
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POGEMA: A BENCHMARK PLATFORM FOR
COOPERATIVE MULTI-AGENT PATHFINDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent reinforcement learning (MARL) has recently excelled in solving chal-
lenging cooperative and competitive multi-agent problems in various environments
with, mostly, few agents and full observability. Moreover, a range of crucial
robotics-related tasks, such as multi-robot pathfinding, that have been convention-
ally approached with the classical non-learnable methods (e.g., heuristic search) is
currently suggested to be solved by the learning-based or hybrid methods. Still,
in this domain, it is hard, not to say impossible, to conduct a fair comparison
between classical, learning-based, and hybrid approaches due to the lack of a
unified framework that supports both learning and evaluation. To this end, we
introduce POGEMA, a set of comprehensive tools that includes a fast environment
for learning, a generator of problem instances, the collection of pre-defined ones, a
visualization toolkit, and a benchmarking tool that allows automated evaluation.
We introduce and specify an evaluation protocol defining a range of domain-related
metrics computed on the basics of the primary evaluation indicators (such as success
rate and path length), allowing a fair multi-fold comparison. The results of such a
comparison, which involves a variety of state-of-the-art MARL, search-based, and
hybrid methods, are presented.

(a) task

0
0

0
0

0 0 0
0 0

0
0 0 0

0
0 0 0

0 0
0

0 1

0
00

Target

0
0

0
0

1 0 0
0 0

1
0 0 0

0
0 0 0

0 0
0

0 0

0
00

Agen
ts

1
0

0
0

0 0 1
1 0

0
0 1 1

1
1 1 1

0 0
1

1 0

0

01

Obstacles

(b) observation

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

LaCAM
SCRIMP

DCC
IQL

VDN
QMIX

QPLEX
MAMBA

(c) results

Figure 1: (a) Example of the multi-robot navigation problem considered in POGEMA: each robot
must reach its goal, denoted by a flag of the same color. (b) Observation tensor of the red agent.
(c) Results of the evaluation of several MARL, hybrid, and search-based solvers on the proposed
POGEMA benchmark.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has gained an increasing attention recently and sig-
nificant progress in this field has been achieved (Canese et al., 2021; Nguyen et al., 2020; Wong
et al., 2023). MARL methods have been demonstrated to generate well-performing agents’ policies
in strategic games (Arulkumaran et al., 2019; Ye et al., 2020), sport simulators (Song et al., 2023;
Zang et al., 2024), multi-component robot control (Wang et al., 2024), city traffic control (Kolat
et al., 2023), and autonomous driving (Zhou et al., 2020). Currently, several ways to formulate and
solve MARL problems exist, based on what information is available to the agents and what type of
communication is allowed in the environment (Zhang et al., 2021). iVSi.w2 Due to the increased

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

interest in robotic applications, decentralized cooperative learning with minimizing communication
between agents has recently attracted a specific attention (Singh et al., 2022; Zhang et al., 2020).

The main challenges in solving MARL problems are the non-stationarity of the multi-agent envi-
ronment, the need to explicitly predict the behavior of the other agents to implement cooperative
behavior, high dimensionality of the action space, which grows exponentially with the number of
agents, and the sample inefficiency of existing approaches. The existing MARL including model-
based and hybrid learnable methods (Egorov & Shpilman, 2022; Liu et al., 2023) exhibit faster and
more stable learning in SMAC-type environments (Ellis et al., 2024) with vector observations and
full observability. Currently, the best results are shown by the discrete explicit world models, that use
Monte Carlo tree search for planning with various heuristics to reduce the search space (Hao et al.,
2024; Liu et al., 2023).

However, in numerous practically inspired applications, like in mobile robot navigation, agents’
observations are typically high-dimensional (e.g. stacked occupancy grid matrices or image-based
observations as compared to 32-dim vectors in SMAC (Ellis et al., 2024)) and only partially describe
the state of the environment, including the other agents (Han et al., 2022; Gielis et al., 2022). iVSi.w2
This makes the problem specifically challenging, especially in the environments where a large number
of agents are involved (more than 2–10 agents in conventional MARL environments such as SMAC).

Conventionally, the problem of multi-robot cooperative navigation (which is very important due to
its applications in modern automated warehouses and fulfillment centers (Dekhne et al., 2019)) is
framed as a search problem over a discretized search space, composed of robots-locations tuples. All
robots are assumed to be confined to a graph, typically – a 4-connected grid (Rivera et al., 2020), and
at each time step a robot can either move following a graph’s edge or stay at the current vertex. This
problem setting is known as (Classical) Multi-agent Pathfinding problem (Stern et al., 2019). Even in
such simplified setting (discretized space, discretized time, uniform-duration actions etc.) obtaining a
set of individual plans (one for each robot) that are mutually-conflict-free (i.e. no vertex or edge is
occupied by disctinct agents at the same time step) and minimize a common objective such as, for
example, the arrival time of the last agent (known as the makespan in the literature) is NP-Hard (Yu
& LaValle, 2016).

To this end the focus of the multi-agent pathfinding community is recently being shifted towards
exploring of how state-of-the-art machine learning techniques, especially reinforcement learning
and imitation learning, can be leveraged to increase the efficiency of traditional solvers. Methods
like (Skrynnik et al., 2023; 2024a;b; Ma et al., 2021; Wang et al., 2023; Sartoretti et al., 2019; Wang
et al., 2020a; Liu et al., 2020; Damani et al., 2021) are all hybrid solvers that rely on both widespread
search-based techniques and learnable components as well. They all are developed using different
frameworks, environments and datasets and are evaluated accordingly, i.e. in the absence of the
unifying evaluation framework, consisting of the (automated) evaluation tool, protocol (that defines
common performance indicators) and the dataset of the problem instances. Moreover, currently
most of the pure MARL methods, i.e. the ones that do not involve search-based modules, such
as QMIX (Rashid et al., 2020), MAMBA (Egorov & Shpilman, 2022), MAPPO (Yu et al., 2022)
etc., are mostly not included in comparison. The main reason is that to train MARL policies a fast
environment is needed, which is suited to cooperative multi-agent navigation.

iVSi.w2 To close the mentioned gaps we introduce POGEMA, a comprehensive set of tools that
includes:

• a fast and flexible environment for learning and planning supporting several variants of
the multi-robot navigation problem and integrating a generator of problem instances for
multi-task and generalization testing,

• a visualization toolkit to create plots for debugging and performance information and to
make high-quality animations,

• a benchmarking tool enabling automated evaluation of learning-based, planning-based, and
hybrid approaches,

• an evaluation protocol defining a range of domain-related metrics computed on the basics of
the primary evaluation indicators, allowing a fair multi-fold comparison of learnable and
classical methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Currently, a huge variety of MARL environments exists that are inspired by various practical ap-
plications and encompass a broad spectrum of nuances in problem formulations. Notably, they
include a diverse array of computer games (Samvelyan et al., 2019b; Ellis et al., 2024; Rutherford
et al., 2023; Carroll et al., 2019; Suarez et al., 2024; Johnson et al., 2016; Bonnet et al., 2023; Baker
et al., 2020; Kurach et al., 2020). Additionally, they address complex social dilemmas (Agapiou
et al., 2022) including public goods games, resource allocation problems (Papoudakis et al., 2021),
and multi-agent coordination challenges. Some are practically inspired, showcasing tasks such as
competitive object tracking (Pan et al., 2022), infrastructure management and planning (Leroy et al.,
2024), and automated scheduling of trains (Mohanty et al., 2020). Beyond these, the environments
simulate intricate, interactive systems such as traffic management and autonomous vehicle coordina-
tion (Vinitsky et al., 2022), multi-agent control tasks (Rutherford et al., 2023; Peng et al., 2021), and
warehouse management (Gupta et al., 2017). Each scenario is designed to challenge and analyze the
collaborative and competitive dynamics that emerge among agents in varied and complex contexts.
We summarize the most wide-spread MARL environments in Table 1. A detailed description of each
column is presented below.

Table 1: Comparison of different multi-agent reinforcement learning environments

Environment R
ep

os
ito

ry

N
av

ig
at

io
n

Pa
rt

ia
lly

ob
se

rv
ab

le

Py
th

on
ba

se
d

H
ar

dw
ar

e-
ag

no
st

ic
se

tu
p

Pe
rf

or
m

an
ce

>1
0K

St
ep

s/
s

Pr
oc

ed
ur

al
ge

ne
ra

tio
n

R
eq

ui
re

s
ge

ne
ra

liz
at

io
n

E
va

lu
at

io
n

pr
ot

oc
ol

s

Te
st

s
&

C
I

Py
Pi

L
is

te
d

Sc
al

ab
ili

ty
>1

00
0

A
ge

nt
s

In
du

ce
d

be
ha

vi
or

Flatland (Mohanty et al., 2020) link ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ Coop
GoBigger (Zhang et al., 2023) link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ Mixed/Coop
Google Research Football (Kurach
et al., 2020)

link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ Mixed

Griddly (Bamford, 2021) link ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ Mixed
Hide-and-Seek (Baker et al., 2020) link ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Comp
IMP-MARL (Leroy et al., 2024) link ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ Coop
Jumanji (XLA) (Bonnet et al., 2023) link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ Mixed
LBF (Papoudakis et al., 2021) link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ Coop
MAMuJoCo (Peng et al., 2021) link ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ Coop
MATE (Pan et al., 2022) link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ Coop
MeltingPot (Agapiou et al., 2022) link ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Mixed/Coop
MALMO (Johnson et al., 2016) link ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ Mixed
MPE (Lowe et al., 2017) link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ Mixed
MPE (XLA) (Rutherford et al., 2023) link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Mixed
Multi-agent Brax (XLA) (Rutherford
et al., 2023)

link ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop

Multi-Car Racing (Schwarting et al.,
2021)

link ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Comp

Neural MMO (Suarez et al., 2024) link ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ Comp
Nocturne (Vinitsky et al., 2022) link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ Mixed
Overcooked (Carroll et al., 2019) link ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ Coop
Overcooked (XLA) (Rutherford et al.,
2023)

link ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ Coop

RWARE (Papoudakis et al., 2021) link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
SISL (Gupta et al., 2017) link ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ Coop
SMAC (Samvelyan et al., 2019b) link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Mixed/Coop
SMAC v2 (Ellis et al., 2024) link ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ Mixed/Coop
SMAX (XLA) (Rutherford et al., 2023) link ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ Mixed/Coop
Magent (Zheng et al., 2018) link ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ Mixed
Gigastep (Lechner et al., 2024) link ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ Mixed
POGEMA (ours) link ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Mixed

Navigation Navigation tasks arise in almost all multi-agent environments (e.g. unit navigation in
SMAC or robotic warehouse management in RWARE), however only a handful of environments
specifically focus on challenging navigation problems: Flatland, Nocturne, RWARE, and POGEMA.

3

https://github.com/flatland-association/flatland-rl
https://github.com/opendilab/GoBigger?tab=readme-ov-file
https://github.com/google-research/football
https://github.com/Bam4d/Griddly
https://github.com/openai/multi-agent-emergence-environments
https://github.com/moratodpg/imp_marl/tree/main
https://github.com/instadeepai/jumanji
https://github.com/uoe-agents/lb-foraging
https://github.com/schroederdewitt/multiagent_mujoco
https://github.com/XuehaiPan/mate
https://github.com/google-deepmind/meltingpot
https://github.com/microsoft/malmo
https://github.com/openai/multiagent-particle-envs
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/mpe
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/mabrax
https://github.com/igilitschenski/multi_car_racing
https://github.com/PufferAI/PufferLib
https://github.com/facebookresearch/nocturne
https://github.com/HumanCompatibleAI/overcooked_ai?tab=readme-ov-file
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/overcooked
https://github.com/semitable/robotic-warehouse
https://pettingzoo.farama.org/environments/sisl/
https://github.com/oxwhirl/smac
https://github.com/oxwhirl/smacv2
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/Farama-Foundation/MAgent2
https://github.com/Farama-Foundation/MAgent2
https://anonymous.4open.science/r/pogema-7439

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Partially observable Partial observability is an intrinsic feature of a generic multi-agent problem,
meaning that an individual agent does not have access to the full state of the environment but rather
is able to observe it only locally (e.g. an agent is able to determine the locations of the other
agents and/or static obstacles only in its vicinity). Most of the considered environments are partially
observable, with the exception of Overcooked.

Environment Setup Python based means the environment is implemented in Python, unlike many
other multi-agent environments that include bindings for other languages or external dependencies,
which can complicate usage. Pure Python implementations ensure ease of modification and cus-
tomization, allowing researchers to easily adapt and extend the environments. Hardware-agnostic
setup means the environment doesn’t require any specific type of hardware for training or inference,
offering flexibility across different systems.

Performance >10K Steps/s Training and evaluating multi-agent reinforcement learning agents
often requires making billions of steps (transitions) in the environment. Thus, it is crucial that each
transition is computed efficiently. In general, performing more than 10K steps per second is a good
indicator of the environment’s efficiency. While XLA versions can provide high performance by
vectorizing the environment on GPU, they require modern hardware setups, which can be a barrier
for some researchers. In contrast, fast environments like POGEMA or RWARE can achieve high
performance without such stringent hardware requirements, making them more accessible and easier
to integrate into a variety of research projects.

Procedural generation To improve the ability of RL agents to solve problem instances that are
not the same that were used for training (the so-called ability to generalize) procedural generation of
the problem instances is commonly used. I.e. the environment does not rely on a predefined set of
training instances but rather procedurally generates them to prevent overfitting. As highlighted in
the Procgen paper (Cobbe et al., 2020), this approach ensures that agents develop robust strategies
capable of adapting to novel and diverse situations. Moreover, in multi-agent settings, agents must be
able to handle and adapt to a variety of unforeseen agent behaviors and strategies, ensuring robustness
and flexibility in dynamic environments (Agapiou et al., 2022).

Evaluation protocols means that the environment features a comprehensive evaluation API, in-
cluding computation of distinct performance indicators and visualization tools. These capabilities
allow precise performance measurement and deeper insights into RL agents’ behavior, going beyond
just reward curves, which can often hide agents exploiting the reward system rather than genuinely
solving the tasks.

Tests and CI means the environment is set up for development with continuous integration and
is covered with tests, which are essential for collaborative open-source development. PyPI listed
indicates that the environment library is listed (or will be listed) on PyPI1, making it easy to install
and integrate into projects with a simple pip install command. Scalability to >1000 Agents
refers to the environment’s ability to handle over 1000 simultaneously acting agents, ensuring robust
performance and flexibility for large-scale multi-agent simulations.

Induced behaviour iVSi Multi-agent behaviour can be influenced by modifying the reward func-
tion (Shoham & Leyton-Brown, 2008). Competitive (Comp) behaviour arises when a joint strategy
benefits one player but disadvantages others. In a two-player game, this corresponds to a Pareto-
efficient outcome. Minimax games, where agents’ rewards sum to zero, are classic examples of
competitive games. Cooperative (Coop) behaviour (Du et al., 2023; Shoham & Leyton-Brown, 2008)
occurs when agents share a unified reward function or pursue the same goal, rewarded only by its
completion. Social dilemmas are a key example of cooperation. Mixed behaviour (Littman, 1994)
doesn’t limit the agents’ objectives or interactions, blending cooperative and competitive behaviours.
A well-known example is the iterated prisoner’s dilemma.

As we aim to create a lightweight and easy-to-configure multi-agent environment for reinforcement
learning and pathfinding tasks, we consider the following factors essential. First and foremost, our en-
vironment is fully compatible with the native Python API: we target pure Python builds independent of

1https://pypi.org

4

https://pypi.org

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

hardware-specific software with a minimal number of external dependencies. Moreover, we underline
the importance of constant extension and flexibility of the environment. Thus, we prioritize testing
and continuous integration as cornerstones of the environment, as well as trouble-free modification of
the transition dynamics. Secondly, we highlight that our environment targets generalization and may
utilize procedural generation. Last but not least, we target high computational throughput (i.e., the
number of environment steps per second) and robustness to an extremely large number of agents (i.e.,
the environment remains performant under high loads).

There are many environments inducing various types of multi-agent behaviors via different reward
structures. Unfortunately, many of them require extensive Python support and rely on APIs of different
programming languages (e.g., Lua, C++) for lower latency or depend on hardware-specific libraries
such as XLA. Furthermore, many environments do not support generalization and lack procedural
generation, especially in multi-agent cases. Additionally, customization of certain environments
might be considered an issue without reverse engineering them. That’s why we emphasize the
superiority of the proposed benchmark.

Despite the diversity of available environments, most research papers tend to utilize only a selected
few. Among these, the most popular are the StarCraft Multi-agent Challenge (SMAC), Multi-agent
MuJoCo (MAMuJoCo), and Google Research Football (GRF), with SMAC being the most prevalent
in top conference papers. The popularity of these environments is likely due to their effective
contextualization of algorithms. For instance, to demonstrate the advantages of a method, it is crucial
to test it within a well-known environment.

The evaluation protocols in these environments typically feature learning curves that highlight
the performance of each algorithm under specific scenarios. For SMAC, these scenarios involve
games against predefined bots with specific units on both sides. In MAMuJoCo, the standard tasks
involve agents controlling different sets of joints, while in GRF, the scenarios are games against
predefined policies from Football Academy scenarios. Proper evaluation of MARL approaches is a
serious concern. For SMAC, it’s highlighted in the paper (Gorsane et al., 2022), which proposes a
unified evaluation protocol for this benchmark. This protocol includes default evaluation parameters,
performance metrics, uncertainty quantification, and a results reporting scheme.

The variability of results across different studies underscores the importance of a well-defined
evaluation protocol, which should be developed alongside the presentation of the environment. In our
study, we provide not only the environment but also the evaluation protocol, popular MARL baselines,
and modern learnable MAPF approaches to better position our benchmark within the context.

3 POGEMA

POGEMA, which comes from Partially-Observable Grid Environment for Multible Agents, is an
umbrella name for a collection of versatile and flexible tools aimed at developing, debugging and
evaluating different methods and policies tailored to solve several types of multi-agent navigation
tasks. The anonymized source code is available at: POGEMA Benchmark2, POGEMA Toolbox3

and POGEMA Environment4.

3.1 POGEMA ENVIRONMENT

POGEMA environment is a core of POGEMA suite. It implements the basic mechanics of agents’
interaction with the world. The environemnt will be open-sourced under MIT license. POGEMA pro-
vides integration with existing RL frameworks: PettingZoo (Terry et al., 2021), PyMARL (Samvelyan
et al., 2019a), and Gymnasium (Towers et al., 2023).

Basic mechanics The workspace where the agents navigate is represented as a grid composed of
blocked and free cells. Only the free cells are available for navigation. At each timestep each agent
individually and independently (in accordance with a policy) picks an action and then these actions
are performed simultaneously. POGEMA implements collision shielding mechanism, i.e. if an agent

2https://anonymous.4open.science/r/pogema-benchmark-7439
3https://anonymous.4open.science/r/pogema-toolbox-7439
4https://anonymous.4open.science/r/pogema-7439

5

https://anonymous.4open.science/r/pogema-benchmark-7439
https://anonymous.4open.science/r/pogema-toolbox-7439
https://anonymous.4open.science/r/pogema-7439

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

picks an action that leads to an obstacle (or out-of-the-map) than it stays put, the same applies for
two or more agents that wish to occupy the same cell. POGEMA also has an option when one of
the agents deciding to move to the common cell does it, while the others stay where they were. The
episode ends when the predefined timestep, episode length, is reached. The episode can also end
before this timestep if certain conditions are met, i.e. all agents reach their goal locations if MAPF
problem (see below) is considered.

Problem settings POGEMA supports two generic types of multi-agent navigation problems. In
the first variant, dubbed MAPF (from Multi-agent Pathfinding), each agent is provided with the
unique goal location and has to reach it avoiding collisions with the other agents and static obstacles.
For MAPF problem setting POGEMA supports both stay-at-target behavior (when the episode
successfully ends only if all the agents are at their targets) and disappear-at-target (when the agent is
removed from the environment after it first reaches its goal). The second variant is a lifelong version
of multi-agent navigation and is dubbed accordingly – LMAPF. Here each agent upon reaching a
goal is immediately assigned another one (not known to the agent beforehand). Thus the agents are
constantly moving trough in the environment until episode ends.

Observation At each timestep each agent in POGEMA receives an individual ego-centric observa-
tion represented as a tensor – see Fig. 1. The latter is composed of the following (2R+1)× (2R+1)
binary matrices, where R is the observation radius set by the user:

1. Static Obstacles – 0 means the free cell, 1 – static obstacle

2. Other Agents – 0 means no agent in the cell, 1 – the other agent occupies the cell

3. Targets – projection of the (current) goal location of the agent to the boundary of its field-of-
view

The suggested observation, which is, indeed, minimalist and simplistic, can be modified by the user
using wrapper mechanisms. For example, it is not uncommon in the MAPF literature to augment the
observation with additional matrices encoding the agent’s path-to-goal (constructed by some global
pathfinding routine) (Skrynnik et al., 2024a) or other variants of global guidance (Ma et al., 2021).

Reward POGEMA features the most intuitive and basic reward structure for learning. I.e. an agent
is rewarded with +1 if it reaches the goal and receives 0 otherwise. For MARL policies that leverage
centralized training a shared reward is supported, i.e. rt = goals/agents where goals is the number
of goals reached by the agents at timestep t and agents is the number of agents. Indeed, the user can
specify its own reward using wrappers.

Performance indicators The following performance indicators are considered basic and are tracked
in each episode. For MAPF they are: Sum-of-costs (SoC) and makespan. The former is the sum of
time steps (across all agents) consumed by the agents to reach their respective goals, the latter is the
maximum over those times. The lower those indicators are the more effectively the agents are solving
MAPF tasks. For LMAPF the primary tracked indicator is the throughput which is the ratio of the
number of the accomplished goals (by all agents) to the episode length. The higher – the better.

3.2 POGEMA TOOLBOX

The POGEMA Toolbox is a comprehensive framework designed to facilitate the testing of learning-
based approaches within the POGEMA environment. This toolbox offers a unified interface that
enables the seamless execution of any learnable MAPF algorithm in POGEMA. Firstly, the toolbox
provides robust management tools for custom maps, allowing users to register and utilize these
maps effectively within POGEMA. Secondly, it enables the concurrent execution of multiple testing
instances across various algorithms in a distributed manner, leveraging Dask5 for scalable processing.
The results from these instances are then aggregated for analysis. Lastly, the toolbox includes
visualization capabilities, offering a convenient method to graphically represent aggregated results
through detailed plots. This functionality enhances the interpretability of outcomes, facilitating a
deeper understanding of algorithm performance.

5https://github.com/dask/dask

6

https://github.com/dask/dask

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

POGEMA Toolbox offers a dedicated tool for map generation, allowing the creation of three dis-
tinct types of maps: random, mazes and warehouse maps. All generators facilitates map creation
using adjustable parameters such as width, height, and obstacle density. The maze generator was
implemented based on the generator provided in (Damani et al., 2021).

3.3 BASELINES

POGEMA integrates a variety of MARL, hybrid and planning-based algorithms with the environment.
These algorithms, recently presented, demonstrate state-of-the-art performance in their respective
fields. Table 2 highlights the differences between these approaches. Some, such as LaCAM and
RHCR, are centralized search-based planners. Other approaches, such as SCRIMP and DCC, while
decentralized, still require communication between agents to resolve potential collisions. Learnable
modern approaches for LifeLong MAPF that do not utilize communication include Follower (Skrynnik
et al., 2024a), MATS-LP (Skrynnik et al., 2024b), and Switchers (Skrynnik et al., 2023). All these
approaches utilize independent PPO (Schulman et al., 2017) as the training method.

Table 2: This table provides an overview of various baseline approaches supported by POGEMA and
their features in the context of decentralized multi-agent pathfinding.

Algorithm D
ec

en
tr

al
iz

ed

Pa
rt

ia
l

O
bs

er
va

bi
lit

y

Fu
lly

In
te

gr
at

ed
in

to
PO

G
E

M
A

Su
pp

or
ts

M
A

PF

Su
pp

or
ts

L
if

eL
on

g
M

A
PF

N
o

G
lo

ba
l

O
bs

ta
cl

es
M

ap

N
o

C
om

m
un

ic
at

io
n

Pa
ra

m
et

er
Sh

ar
in

g

D
ec

en
tr

al
iz

ed
L

ea
rn

in
g

M
od

el
-B

as
ed

N
o

Im
ita

tio
n

L
ea

rn
in

g

MAMBA (Egorov & Shpilman, 2022) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓
QPLEX (Wang et al., 2020b) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
IQL (Tan, 1993) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓
VDN (Sunehag et al., 2018) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
QMIX (Rashid et al., 2020) ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓
Follower (Skrynnik et al., 2024a) ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓
MATS-LP (Skrynnik et al., 2024b) ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Switcher (Skrynnik et al., 2023) ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓
SCRIMP (Wang et al., 2023) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
DCC (Ma et al., 2021) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗
LaCAM (Okumura, 2024; 2023) ✗ ✗ ✗ ✓ ✗ ✗ - - - - -
RHCR (Li et al., 2021b) ✗ ✗ ✗ ✗ ✓ ✗ - - - - -

The following modern MARL algorithms are included as baselines: MAMBA (Egorov & Shpil-
man, 2022), QPLEX (Wang et al., 2020b), IQL (Tan, 1993), VDN (Sunehag et al., 2018), and
QMIX (Rashid et al., 2020). For environment preprocessing, we used the scheme provided in the
Follower approach, enhancing it with the anonymous targets of other agents’ local observations for
MAPF scenarios. We utilized the official implementation of MAMBA, as provided by its authors6,
and employed PyMARL2 framework7 for establishing MARL baselines. We used the default param-
eters for MAMBA, since Dreamer (which serves as the foundation for MAMBA) is known to work
effectively across domains with nearly the same hyperparameters. For the other MARL approaches,
we performed a hyperparameter sweep over the learning rate, batch size, replay buffer size, and
GRU hidden state size, using the best parameters based on the performance scores from the training
scenarios on the Random and Mazes maps.

4 EVALUATION PROTOCOL

4.1 DATASET

We include the maps of the following types in our evaluation dataset (with the intuition that different
maps topologies are necessary for proper assessment):

6https://github.com/jbr-ai-labs/mamba
7https://github.com/hijkzzz/pymarl2

7

https://github.com/jbr-ai-labs/mamba
https://github.com/hijkzzz/pymarl2

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• Mazes – maps that encouter prolonged corridors with 1-cell width that require high level of
cooperation between the agents. These maps are procedurally generated.

• Random – one of the most commonly used type of maps, as they are easy to generate and
allow to avoid overfitting to some special structure of the map. POGEMA contains an
integrated random maps generator, that allows to control the density of the obstacles.

• Warehouse – this type of maps are usually used in the papers related to LifeLong MAPF.
While there is no narrow passages, high density of the agents might significantly reduce the
overall throughput, especially when agents are badly distributed along the map.

• Cities – a set of city maps from MovingAI – the existing benchmark widely used in
heuristic-search community Sturtevant (2012). The contained maps have a varying structure
and 256 × 256 size. It can be used to show how the approach deals with single-agent
pathfinding and also deals with the maps that have out-of-distribution structure.

• Cities-tiles – a modified Cities set of maps. Due to the large size of the original
maps, it’s hard to get high density of the agents on them. To get more crowded maps, we
slice the original maps on 16 pieces with 64× 64 size.

• Puzzles – a set of small hand-crafted maps that contains some difficult patterns that
mandate the cooperation between that agents.

(a) Mazes (b) Random (c) Warehouse

Figure 2: Examples of map generators presented in POGEMA.

Start and goal locations are generated via random generators. They are generated with fixed seeds,
thus can be reproduced. It’s guaranteed, that each agent has its own goal location and the path to it
from its start location exists. Examples of the maps are presented in Figure 2.

4.2 METRICS

The existing works related to solving MAPF problems evaluates the performance by two major criteria
– success rate and the primary performance indicators mentioned above: sum-of-costs, makespan,
throughput. These are directly obtainable from POGEMA. While these metrics allow to evaluate the
algorithms at some particular instance, it might be difficult to get a high-level conclusion about the
performance. Thus, we want to introduce high-level metrics that covers multiple different aspects:

Performance – how well the algorithm works compared to other approaches. To compute this
metric we run the approaches on a set of maps similar to the ones, used during training, and compare
the obtained results with the best ones.

PerformanceMAPF =

{
SoCbest/SoC

0 if not solved
(1)

PerformanceLMAPF = throughput/throughputbest (2)
Out-of-Distribution – how well the algorithm works on out-of-distribution maps. This metric
is computed in the same way as Performance, with the only difference that the approaches are
evaluated on a set of maps, that were not used during training phase and have different structure of
obstacles. For this purpose we utilize maps from Cities-tiles set of maps.

Out_of_DistributionMAPF =

{
SoCbest/SoC

0 if not solved
(3)

Out_of_DistributionnLMAPF = throughput/throughputbest (4)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Cooperation – how well the algorithm is able to resolve complex situations. To evaluate this
metric we run the algorithm on Puzzles set of maps.

CooperationMAPF =

{
SoCbest/SoC

0 if not solved
(5)

CooperationLMAPF = throughput/throughputbest (6)

Scalability – how well the algorithm scales to large number of agents. To evaluate how well
the algorithm scales to large number of agents, we run it on a large warehouse map with increasing
number of agents and compute the ratio between runtimes with various number of agents.

Scalability =
runtime(agents1)/runtime(agents2)

|agents1|/|agents2|
(7)

Coordination – how well the algorithm avoids collisions between agents and obstacles. Majority
of learning-based approaches are decentralized, so there may be cases where multiple agents attempt
to occupy the same cell or traverse the same edge simultaneously. There also might be the case when
an agent tries to move to the blocked cell. The fewer collisions that occur during the episode, the
better. To compute this metric, we use the results obtained on the Mazes and Random sets of maps.

Coordination = 1− occured_collisions
|agents| ∗ episode_length

(8)

Pathfinding – how well the algorithm works in case of presence of a single agent on a large map.
This metric is tailored to determine the ability of the approach to effectively lead agents to their goal
locations. For this purpose we run the approaches on large maps from Cities benchmark sets. The
closer the costs of the found paths to the optimal ones – the higher the score.

Pathfinding =

{
path_cost/path_costoptimal

0 if path not found
(9)

First three metrics, i.e. Performance, Out-of-Distribution, and Cooperation, have
the same formula but differ in the set of maps used to compute them, while the remaining three metrics,
i.e. Scalability, Coordination, and Pathfinding, are tailored to specific aspects.

4.3 EXPERIMENTAL RESULTS

We have evaluated all the supported baseline algorithms (12 in total) on both MAPF and LMAPF
setups on all 6 datasets. The results of this evaluation are presented in Fig.3. The details about number
of maps, number of agents, seeds, etc. are given in the supplementary material (as well as details
on how these results can be reproduced). In both setups, i.e. MAPF and LMAPF, the best results
in terms of cooperation, out-of-distribution and performance metrics were obtained by centralized
planners, i.e. LaCAM and RHCR respectively.

For MAPF tasks, LaCAM decisively outperforms all other approaches. Specialized learnable MAPF
approaches, such as DCC and SCRIMP, follow closely, with similar overall performance but different
strengths. DCC performs better than SCRIMP on out-of-distribution tasks and pathfinding tasks,
while the rest of the results are fairly similar. Surprisingly, SCRIMP underperforms on pathfinding
tasks, indicating a weakness in single-agent tasks that do not require communication, which may be
an out-of-distribution scenario for this algorithm. It is also worth noting that SCRIMP includes an
integrated tie-breaking mechanism that ensures collision-free actions. MARL algorithms like QPLEX,
VDN, and QMIX perform significantly worse than other approaches, showing a substantial gap in
results. This can be attributed to the absence of additional techniques used in hybrid approaches,
despite leveraging preprocessing methods from the Follower. This may suggest that the MARL
community lacks large-scale approaches and benchmarks for these tasks. Among MARL approaches,
MAMBA achieves the best results in performance, cooperation, and pathfinding metrics, which can
be attributed to its communication mechanism. However, its performance remains much worse than
that of specialized methods, and it fails to solve any instances in the out-of-distribution dataset.

For LMAPF tasks, the centralized approach, RHCR, is superior in all cases except for the scalability
metric. Among the non-centralized approaches, the best results, depending on the metric, are shown

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

LaCAM
SCRIMP

DCC
IQL

VDN
QMIX

QPLEX
MAMBA

20
40

60
80

100

Cooperation

CoordinationOut-of-Distribution

Pathfinding

Performance Scalability

RHCR
Follower

MATS-LP
IQL

VDN
QMIX

QPLEX
MAMBA

ASwitcher
LSwitcher

Figure 3: Evaluation of baselines available in POGEMA on (a) MAPF (b) LMAPF instances.

by either MATS-LP or Follower. The only metric where these approaches differ significantly is the
cooperation metric, where MATS-LP performs better than Follower. However, MATS-LP requires
considerably more runtime than the other approaches, as it runs MCTS for each agent at every step,
which is time-consuming (see Appendix F for more details). Additionally, there are two hybrid
approaches — ASwitcher and LSwitcher — which differ in how they alternate between planning-
based and learning-based components. One reason for their mediocre performance is the complete
lack of global information, i.e., the Switcher approach assumes that agents have no knowledge of the
global map, requiring each to reconstruct it based on local observations. Unlike in MAPF scenarios,
MARL approaches can compete with hybrid methods on LMAPF instances. This behavior is partly
explained by the use of Follower’s observation model, which is specifically designed to solve LMAPF.
Among MARL approaches, QPLEX delivers the best results, in contrast to MAPF tasks it even
outperforming MAMBA.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

This paper presents POGEMA – a powerful suite of tools tailored for creating, assessing, and
comparing methods and policies in multi-agent pathfinding problems. POGEMA encompasses a
fast learning environment and a comprehensive evaluation toolbox suitable for pure MARL, hybrid,
and search-based solvers. It includes a wide array of methods as baselines. The evaluation protocol
described, along with a rich set of metrics, assists in assessing the generalization and scalability of all
approaches. Visualization tools enable qualitative examination of algorithm performance. Integration
with the well-known MARL API and map sets facilitates the benchmark’s expansion. Existing
limitations are two-fold. First, a conceptual limitation is that communication between the agents is
not currently disentangled in POGEMA environment. Second, the technical limitations include the
lack of JAX support and integration with other well-known GPU parallelization tools.

Jpm1 and mDvH Future work could first explore large-scale training setups for MARL methods,
capable of handling large agent populations and scenarios, particularly within the CTDE (Centralized
Training, Decentralized Execution) paradigm. Second, advancing communication learning suited
to large-scale settings, where local interactions are crucial, is another promising direction. Third,
addressing memory limitations by developing efficient approaches for long-horizon tasks without
relying on global guidance is also vital. Furthermore, leveraging POGEMA’s procedural map
generation and expert data from centralized solvers could enhance imitation learning and aid in
training decentralized foundation models for MAPF. Finally, research on heterogeneous policy
coordination could facilitate effective collaboration among agents with diverse policies. This also
opens an exciting avenue for studying how different algorithms can be trained concurrently in the
same environment, fostering advancements in collaborative and adversarial multi-agent interactions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yiran Mao,
Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.
Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolutionary computation
perspective. In Proceedings of the genetic and evolutionary computation conference companion,
pp. 314–315, 2019.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=SkxpxJBKwS.

Christopher Bamford. Griddly: A platform for ai research in games. Software Impacts, 8:100066,
2021.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Paul Duckworth, Vincent Coyette,
Laurence Illing Midgley, Sasha Abramowitz, Elshadai Tegegn, Tristan Kalloniatis, et al. Jumanji:
a diverse suite of scalable reinforcement learning environments in jax. In The Twelfth International
Conference on Learning Representations, 2023.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applications.
Applied Sciences, 11(11):4948, 2021.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. Shared experience actor-critic for
multi-agent reinforcement learning. Advances in neural information processing systems, 33:
10707–10717, 2020.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. Primal _2: Pathfinding
via reinforcement and imitation multi-agent learning – lifelong. IEEE Robotics and Automation
Letters, 6(2):2666–2673, 2021.

Ashutosh Dekhne, Greg Hastings, John Murnane, and Florian Neuhaus. Automation in logistics: Big
opportunity, bigger uncertainty. McKinsey Q, 24, 2019.

Yali Du, Joel Z Leibo, Usman Islam, Richard Willis, and Peter Sunehag. A review of cooperation in
multi-agent learning. arXiv preprint arXiv:2312.05162, 2023.

Vladimir Egorov and Alexei Shpilman. Scalable multi-agent model-based reinforcement learning. In
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
pp. 381–390, 2022.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Jennifer Gielis, Ajay Shankar, and Amanda Prorok. A critical review of communications in multi-
robot systems. Current robotics reports, 3(4):213–225, 2022.

Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and Arnu
Pretorius. Towards a standardised performance evaluation protocol for cooperative marl. Advances
in Neural Information Processing Systems, 35:5510–5521, 2022.

11

https://openreview.net/forum?id=SkxpxJBKwS

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. Autonomous Agents and Multiagent Systems, pp. 66–83, 2017.

Ruihua Han, Shengduo Chen, Shuaijun Wang, Zeqing Zhang, Rui Gao, Qi Hao, and Jia Pan.
Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped
rewards. IEEE Robotics and Automation Letters, 7(3):5896–5903, 2022.

Xiaotian Hao, Jianye Hao, Chenjun Xiao, Kai Li, Dong Li, and Yan Zheng. Multiagent gumbel
muzero: Efficient planning in combinatorial action spaces. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 12304–12312, 2024.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artificial
intelligence experimentation. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, pp. 4246–4247, 2016.

Máté Kolat, Bálint Kővári, Tamás Bécsi, and Szilárd Aradi. Multi-agent reinforcement learning for
traffic signal control: A cooperative approach. Sustainability, 15(4):3479, 2023.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 4501–4510, 2020.

Florian Laurent, Manuel Schneider, Christian Scheller, Jeremy Watson, Jiaoyang Li, Zhe Chen,
Yi Zheng, Shao-Hung Chan, Konstantin Makhnev, Oleg Svidchenko, et al. Flatland competition
2020: Mapf and marl for efficient train coordination on a grid world. In NeurIPS 2020 Competition
and Demonstration Track, pp. 275–301. PMLR, 2021.

Mathias Lechner, Tim Seyde, Tsun-Hsuan Johnson Wang, Wei Xiao, Ramin Hasani, Joshua Rountree,
Daniela Rus, et al. Gigastep-one billion steps per second multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Pascal Leroy, Pablo G Morato, Jonathan Pisane, Athanasios Kolios, and Damien Ernst. Imp-marl: a
suite of environments for large-scale infrastructure management planning via marl. Advances in
Neural Information Processing Systems, 36, 2024.

Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chan, Daniel Harabor, Peter J Stuckey, Hang Ma,
and Sven Koenig. Scalable rail planning and replanning: Winning the 2020 flatland challenge. In
Proceedings of the international conference on automated planning and scheduling, volume 31,
pp. 477–485, 2021a.

Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar, and Sven Koenig.
Lifelong multi-agent path finding in large-scale warehouses. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(13):11272–11281, May 2021b. doi: 10.1609/aaai.v35i13.17344. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17344.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, and Chongjie Zhang. Efficient multi-
agent reinforcement learning by planning. In The Twelfth International Conference on Learning
Representations, 2023.

Zuxin Liu, Baiming Chen, Hongyi Zhou, Guru Koushik, Martial Hebert, and Ding Zhao. Mapper:
Multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environ-
ments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2020), pp. 11748–11754, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Ziyuan Ma, Yudong Luo, and Jia Pan. Learning selective communication for multi-agent path finding.
IEEE Robotics and Automation Letters, 7(2):1455–1462, 2021.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17344

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian Scheller, Nilabha
Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichenberger, Christian Baumberger, et al.
Flatland-rl: Multi-agent reinforcement learning on trains. arXiv preprint arXiv:2012.05893, 2020.

Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE transactions on
cybernetics, 50(9):3826–3839, 2020.

Keisuke Okumura. Lacam: Search-based algorithm for quick multi-agent pathfinding. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11655–11662, 2023.

Keisuke Okumura. Engineering lacam*: Towards real-time, large-scale, and near-optimal multi-agent
pathfinding. In Proceedings of the 23rd International Conference on Autonomous Agents and
Multiagent Systems, pp. 1501–1509, 2024.

Xuehai Pan, Mickel Liu, Fangwei Zhong, Yaodong Yang, Song-Chun Zhu, and Yizhou Wang. Mate:
Benchmarking multi-agent reinforcement learning in distributed target coverage control. Advances
in Neural Information Processing Systems, 35:27862–27879, 2022.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL
https://openreview.net/forum?id=cIrPX-Sn5n.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Nicolás Rivera, Carlos Hernández, Nicolás Hormazábal, and Jorge A Baier. The 2ˆ k neighborhoods
for grid path planning. Journal of Artificial Intelligence Research, 67:81–113, 2020.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv preprint arXiv:2311.10090, 2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019a.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2186–2188, 2019b.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig, and
Howie Choset. Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4(3):2378–2385, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wilko Schwarting, Tim Seyde, Igor Gilitschenski, Lucas Liebenwein, Ryan Sander, Sertac Karaman,
and Daniela Rus. Deep latent competition: Learning to race using visual control policies in latent
space. In Conference on Robot Learning, pp. 1855–1870. PMLR, 2021.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic applications:
a comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022.

13

https://openreview.net/forum?id=cIrPX-Sn5n

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alexey Skrynnik, Anton Andreychuk, Konstantin Yakovlev, and Aleksandr I Panov. When to switch:
planning and learning for partially observable multi-agent pathfinding. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Alexey Skrynnik, Anton Andreychuk, Maria Nesterova, Konstantin Yakovlev, and Aleksandr Panov.
Learn to follow: Decentralized lifelong multi-agent pathfinding via planning and learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17541–17549,
2024a.

Alexey Skrynnik, Anton Andreychuk, Konstantin Yakovlev, and Aleksandr Panov. Decentralized
monte carlo tree search for partially observable multi-agent pathfinding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 17531–17540, 2024b.

Yan Song, He Jiang, Haifeng Zhang, Zheng Tian, Weinan Zhang, and Jun Wang. Boosting studies of
multi-agent reinforcement learning on google research football environment: the past, present, and
future. arXiv preprint arXiv:2309.12951, 2023.

Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T Walker, Jiaoyang Li,
Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Proceedings of the 12th Annual Symposium on Combinatorial Search (SoCS
2019), pp. 151–158, 2019.

Nathan R Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transactions on Computational
Intelligence and AI in Games, 4(2):144–148, 2012.

Joseph Suarez, David Bloomin, Kyoung Whan Choe, Hao Xiang Li, Ryan Sullivan, Nishaanth Kanna,
Daniel Scott, Rose Shuman, Herbie Bradley, Louis Castricato, et al. Neural mmo 2.0: A massively
multi-task addition to massively multi-agent learning. Advances in Neural Information Processing
Systems, 36, 2024.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing Systems,
34:15032–15043, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, and Jakob Foerster. Nocturne:
a scalable driving benchmark for bringing multi-agent learning one step closer to the real world.
Advances in Neural Information Processing Systems, 35:3962–3974, 2022.

Binyu Wang, Zhe Liu, Qingbiao Li, and Amanda Prorok. Mobile robot path planning in dynamic
environments through globally guided reinforcement learning. IEEE Robotics and Automation
Letters, 5(4):6932–6939, 2020a.

Haoyu Wang, Xiaoyu Tan, Xihe Qiu, and Chao Qu. Subequivariant reinforcement learning framework
for coordinated motion control. arXiv preprint arXiv:2403.15100, 2024.

14

https://zenodo.org/record/8127025

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations, 2020b.

Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. Scrimp: Scalable commu-
nication for reinforcement-and imitation-learning-based multi-agent pathfinding. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 9301–9308. IEEE, 2023.

Annie Wong, Thomas Bäck, Anna V Kononova, and Aske Plaat. Deep multiagent reinforcement
learning: Challenges and directions. Artificial Intelligence Review, 56(6):5023–5056, 2023.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
6672–6679, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Jingjin Yu and Steven M LaValle. Optimal multirobot path planning on graphs: Complete algorithms
and effective heuristics. IEEE Transactions on Robotics, 32(5):1163–1177, 2016.

Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Automatic
grouping for efficient cooperative multi-agent reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–384,
2021.

Lin Zhang, Yufeng Sun, Andrew Barth, and Ou Ma. Decentralized control of multi-robot system
in cooperative object transportation using deep reinforcement learning. IEEE Access, 8:184109–
184119, 2020.

Ming Zhang, Shenghan Zhang, Zhenjie Yang, Lekai Chen, Jinliang Zheng, Chao Yang, Chuming Li,
Hang Zhou, Yazhe Niu, and Yu Liu. Gobigger: A scalable platform for cooperative-competitive
multi-agent interactive simulation. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=NnOZT_CR26Z.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,
Montgomery Alban, Iman Fadakar, Zheng Chen, Aurora Chongxi Huang, Ying Wen, Kimia
Hassanzadeh, Daniel Graves, Dong Chen, Zhengbang Zhu, Nhat Nguyen, Mohamed Elsayed,
Kun Shao, Sanjeevan Ahilan, Baokuan Zhang, Jiannan Wu, Zhengang Fu, Kasra Rezaee, Peyman
Yadmellat, Mohsen Rohani, Nicolas Perez Nieves, Yihan Ni, Seyedershad Banijamali, Alexan-
der Cowen Rivers, Zheng Tian, Daniel Palenicek, Haitham bou Ammar, Hongbo Zhang, Wulong
Liu, Jianye Hao, and Jun Wang. Smarts: Scalable multi-agent reinforcement learning training
school for autonomous driving, 2020.

15

https://openreview.net/forum?id=NnOZT_CR26Z

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX CONTENTS

Appendix Sections Contents
Appendix A Evaluation Setup Details

Appendix B Results for MAPF Benchmark

Appendix C Results for LifeLong MAPF Benchmark

Appendix D Code examples for POGEMA

Appendix E POGEMA Toolbox

Appendix F Extended Related Work

Appendix G Examples of Used Maps

Appendix H MARL Training Setup

Appendix I Resources and Statistics

Appendix J Community Engagement and Framework Enhancements

Appendix J Ingestion of MovingAI Maps

Appendix L POGEMA Speed Performance Evaluation

A EVALUATION SETUP DETAILS

POGEMA benchmark contains 6 different sets of maps and all baseline approaches were evaluated
on them either on MAPF or on LMAPF instances. Regardless the type of instances, number of maps,
seeds and agents were the same. Table 3 contains all information about these numbers. In total, this
corresponds to 3,376 episodes for each scenario type. Note that there is no MaxSteps (LMAPF)
value for Cities set of maps. This set of maps was used only for pathfinding meta-metric, thus all
approaches were evaluated only on MAPF instances with a single agent.

We used implementation LaCAM-v38, RHCR9. For learning-based approaches beyond MARL, we
used their official implementations and the provided weights for Follower10, MATS-LP11, Switcher12,
SCRIMP13, and DCC14.

Table 3: Details about the instances on different sets of maps.

Agents Maps MapSize Seeds MaxSteps MaxSteps
(MAPF) (LMAPF)

Random [8, 16, 24, 32, 48, 64] 128 17×17 - 21×21 1 128 256
Mazes [8, 16, 24, 32, 48, 64] 128 17×17 - 21×21 1 128 256

Warehouse [32, 64, 96, 128, 160, 192] 1 33×46 128 128 256
Puzzles [2, 3, 4] 16 5×5 10 128 256
Cities [1] 8 256×256 10 2048 -

Cities-tiles [64, 128, 192, 256] 128 64×64 1 256 256

B RESULTS FOR MAPF BENCHMARK

In this section, we present the extended results of the MAPF benchmark analysis, highlighting the
performance, out-of-distribution handling, scalability, cooperation, coordination, and pathfinding

8https://github.com/Kei18/lacam3
9https://github.com/Jiaoyang-Li/RHCR

10https://github.com/AIRI-Institute/learn-to-follow
11https://github.com/CognitiveAISystems/mats-lp
12https://github.com/AIRI-Institute/when-to-switch
13https://github.com/marmotlab/SCRIMP
14https://github.com/ZiyuanMa/DCC

16

https://github.com/Kei18/lacam3
https://github.com/Jiaoyang-Li/RHCR
https://github.com/AIRI-Institute/learn-to-follow
https://github.com/CognitiveAISystems/mats-lp
https://github.com/AIRI-Institute/when-to-switch
https://github.com/marmotlab/SCRIMP
https://github.com/ZiyuanMa/DCC

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

capabilities of various approaches. The experiments were conducted on different map types and sizes,
employing metrics such as SoC, CSR, and makespan to evaluate effectiveness. Detailed visual and
tabular data illustrate how centralized and learnable approaches perform under various conditions.

B.1 PERFORMANCE

The performance metrics were calculated using Mazes and Random maps of size close to 20 ×
20. The primary metrics here are SoC and CSR. The results of all the MAPF approaches over
different numbers of agents are presented in Figure 4. The superior performance is shown by the
centralized approach, LaCAM. The learnable approaches, DCC and SCRIMP, show comparable
results. Interestingly, the former has a better SoC metric, despite the latter having better results on
CSR. Among the MARL methods, better results are shown by MAMBA for both metrics. However,
it narrowly lags behind the specialized approaches, DCC and SCRIMP.

8 16 32 64
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

CS
R

Random / Mazes

DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

8 16 24 32 48 64
Number of Agents

0

2000

4000

6000

8000

So
C

Random / Mazes
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 4: Performance of MAPF approaches on Random and Mazes maps, based on CSR (higher is
better) and SoC (lower is better) metrics. The shaded area indicates 95% confidence intervals.

B.2 OUT-OF-DISTRIBUTION

Out-of-Distribution metric was calculated on Cities-tiles dataset, that consists of pieces of
cities maps with 64× 64 size. Due to much larger size compared to Mazes and Random maps, the
amount of agents was also significantly increased. The results are presented in Figure 5. Here again
centralized search-based planner, i.e. LaCAM, demonstrates the best results both in terms of CSR and
SoC. Among hybrid methods, DCC completely outperforms the others (including SCRIMP) on the
out-of-distribution dataset. MARL approaches are unable to solve any instance even with 64 agents.

64 128 192 256
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

CS
R

Out-of-Distribution

DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

64 128 192 256
Number of Agents

0

10000

20000

30000

40000

50000

60000

So
C

Out-of-Distribution
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 5: Performance of MAPF approaches on Cities-tiles maps. These results were utilized
to compute Out-of-Distribution metric. The shaded area indicates 95% confidence intervals.

B.3 SCALABILITY

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

32 64 96 128 160 192
Number of Agents

0

2

8

32

128

Ru
nt

im
e

(s
ec

on
ds

)

Warehouse
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 6: Runtime in seconds for each al-
gorithm. The plot is log-scaled.

The results of how well the algorithm scales with a
large number of agents are shown in Figure 6. The
experiments were conducted on a warehouse map.
The plot is log-scaled. The best scalability is achieved
with the centralized LaCAM approach, which is a high-
performance approach. The worst results in both runtime
and scalability are for SCRIMP, with results close to it
for DCC. Despite an initially high runtime, the scalabil-
ity of MAMBA is better than other approaches; however, this could be attributed to the high cost of
GPU computation, which is due to the large number of parameters in the neural network and is the
limiting factor of this approach.

B.4 COOPERATION Table 4: Comparison of algorithms’ cooperation
on Puzzles set. ± shows confidence intervals
95%. Here, tan boxes highlight the best approach,
and teal boxes highlight the best approach with a
learnable part.

Algorithm CSR SoC

DCC 0.72±0.04 96.33±9.97
IQL 0.45±0.04 254.05±17.66
LaCAM 0.96±0.02 36.29±7.26
MAMBA 0.39±0.04 177.64±14.68
QMIX 0.35±0.04 255.61±16.26
QPLEX 0.50±0.04 238.82±17.75
SCRIMP 0.82±0.04 104.31±13.73
VDN 0.43±0.04 247.39±16.62

How well the algorithm is able to resolve com-
plex situations on the Puzzles set is reflected
in the results presented in Table 4. Surprisingly,
the centralized approach LaCAM does not solve
all the tasks, showing only a 0.96 CSR. This
highlights that this type of task is difficult even
for centralized approaches, despite the small
map size of 5× 5 and the low number of agents
(2 − 4). SCRIMP outperformed DCC in CSR
but again showed comparable results in SoC.
Among MARL approaches, better cooperation is
demonstrated by QMIX, outperforming QPLEX,
VDN, IQL, and even MAMBA.

B.5 PATHFINDING

Table 5: Comparison of makespan (the
lower is better) used for pathfinding
metric. tan boxes highlight the best
approach, and teal boxes highlight the
best approach with a learnable part.

Algorithm Makespan

DCC 189.56 ± 26.29
IQL 1096.86±196.97
LaCAM 179.82 ± 20.97
MAMBA 416.45±139.34
QMIX 1055.75±193.03
QPLEX 795.09±187.72
SCRIMP 1460.04±180.43
VDN 1114.21±211.93

To compute Pathfidning metric we run the approaches on the
instances with a single agent. For this purpose we utilized
large Cities maps with 256 × 256 size, the results are
presented in Table 5. While this task seems easy, most of
the hybrid and MARL approaches are not able to effectively
solve them. Only LaCAM is able to find optimal paths in
all the cases, as it utilizes precomputed costs to the goal
location as a heuristic. Most of the evaluated hybrid and
MARL approaches are also contain a sort of global guidance
in one the channels of their observations. However, large
maps with out-of-distribution structure, the absence of com-
munication and other agents in local observations are able
to lead to inconsistent behavior of the models that are not
able to effectively choose the actions that lead the agent to
its goal. Please note, SoC and makespan metrics in this case
are equal, as there is only one agent in every instance.

B.6 COORDINATION

The coordination metric is based on the number of collisions that occur during an episode. These
collisions can occur either between agents, when two or more agents try to occupy the same cell
or traverse the same edge simultaneously, or with static obstacles, when an agent tries to occupy a
blocked cell. All such collisions are prevented by POGEMA during the action execution process,
as all colliding actions are replaced with waiting actions instead. Figure 7 shows the average total
number of collisions that occurred while solving instances with the corresponding number of agents
on the Mazes and Random map sets.

The highest number of collisions occurred with the MAMBA and VDN approaches, while the fewest
were with DCC. The low number of collisions made by DCC compared to other approaches can be

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

8 16 32 64
Number of Agents

0

1000

2000

3000

4000

5000

Co
llis

io
ns

Mazes
DCC
IQL
MAMBA
QMIX
QPLEX
VDN

8 16 32 64
Number of Agents

0

2000

4000

Co
llis

io
ns

Random
DCC
IQL
MAMBA
QMIX
QPLEX
VDN

Figure 7: Total number of collisions occurred during solving MAPF instances with corresponding
number of agents of Mazes and Random sets of maps.

attributed to the presence of a communication mechanism that helps avoid collisions. The results
of two evaluated approaches, LaCAM and SCRIMP, were omitted and are not presented in Figure
7. LaCAM is a centralized planner, so its solutions are collision-free by design. SCRIMP has an
integrated environment with communication and tie-breaking mechanisms that resolve all collisions.

C RESULTS FOR LIFELONG MAPF BENCHMARK

In this section, we present the extended results of the LifeLong MAPF benchmark analysis, highlight-
ing performance, out-of-distribution handling, scalability, cooperation, coordination, and pathfinding.

C.1 PERFORMANCE

Performance metric in LMAPF case is based on the ratio of throughput compared to the best obtained
one. In contrast to SoC, throughput should be as high as possible. There is also no CSR metric, as
there is no need for agents to be at their goal locations simultaneously. As well as in MAPF case,
the best results are obtained by centralized search-based approach – RHCR. The best results among
decentralized methods demonstrate Follower and MATS-LP, following them, comparable results are
shown by QPLEX, QMIX, ASwitcher which significantly outperforms MAMBA on both Mazes
and Random maps. The results are presented in Figure 8.

8 16 24 32 48 64
Number of Agents

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Th
ro

ug
hp

ut

Mazes
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
VDN

8 16 24 32 48 64
Number of Agents

1

2

3

4

Av
er

ag
e

Th
ro

ug
hp

ut

Random
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
VDN

Figure 8: Performance results for LifeLong scenarios on the Mazes and Random maps.

C.2 OUT-OF-DISTRIBUTION

The evaluation on out-of-distribution set of maps confirms the results obtained on Random and
Mazes maps. The best results demonstrates RHCR. Next best results are obtained by Follower

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and MATS-LP, which are much closer to RHCR in this experiment. While MATS-LP outperforms
Follower on the instances with 64, 128 and 192 agents, Follower is still better on the instances with
256 agents. Such relation is probably explained by the presence of dynamic edge-costs in Follower
that allows to better distribute agents along the map and reduce coordination between them.

Table 6: Evaluation on Out-of-Distribution maps. tan boxes highlight the best approach according to
the average throughput metric, and teal boxes highlight the best approach with a learnable component.

Algorithm 64 Agents 128 Agents 192 Agents 256 Agents

ASwitcher 1.26±0.08 2.30±0.13 3.14±0.17 3.80±0.20
Follower 1.50±0.08 2.82±0.13 3.95±0.19 4.81±0.22
IQL 1.10±0.06 1.94±0.11 2.32±0.15 2.37±0.15
LSwitcher 1.23±0.07 2.23±0.12 3.06±0.17 3.67±0.20
MAMBA 1.02±0.05 1.42±0.08 2.05±0.12 2.46±0.17
MATS-LP 1.57±0.12 2.98±0.20 4.04±0.33 4.69±0.39
QMIX 1.36±0.07 2.54±0.12 3.46±0.16 4.03±0.20
QPLEX 1.47±0.08 2.67±0.12 3.61±0.18 4.22±0.22
RHCR 1.57±0.08 3.00±0.14 4.22±0.23 5.13±0.34
VDN 1.12±0.06 2.26±0.10 2.81±0.14 2.85±0.16

C.3 SCALABILITY

32 64 96 128 160 192
Number of Agents

1

4

16

64

256

1024

4096

Ru
nt

im
e

(s
ec

on
ds

)

Warehouse
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
VDN

Figure 9: Runtime in seconds for each algorithm. Note
that the plot is log-scaled.

Figure 9 contains log-scaled plot of average
time spent by each of the algorithms to pro-
cess an instance on Warehouse map with
the corresponding amount of agents. Most
of the approaches scales almost linearly, ex-
cept RHCR. This centralized search-based
method lacks of exponential grow, as it
needs to find a collision-free solution for
at least next few steps, rather than just to
make a decision about next action for each
of the agents. The worst runtime demon-
strate MATS-LP, as it runs MCTS and sim-
ulates the behavior of the other observable
agents. It’s still scales better than RHCR
as it builds trees for each of the agents in-
dependently.

C.4 COOPERATION Table 7: Average throughput on Puzzles maps that
were used to compute Cooperation metric.

Algorithm Average Throughput

ASwitcher 0.164±0.015
Follower 0.319±0.020
IQL 0.125±0.013
LSwitcher 0.206±0.013
MAMBA 0.133±0.014
MATS-LP 0.394±0.021
QMIX 0.228±0.018
QPLEX 0.217±0.019
RHCR 0.538±0.021
VDN 0.144±0.015

As well as for MAPF setting, cooperation
metric is computed based on the results ob-
tained on Puzzles dataset. Table 7 con-
tains average throughput obtained by each
of the evaluated approaches. Here again
the best results are obtained by RHCR algo-
rithm. In contrast to Random, Mazes and
Warehouse sets of maps, where MATS-
LP and Follower demonstrate close results,
the ability to simulate the behavior of other

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

agents, provided by MCTS in MATS-LP, allows to significantly outperform Follower on small
Puzzles maps. The rest approaches demonstrate much worse results, especially IQL, MAMBA,
VDN that have almost 5 times worse average throughput than RHCR.

C.5 PATHFINDING
Table 8: Pathfinding results.

Algorithm Makespan

ASwitcher 340.56 ± 79.41
Follower 181.00 ± 20.95
IQL 900.73±188.60
LSwitcher 472.64±119.23
MAMBA 416.45±136.01
MATS-LP 179.93 ± 22.45
QMIX 461.90±147.16
QPLEX 181.10 ± 20.95
RHCR 179.82 ± 20.21
VDN 1609.50±172.46

Pathfinding metric is tailored to indicate how well the algo-
rithm is able to guide an agent to its goal location. As a result,
there is actually no need to run the algorithms on LifeLong
instances. Instead, they were run on the same set of instances
that were utilized for MAPF approaches.

The results of this evaluation are presented in Table 8. Again,
the best results were obtained by search-based approach –
RHCR. Its implementation was slightly modified to work on
MAPF instances, when there is no new goal after reaching the
current one. Either optimal or close to optimal paths are able
to find MATS-LP, Follower and QPLEX. Followers misses
optimal paths due to the integrated technique that changes the
edge-costs. MATS-LP adds noise to the root of the search tree
that might result in choosing of wrong actions. For approaches
in the Switcher family, it is nearly impossible to find optimal paths, as they lack information about
the global map and rely solely on local observations. Surprisingly, ASwitcher outperforms MAMBA,
QMIX, IQL, and VDN, which are provided with a global map.

C.6 COORDINATION

Figure 10 illustrates the average total number of collisions that occurred during the solving of LMAPF
instances. The absolute values are higher than those obtained during the solving of MAPF instances.
This behavior is explained by the extended episode length in LMAPF instances, which is twice as
long. Moreover, in MAPF scenarios, the episode can end when all agents reach their goal locations,
whereas in LMAPF scenarios, all agents continue to act until the episode length limit is reached.

All MARL approaches show poor results, with MAMBA being the worst among them. The fewest
collisions are made by the Switcher approaches, i.e., ASwitcher and LSwitcher. A comparable
number of collisions is demonstrated by MATS-LP and Follower on the Random set of maps. The
difference in the behavior of these two approaches on the Random and Mazes map sets is likely
due to the more complex structure of obstacles on the Mazes maps, where their heuristic guidance
more often leads to collisions. It’s also worth noting that MATS-LP has no collisions with static
obstacles, as it employs a masking mechanism that prevents selecting an action that leads an agent
into a blocked cell. Such a mechanism could be implemented in other approaches to prevent this
type of collision and potentially improve their performance. The results of the RHCR approach are
omitted, as it is a centralized planner and its solutions are guaranteed to be collision-free.

D CODE EXAMPLES FOR POGEMA

POGEMA is an environment that provides a simple scheme for creating MAPF scenarios, specifying
the parameters of GridConfig. The main parameters are: on_target (the behavior of an agent
on the target, e.g., restart for LifeLong MAPF and nothing for classical MAPF), seed – to preserve
the same generation of the map; agent; and their targets for scenario, size – used for cases without
custom maps to specify the size of the map, density – the density of obstacles, num_agents –
the number of agents, obs_radius – observation radius, collision_system – controls how
conflicts are handled in the environment (we used a soft collision system for all of our experiments).
The example of creation such instance is presenten in Listing 1.

Visualization of the agents is a crucial tool for debugging algorithms, visually comparing them,
and presenting the results. Many existing MARL environments lack such tools, or have limited
visualization functionality, e.g., requiring running the simulator to provide replays, or offering

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

8 16 32 64
Number of Agents

0

1000

2000

3000

4000

5000

Co
llis

io
ns

Mazes
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
VDN

8 16 32 64
Number of Agents

0

2000

4000

6000

8000

10000

Co
llis

io
ns

Random
ASwitcher
Follower
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
VDN

Figure 10: Total number of collisions occurred during solving LMAPF instances with corresponding
number of agents of Mazes and Random sets of maps.

from pogema import pogema_v0, GridConfig, AnimationMonitor

grid = """

.....#.....

.....#.....

...........

.....#.....

.....#.....

#.####.....

.....###.##

.....#.....

.....#.....

...........

.....#.....

"""

Define new configuration with 6 randomly placed agents

grid_config = GridConfig(map=grid, num_agents=6)

Create custom Pogema environment with AnimationMonitor

env = AnimationMonitor(pogema_v0(grid_config=grid_config))

env.reset()

Saving SVG animation

env.save_animation('four-rooms.svg')

Listing 1: Setting up a POGEMA instance with a custom map and generating an animation.

visualizations only in one format (such as videos). In the POGEMA environment, there are three
types of visualization formats. The first one is console rendering, which can be used with the default
render methods of the environment; this approach is useful for local or server-side debugging.
The preferred second option is SVG animations. An example of generating such a visualization is
presented in the listing above. This approach allows displaying the results using any modern web
browser. It provides the ability to highlight high-quality static images (e.g., as the images provided
in the paper) or to display results on a website (e. g., animations of the POGEMA repository on

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

GitHub). This format ensures high-quality vector graphics. The third option is to render the results to
video format, which is useful for presentations and videos.

E POGEMA TOOLBOX

The POGEMA Toolbox provides three types of functionality.

The first one is registries to handle custom maps and algorithms. To create a custom map, the user first
needs to define it using ASCII symbols or by uploading it from a file, and then register it using the
toolbox (see Listing 3). The same approach is used to register and create algorithms (see Listing 2).
In that listing, the registration of a simple algorithm is presented, which must include two methods:
act and reset_states. This approach can also accommodate a set of hyperparameters which
the Toolbox handles.

from pogema import BatchAStarAgent

Registring A* algorithm

ToolboxRegistry.register_algorithm('A*', BatchAStarAgent)

Creating algorithm

algo = ToolboxRegistry.create_algorithm("A*")

Listing 2: Example of registering the A* algorithm as an approach in the POGEMA Toolbox.

from pogema_toolbox.registry import ToolboxRegistry

Creating cusom_map

custom_map = """

.......#.

...#...#.

.#.###.#.

"""

Registring custom_map

ToolboxRegistry.register_maps({"custom_map": custom_map})

Listing 3: Example of registering a custom map to the POGEMA Toolbox.

Second, it provides a unified way of conducting distributed testing using Dask 15 and defined
configurations. An example of such a configuration is provided in Listing 4. The configuration is split
into three main sections; the first one details the parameters of the POGEMA environment used for
testing. It also includes iteration over the number of agents, seeds, and names of the map (which were
registered beforehand). The unified grid_search tag allows for the examination of any existing
parameter of the environment. The second part of the configurations is a list of algorithms to be
tested. Each algorithm has its alias (which will be shown in the results) and name, which specifies
the family of methods. It also includes a list of hyperparameters common to different approaches,
e.g., number of processes, parallel backend, etc., and the specific parameters of the algorithm.

The third functionality and third part of the configuration concern views. This is a form of presenting
the results of the algorithms. Working with complex testing often requires custom tools for creating
visual materials such as plots and tables. The POGEMA toolbox provides such functionality for
MAPF tasks out-of-the-box. The listing provides two examples of such data visualization: a plot and
a table, which, based on the configuration, provide aggregations of results and present information in

15https://github.com/dask/dask

23

https://github.com/dask/dask

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

environment: # Configuring Test Environments

name: Environment

on_target: 'restart'

max_episode_steps: 128

observation_type: 'POMAPF'

collision_system: 'soft'

seed:
grid_search: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

num_agents:
grid_search: [8, 16, 24, 32, 48, 64]

map_name:
grid_search: [

validation-mazes-seed-000, validation-mazes-seed-001,

validation-mazes-seed-002, validation-mazes-seed-003,

validation-mazes-seed-004, validation-mazes-seed-005,

]

algorithms: # Specifying algorithms and it's hyperparameters

RHCR-5-10:
name: RHCR

parallel_backend: 'balanced_dask'

num_process: 32

simulation_window: 5

planning_window: 10

time_limit: 10

low_level_planner: 'SIPP'

solver: 'PBS'

results_views: # Defining results visualization

01-mazes:
type: plot

x: num_agents

y: avg_throughput

width: 4.0

height: 3.1

line_width: 2

use_log_scale_x: True

legend_font_size: 8

font_size: 8

name: Mazes

ticks: [8, 16, 24, 32, 48, 64]

TabularThroughput:
type: tabular

drop_keys: [seed, map_name]

print_results: True

Listing 4: Example of the POGEMA Toolbox configuration for parallel testing of the RHCR approach
and visualization of its results.

a high-quality form, including confidence intervals. The plots and tables in the paper are prepared
using this functionality.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F EXTENDED RELATED WORK

StarCraft Multi-Agent Challenge — The StarCraft Multi-Agent Challenge (SMAC) is a highly
used benchmark in the MARL community. Most MARL papers that propose new algorithms provide
evaluations in this environment. The environment offers a large set of possible tasks where a group
of units tries to defeat another group of units controlled by a bot (a predefined programmed policy).
Such tasks are partially observable and often require simple navigation. However, the benchmark has
several drawbacks, such as the need to use the slow simulator of the StarCraft II engine, deterministic
tasks, and the lack of an evaluation protocol.

Nevertheless, some of these drawbacks have already been addressed. SMAX Rutherford et al.
(2023) provides a hardware-accelerated JAX version of the environment, but it cannot guarantee full
compatibility since the StarCraft II engine is proprietary software. SMAC v2 Ellis et al. (2024) solves
the problem of determinism, highlighting this issue in the original SMAC environments. Moreover,
an evaluation protocol for the SMAC environment is proposed in Gorsane et al. (2022). Despite
these efforts, it’s hard to say that these tasks require the generalization ability of the agent, since the
training and evaluation are conducted on the same scenario.

Multi-agent MuJoCo — In MAMuJoCo, the standard tasks involve agents controlling different sets
of joints (or a single joint) within a simulated robot. This set of environments is a natural adaptation
of the environment presented in the well-known MuJoCo physics engine Todorov et al. (2012). These
tasks don’t require high generalization abilities or navigation. In the newer version, MuJoCo provides
a hardware-accelerated version, forming the basis for Multi-agent BRAX Rutherford et al. (2023),
which enhances performance and efficiency.

Google Research Football — Google Research Football Kurach et al. (2020) is a multi-agent football
simulator that provides a framework for cooperative or competitive multi-agent tasks. Despite the
large number of possible scenarios in the football academy and the requirement for simple navigation,
the tasks are highly specific to the studied domain. Additionally, the number of possible agents is
limited. Moreover, the framework offers low scalability, requiring a heavy engine.

Multi-robot warehouse — The multi-robot warehouse environment RWARE Papoudakis et al.
(2021) simulates a warehouse with robots delivering requested goods. The environment is highly
specific to delivery tasks; however, it doesn’t support procedurally generated scenarios, thus not
requiring generalization abilities or an evaluation protocol. The best-performing solution Christianos
et al. (2020) in this environment is trained on only 4 agents. The benchmark is highly related to
multi-agent pathfinding tasks; however, it doesn’t provide centralized solution integration, which
could serve both as an upper bound for learnable decentralized methods and as a source of expert
demonstrations.

Level-Based Foraging — Multi-agent environment LBF Papoudakis et al. (2021) simulates food
collection by several autonomously navigating agants in a grid world. Each agent is assigned a level.
Food is also randomly scattered, each having a level on its own. The collection of food is successful
only if the sum of the levels of the agents involved in loading is equal to or higher than the level of
the food. The agents are getting rewarded by level of food they collected normalized by their level
and overall food level of the episode. The game requires cooperation but also the agents can emerge
competitve behavior. The environment is very efficiently designed and very simple to set up; however,
it doesn’t support procedurally generated scenarios, thus not requiring generalization abilities or an
evaluation protocol.

Flatland — The Flatland environment Mohanty et al. (2020) is designed to address the specific
problem of fast, conflict-free train scheduling on a fixed railway map. This environment was created
for the Flatland Competition Laurent et al. (2021). The overall task is centralized with full observation;
however, there is an adaptation to partial observability for RL agents. Unfortunately, during several
competitions, despite the presence of stochastic events, centralized solutions Li et al. (2021a) from
operations research field have outperformed RL solutions by a large margin in both quality and speed.
The environment is procedurally generated, which requires high generalization abilities, and the
benchmark provides an evaluation protocol. A significant drawback is the extremely slow speed of
the environment, which highly restricts large-scale learning.

Overcooked — The Overcooked is a benchmark environment for fully cooperative human-AI task
performance, based on the widely popular video game (Carroll et al., 2019). In the game, agents

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

control chefs tasked to cook some dishes. Due to possible complexity of the cooking process,
involving multistep decision-making, it requires emergence of cooperative behaviour between the
agents.

Griddly — This is a grid-based game engine (Bamford, 2021), allowing to make various and diverse
grid-world scenarios. The environment is very performance efficient, being able to make thousands
step per second. Moreover, there is test coverage and continuous integration support, allowing
open-source development. The engine provides support for different observation setups and maintains
state history, making it useful for search based methods.

Multi-player game simulators — Despite the popularity of multi-player games, it’s a challenging
problem to develop simulators of the games that could be used for research purposes. One of
the most popular adaptations are MineCraft MALMO (Johnson et al., 2016) that allows to utilise
MineCraft as a configurable research platform for multi-agent research and model various agents’
interactions. In spite of the game’s flexible functionality, it depends on external runtime, so might
be very hard to set up or extremely slow to iterate with. That’s why there are several alternatives
that prioritise fast iteration over the environment complexity, like Neural MMO Suarez et al. (2024)
that models a simple MMO RPG with agents with a shared resource pool. On top of that, there are
even faster implementation, targeting coordination or cooperation, like Hide-and-Seek Baker et al.
(2020), modelling competition, or GoBigger Zhang et al. (2023), focusing on competition between
cooperating populations.

Multi-agent Driving Simulators — Autonomous driving is one of the important practical applica-
tions of MARL, and Nocturne Vinitsky et al. (2022) is a 2D simulator, written in C++, that focuses
on different scenarios of interactions — e.g. intersections, roundabouts etc. The simulator is based
on trajectories collected in real life, so allows modelling practical scenarios. This environment has
evaluation protocols and supports open-source development with continuous integration and covered
by tests. There are also environments, focusing on particular details of driving, for example, Multi-car
Racing Schwarting et al. (2021) that represents racing from bird’s eye view.

Suits of multi-agent environments — These multi-agent environments are designed to be very simple
benchmarks for specific tasks. Jumanji Bonnet et al. (2023) is a set of environments for different
multi-agent scenarios connected to combinatorial optimization and control, for example, routing or
packing problems. With the purpose for each environment to be focused on the particular task, the
overall suit doesn’t test generalization or enable procedural generation. Multi Particle Environments
(MPE) Lowe et al. (2017) is a communication oriented set of partially observable environments where
particle agents are able to interact with fixed landmarks and each other, communicating with each
other. SISL Gupta et al. (2017) is a set of three dense reward environments was developed to have a
simple benchmark for various cooperative scenarios. For environment suits, testing generalization,
MeltingPot Agapiou et al. (2022) comes into place. This set of the environments contains a diverse
set of cooperative and general-sum partially observable games and maintains two populations of
agents: focal (learning) and visiting (unknown to the environment) to benchmark generalization
abilities of MARL algorithms. The set in based on the own game engine and might be extended quite
easily.

Real-world Engineering in Practice — Real-world engineering tasks can often be addressed by
sophisticated MARL solutions. IMP-MARL Leroy et al. (2024) provides a platform for evaluating
the scalability of cooperative MARL methods responsible for planning inspections and repairs for
specific system components, with the goal of minimizing maintenance costs. At the same time, agents
must cooperate to minimize the overall risk of system failure. MATE Pan et al. (2022) addresses
target coverage control challenges in real-world scenarios. It presents an asymmetric cooperative-
competitive game featuring two groups of learning agents, cameras and targets, each with opposing
goals.

G EXAMPLES OF USED MAPS

The examples of used maps are presented in Figure 11, showing a diverse list of maps. The map
types used in the POGEMA Benchmark include: Mazes, with prolonged 1-cell width corridors
requiring high-level cooperation; Random, easily generated maps to avoid overfitting with con-
trollable obstacle density; Cities-tiles, smaller modified slices of Cities maps; Puzzles,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

small hand-crafted maps with challenging patterns necessitating agent cooperation; Warehouse,
widely used in LifeLong MAPF research, featuring high agent density and throughput challenges;
and Cities, large maps with varying structures for single-agent pathfinding.

(a) Mazes (b) Random (c) Cities-tiles

(d) Puzzles (e) Warehouse (f) Cities

Figure 11: Examples of maps presented in the POGEMA Benchmark. The city map (on which the
pathfinding metric was tested) is shown without grid lines and agents for clarity.

H MARL TRAINING SETUP

Table 9: Best hyperparameters found by hyperparameter
sweep, which is different from defaults ones.

Hyperparameter IQL QPLEX QMIX VDN
Batch Size 64 64 32 32
Learning Rate 0.002 0.002 0.001 0.001
RNN Size 128 128 256 256

For training MARL approaches such as
QMIX, QPLEX, IQL, and VDN, we
started based on the default hyperpa-
rameters provided in the corresponding
repositories, employing the PyMARL2
framework16. These hyperparameters
are mostly tuned for the SMAC envi-
ronment, so we tuned the main ones for
our use case. For this hyperparameter
sweep, we used grid search over parameters such as learning rate, batch size, replay buffer size, and
neural network parameters like the size of RNN blocks. We used the default functionality of the
Wandb framework17 for this sweep, with the optimization target being the CSR of the agent on the
training maps. The best found hyperparameters which is defferent from default ones are presented in
Table 9. We used the default hyperparameters for MAMBA, provided in corresponding repository18.

As input, we apply preprocessing from the Follower approach, which is the current state-of-the-art
for decentralized LifeLong MAPF. We attempted to add a ResNet encoder, as used in the Follower
approach; however, this addition worsened the results, thus we opted for vectorized observation and
default MLP architectures. For centralized methods that work with the state of the environment
(e.g., QMIX or QPLEX), we utilized the MARL integration of POGEMA, which provides agent
positions, targets, and obstacle positions in a format similar to the SMAC environment (providing
their coordinates).

16https://github.com/hijkzzz/pymarl2
17https://github.com/wandb/wandb
18https://github.com/jbr-ai-labs/mamba

27

https://github.com/hijkzzz/pymarl2
https://github.com/wandb/wandb
https://github.com/jbr-ai-labs/mamba

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Our initial experiments on training this approach with a large number of agents, similar to the
Follower model, showed very low results. We adjusted the training maps to be approximately 16×16,
which proved to be more effective and populated them with 8 agents. All the MARL approaches were
trained using the Mazes map generator. This setup produced better results. We continued training
the approaches until they reached a plateau, which for most algorithms is under 1 million steps.

I RESOURCES AND STATISTICS

To evaluate all the presented approaches integrated with POGEMA we have used two workstations
with equal configuration, that includes 2 NVidia Titan V GPU, AMD Ryzen Threadripper 3970X
CPU and 256 GB RAM. The required computation time is heavily depends on the approach by itself.

Table 10: Total time (in hours) required by each of the algorithms to run all MAPF instances on the
corresponding datasets.

Random Mazes Warehouse Cities-tiles Puzzles Cities

DCC 2.11 2.46 11.07 22.70 0.09 0.02
IQL 0.05 0.04 0.13 0.13 0.01 0.01

LaCAM 0.20 0.29 0.24 0.23 0.37 0.01
MAMBA 6.62 6.47 8.36 12.27 2.59 3.40

QMIX 0.04 0.04 0.14 0.13 0.01 0.01
QPLEX 0.05 0.04 0.13 0.13 0.01 0.01

SCRIMP 1.66 2.20 16.54 21.63 0.08 0.21
VDN 0.05 0.04 0.13 0.13 0.01 0.01

Table 11: Total time (in hours) required by each of the algorithms to run all LMAPF instances on the
corresponding datasets.

Random Mazes Warehouse Cities-tiles Puzzles Cities

ASwitcher 1.03 0.47 2.95 1.76 0.31 0.04
Follower 0.48 0.23 0.69 0.77 0.26 0.89

IQL 0.08 0.04 0.26 0.24 0.02 0.01
LSwitcher 6.18 2.61 17.30 10.70 0.81 0.21
MAMBA 13.82 6.69 15.81 11.07 7.83 3.40

MATS-LP 77.31 35.34 163.68 129.78 3.80 0.14
QMIX 0.08 0.04 0.26 0.25 0.02 0.01

QPLEX 0.08 0.04 0.26 0.25 0.02 0.01
RHCR 0.57 0.25 17.04 6.28 0.01 0.01

VDN 0.08 0.04 0.25 0.25 0.02 0.01

The statistics regarding the spent time on solving MAPF and LMAPF instances are presented in Table
10 and Table 11 respectively. Please note, that all these approaches were run in parallel in multiple
threads utilizing dask, that significantly reduces the factual spent time.

We used pretrained models for all the hybrid methods, such as Follower, Switcher, MATS-LP,
SCRIMP, and DCC, thus, no resources were spent on their training. RHCR and LaCAM are pure
search-based planners and do not require any training. MARL methods, such as MAMBA, QPLEX,
QMIX, IQL, and VDN, were trained by us. MAMBA was trained for 20 hours on the MAPF instances,
resulting in 200K environment steps, and for 6 days on LifeLong MAPF instances, resulting in 50K
environment steps, which corresponds to the same amount of GPU hours. For MARL approaches,
we trained them for 1 million environment steps, which corresponds to an average of 5 GPU hours
for each algorithm.

J COMMUNITY ENGAGEMENT AND FRAMEWORK ENHANCEMENTS

Our team is committed to maintaining an open and accountable POGEMA framework. We ensure
transparency in our operations and encourage the broader AI community to participate. Our frame-
work includes a fast learning environment, problem instance generator, visualization toolkit, and
automated benchmarking tools, all guided by a clear evaluation protocol. We have also implemented

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

and evaluated multiple strong baselines that simplify further comparison. We practice rigorous
software testing and conduct regular code reviews.

K INGESTION OF MOVINGAI MAPS

We incorporated an ingestion script to convert MovingAI maps to be compatible with POGEMA. The
ingestion script is straightforward, and an example of its usage is presented in Listing 5. This script
downloads the full archive of, in this case, the street-map series, which will be saved to a YAML file
compatible with POGEMA.

from pogema_toolbox.generators.generator_utils import maps_dict_to_yaml

from pogema_toolbox.moving_ai_ingestion import download_moving_ai_maps

url = 'https://movingai.com/benchmarks/street/street-map.zip'

maps = download_moving_ai_maps(url)

maps_dict_to_yaml('maps.yaml', maps)

Listing 5: Ingestion script to convert MovingAI maps into POGEMA-compatible format

Instead of converting and distributing these maps ourselves, we provide this script to allow users to
convert the maps on their own, ensuring compliance with licensing terms. Additionally, by using this
script, users can always work with the most up-to-date versions of the maps in the MovingAI dataset,
addressing any changes or updates made to the dataset over time.

L POGEMA SPEED PERFORMANCE EVALUATION

The speed of an environment is a critical aspect in reinforcement learning (RL), significantly influ-
encing training performance and usability. Table 1 provides an overview of the speed performance of
various multi-agent environments, demonstrating that POGEMA can process more than 10K steps
per second.

Here we provide more detailed information about POGEMA’s speed performance. POGEMA’s
continuous integration (CI) includes a speed measurement procedure that runs alongside the tests.
Here, we present the results from a recent CI run. We compared POGEMA’s performance on three
CPU setups: the AMD Ryzen Threadripper 3970X 32-Core Processor, a modern high-performance
CPU; an older server-side Intel(R) Xeon(R) CPU @ 2.20GHz, commonly used on the Google Colab
platform, representing an average-performance setup; and the Apple Silicon M1, a laptop setup that
is widely regarded for its power efficiency and solid performance in computational tasks.

Table 12: POGEMA performance in observations per second (OPS) across different CPU types using
a single CPU core. Note that the reported OPS represents the total frames (observations) received by
all agents, not the environment steps.

Ryzen Threadripper Intel(R) 2.20GHz Apple Silicon M1
Agents Size MAPF LMAPF MAPF LMAPF MAPF LMAPF

1 32 20 684 21 810 9391 13 358 29 699 44 224
1 64 10 390 9602 6981 6452 19 244 18 996

32 32 96 918 90 631 61 132 61 232 204 637 191 069
32 64 89 984 85 741 61 297 38 326 144 125 175 962
64 32 111 976 105 558 69 121 39 308 189 624 217 482
64 64 102 104 96 709 68 126 49 902 196 808 194 213

For this test, we used default observation parameters commonly employed in learnable multi-agent
pathfinding (MAPF) approaches (e.g., Follower, SCRIMP, DCC). Specifically, we set the observation

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

radius to 5, corresponding to an 11 × 11 field. We report the results for both MAPF and LMAPF
scenarios using a random policy. In scenarios with more than 32 agents, POGEMA achieves ≥ 80K
steps per second (OPS) on fast CPUs like the Ryzen Threadripper and Apple Silicon M1, and
≥ 38K OPS on the Intel Xeon setup, which is notably fast for a single-environment, single-thread
configuration. For comparison, EnvPool19 reports 50K frames per second (FPS) for Atari on a
12-CPU setup.

We further investigate POGEMA’s speed performance using SampleFactory20 as the sampler for
parallel asynchronous execution of the environment. We used an almost default configuration with a
random policy (instead of PPO) and employed two environments per worker (for double buffering
in SampleFactory). The number of sampling workers varied alongside the number of agents in
the environment, and the tests were run on a workstation equipped with a single AMD Ryzen
Threadripper 3970X 32-Core Processor (64 threads). We conducted a sampling procedure for 5
minutes for each setup using Random maps with a size of 32 × 32. The results both MAPF and
Lifelong MAPF scenarios are presented in Figure 12.

1 2 4 8 16 32 64
Number of workers

64
32

1
Nu

m
be

r o
f a

ge
nt

s 89k 178k 353k 691k 1.3M 2.5M 3.1M

72k 142k 282k 556k 1.1M 2.0M 2.5M

5k 11k 21k 42k 82k 154k 179k

a) Observations per second for MAPF

0.5

1.0

1.5

2.0

2.5

3.0
1e6

1 2 4 8 16 32 64
Number of workers

64
32

1
Nu

m
be

r o
f a

ge
nt

s 78k 154k 305k 602k 1.2M 2.2M 2.7M

60k 120k 237k 468k 901k 1.7M 2.1M

4k 8k 17k 33k 64k 120k 145k

b) Observations per second for Lifelong MAPF

0.5

1.0

1.5

2.0

2.5
1e6

Figure 12: Observations per second performance of POGEMA for (a) MAPF and (b) Lifelong MAPF
across different number of workers and agents in the environment, using AMD Ryzen Threadripper
3970X 32-Core Processor (64 threads). We tested Random maps with size 32× 32.

Looking at the single-worker setup, it is notable that the performance from the previous experiment
with a single CPU setup is noticeably higher. This slowdown can be attributed to the overhead
produced by the parallel asynchronous execution of the framework. However, it allows to significantly
improve performance; the results for the best configuration with 64 agents and 64 workers achieved
3.1M OPS for MAPF and 2.7M OPS for Lifelong MAPF. For both setups, only 16 workers are
needed to exceed the significant threshold of 1M OPS. The best performance is observed in the MAPF
scenario, where 916,464,000 samples were generated in 5 minutes. This demonstrates the efficiency
of utilizing a high number of CPU cores for large-scale sampling tasks, which scaled almost linearly
up to 32 workers. This also indicates that performance can be further improved with additional CPU
resources.

To compare, we can refer to the JaxMARL paper, which provides insights into the speed performance
of XLA-accelerated environments. The repository includes several environments, and we will focus
on the SPS of the STORM environment, which offers grid-based tasks. Based on the paper, the speed
of the environment is 2.48k with a single environment, 175k for 100 environments, and 14.6M SPS
for 10,000 environments. These results were obtained using a single NVIDIA A100 GPU.

While, as expected, POGEMA is slower in very large vectorized setups compared to XLA vectorized
environments that use GPU or TPU hardware acceleration, this trade-off has its advantages. It is
challenging to devise an approach that can effectively utilize such a large amount of data. Additionally,
by not relying on GPUs or TPUs for environment simulation, these resources remain fully available for
training neural networks, which often represent the primary bottleneck in large-scale RL experiments.

In previous experiments, we relied on the random policy to test the speed performance of the
environment, as it is a common choice for such tests. However, the speed performance of the
environment often changes, so a more advanced approach is used, which visits a larger set of the

19https://github.com/sail-sg/envpool
20https://github.com/alex-petrenko/sample-factory

30

https://github.com/sail-sg/envpool
https://github.com/alex-petrenko/sample-factory

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

64 128 256 512 1024 2048
Number of Agents

32

64

128

256

PO
GE

M
A

St
ep

s p
er

 S
ec

on
d

Mazes Maps
Follower

64 128 256 512 1024 2048
Number of Agents

24576

32768

40960

PO
GE

M
A

Ob
se

rv
at

io
ns

 p
er

 S
ec

on
d

Mazes Maps
Follower

Figure 13: The steps per second and observations per second throughput of POGEMA with a large
population of agents, using the Follower approach without parallelization. Both axes are shown on a
log scale.

state space compared to the random policy. To better test the speed performance of POGEMA
under real inference, we used the Follower approach and LifeLong Mazes scenarios, with a size of
128× 128 and up to 2048 agents, as they required creating new goals for agents upon reaching them.
The results are presented in Fig. 13. Here, one can see that with an increasing number of agents,
the SPS of POGEMA decreases almost linearly. Additionally, the OPS throughput grows with the
number of agents. This setup also highlights the ability of POGEMA to handle a large population of
agents operating in the same environment. The experiment was conducted on a setup with an AMD
Ryzen Threadripper 3970X 32-core processor, using a single CPU core and a single environment (no
parallelization).

31

	Introduction
	Related Work
	POGEMA
	POGEMA Environment
	POGEMA Toolbox
	Baselines

	Evaluation Protocol
	Dataset
	Metrics
	Experimental Results

	Conclusion, Limitations and Future Work
	Evaluation Setup Details
	Results for MAPF Benchmark
	Performance
	Out-of-Distribution
	Scalability
	Cooperation
	Pathfinding
	Coordination

	Results for LifeLong MAPF Benchmark
	Performance
	Out-of-Distribution
	Scalability
	Cooperation
	Pathfinding
	Coordination

	Code Examples for POGEMA
	POGEMA Toolbox
	Extended Related Work
	Examples of Used Maps
	MARL Training Setup
	Resources and Statistics
	Community Engagement and Framework Enhancements
	Ingestion of MovingAI Maps
	POGEMA Speed Performance Evaluation

