∈V \{x}

d(y, z)µ(y, z) +
∑

z∈V \{y}

d(z, x)µ(x, z)

+D(x, y)|1− µ(x, y)− µ(y, x)|

=(−Hy − d(y, x)µ(y, x)) +
(
−
←−
Hx − d(y, x)µ(x, y)

)
+D(x, y) (2(1− µ(x, y)− µ(y, x))+ − (1− µ(x, y)− µ(y, x)))

=H(y, x)− d(y, x)(µ(x, y) + µ(y, x))

+D(x, y) (2(1− µ(x, y)− µ(y, x))+ − (1− µ(x, y)− µ(y, x)))
=2D(x, y)(1− µ(x, y)− µ(y, x))+ − (D(x, y)−H(y, x))
+ (D(x, y)− d(y, x))(µ(x, y) + µ(y, x)).

Hence,

κCURC(x, y) = 1− W1(µx, µy)

d(x, y)

≥ 1− 2
D(x, y)
d(x, y)

(1− µ(x, y)− µ(y, x))+ −
1

d(x, y)
(D(x, y)−H(y, x))

+
(D(x, y)− d(y, x))

d(x, y)
(µ(x, y) + µ(y, x))

= −2D(x, y)
d(x, y)

(1− µ(x, y)− µ(y, x))+ +
1

d(x, y)
(d(x, y) +D(x, y)−H(y, x))

− D(x, y)− d(y, x)
d(x, y)

(µ(x, y) + µ(y, x)).

Remark B.18. To calculate this lower bound, after pre-processing distance function d and the mean
transition probability, the asymptotic complexity is O(n) for each node pair x ̸= y. The pre-
processing inclues a Floyd-Washall algorithm for shortest path which isO(n3) and a power method
for computing perron eigenvectors which is usually O(n2). Therefore, the overall computational
complexity is O(n3)

When strongly-connected G = (V, E , ω) satisfies (x, y) ∈ E ⇐⇒ (y, x) ∈ E , and we use
edge length 1 for computing the shortest distance, CURC degenerates to the curvature definition in
(Ozawa et al., 2020). Under this stronger assumption, we can achieve a tighter bound for κCURC

with a specific transportation plan utilizing the topology of local neighborhoods.

Definition B.9. For x ∼ y, we define

•
−→
N x := {y ∈ V | x → y},

←−
N x := {y ∈ V | y → x},Nx :=

−→
N x ∪

←−
N x, which are inner

neighborhood, outer neighborhood and neighborhood respectively. If ∀x, y ∈ V , x → y

implies y → x, then
−→
N x =

←−
N x = Nx. Hence we use notationNx to denote neighborhood

for x.

• ∆(x, y) := Nx ∩Ny denotes set of common neighbors of node x and y.

• □(x, y) := {z ∈ Nx\Ny, z ̸= y : ∃w ∈ (Nz ∩Ny) \Nx}, which denotes the neighbors of
x forming 4-cycle based at x ∼ y without diagonals inside.

• □m(x, y) := max {|U | : U ⊆ □(x, y),∃φ : U → □(y, x), φ ∈ D(U)}, and we use φm to
denote one such optimal pairing between □(x, y) and □(y, x).

26

Under review as a conference paper at ICLR 2024

Proposition B.19. On a strongly-connected weighted-directed locally graph G=(V, E , ω), where
∀x, y ∈ V , if x→ y ⇐⇒ y → x, we have that if x ∼ y, then

κCURC(x, y) ≥−

1− µ(x, y)− µ(y, x)−
∑

z∈∆(x,y)

µ(x, z) ∨ µ(y, z)−
∑

z∈□(x,y)

µ(x, z) ∧ µ(y, φm(z))

+

−

1− µ(x, y)− µ(y, x)−
∑

z∈∆(x,y)

µ(x, z) ∧ µ(y, z)−
∑

z∈□(x,y)

µ(x, z) ∧ µ(y, φm(z))

+

+
∑

z∈∆(x,y)

µ(x, z) ∧ µ(y, z).

Remark B.20. When G = (V, E , ω) satisfies x → y ⇐⇒ y → x, optimal transportation based
curvature of x ∼ y is only dependent up to cycles of size at most 5. In theorem 6 of (Jost & Liu,
2014), they give a bound concerning the influence of triangles and in theorem 2 of (Topping et al.,
2022), they extend the result concerning cycles of size 4. The proof of this lower bound is in line
with these two theorems and we give a tighter lower bound for κCURC concerning the influence of
4-cycles compared to proposition B.17 under this stronger assumption. The computational cost for
computing this lower bound is at most O(n4). We stress that under specific user case for CURC
which requires lower computational cost, the lower bound estimations for κCURC from proposition
B.17 and proposition B.19 become handy.

27

Under review as a conference paper at ICLR 2024

C EXPRESSIVENESS OF GPNNS

C.1 COLOR REFINEMENT(CR)

The 1-dimensional Weisfeiler-Lehman algorithm (1-WL), also referred to as the color-refinement
algorithm, operates iteratively to determine a color mapping XG : V 7→ C for a given graph G =
(V, E), where C represents the set of colors. Every vertex is initially assigned an identical color.
During each ensuing iteration, a hash function is utilized by the 1-WL algorithm to amalgamate the
current color of each vertex with the colors of its adjacent vertices, thereby updating the vertex’s
color. The algorithm persists in this process for a substantial number of iterations T , typically set to
T = |V|.

C.2 PROTOTYPICAL GPNNS

It is well known that most of the MPNNs have an expressiveness upper bound of 1-WL (Xu et al.,
2019; Morris et al., 2019a). For GPNNs, the situation is a bit different due to the fact that we have
the propagation matrix depends on f(A), which is any permutation equivariant function.

Here we set two prototypical GPNNs to analyze their expressiveness. First, we consider the GPNNs
with homogeneous adjacency functions across all heads and layers and refer to them as Homoge-
neous GPNNs.

f = fh,l (10)

For generality, we also consider the case when multiple adjacency function f is used in the model.
An extra prototype model is defined with recurrence as Layer-recurrent GPNNs

f l = fh,l

f l = f l+p
(11)

In order to reach the upper-bounded expressiveness, the model would be assumed with a sufficient
number of heads and two MLPs with a sufficient layer and width for π and ϕ.

Lemma C.1. (Xu et al., 2019), Lemma 5 If we assume that the set X is countable, a function
f : X 7→ Rn can be established such that each bounded-size multiset X̂ ⊂ X has a unique corre-
sponding function h(X̂) :=

∑
x∈X̂ f(x). Additionally, a decomposition of any multiset function g

can be represented as g(X̂) = ϕ
(∑

x∈X̂ f(x)
)

for some function ϕ.

Proposition C.2. Homogeneous GPNNs Suppose GPNN model M has a fixed propagation function
f(A), with sufficient heads and layers, the expressiveness of M is upper-bounded by the iterative
color-refinement

X t+1
G (v) = hash{{(X t

G(u), f(A)vu) : u ∈ V}} (12)

Proof. First, we prove that for any f there exists a function πbase which is invective from each entry
of f(A) to R. Here we define the set of all possible values of

Fn := {f(A)(v,u) : A = adj(G),G = (V, E), |V| ≤ n, (v, u) ∈ V2} (13)

For all graphs with no more than n nodes, the total number of possible values of f(A)vu ∈ Rd is
finite and depends on n and f , denoted as |Fn| = N . Given arbitrary bijection id : Fn 7→ [N],
By the Stone–Weierstrass Theorem applied to the algebra of continuous functions C(Rd,R) there
exists a polynomial πbase so that

πbase(f) = id(f), for any f ∈ Fn (14)

Now, we are ready to construct the πh using πbase combined with the indicator function πh
1 (d) :=

I (d = h) . For each head, we have πh = πh
1 ◦ πbase. By multiplying P with ϕ(X), we can recover

the color-refinement of

χl
G(v) := hash

((
χl,1
G (v), χl,2

G (v), · · · , χl,|Fn|
G (v)

))
,

where χl,h
G (v) :=

{{
χl−1
G (u) : u ∈ V, id(f(A)(v,u)) = h

}}
.

(15)

28

Under review as a conference paper at ICLR 2024

In detail: by applying Lemma C.1 to matrix multiplication, we fulfill the injective multiset function
in 15.

X l,h
v =

∑
u∈{πh(f(A)v,u)=1}

ϕ(X l
u) (16)

By concatenating all the heads (injective) and passing them to an MLP update function, we can
fulfill the hash function in 15. Before conclusion, we refer to the universal approximation theorem
of MLPs (Hornik et al., 1989) to validate the use of MLPs to approximate constructed functions.
Finally, it’s easy to see that the color refinement in 15 is identical to 12

Proposition C.3. Layer-recurrent GPNNs Suppose GPNN model M has a layer-dependent prop-
agation function f l(A), repeats every p layer: f l = f l+p. With sufficient heads and layers, by
stacking repetitions of such repetition, the expressiveness of M is upper-bounded by the iterative
color refinement

X t+1
G (v) = hash{{

(
X t

G(u),
(
f1(A)vu, f

2(A)vu, . . . , f
p(A)vu

))
: u ∈ V}} (17)

In order to prove this, we would like to introduce two concepts for general CR algorithms, the stable
colormap and the partition of a colormap.

For any CR algorithm, at each iteration, the color mapping χt
G induces a partition of the vertex set V

with an equivalence relation ∼χt
G

defined to be u ∼χt
G
v ⇔ χt

G(u) = χt
G(v) for u, v ∈ V . We call

each equivalence class a color class with an associated color c ∈ C, denoted as (χt
G)

−1(c) := {v ∈
V : χt

G(v) = c}. Formally, we define the partition of any color mapping χG

Definition C.1. (Partition) The partition corresponding to χG is the set P (χG) = {χ−1
G (c) : c ∈

CG}, where CG := {χG : v ∈ V }. More specifically, if any element in P (χ1
G) is a subset of some

element in P (χ2
G), we say that P (χ1

G) is at least as fine as P (χ2
G)

It’s easy to see due to the hash function, any color refinement iteration refines the partition P (χt
G)

to a finer partition P (χt+1
G). Since the number of vertices |V | ≤ n, there must exist an iteration

T < |V | such that P (χT
G) = P (χT+1

G). Formally, we define the stable color mapping and stable
partition

Definition C.2. (Stable partition and stable color mapping) Given a graph G = (V, E), and an
CR refinement C ∈ End(Hom(V, C)). Starting from χ0

G = c0 (a constant initial color mapping),
χt+1
G = C(χt

G). There exist an iteration T < |V| , such that P (χT
G) = P (χT+1

G). Such P (χT
G) is

called a stable partition denoted as Pstable(C). Furthermore, we use χG(C) to represent one of the
many χT ′

G with T ′ ≥ T , namely the stable color mapping.

CR algorithms decide if the graph pair (G,H) is isomorphic by comparing the color mapping χT
G

and χT
H. If the stable partition of CR iteration C1 is finer than C2 for any graphs with finite nodes,

we can conclude that C1 is more powerful than C2. We refer to (Zhang et al., 2023b) for more
detail.

Proof. Given Proposition C.2, we know that each GPNN layer l ∈ [L] with l̂ := l mod p can
(under sufficient layers and width conditions) fulfill the coloring process of

X l+1
G (v) = hash{{(X l

G(u), f
l̂(A)vu) : u ∈ V}} (18)

We simplify the notation of this color refinement iteration by C l̂ ∈ End(Hom(V, C))

X l+1
G = C l̂(X l

G) (19)

Now, we define the color refinement iteration for a full recurrent period p for l = kp, k ∈ N,

X l+p
G = Cp ◦ · · · ◦ C1 ◦ C0(X l

G) (20)

Our goal is to show that the combined color refinement Ccomb = Cp ◦ · · · ◦ C1 ◦ C0 is as powerful
as the color refinement in 17 denoted as Cconcat. In order to achieve that, we will compare the stable

29

Under review as a conference paper at ICLR 2024

partition P (Ccomb) and P (Cconcat) on an arbitrary graph G = (V, E). For stable coloring χG(Ccomb)
and χG(Cconcat). For v1, v2 ∈ V , we will prove:

χG(Ccomb)(v1) = χG(Ccomb)(v2)⇔ χG(Cconcat)(v1) = χG(Cconcat)(v2) (21)

From the left to right, since the stable partition is unique and denoted as PG(χG(Ccomb)). We have:

χG(Ccomb)(v1) = χG(Ccomb)(v2)⇔ ∃S ∈ PG(χG(Ccomb)), s.t. v1, v2 ∈ S (22)

Thus we havePG(χG(Ccomb)) = PG(C
1 ◦ χG(Ccomb)) = · · · = PG(C

p ◦ · · · ◦ C1 ◦
χG(Ccomb)),with v1, v2 ∈ S an element of each of the partitions. Which is equivalent to
Ci(χG(Ccomb))(v1) = Ci(χG(Ccomb))(v2), for i ∈ [p]. Write it with hash function notation we
have hash{{

(
χG(Ccomb)(u), f

i(AG)v1u
)
, u ∈ V}} = hash{{

(
χG(Ccomb)(u), f

i(AG)v2u
)
, u ∈

V}}, for i ∈ [p]. Thus we can infer that

hash{{
(
χG(Ccomb)(u), (f

0(AG)v1u, f
1(AG)v1u, . . . , f

p(AG)v1u)
)
, u ∈ V}}

= hash{{
(
χG(Ccomb)(u), (f

0(AG)v2u, f
1(AG)v2u, . . . , f

p(AG)v2u)
)
, u ∈ V}}

Recall on the right-hand side, that the hash notation of Cconcat is

hash{{
(
χG(Cconcat)(u), (f

0(AG)v1u, f
1(AG)v1u, . . . , f

p(AG)v1u)
)
, u ∈ V}}

= hash{{
(
χG(Cconcat)(u), (f

0(AG)v2u, f
1(AG)v2u, . . . , f

p(AG)v2u)
)
, u ∈ V}}

Thus P (Ccomb) is at least as fine as P (Cconcat). By which we prove the χG(Ccomb)(v1) =
χG(Ccomb)(v2)⇒ χG(Cconcat)(v1) = χG(Cconcat)(v2)

It is straightforward from left to right since the hash notation of Cconcat implies each of the Ci

iterations holds. We have χG(Ccomb)(v1) = χG(Ccomb)(v2) ⇔ χG(Cconcat)(v1) = χG(Cconcat)(v2).
By proving 21, we conclude that Ccomb is at least as fine as Cconcat and vice versa, thus Ccomb is as
powerful as Cconcat.

Expressiveness assessment without recurrence might be a standalone research topic thus beyond the
discussion of this paper, leaving for future work.

30

Under review as a conference paper at ICLR 2024

D GENERALITY OF GPNN FRAMEWORK

D.1 MPNNS AS SPECIAL CASES OF GPNNS

In this section, we demonstrate how to cast various existing MPNNs/GTs into our framework. For
simplicity, we give examples with single-head architecture, which can be directly generalized to
multi-head.

D.1.1 GCN CASTED BY GPNN

Graph Convolution Networks (GCN) (Kipf & Welling, 2017) can be cast into the proposed frame-
work.

U(ρ(P)× ϕ(X),X) := ρ(P)× ϕ(X)

π(X(u),X(v), f(A)(u,v)) := f(A)(u,v)

ρ(P) := diag(P1)−1/2 P diag(1⊺P)−1/2

ϕ(X) := XW

f(A) := A

(23)

where diag : Rn → Rn2

converts a vector to a diagonal matrix.

D.1.2 GAT CAST BY GPNN

As an example, here we demonstrate how one can cast the Graph Attention Network
(GAT) (Veličković et al., 2018) to the proposed framework.

U(ρ(P)× ϕ(X),X) := ρ(P)× ϕ(X)

π(X(u),X(v), f(A)(u,v)) = eα(X(u),X(v)) · f(A)(u,v)

ρ(P) = diag(P1)−1 P

ϕ(X) = XW

f(A) = 1{1}(A)

(24)

where α : Rd × Rd → R can be an arbitrary real-value function, including not limited to, linear-
projection with output non-linearity (Veličković et al., 2018), scaled dot-product (Vaswani et al.,
2017a), multi-layer perceptrons (Brody et al., 2022; Bahdanau et al., 2015) and more complicated
ones (Brockschmidt, 2020; Monti et al., 2017).

D.1.3 GATEDGCN

Similar to GAT, GatedGCN (Bresson & Laurent, 2018) can be cast into our framework.

U(ρ(P)× ϕ(X),X) := ρ(P)× ϕ(X)

π(X(u),X(v), f(A)(u,v)) = Sigmoid
(
α(X(u),X(v))

)
· f(A)(u,v)

ρ(P) = diag(P1)−1 P

ϕ(X) = XW

f(A) = 1{1}(A)

(25)

where α : Rd × Rd → R can be an arbitrary real-value function.

D.2 GRAPH REWIRING AS SPECIAL CASES OF GPNNS

D.2.1 DREW

Drew introduces dynamic rewiring for MPNNs, leading to multiple propagation graphs in each layer,
similar to multi-head architecture.

31

Under review as a conference paper at ICLR 2024

Raising GCN-variant as an example, the Kth layer of Drew, can be interpreted as K-head propaga-
tion,

U([ρ(Pk)× ϕk(X)]Kconcat,X) :=

K∑
k=1

ρ(Pk)× ϕk(X)

πk(X(u),X(v), f
k(A)(u,v)) = fk(A)

ρ(P) = P

ϕk(X) = XWk

fk(A) = 1{k}(dG(A))(diag(A1)−1/2 A diag(1⊺A)−1/2)

(26)

where dG : {0, 1}n2 → Rn2

denotes an arbitrary graph distance function given A. Drew utilizes the
shortest-path distance; functions and matrices without subscripts denote that they are shared across
heads.

D.3 GRAPH TRANSFORMERS AS SPECIAL CASES OF GPNNS

Similar to GAT, Graph Transformers, e.g., Graphormer (Ying et al., 2021), SAN (Kreuzer et al.,
2021b), GRIT (Ma et al., 2023) can be cast into our framework. The key difference is that Graph
Transformers are not limited by first-hop neighborhood and introduce absolute/relative positional
encoding to sense non adjacent nodes in aggregation,

In generalized propagation, one can recover the exact arbitrary Graph Transformers by

U(ρ(P)× ϕ(X),X) := ρ(P)× ϕ(X)

π(X(u),X(v), f(A)(u,v)) = eα(X(u),X(v),f(A)(u,v))

ρ(P) = diag(P1)−1 P

ϕ(X) = XW

(27)

where α : Rd × Rd × Rd → R can be arbitrary real-value function; f(A) is referred to as the
positional encoding function, such as RRWP (Ma et al., 2023), Shortest-path distance (Ying et al.,
2021) and resistance distance (Zhang et al., 2023b).

We list the definition of α for two graph transformers as examples:

Graphormer

α(X(u),X(v), f(A)(u,v)) := (W1X(u))
⊺(W2X(v)) + f(A)(u,v) (28)

where f(A)(u,v) : {0, 1}n2 → R is learnable scalers indexed by shortest-path distance between u
and v.

GRIT

a(X(u),X(v), f(A)(u,v))) := wReLU(ρ((W1X(u)+W2X(v))⊙W3f(A)(u,v)))+W4f(A)(u,v)))
(29)

where f(A)(u,v) : {0, 1}n2 → Rd denotes a positional encoding, RRWP; and ρ(x) :=√
ReLU(x)−

√
ReLU(−x) is signed square-root.

D.3.1 HYBRID TRANSFORMER

Hybrid Transformers, e.g., SAN (Kreuzer et al., 2021b) (local attention + non-local attention) and
GraphGPS (Rampášek et al., 2022) (MPNN + global attention), can be simply cast to a multi-head
version of GPNNs, one head as MPNNs and the other head as Graph Transformers, as aforemen-
tioned.

32

Under review as a conference paper at ICLR 2024

E EXPERIMENTAL DETAILS

E.1 DETAILS OF GPNN-PE

E.1.1 MODEL ARCHITECTURE

To verify our theoretical findings, we build up a purely structural-based GPNN, called GPNN-PE,
based on the SOTA GTs - GRIT (Ma et al., 2023), by removing the query-key architecture which
models the token similarity on node representations.

In each layer, we update node representations xu∀u ∈ V and node-pair representations eu,v,∀u, v ∈
V . Similar to GRIT, we initialize these using the initial node features and our RRWP positional
encodings: xi = [x′

i∥Pi,i] ∈ Rdh+K and ei,j = [e′i,j∥Pi,j] ∈ Rde+K , where x′
i ∈ Rdh and e′i,j ∈

Rde are observed node and edge attributes, respectively; Pi,j is the relative positional encoding for
graphs. Note that, if node/edge attributes are not present in the data, we can set x′

i/e
′
i,j as zero-

vectors 0 ∈ Rd. We set e′i,j = 0 if there is no observed edge from i to j in the original graph.

We replace the original attention computation in GRIT with a multi-layer perceptron (MLP):

êi,j = σ(W1ei,j) ∈ Rd′
,

αij = Softmaxj∈V(W2êi,j) ∈ R,

x̂i =
∑
j∈V

αij · (W3xj +W4êi,j) ∈ Rd′′
,

(30)

where σ is a non-linear activation (ReLU by default); W1 ∈ Rd′×d, W2 ∈ R1×d′
, W3 ∈ Rd′′×d

and W4 ∈ Rd′′×d′
are learnable weight matrices.

Following GRIT, we retain the update of edges and the multiple heads (say, Nh heads) without
further specification:

xout
i =

Nh∑
h=1

Wh
Ox̂

h
i ∈ Rd ,

eout
ij =

Nh∑
h=1

Wh
Eoê

h
ij ∈ Rd ,

(31)

where Wh
O,W

h
Eo ∈ Rd×d′′

are output weight matrices for each head h.

E.1.2 POSITIONAL ENCODING

In this work, we apply Relative Random walk positional encoding utilized in GRIT (Ma et al.,
2023), which is one of the most expressive graph positional encoding. Let A ∈ Rn×n be the
adjacency matrix of a graph (V, E) with n nodes, and let D be the diagonal degree matrix. Define
M := D−1A, and note that Mij is the probability that i hops to j in one step of a simple random
walk. The proposed relative random walk probabilities (RRWP) initial positional encoding is defined
for each pair of nodes i, j ∈ V as follows:

Pi,j = [I,M,M2, . . . ,Mk−1]i,j ∈ Rk, (32)

in which I is the identity matrix. In other words, in GPNN-PE, ψ : Rn×n → Rn×n×k is defined as

ψ(A)i,j := [I,D−1A, (D−1A)2, . . . , (D−1A)k−1]i,j (33)

E.2 DETAILS OF EXPERIMENTAL SETUP

E.2.1 BASELINES

We primarily compare our methods with the SOTA graph transformer, GRIT (Ma et al., 2023), as
well as a number of prevalent graph-learning models: popular message-passing neural networks
(GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019) and its variant with edge-features (Hu

33

Under review as a conference paper at ICLR 2024

et al., 2020), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2018), GatedGCN-
LSPE (Dwivedi et al., 2021), PNA (Corso et al., 2020)); Graph Transformers (Graphormer (Ying
et al., 2021), K-Subgraph SAT (Chen et al., 2022), EGT (Hussain et al., 2022), SAN (Kreuzer
et al., 2021b), Graphormer-URPE (Luo et al., 2022), Graphormer-GD (Zhang et al., 2023b),
GraphGPS (Rampášek et al., 2022)); and other recent Graph Neural Networks with SOTA per-
formance (DGN (Beani et al., 2021), GSN (Bouritsas et al., 2022b), CIN (Bodnar et al., 2021),
CRaW1 (Toenshoff et al., 2021), GIN-AK+ (Zhao et al., 2021)).

E.2.2 DESCRIPTIONS OF DATASETS

A summary of the statistics and characteristics of datasets is shown in Table. 4. The first five datasets
are from Dwivedi et al. (2022a) and the last two are from Dwivedi et al. (2022b). Readers are referred
to Dwivedi et al. (2022a) and Dwivedi et al. (2022b) for more details about the datasets.

Table 4: Overview of the graph learning datasets involved in this work (Dwivedi et al., 2022a;b;
Irwin et al., 2012; Hu et al., 2021) .

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

E.2.3 DATASET SPLITS AND RANDOM SEED

Our experiments are conducted on the standard train/validation/test splits of the evaluated bench-
marks. For each dataset, we execute 4 runs with different random seeds (0,1,2,3) and report the
mean performance and standard deviation.

E.2.4 HYPERPARAMETERS

Due to the limited time and computational resources, we did not perform an exhaustive search or
a grid search on the hyperparameters. We mainly follow the hyperparameter setting of GRIT (Ma
et al., 2023) and make slight changes to fit the number of parameters into the commonly used pa-
rameter budgets. For the benchmarks from Dwivedi et al. (2022a;b), we follow the most commonly
used parameter budgets: up to 500k parameters for ZINC, PATTERN, CLUSTER, Peptides-func
and Peptides-struct; and ∼100k parameters for MNIST and CIFAR10.

The final hyperparameters are presented in Tables. 5 and Tables. 6.

E.3 VISUALIZATION OF CURVATURE

In this section, we provide visualizations of attention maps and their corresponding CURC maps, as
well as the distribution of CURC shown as the kernel density estimation (KDE) plots.

To better demonstrate the trend of the learned attention maps, we run a simplified variant of GPNN-
PE, with single-head attention shared across layers, on ZINC (Dwivedi et al., 2022a), and visualize
the first 6 graphs in the Test set as examples.

In Fig. 3,4,5,6,7,8, the 1st row is the visualization of the attention map; the 2nd row is the visualiza-
tion of the CURC map; and the 3rd row is the KDE plot for the CURC.

We also visualize the trend curves of minimum/average CURC given the attention matrices across
the first 32 test graphs in ZINC, as shown in Fig. 9 and Fig. 10.

34

Under review as a conference paper at ICLR 2024

Table 5: Hyperparameters for five datasets from BenchmarkingGNNs (Dwivedi et al., 2022a).

Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER

Transformer Layers 10 4 4 10 16
Hidden dim 64 52 52 64 48
Heads 8 4 4 8 8
Dropout 0 0 0 0 0.01
Attention dropout 0.2 0.5 0.5 0.2 0.5
Graph pooling sum mean mean − −
PE dim (RW-steps) 21 18 18 21 32
PE encoder linear linear linear linear linear

Batch size 32/256 16 16 32 16
Learning Rate 0.001 0.001 0.001 0.0005 0.0005
Epochs 2000 200 200 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e− 5 1e− 5 1e− 5 1e− 5 1e− 5

Parameters 417,877 100,754, 98,238 353, 877 319,670
Param. (1 Head) 385,237 108,866 106,350 389,717 351,926
Param. (Share Attn) 311,381 92,330 89,814 315,861 283,670

Table 6: Hyperparameters for two datasets from the Long-range Graph Benchmark (Dwivedi et al.,
2022b)

Hyperparameter Peptides-func Peptides-struct

Transformer Layers 4 4
Hidden dim 96 96
Heads 4 8
Dropout 0 0
Attention dropout 0.2 0.2
Graph pooling mean mean

PE dim (walk-step) 17 24
PE encoder linear linear

Batch size 32 32
Learning Rate 0.0003 0.0003
Epochs 200 200
Warmup epochs 5 5
Weight decay 0 0

Parameters 332,142 338,315
Param. (1 Head) 370,571 360,574
Param. (Share Attn) 310,091 304,702

35

Under review as a conference paper at ICLR 2024

Input Graph EP 0 EP 50 EP 100 EP 1000

Figure 3: The visualization of Attention and CURC for Graph-1 in ZINC

Input Graph EP 0 EP 50 EP 100 EP 1000

Figure 4: The visualization of Attention and CURC for Graph-2 in ZINC

36

Under review as a conference paper at ICLR 2024

Input Graph EP 0 EP 50 EP 100 EP 1000

Figure 5: The visualization of Attention and CURC for Graph-3 in ZINC

Input Graph EP 0 EP 50 EP 100 EP 1000

Figure 6: The visualization of Attention and CURC for Graph-4 in ZINC

37

Under review as a conference paper at ICLR 2024

Input Graph EP 0 EP 50 EP 100 EP 1000

Figure 7: The visualization of Attention and CURC for Graph-5 in ZINC

Input Graph EP 0 EP 50 EP 100 EP 1000

Figure 8: The visualization of Attention and CURC for Graph-6 in ZINC

38

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
epoch

1.5

1.0

0.5

0.0
m

in
 c

ur
va

tu
re

attn
origin

Figure 9: The trend of Minimum CURC for the first 32 test graphs in ZINC. Shade is the Confidence
Interval at the 95% confidence level.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
epoch

0.0

0.2

0.4

0.6

0.8

1.0

av
g

cu
rv

at
ur

e

attn
origin

Figure 10: The trend of Average CURC for the first 32 test graphs in ZINC. Shade is the Confidence
Interval at the 95% confidence level.

39

	Introduction
	Preliminary and Background
	Generalized Propagation Framework
	Generalized Propagation Graph
	Generalized Propagation Neural Network (GPNN)
	Expressiveness of GPNNs

	Continuous Unified Ricci Curvature
	Connection between CURC and message-passing
	Construction of CURC
	Algebraic and geometric properties of CURC

	Experiment
	Theory-guided design
	Ablation: The effect of sharing
	Evaluation

	Analyze Propagation Graphs with CURC
	CURC Distribution Shift

	Related Work
	Conclusion and Future Work
	Background
	permutation equivariance
	Ollivier-Ricci Curvature

	Theoretical Details
	Properties of Continuous Unified Ricci Curvature
	Geometric property Continuous Unified Ricci Curvature

	Expressiveness of GPNNs
	Color refinement(CR)
	Prototypical GPNNs

	Generality of GPNN framework
	MPNNs as special cases of GPNNs
	Graph rewiring as special cases of GPNNs
	Graph Transformers as special cases of GPNNs

	Experimental Details
	Details of GPNN-PE
	Details of Experimental Setup
	Visualization of Curvature

