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Abstract

Large language models (LLMs) are shown to possess a wealth of actionable
knowledge that can be extracted for robot manipulation in the form of reasoning
and planning. Despite the progress, most still rely on pre-defined motion primitives
to carry out the physical interactions with the environment, which remains a major
bottleneck. In this work, we aim to synthesize robot trajectories, i.e., a dense
sequence of 6-DoF end-effector waypoints, for a large variety of manipulation
tasks given an open-set of instructions and an open-set of objects. We achieve this
by first observing that LLMs excel at inferring affordances and constraints given a
free-form language instruction. More importantly, by leveraging their code-writing
capabilities, they can interact with a vision-language model (VLM) to compose
3D value maps to ground the knowledge into the observation space of the agent.
The composed value maps are then used in a model-based planning framework
to zero-shot synthesize closed-loop robot trajectories with robustness to dynamic
perturbations. We further demonstrate how the proposed framework can benefit
from online experiences by efficiently learning a dynamics model for scenes that
involve contact-rich interactions. We present a large-scale study of the proposed
method in both simulated and real-robot environments, showcasing the ability
to perform a large variety of everyday manipulation tasks specified in free-form
natural language. Project website: voxposer.github.io.

1 Introduction

Language is a compressed medium through which humans distill and communicate their knowledge
and experience of the world. Large language models (LLMs) have emerged as a promising approach
to capture this abstraction, learning to represent the world through projection into language space [1–
4]. While these models are believed to internalize generalizable knowledge as text, it remains a
question about how to use it to enable embodied agents to physically act in the real world.

We look at the problem of grounding abstract language instructions (e.g., “set up the table”) in robot
actions [5]. Prior works have leveraged lexical analysis to parse the instructions [6–8], while more
recently language models have been used to decompose the instructions into a textual sequence of
steps [9–11]. However, to enable physical interactions with the environment, existing approaches
typically rely on a repertoire of pre-defined motion primitives (i.e., skills) that may be invoked by
an LLM or a planner, and this reliance on individual skill acquisition is often considered a major
bottleneck of the system due to the lack of large-scale robotic data. The question then arises: how can
we leverage the wealth of internalized knowledge of LLMs at the even fine-grained action level for
robots, without requiring laborious data collection or manual designs for each individual primitive?

In addressing this challenge, we first note that it is impractical for LLMs to directly output control
actions in text, which are typically driven by high-frequency control signals in high-dimensional space.
However, we find that LLMs excel at inferring language-conditioned affordances and constraints,
and by leveraging their code-writing capabilities, they can compose dense 3D voxel maps that ground
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Figure 1: VOXPOSER extracts language-conditioned affordances and constraints from LLMs and grounds
them to the perceptual space using VLMs, using a code interface and without any additional training. The
composed map is referred to as a 3D value map, which enables zero-shot synthesis of trajectories for large
varieties of everyday manipulation tasks with an open-set of instructions and an open-set of objects.

them in the visual space by orchestrating perception calls (e.g., via CLIP [12] or open-vocabulary
detectors [13–15]) and array operations (e.g., via NumPy [16]). For example, given an instruction
“open the top drawer and watch out for the vase”, LLMs can be prompted to infer: 1) the top drawer
handle should be grasped, 2) the handle needs to be translated outwards, and 3) the robot should
stay away from the vase. By generating Python code to invoke perception APIs, LLMs can obtain
spatial-geometric information of relevant objects or parts and then manipulate the 3D voxels to
prescribe reward or cost at relevant locations in observation space (e.g., the handle region is assigned
high values while the surrounding of the vase is assigned low values). Finally, the composed value
maps can serve as objective functions for motion planners to directly synthesize robot trajectories
that achieve the given instruction 1 , without requiring additional training data for each task or for the
LLM. An illustration diagram and a subset of tasks we considered are shown in Fig. 1.

We term this approach VOXPOSER, a formulation that extracts affordances and constraints from
LLMs to compose 3D value maps in observation space for guiding robotic interactions. Rather
than relying on robotic data that are often of limited amount or variability, the method leverages
LLMs for open-world reasoning and VLMs for generalizable visual grounding in a model-based
planning framework that directly enables physical robot actions. We demonstrate its zero-shot
generalization for open-set instructions with open-set objects for various everyday manipulation tasks.
We further showcase how VoxPoser can also benefit from limited online interactions to efficiently
learn a dynamics model that involves contact-rich interactions.

2 Related Works

Grounding Language Instructions. Language grounding has been studied extensively both in
terms of intelligent agents [19–22] and of robotics [23, 6, 24, 25, 5, 7, 26], where language can be
used as a tool for compositional goal specification [5, 27–33], semantic anchor for training multi-
modal representation [12, 34, 35], or as an intermediate substrate for planning and reasoning [36–
38, 9, 10, 39, 40]. Prior works have looked at using classical tools such as lexical analysis, formal
logic, and graphical models to interpret language instructions [27, 7, 6, 26]. More recently, end-to-
end approaches, popularized by successful applications to offline domains [41–43, 1], have been
applied to directly ground language instructions in robot interactions by learning from data with
language annotations, spanning from model learning [44], imitation learning [45, 46, 30, 47–54], to
reinforcement learning [55–57]. Most closely related to our work is Sharma et al. [50], where an
end-to-end cost predictor is optimized via supervised learning to map language instructions to 2D
costmaps, which are used to steer a motion planner to generate preferred trajectories in a collision-free

1The approach also bears resemblance and connections to potential field methods in path planning [17] and
constrained optimization methods in manipulation planning [18].
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manner. In contrast, we rely on pre-trained language models for their open-world knowledge and
tackle the more challenging robotic manipulation in 3D.

Language Models for Robotics. Leveraging pre-trained language models for embodied applications
is an active area of research, where a large body of works focus on planning and reasoning with
language models [9–11, 58, 31, 39, 59–72, 36, 73, 74]. To allow language models to perceive the
physical environments, textual descriptions of the scene [39, 11, 59] or perception APIs [75] can
be given, vision can be used during decoding [67] or can be directly taken as input by multi-modal
language models [68, 2]. In addition to perception, to truly bridge the perception-action loop, an
embodied language model must also know how to act, which typically is achieved by a library of
pre-defined primitives. Liang et al. [75] showed that LLMs exhibit behavioral commonsense that
can be useful for low-level control. Despite the promising signs, hand-designed motion primitives
are still required, and while LLMs are shown to be capable of composing sequential policy logic, it
remains unclear whether composition can happen at spatial level. A related line of works has also
explored using LLMs for reward specification in the context of reward design [76] and exploration in
reinforcement learning [77–80], and human preference learning [81]. In contrast, we focus exclusively
on grounding the reward generated by LLMs in the 3D observation space of the robot, which we
identify as most useful for manipulation tasks.

Learning-based Trajectory Optimization. Many works have explored leveraging learning-
based approaches for trajectory optimization. While the literature is vast, they can be broadly
categorized into those that learn the models [90–98] and those that learn the cost/reward or con-
straints [99–102, 50, 103], where data are typically collected from in-domain interactions. To enable
generalization in the wild, a parallel line of works has explored learning task specification from
large-scale offline data [104–106, 35, 34, 44, 107, 108, 54], particularly egocentric videos [109, 110],
or leveraging pre-trained foundation models [111–113, 33, 114, 115]. The learned cost functions are
then used by reinforcement learning [111, 108, 116], imitation learning [106, 105], or trajectory opti-
mization [104, 35] to generate robot actions. In this work, we leverage LLMs for zero-shot in-the-wild
cost specification with superior generalization. Compared to prior works that leverage foundation
models, we ground the cost directly in 3D observation space with real-time visual feedback, which
makes VoxPoser amenable to closed-loop MPC that’s robust in execution.

3 Method

We first provide the formulation of VoxPoser as an optimization problem (Sec. 3.1). Then we describe
how VoxPoser can be used as a general zero-shot framework to map language instructions to 3D value
maps (Sec. 3.2). We subsequently demonstrate how trajectories can be synthesized in closed-loop for
robotic manipulation (Sec. 3.3). While zero-shot in nature, we demonstrate how VoxPoser can learn
from online interactions to efficiently solve contact-rich tasks (Sec. 3.4).

3.1 Problem Formulation

Consider a manipulation problem given as a free-form language instruction L (e.g., “open the top
drawer”). Generating robot trajectories according to L can be very challenging because L may be
arbitrarily long-horizon or under-specified (i.e., requires contextual understanding). Instead, we focus
on individual phases (sub-tasks) of the problem ℓi that distinctively specify a manipulation task (e.g.,
“grasp the drawer handle”, “pull open the drawer”), where the decomposition T → (ℓ1, ℓ2, . . . , ℓn)
is given by a high-level planner (e.g., an LLM or a search-based planner) 2. The central problem
investigated in this work is to generate a motion trajectory τ ri for robot r and each manipulation
phase described by instruction ℓi. We represent τ ri as a sequence of dense end-effector waypoints to
be executed by an Operational Space Controller [117], where each waypoint consists of a desired
6-DoF end-effector pose, end-effector velocity, and gripper action. However, it is worth noting that
other representations of trajectories, such as joint space trajectories, can also be used. Given each
sub-task ℓi, we formulate this as an optimization problem defined as follows:

min
τr
i

{Ftask(Ti, ℓi) + Fcontrol(τ
r
i )} subject to C(Ti) (1)

2Note that the decomposition and sequencing of these sub-tasks are also done by LLMs in this work, though
we do not investigate this aspect extensively as it is not the focus of our contributions.
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def affordance_map():
msize = (100,100,100)

  map = np.zeros(msize)
  handles = detect('handle')
  k = lambda x: x.pos[2]
  handles.sort(key=k)
top_handle = handles[-1]

  x,y,z = top_handle.pos
  map[x,y,z] = 1
  return smooth(map)
def constraint_map():
msize = (100,100,100)

  map = np.zeros(msize)
  vases = detect('vase')
  vase = vases[0]
  xyz = vase.occupancy_grid
  map[xyz] = -1
  return smooth(map)
...
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Figure 2: Overview of VOXPOSER. Given the RGB-D observation of the environment and a language
instruction, LLMs generate code, which interacts with VLMs, to produce a sequence of 3D affordance maps and
constraint maps (collectively referred to as value maps) grounded in the observation space of the robot (a). The
composed value maps then serve as objective functions for motion planners to synthesize trajectories for robot
manipulation (b). The entire process does not involve any additional training.

where Ti is the evolution of environment state, and τ ri ⊆ Ti is the robot trajectory. Ftask scores the
extent of Ti completes the instruction ℓi while Fcontrol specifies the control costs, e.g., to encourage
τ ri to minimize total control effort or total time. C(Ti) denotes the dynamics and kinematics
constraints, which are enforced by the known model of the robot and a physics-based or learning-
based model of the environment. By solving this optimization for each sub-task ℓi, we obtain a
sequence of robot trajectories that collectively achieve the overall task specified by the instruction L.

3.2 Grounding Language Instruction via VoxPoser

Calculating Ftask with respect to free-form language instructions is extremely challenging, not only
because of the rich space of semantics language can convey but also because of the lack of robot data
labeled with T and ℓ. However, we provide a critical observation that a large number of tasks can
be characterized by a voxel value map V ∈ Rw×h×d in robot’s observation space, which guides the
motion of an “entity of interest” in the scene, such as the robot end-effector, an object, or an object
part. For example, consider the task “open the top drawer” and its first sub-task “grasp the top drawer
handle” (inferred by LLMs) in Fig. 2. The “entity of interest” is the robot end-effector, and the voxel
value map should reflect the attraction toward the drawer handle. By further commanding “watch out
for the vase”, the map can also be updated to reflect the repulsion from the vase. We denote the “entity
of interest” as e and its trajectory as τe. Using this voxel value map for a given instruction ℓi, Ftask

can be approximated by accumulating the values of e traversing through Vi, formally calculated as
Ftask = −

∑|τe
i |

j=1 V(pej ), where pej ∈ N3 is the discretized (x, y, z) position of e at step j.

Notably, we observe large language models, by being pre-trained on Internet-scale data, exhibit
capabilities not only to identify the “entity of interest” but also to compose value maps that accurately
reflect the task instruction by writing Python programs. Specifically, when an instruction is given
as a comment in the code, LLMs can be prompted to 1) call perception APIs (which invoke vision-
language models (VLM) such as an open-vocabulary detector [13–15]) to obtain spatial-geometrical
information of relevant objects, 2) generate NumPy operations to manipulate 3D arrays, and 3) pre-
scribe precise values at relevant locations. We term this approach as VOXPOSER. Concretely, we aim
to obtain a voxel value map Vt

i = VoxPoser(ot, ℓi) by prompting an LLM and executing the code
via a Python interpreter, where ot is the RGB-D observation at time t and ℓi is the current instruction.
Additionally, because V is often sparse, we densify the voxel maps via smoothing operations, as they
encourage smoother trajectories optimized by motion planners.

Additional Trajectory Parametrization. The above formulation of VoxPoser uses LLMs to
compose V : N3 → R to map from discretized coordinates in voxel space to a real-valued “cost”,
which we can use to optimize a path consisting only of the positional terms. To extend to SE(3)
poses, we can also use LLMs to compose rotation maps Vr : N3 → SO(3) at coordinates relevant to
the task objectives (e.g., “end-effector should face the support normal of the handle”). Similarly, we
further compose gripper maps Vg : N3 → {0, 1} to control gripper open/close and velocity maps
Vv : N3 → R to specify target velocities. Note that while these additional trajectory parametrizations
are not mapped to a real-valued “cost”, they can also be factored in the optimization procedure
(Equation 1) to parametrize the trajectories.
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“sweep the paper trash to the blue dustpan” “push close the top drawer”
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Figure 3: Visualization of composed 3D value maps and rollouts in real-world environments. The top row
demonstrates where “entity of interest” is an object or part, and the value maps guide them toward target positions.
The bottom two rows showcase tasks where “entity of interest” is the robot end-effector. The bottom-most task
involves two phases, which are also orchestrated by LLMs.

3.3 Zero-Shot Trajectory Synthesis with VoxPoser

After obtaining the task cost Ftask, we can now approach the full problem defined in Equation 1 to
plan a motion trajectory. We use simple zeroth-order optimization by randomly sampling trajectories
and scoring them with the proposed objective. The optimization is implemented in a model predictive
control framework that iteratively replans the trajectory at every step using the current observation
to robustly execute the trajectories even under dynamic disturbances 3 , where either a learned or
physics-based model can be used. However, because VoxPoser effectively provides “dense rewards”
in the observation space and we are able to replan at every step, we surprisingly find that the overall
system can already achieve a large variety of manipulation tasks considered in this work even with
simple heuristics-based models. Since some value maps are defined over “entity of interest”, which
may not necessarily be the robot, we also use the dynamics model to find the needed robot trajectory
to minimize the task cost (i.e., what interactions between the robot and the environment achieve the
desired object motions).

3.4 Efficient Dynamics Learning with Online Experiences

While Sec. 3.3 presents a zero-shot framework for synthesizing trajectories for robot manipula-
tion, VoxPoser can also benefit from online experiences by efficiently learning a dynamics model.
Consider the standard setup where a robot interleaves between 1) collecting environment transition
data (ot,at,ot+1), where ot is the environment observation at time t and at = MPC(ot), and 2)
training a dynamics model gθ parametrized by θ by minimizing the L2 loss between predicted next
observation ôt+1 and ot+1. A critical component that determines the learning efficiency is the action
sampling distribution P (at|ot) in MPC, which typically is a random distribution over the full action
space A. This is often inefficient when the goal is to solve a particular task, such as opening a door,
because most actions do not interact with the relevant objects in the scene (i.e., the door handle) nor
do they necessarily interact with the objects in a meaningful way (i.e., pressing down the door handle).
Since VoxPoser synthesizes robot trajectories with LLMs, which have a wealth of commonsense
knowledge, the zero-shot synthesized trajectory τ r0 can serve as a useful prior to bias the action
sampling distribution P (at|ot, τ

r
0 ), which can significantly speed up the learning process. In practice,

this can be implemented by only sampling actions in the vicinity of τ r0 by adding small noise ε to
encourage local exploration instead of exploring in the full action space A.

4 Experiments and Analysis

We first discuss our implementation details. Then we validate VoxPoser for real-world everyday
manipulation (Sec. 4.1). We also study its generalization in simulation (Sec. 4.2). We further

3Although involving an LLM in the loop, closed-loop execution is possible because the generated code
remains the same throughout task ℓi, which allows us to cache its output for the current task.
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LLM + Prim. [75] VoxPoser

Task Static Dist. Static Dist.

Move & Avoid 0/10 0/10 9/10 8/10
Set Up Table 7/10 0/10 9/10 7/10
Close Drawer 0/10 0/10 10/10 7/10
Open Bottle 5/10 0/10 7/10 5/10
Sweep Trash 0/10 0/10 9/10 8/10

Total 24.0% 0.0% 88.0% 70.0%

Table 1: Success rate in real-world domain. Vox-
Poser performs everyday manipulation tasks with
high success and is more robust to disturbances
than the baseline using action primitives.

U-Net Language Models

Train/Test Category MP [50] Prim. [75] MP (Ours)

SI SA Object Int. 21.0% 41.0% 64.0%
SI SA Composition 53.8% 43.8% 77.5%

SI UA Object Int. 3.0% 46.0% 60.0%
SI UA Composition 3.8% 25.0% 58.8%

UI UA Object Int. 0.0% 17.5% 65.0%
UI UA Composition 0.0% 25.0% 76.7%

Table 2: Success rate in simulated domain. “SI” and “UI”
are seen and unseen instructions. “SA” and “UA” are
seen and unseen attributes. VoxPoser outperforms both
baselines across 13 tasks from two categories on both seen
and unseen tasks and maintains similar success rates.

demonstrate how VoxPoser enables efficient learning of more challenging tasks (Sec. 4.3). Finally,
we analyze its source of errors and discuss how improvement can be made (Sec. 4.4).

LLMs and Prompting. We follow prompting structure by Liang et al. [75], which recursively calls
LLMs using their own generated code, where each language model program (LMP) is responsible for
a unique functionality (e.g., processing perception calls). We use GPT-4 [2] from OpenAI API. For
each LMP, we include 5-20 example queries and corresponding responses as part of the prompt. An
example can be found in Fig. 2 (simplified for clarity). Full prompts are in Appendix.

VLMs and Perception. Given an object/part query from LLMs, we first invoke open-vocab detector
OWL-ViT [15] to obtain a bounding box, then feed it into Segment Anything [118] to obtain a mask,
and finally track the mask using video tracker XMEM [119]. The tracked mask is used with RGB-D
observation to reconstruct the object/part point cloud.

Value Map Composition. We define the following types of value maps: affordance, avoidance,
end-effector velocity, end-effector rotation, and gripper action. Each type uses a different LMP, which
takes in an instruction and outputs a voxel map of shape (100, 100, 100, k), where k differs for each
value map (e.g., k = 1 for affordance and avoidance as it specifies cost, and k = 4 for rotation as it
specifies SO(3)). We apply Euclidean distance transform to affordance maps and Gaussian filters for
avoidance maps. On top of value map LMPs, we define two high-level LMPs to orchestrate their
behaviors: planner takes user instruction L as input (e.g., “open drawer”) and outputs a sequence
of sub-tasks ℓ1:N , and composer takes in sub-task ℓi and invokes relevant value map LMPs with
detailed language parameterization.

Motion Planner. We consider only affordance and avoidance maps in the planner optimization,
which finds a sequence of collision-free end-effector positions p1:N ∈ R3 using greedy search. Then
we enforce other parametrization at each p by the remaining value maps (e.g., rotation map, velocity
map). The cost map used by the motion planner is computed as the negative of the weighted sum
of normalized affordance and avoidance maps with weights 2 and 1. After a 6-DoF trajectory is
synthesized, the first waypoint is executed, and then a new trajectory is re-planned at 5 Hz.

Dynamics Model. We use the known robot dynamics model in all tasks, where it is used in motion
planning for the end-effector to follow the waypoints. For the majority of our considered tasks
where the “entity of interest” is the robot, no environment dynamics model is used (i.e., scene is
assumed to be static), but we replan at every step to account for the latest observation. For tasks
in which the “entity of interest” is an object, we study only a planar pushing model parametrized
by contact point, push direction, and push distance. We use a heuristic-based dynamics model
that translates an input point cloud along the push direction by the push distance. We use MPC
with random shooting to optimize for the action parameters. Then a pre-defined pushing primitive
is executed based on the action parameters. However, we note that a primitive is not necessary
when action parameters are defined over the end-effector or joint space of the robot, which would
likely yield smoother trajectories but takes more time for optimization. We also explore the use of
a learning-based dynamics model in Section 4.3, which enables VoxPoser to benefit from online
experiences.
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Zero-Shot No Prior w/ Prior

Task Success Success Time(s) Success Time(s)

Door 6.7%±4.4% 58.3±4.4% TLE 88.3%±1.67%142.3±22.4

Window 3.3%±3.3% 36.7%±1.7% TLE 80.0%±2.9% 137.0±7.5

Fridge 18.3%±3.3%70.0%±2.9% TLE 91.7%±4.4% 71.0±4.4

Table 3: VoxPoser enables efficient dynamics learning by
using zero-shot synthesized trajectories as prior. TLE (time
limit exceeded) means exceeding 12 hours. Results are re-
ported over 3 runs different seeds. Figure 4: Error breakdown of components. Vox-

Poser significantly reduces specification error.

4.1 VoxPoser for Everyday Manipulation Tasks

We study whether VoxPoser can zero-shot synthesize robot trajectories to perform everyday ma-
nipulation tasks in the real world. Details of the environment setup can be found in Appendix A.3.
While the proposed method can generalize to an open-set of instructions and an open-set of objects
as shown in Fig. 1, we pick 5 representative tasks to provide quantitative evaluations in Table 1.
Qualitative results including environment rollouts and value map visualizations are shown in Fig. 3.
We find that VoxPoser can effectively synthesize robot trajectories for everyday manipulation tasks
with a high average success rate. Due to fast replanning capabilities, it is also robust to external
disturbances, such as moving targets/obstacles and pulling the drawer open after it has been closed by
the robot. We further compare to a variant of Code as Policies [75] that uses LLMs to parameterize a
pre-defined list of simple primitives (e.g., move_to_pose, open_gripper). We find that compared to
chaining sequential policy logic, the ability to compose spatially while considering other constraints
under a joint optimization scheme is a more flexible formulation, unlocking the possibility for more
manipulation tasks and leading to more robust execution.

4.2 Generalization to Unseen Instructions and Attributes

To provide rigorous quantitative evaluations on generalization, we set up a simulated environment
that mirrors our real-world setup [120] but features 13 highly-randomizable tasks with 2766 unique
instructions. Eash task comes with a templated instruction (e.g., “push [obj] to [pos]”) that contains
randomizable attributes chosen from a pre-defined list. Details are in Appendix A.4. Seen instruc-
tions/attributes may appear in the prompt (or in the training data for supervised baselines). The tasks
are grouped into 2 categories, where “Object Interactions” are tasks that require interactions with
objects, and “Spatial Composition” are tasks involving spatial constraints (e.g., moving slower near
a particular object). For baselines, we ablate the two components of VoxPoser, LLM and motion
planner, by comparing to a variant of [75] that combines an LLM with primitives and to a variant
of [50] that learns a U-Net [122] to synthesize costmaps for motion planning. Table 2 shows the
success rates averaged across 20 episodes per task. We find VoxPoser exhibits superior generaliza-
tion in all scenarios. Compared to learned cost specification, LLMs generalize better by explicitly
reasoning about affordances and constraints. On the other hand, grounding LLM knowledge in robot
perception through value map composition rather than directly specifying primitive parameters offers
more flexibility that generalizes beyond the prompt examples.

4.3 Efficient Dynamics Learning with Online Experiences

As discussed in Sec. 3.4, we investigate how VoxPoser can optionally benefit from online experiences
for tasks that involve more intricacies of contact, such as opening doors, fridges, and windows, in
a simulated environment. Specifically, we first synthesize k zero-shot trajectories using VoxPoser,
each represented as a sequence of end-effector waypoints, that act as priors for exploration (e.g.,
“handle needs to be pressed down first in order to open a door”). Then an MLP dynamics model is
learned through an iterative procedure where the agent alternates between data collection and model
learning. During data collection, we add ε ∼ N (0, σ2) to each waypoint in τ r0 to encourage local
exploration. As shown in Tab. 3, we find zero-shot synthesized trajectories are typically meaningful
but insufficient. However, we can learn an effective dynamics model with less than 3 minutes of
online interactions by using these trajectories as exploration prior, leading to high eventual success
rates. In comparison, exploring without prior all exceed the maximum 12-hour limit.

7



4.4 Error Breakdown

In this section, we analyze the errors resulting from each component of VoxPoser and how the
overall system can be further improved. We conduct experiments in simulation where we have access
to ground-truth perception and dynamics model (i.e., the simulator). “Dynamics error” refers to
errors made by the dynamics model4. “Perception error” refers to errors made by the perception
module5. “Specification error” refers to errors made by the module specifying cost or parameters for
the low-level motion planner or primitives. Examples for each method include 1) noisy prediction by
the U-Net, 2) incorrect parameters specified by the LLM, and 3) incorrect value maps specified by
the LLM. As shown in Fig. 4, VoxPoser achieves lowest “specification error” due to its generalization
and flexibility. We also find that having access to a more robust perception pipeline and a physically-
realistic dynamics model can contribute to better overall performance. This observation aligns with
our real-world experiment, where most errors are from perception. For example, we find that the
detector is sensitive to initial poses of objects and is less robust when detecting object parts.

5 Conclusion, Limitations, & Future Works

In this work, we present VOXPOSER, a general framework for extracting affordances and constraints,
grounded in 3D perceptual space, from LLMs and VLMs for everyday manipulation tasks in the real
world, offering significant generalization advantages for open-set instructions and objects. Despite
compelling results, VoxPoser has several limitations. First, it relies on external perception modules,
which is limiting in tasks that require holistic visual reasoning or understanding of fine-grained object
geometries. Second, while applicable to efficient dynamics learning, a general-purpose dynamics
model is still required to achieve contact-rich tasks with the same level of generalization. Third, our
motion planner considers only end-effector trajectories while whole-arm planning is also feasible and
likely a better design choice [124–126]. Finally, manual prompt engineering is required for LLMs.
We also see several exciting venues for future work. For instance, recent success of multi-modal
LLMs [68, 2, 127] can be directly translated into VoxPoser for direct visual grounding. Methods
developed for alignment [128, 129] and prompting [130–133] may be used to alleviate prompt
engineering effort. Finally, more advanced trajectory optimization methods can be developed that
best interface with value maps synthesized by VoxPoser.
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A Appendix

A.1 Emergent Behavioral Capabilities

Which block is heavier?

I am left-handed. You’re off by 1cm to the left.

Open the drawer precisely by half.

Figure 5: Emergent behavioral capabilities by VoxPoser inherited from the language model, including behavioral
commonsense reasoning (top left), fine-grained language correction (top right), multi-step visual program
(bottom left), and estimating physical properties of objects (bottom right).

Emergent capabilities refer to unpredictable phenomenons that are only present in large models [135].
As VoxPoser uses pre-trained LLMs as backbone, we observe similar embodied emergent capabilities
driven by the rich world knowledge of LLMs. In particular, we focus our study on the behavioral
capabilities that are unique to VoxPoser. We observe the following capabilities:

• Behavioral Commonsense Reasoning: During a task where robot is setting the table, the
user can specify behavioral preferences such as “I am left-handed”, which requires the robot
to comprehend its meaning in the context of the task. VoxPoser decides that it should move
the fork from the right side of the bowl to the left side.

• Fine-grained Language Correction: For tasks that require high precision such as “covering
the teapot with the lid”, the user can give precise instructions to the robot such as “you’re
off by 1cm”. VoxPoser similarly adjusts its action based on the feedback.

• Multi-step Visual Program [136, 137]: Given a task “open the drawer precisely by half”
where there is insufficient information because object models are not available, VoxPoser can
come up with multi-step manipulation strategies based on visual feedback that first opens
the drawer fully while recording handle displacement, then close it back to the mid-point to
satisfy the requirement.

• Estimating Physical Properties: Given two blocks of unknown mass, the robot is tasked
to conduct physics experiments using an existing ramp to determine which block is heav-
ier. VoxPoser decides to push both blocks off the ramp and choose the block traveling the
farthest as the heavier block. Interestingly, this mirrors a common human oversight: in an
ideal, frictionless world, both blocks would traverse the same distance under the influence of
gravity. This serves as a lighthearted example that language models can exhibit limitations
similar to human reasoning.
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A.2 APIs for VoxPoser

Central to VoxPoser is an LLM generating Python code that is executed by a Python interpreter.
Besides exposing NumPy [16] and the Transforms3d library to the LLM, we provide the following
environment APIs that LLMs can choose to invoke:

detect(obj_name): Takes in an object name and returns a list of dictionaries, where each dictionary
corresponds to one instance of the matching object, containing center position, occupancy grid, and
mean normal vector.

execute(movable,affordance_map,avoidance_map,rotation_map,velocity_map,gripper_map):
Takes in an “entity of interest” as “movable” (a dictionary returned by detect) and (optionally)
a list of value maps and invokes the motion planner to execute the trajectory. Note that in MPC
settings, “movable” and the input value maps are functions that can be re-evaluated to reflect the
latest environment observation.

cm2index(cm,direction): Takes in a desired offset distance in centimeters along direction and
returns 3-dim vector reflecting displacement in voxel coordinates.

index2cm(index,direction): Inverse of cm2index. Takes in an integer “index” and a “direction”
vector and returns the distance in centimeters in world coordinates displaced by the “integer” in voxel
coordinates.

pointat2quat(vector): Takes in a desired pointing direction for the end-effector and returns a
satisfying target quaternion.

set_voxel_by_radius(voxel_map,voxel_xyz,radius_cm,value): Assigns “value” to voxels
within “radious_cm” from “voxel_xyz” in “voxel_map”.

get_empty_affordance_map(): Returns a default affordance map initialized with 0, where a high
value attracts the entity.

get_empty_avoidance_map(): Returns a default avoidance map initialized with 0, where a high
value repulses the entity.

get_empty_rotation_map(): Returns a default rotation map initialized with current end-effector
quaternion.

get_empty_gripper_map(): Returns a default gripper map initialized with current gripper action,
where 1 indicates “closed” and 0 indicates “open”.

get_empty_velocity_map(): Returns a default affordance map initialized with 1, where the number
represents scale factor (e.g., 0.5 for half of the default velocity).

reset_to_default_pose(): Reset to robot rest pose.
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A.3 Real-World Environment Setup

We use a Franka Emika Panda robot with a tabletop setup. We use Operational Space Controller
with impedance from Deoxys [138]. We mount two RGB-D cameras (Azure Kinect) at two opposite
ends of the table: bottom right and top left from the top down view. At the start of each rollout, both
cameras start recording and return the real-time RGB-D observations at 20 Hz.

For each task, we evaluate each method on two settings: without and with disturbances. For tasks
with disturbances, we apply three kinds of disturbances to the environment, which we pre-select a
sequence of them at the start of the evaluation: 1) random forces applied to the robot, 2) random
displacement of task-relevant and distractor objects, and 3) reverting task progress (e.g., pull drawer
open while it’s being closed by the robot). We only apply the third disturbances to tasks where “entity
of interest” is an object or object part.

We compare to a variant of Code as Policies [75] as a baseline that uses an LLM with basic ac-
tion primitives. The primitives include: move_to_pos, rotate_by_quat, set_vel, open_gripper,
close_gripper. We do not provide primitives such as pick-and-place as they would be tailored
for a particular suite of tasks that we do not constrain to in our study (similar to the control APIs
for VoxPoser specified in Sec. A.2).

A.3.1 Tasks

Move & Avoid: “Move to the top of [obj1] while staying away from [obj2]”, where [obj1] and [obj2]
are randomized everyday objects selected from the list: apple, banana, yellow bowl, headphones,
mug, wood block.

Set Up Table: “Please set up the table by placing utensils for my pasta”.

Close Drawer: “Close the [deixis] drawer”, where [deixis] can be “top” or “bottom”.

Open Bottle: “Turn open the vitamin bottle”.

Sweep Trash: “Please sweep the paper trash into the blue dustpan”.
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A.4 Simulated Environment Setup

We implement a tabletop manipulation environment with a Franka Emika Panda robot in
SAPIEN [120]. The controller takes as input a desired end-effector 6-DoF pose, calculates a sequence
of interpolated waypoints using inverse kinematics, and finally follows the waypoints using a PD
controller. We use a set of 10 colored blocks and 10 colored lines in addition to an articulated cabinet
with 3 drawers. They are initialized differently depending on the specific task. The lines are used as
visual landmarks and are not interactable. For perception, a total of 4 RGB-D cameras are mounted
at each end of the table pointing at the center of the workspace.

A.4.1 Tasks

We create a custom suite of 13 tasks shown in Table 4. Each task comes with a templated instruction
(shown in Table 4) where there may be one or multiple attributes randomized from the pre-defined
list below. At reset time, a number of objects are selected (depending on the specific task) and are
randomized across the workspace while making sure that task is not completed at reset and that task
completion is feasible. A complete list of attributes can be found below, divided into “seen” and
“unseen” categories:

Seen Attributes:

• [pos]: [“back left corner of the table”, “front right corner of the table”, “right side of the
table”, “back side of the table”]

• [obj]: [“blue block”, “green block”, “yellow block”, “pink block”, “brown block”]
• [preposition]: [“left of”, “front side of”, “top of”]
• [deixis]: [“topmost”, “second to the bottom”]
• [dist]: [3, 5, 7, 9, 11]
• [region]: [“right side of the table”, “back side of the table”]
• [velocity]: [“faster speed”, “a quarter of the speed”]
• [line]: [“blue line”, “green line”, “yellow line”, “pink line”, “brown line”]

Unseen Attributes:

• [pos]: [“back right corner of the table”, “front left corner of the table”, “left side of the
table”, “front side of the table”]

• [obj]: [“red block”, “orange block”, “purple block”, “cyan block”, “gray block”]
• [preposition]: [“right of”, “back side of”]
• [deixis]: [“bottommost”, “second to the top”]
• [dist]: [4, 6, 8, 10]
• [region]: [“left side of the table”, “front side of the table”]
• [velocity]: [“slower speed”, “3x speed”]
• [line]: [“red line”, “orange line”, “purple line”, “cyan line”, “gray line”]
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A.4.2 Full Results on Simulated Environments

U-Net + MP LLM + Prim. VoxPoser

Tasks SA UA SA UA SA UA

move to the [preposition] the [obj] 95.0% 0.0% 85.0% 60.0% 90.0% 55.0%

move to the [pos] while staying on the [preposition] the [obj] 100.0% 10.0% 80.0% 30.0% 95.0% 50.0%

move to the [pos] while moving at [velocity] when within [dist]cm from the obj 80.0% 0.0% 10.0% 0.0% 100.0% 95.0%

close the [deixis] drawer by pushing 0.0% 0.0% 60.0% 60.0% 80.0% 80.0%

push the [obj] along the [line] 0.0% 0.0% 0.0% 0.0% 65.0% 30.0%

grasp the [obj] from the table at [velocity] 35.0% 0.0% 75.0% 70.0% 65.0% 40.0%

drop the [obj] to the [pos] 70.0% 10.0% 60.0% 100.0% 60.0% 100.0%

push the [obj] while letting it stay on [region] 0.0% 5.0% 10.0% 0.0% 50.0% 50.0%

move to the [region] 5.0% 0.0% 100.0% 95.0% 100.0% 100.0%

move to the [pos] while staying at least [dist]cm from the [obj] 0.0% 0.0% 15.0% 20.0% 85.0% 90.0%

move to the [pos] while moving at [velocity] in the [region] 0.0% 0.0% 90.0% 45.0% 85.0% 85.0%

push the [obj] to the [pos] while staying away from [obstacle] 0.0% 0.0% 0.0% 10.0% 45.0% 55.0%

push the [obj] to the [pos] 0.0% 0.0% 20.0% 25.0% 80.0% 75.0%

Table 4: Full experimental results in simulation on seen tasks and unseen tasks. “SA” indicates seen attributes
and “UA” indicates unseen attributes. Each entry represents success rate averaged across 20 episodes.
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A.5 Prompts

Prompts used in Sec. 4.1 and Sec. 4.2 can be found below.

planner: Takes in a user instruction L and generates a sequence of sub-tasks ℓi which is fed into
“composer” (Note that planner is not used in simulation as the evaluated tasks consist of a single
manipulation phase).

real-world: voxposer.github.io/prompts/real_planner_prompt.txt.

composer: Takes in sub-task instruction ℓi and invokes necessary value map LMPs to compose
affordance maps and constraint maps.

simulation: voxposer.github.io/prompts/sim_composer_prompt.txt.

real-world: voxposer.github.io/prompts/real_composer_prompt.txt.

parse_query_obj: Takes in a text query of object/part name and returns a list of dictionaries,
where each dictionary corresponds to one instance of the matching object containing center position,
occupancy grid, and mean normal vector.

simulation: voxposer.github.io/prompts/sim_parse_query_obj_prompt.txt.

real-world: voxposer.github.io/prompts/real_parse_query_obj_prompt.txt.

get_affordance_map: Takes in natural language parametrization from composer and returns a
NumPy array for task affordance map.

simulation: voxposer.github.io/prompts/sim_get_affordance_map_prompt.txt.

real-world: voxposer.github.io/prompts/real_get_affordance_map_prompt.txt.

get_avoidance_map: Takes in natural language parametrization from composer and returns a
NumPy array for task avoidance map.

simulation: voxposer.github.io/prompts/sim_get_avoidance_map_prompt.txt.

real-world: voxposer.github.io/prompts/real_get_avoidance_map_prompt.txt.

get_rotation_map: Takes in natural language parametrization from composer and returns a NumPy
array for end-effector rotation map.

simulation: voxposer.github.io/prompts/sim_get_rotation_map_prompt.txt.

real-world: voxposer.github.io/prompts/real_get_rotation_map_prompt.txt.

get_gripper_map: Takes in natural language parametrization from composer and returns a NumPy
array for gripper action map.

simulation: voxposer.github.io/prompts/sim_get_gripper_map_prompt.txt.

real-world: voxposer.github.io/prompts/real_get_gripper_map_prompt.txt.

get_velocity_map: Takes in natural language parametrization from composer and returns a NumPy
array for end-effector velocity map.

simulation: voxposer.github.io/prompts/sim_get_velocity_map_prompt.txt.

real-world: voxposer.github.io/prompts/real_get_velocity_map_prompt.txt.
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