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Abstract

Composed Video Retrieval (CoVR) retrieves a target video given a query video and
a modification text describing the intended change. Existing CoVR benchmarks
emphasize appearance shifts or coarse event changes and therefore do not test
the ability to capture subtle, fast-paced temporal differences. We introduce TF-
CoVR, the first large-scale benchmark dedicated to temporally fine-grained CoVR.
TF-CoVR focuses on gymnastics and diving, and provides 180K triplets drawn
from FineGym and FineDiving datasets. Previous CoVR benchmarks, focusing on
temporal aspect, link each query to a single target segment taken from the same
video, limiting practical usefulness. In TF-CoVR, we instead construct each <query,
modification> pair by prompting an LLM with the label differences between clips
drawn from different videos; every pair is thus associated with multiple valid
target videos (3.9 on average), reflecting real-world tasks such as sports-highlight
generation. To model these temporal dynamics, we propose TF-CoVR-Base, a
concise two-stage training framework: (i) pre-train a video encoder on fine-grained
action classification to obtain temporally discriminative embeddings; (ii) align the
composed query with candidate videos using contrastive learning. We conduct
the first comprehensive study of image, video, and general multimodal embedding
(GME) models on temporally fine-grained composed retrieval in both zero-shot and
fine-tuning regimes. On TF-CoVR, TF-CoVR-Base improves zero-shot mAP@50
from 5.92 (LanguageBind) to 7.51, and after fine-tuning raises the state-of-the-art
from 19.83 to 27.22. We have released our dataset and code publicly available at
https://github.com/UCF-CRCV/TF-CoVR.

1 Introduction

Recent progress in content-based image retrieval has evolved into multimodal composed image re-
trieval (CoIR) [49, 1, 23], where a system receives a query image and a short textual modification and
returns the image that satisfies the composition. Composed video retrieval (CoVR) [41] generalizes
this idea, asking for a target video that realizes a user-described transformation of a query clip, for
example, “same river landscape, but in springtime instead of autumn” (Fig. 1a) or “same pillow, but
picking up rather than putting down”(Fig. 1b).

Existing CoVR benchmarks cover only a limited portion of the composition space. For example,
WebVid-CoVR [41] (Fig. 1a) is dominated by appearance changes and demands minimal temporal
reasoning, while Ego-CVR [9] restricts the query and target to different segments of a single video
(Fig. 1b). In practice, many high-value applications depend on fine-grained motion differences:
surgical monitoring of subtle patient movements [38], low-latency AR/VR gesture recognition [47],
and sports analytics where distinguishing a 1.5-turn from a 2-turn somersault drives coaching feedback
[8, 26]. The commercial impact is equally clear: the Olympic Broadcasting Service AI highlight
pipeline in Paris 2024 increased viewer engagement 13 times in 14 sports [13]. No public dataset
currently evaluates CoVR at this temporal resolution.
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Figure 1: Comparison of composed-retrieval triplets in WebVid-CoVR, Ego-CVR, and TF-CoVR.
(a) WebVid-CoVR targets appearance changes. (b) Ego-CVR selects the target clip from a different
time-stamp of the same video, showing a new interaction with the same object. (c) TF-CoVR supports
two fine-grained modification types: temporal change- varying sub-actions within the same event
(row 3), and event change- the same sub-action performed on different apparatuses (row 4).

To address these limitations, we present TF-CoVR (Temporally Fine-grained Composed Video
Retrieval), a large-scale benchmark for composed retrieval in gymnastics and diving constructed
from the temporally annotated FineGym [32] and FineDiving [46] datasets. Previous work such
as Ego-CVR [9] restricts query and target clips to different segments of a single video; in practice,
however, relevant results often come from distinct videos. TF-CoVR instead provides 180K triplets,
each containing a query video, a textual modification, and one or more ground-truth target videos.
We call each ⟨query, modification⟩ pair a composed query. The benchmark covers both event-level
changes (e.g. the same sub-action on different apparatuses) and fine-grained sub-action transitions
(e.g. varying rotation counts or entry/exit techniques), yielding a setting that reflects real-world
temporally fine-grained retrieval far more closely than existing datasets. A thorough comparison with
prior datasets is shown in Table 1.

Existing CoVR models, trained on appearance-centric data, usually obtain video representations by
simply averaging frame embeddings, thereby discarding temporal structure. Fine-grained retrieval
demands video embeddings that preserve these dynamics. To this end we introduce a strong baseline,
TF-CoVR-Base. Unlike recent video-language systems that depend on large-scale descriptive caption
rewriting with LLMs, TF-CoVR-Base follows a concise two-stage pipeline. Stage 1 pre-trains a video
encoder on fine-grained action classification, producing temporally discriminative embeddings. Stage
2 forms a composed query by concatenating the query-video embedding with the text-modification
embedding and aligns it with candidate video embeddings via contrastive learning.

We benchmark TF-CoVR with image-based CoIR baselines, video-based CoVR systems, and general
multimodal embedding (GME) models such as E5-V, evaluating every method in both zero-shot and
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Table 1: Comparison of existing datasets for composed image and video retrieval, highlighting
the unique features of TF-CoVR. Datasets are categorized by modality (Type), where � indicates
image-based and Å indicates video-based triplets.

Dataset Type #Triplets Train Eval Multi-GT Eval Metrics #Sub-actions

CIRR [24] � 36K ✓ ✓ ✗ Recall@K ✗
FashionIQ [44] � 30K ✓ ✓ ✗ Recall@K ✗
CC-CoIR [41] � 3.3M ✓ ✗ ✗ Recall@K ✗
MTCIR [12] � 3.4M ✓ ✗ ✗ Recall@K ✗
WebVid-CoVR [41] Å 1.6M ✓ ✓ ✗ Recall@K ✗
EgoCVR [9] Å 2K ✗ ✓ ✗ Recall@K ✗
FineCVR [50] Å 1M ✓ ✓ ✗ Recall@K ✗
CIRCO [3] � 800 ✗ ✓ ✓ mAP@K ✗
TF-CoVR (Ours) Å 180K ✓ ✓ ✓ mAP@K 306

fine-tuned regimes. TF-CoVR-Base attains 7.51 mAP@50 in the zero-shot setting, surpassing the best
GME model (E5-V, 5.22) and all specialized CoVR methods. Fine-tuning further lifts performance
to 27.22 mAP@50, a sizeable gain over the previous state-of-the-art BLIPCoVR-ECDE (19.83). These
results underscore the need for temporal granularity and motion-aware supervision in CoVR, factors
often missing in current benchmarks. TF-CoVR provides the scale to support this and exposes the
limitations of appearance-based models.

To summarize, our main contributions are as follows:

• We introduce TF-CoVR, a large-scale benchmark for composed video retrieval centered on sports
actions. The dataset comprises 180K training triplets and a test set where each query is associated
with an average of 3.9 valid targets, enabling more realistic and challenging evaluation.

• We propose TF-CoVR-Base, a simple yet strong baseline that captures temporally fine-grained
visual cues without relying on descriptive, LLM-generated captions.

• We provide the first comprehensive study of image, video, and GME models on temporally fine-
grained composed retrieval under both zero-shot and fine-tuning protocols, where TF-CoVR-Base
yields consistent gains across settings.

2 Related Work

Video Understanding and Fast-Paced Datasets: Video understanding [25] often involves classifying
videos into predefined action categories [11, 16, 39]. These tasks are broadly categorized as coarse- or
fine-grained. Coarse-grained datasets like Charades [34] and Breakfast [17] capture long, structured
activities, but lack the temporal resolution and action granularity needed for composed retrieval. In
contrast, fine-grained datasets like FineGym [32] and FineDiving [46] provide temporally segmented
labels for sports actions. They cover high-motion actions where subtle differences (e.g., twists or
apparatus) lead to semantic variation, making them suitable for retrieval tasks with fine-grained
temporal changes. Yet these datasets remain unexplored in the CoVR setting, leaving a gap in
leveraging temporally rich datasets. TF-CoVR bridges this gap by introducing a benchmark that
explicitly targets temporally grounded retrieval in fast-paced, fine-grained video settings.

Composed Image Retrieval: CoIR retrieves a target image using a query image and a modification
text describing the desired change. CoIR models are trained on large-scale triplets of query image,
modification text, and target image [42, 7, 18], which have proven useful for generalizing across
open-domain retrieval. CIRR [24] provides 36K curated triplets with human-written modification
texts for CoIR, but it suffers from false negatives and query mismatches. CIRCO [2] improves on this
by using COCO [20] and supporting multiple valid targets per query. More recently, CoLLM [12]
released MTCIR, a 3.4M triplet dataset with natural captions and diverse visual scenes, addressing
the lack of large-scale, non-synthetic data. Despite recent progress, existing CoIR datasets remain
inherently image-centric and lack temporal depth, which restricts their applicability to video retrieval
tasks requiring fine-grained temporal alignment.

Composed Video Retrieval: WebVid-CoVR [41] first introduced CoVR as a video extension of
CoIR, using query-modification-target triplets sampled from open-domain videos. However, its lack
of temporal grounding limits WebVid-CoVR’s effectiveness in retrieving videos based on fine-grained
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Figure 2: Overview of our automatic triplet generation pipeline for TF-CoVR. We start with tempo-
rally labeled clips from FineGym and FineDiving datasets. Using CLIP-based text embeddings, we
compute similarity between temporal labels and form pairs with high semantic similarity. These label
pairs are passed to GPT-4o along with in-context examples to generate natural language modifications
describing the temporal differences between them. Each generated triplet consists of a query video, a
target video, and a modification text capturing fine-grained temporal action changes.

action changes. EgoCVR [9] addressed this by constructing triplets within the same egocentric video
to capture temporal cues. FineCVR [50] advanced CoVR by constructing a fine-grained retrieval
benchmark using existing video understanding datasets such as ActivityNet [4], ActionGenome [14],
HVU [6], and MSR-VTT [45]. Additionally, it introduced a consistency attribute in the modification
text to guide retrieval more effectively. While an important step, the source datasets are slow-paced
and coarse-grained, limiting their ability to capture subtle action transitions. Despite progress, CoVR
benchmarks remain limited, relying mostly on slow-paced or object-centric content and offer only a
single target per query, limiting real-world evaluation where multiple valid matches may exist.

Multimodal Embedding Models for Composed Retrieval: Recent advances in MLLMs such as
GPT-4o [10], LLaVa [22, 21], and QwenVL [43] have significantly accelerated progress in joint
visual-language understanding and reasoning tasks [31, 5, 35, 30, 36]. VISTA [53] and MARVEL [54]
extend image-text retrieval by pairing pre-trained text encoders with enhanced vision encoders to
better capture joint semantics. E5-V [15] and MM-Embed [19] further improve retrieval by using
relevance supervision and hard negative mining to mitigate modality collapse. Zhang et al. recently
introduced GME [51], a retrieval model that demonstrates strong performance on CoIR, particularly in
open-domain image-text query settings. However, GME and similar MLLM-based retrievers remain
untested in CoVR, especially in fast-paced scenarios requiring fine-grained temporal alignment.

3 TF-CoVR: Dataset Generation

FineGym and FineDiving for Composed Video Retrieval: Composed video retrieval (CoVR)
operates on triplets (Vq, Tm, Vt), where Vq, Tm, and Vt denote the query video, modification text,
and target video, respectively. Prior works [41, 9] construct such triplets by comparing captions and
selecting pairs that differ by a small textual change, often a single word. This approach, however,
relies on the availability of captions, which limits its applicability to datasets without narration. To
overcome this, we use FineGym [32] and FineDiving [46], which contain temporally annotated
segments but no captions. Instead of captions, we utilize the datasets’ fine-grained temporal labels,
which describe precise sub-actions. FineGym provides 288 labels over 32,697 clips (avg. 1.7s), from
167 long videos, and FineDiving includes 52 labels across 3,000 clips.

To identify meaningful video pairs, we compute CLIP-based similarity scores between all temporal
labels and select those with high semantic similarity [27]. These pairs are then manually verified and
categorized into two types: (1) temporal changes, where the sub-action differs within the same event
(e.g., (Vault) round-off, flic-flac with 0.5 turn on, stretched salto forward with 0.5 turn off vs. ...with 2
turn off ), and (2) event changes, where the same sub-action occurs in different apparatus contexts
(e.g., (Floor Exercise) switch leap with 1 turn vs. (Balance Beam) switch leap with 1 turn). These
examples show that even visually similar actions can have different semantic meanings depending on
temporal or contextual cues. We apply this strategy to both FineGym and FineDiving to generate
rich, fine-grained video triplets. (See Figure 1 for illustrations.)

Modification Instruction and Triplet Generation: To generate modification texts for TF-CoVR,
we start with the fine-grained temporal labels associated with gymnastics and diving segments, such
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Figure 3: Overview of TF-CoVR-Base framework. Stage 1 learns temporal video representations via
supervised classification using the AIM encoder. In Stage 2, the pretrained AIM and BLIP encoders
are frozen, and a projection layer and MLP are trained to align the query-modification pair with
the target video using contrastive loss.During inference, the model retrieves relevant videos from
TF-CoVR based on a user-provided query video and textual modification.

as Forward, 1.5 Soms.Pike, Entry or (Vault) tsukahara stretched with 2 turn. Using CLIP, we compute
pairwise similarity scores between all labels and select those that differ in small but meaningful
aspects, representing source and target actions connected by a semantic modification.

Each selected label pair is passed to GPT-4o [10] along with a prompt and 15 in-context examples
capturing typical sub-action and event-level changes [40]. GPT-4o generates concise natural language
instructions that describe how to transform the source into the target, e.g., Show with 2.5 somersaults
or Show on Balance Beam. Unlike prior work such as FineCVR [50], which emphasizes visual
consistency, our modifications focus exclusively on temporal changes, making them better suited for
real-world use cases like highlight generation where visual similarity is not required.

To form triplets, we split the original long-form videos into training and testing sets to avoid
overlap. From these, sub-action clips are extracted and paired with the corresponding modification
text. Although individual clips may be reused, each resulting triplet, comprising a query video, a
modification text, and a target video, is unique. This process is repeated exhaustively across all
labeled segments. Figure 2 illustrates the full pipeline, from label pairing to triplet generation.

TF-CoVR Statistics: TF-CoVR contains 180K training triplets and 473 testing queries, each
associated with multiple ground-truth target videos (Table 1). The test set specifically addresses the
challenge of evaluating multiple valid retrievals, a limitation in existing CoVR benchmarks. The
dataset spans 306 fine-grained sports actions: 259 from FineGym [32] and 47 from FineDiving [46].
Clip durations range from 0.03s to 29.00s, with an average of 1.90s.

Modification texts vary from 2 to 19 words (e.g., “show off” to “Change direction to Reverse, reduce
to two and a half twists, and show with one and a half somersaults”), with an average length of 6.11
words. Each test query has an average of 3.94 valid targets, supporting realistic and challenging
evaluation under a multi-ground-truth setting. This makes TF-CoVR suited for applications like
highlight generation in sports broadcasting, where retrieving diverse sub-action variations is essential.

4 TF-CoVR-Base: Structured Temporal Learning for CoVR

Method Overview: In the composed video retrieval (CoVR) task, the goal is to retrieve a target video
Vt given a query video Vq and a textual modification Tm that describes the intended transformation.
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Table 2: Benchmarking results on TF-CoVR using mAP@K for K ∈ {5, 10, 25, 50}. We evaluate
two groups of models: (1) Existing CoVR methods trained on WebVid-CoVR and not fine-tuned on
TF-CoVR, and (2) General Multimodal Embeddings, tested in a zero-shot setting. Each model is
evaluated on query-target pairs consisting of the specified number of sampled frames. “CA” denotes
the use of cross-attention fusion.

Modalities Model Fusion #Query #Target mAP@K (↑)

Video Text Frames Frames 5 10 25 50

General Multimodal Embeddings (TF-CoVR)

✓ ✓ GME-Qwen2-VL-2B [51] MLLM 1 15 2.28 2.64 3.29 3.81
✓ ✓ MM-Embed [19] MLLM 1 15 2.39 2.81 3.61 4.14
✓ ✓ E5-V [15] Avg 1 15 3.14 3.78 4.65 5.22

Not fine-tuned on TF-CoVR

✗ ✓ BLIP2 - - 15 1.34 1.79 2.20 2.50
✓ ✗ BLIP2 - 1 15 1.74 2.20 3.06 3.62
✓ ✓ BLIP-CoVR [41] CA 1 15 2.33 2.99 3.90 4.50
✓ ✓ BLIPCoVR-ECDE [37] CA 1 15 0.78 0.88 1.16 1.37
✗ ✓ TF-CVR [9] - - 15 0.56 0.76 0.99 1.24
✓ ✓ LanguageBind [55] Avg 8 8 3.43 4.37 5.26 5.92
✓ ✓ AIM (k400) Avg 8 8 3.75 4.37 5.47 6.12
✓ ✓ AIM (k400) Avg 16 16 4.23 5.14 6.37 7.13
✓ ✓ AIM (k400) Avg 32 32 4.22 5.15 6.50 7.30
✓ ✓ AIM (diving48) Avg 32 32 4.81 5.78 6.82 7.51

This requires learning a cross-modal relationship between visual and textual inputs that captures
how the target differs from the query. While prior methods have shown promise on general video
datasets, TF-CoVR becomes significantly more challenging in fine-grained, fast-paced domains such
as gymnastics and diving, where subtle temporal action differences are critical. Existing approaches
often overlook these dynamics, motivating the need for a more temporally grounded framework.

Two-Stage CoVR Approach: We propose a two-stage training framework, TF-CoVR-Base, for
composed video retrieval in fine-grained, fast-paced domains such as gymnastics and diving. TF-
CoVR-Base is designed to explicitly capture the temporal structure in videos and align it with textual
modifications for accurate retrieval. Unlike prior approaches that rely on average-pooled frame
features from image-level encoders, TF-CoVR-Base decouples temporal representation learning
from the retrieval task. It first learns temporally rich video embeddings through supervised action
classification, and then uses these embeddings in a contrastive retrieval setup. We describe each stage
of the framework below.

Stage One: Temporal Pretraining via Video Classification: In the first stage, we aim to learn
temporally rich video representations from TF-CoVR. To this end, we employ the AIM encoder [48],
which is specifically designed to capture temporal dependencies by integrating temporal adapters into
a CLIP-based backbone.

We pretrain the AIM encoder on a supervised video classification task using all videos from the
triplets in the training set. Let V = {f1, f2, . . . , ff} denote a video clip with f frames. The AIM
encoder processes each frame and produces a sequence-level embedding:

zV = AIM(V ).

The classification logits zV are passed through a softmax function to produce a probability distribution
over classes:

p̂
(i)
V = Softmax(z(i)V ).

Each video V is annotated with a ground-truth label yV , and the model is optimized using the standard
cross-entropy loss:

Lcls = −
C∑
i=1

y
(i)
V log p̂

(i)
V .
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where C = 306 is the total number of fine-grained action classes in the TF-CoVR dataset.

Stage Two: Contrastive Training for Retrieval: In the second stage of TF-CoVR-Base, we train a
contrastive model to align the composed query representations with the target video representations.
As illustrated in Figure 3, each training sample is structured as a triplet (Vq, Tm, Vt), where Vq is the
query video consisting of N frames, Tm is the modification text with L tokens, and Vt is the target
video comprising M frames.

We use our pretrained and frozen AIM encoder from stage 1 to extract temporally rich embeddings
for the query and target videos:

zq = AIM(Vq), zt = AIM(Vt).

The modification text Tm is encoded using the BLIP2 text encoder Etext, followed by a learnable
projection layer P that maps the text embedding into a shared embedding space. This step ensures
the textual features are adapted and aligned with the video modality for the CoVR task:

zm = P(Etext(Tm)).

We then fuse the query video embedding zq and the projected text embedding zm using a multi-layer
perceptron (MLP), producing the composed query representations:

zqm = MLP(zq, zm).

To compare the composed query embeddings with the target video embeddings, both zqm and zt are
projected into a shared embedding space and normalized to unit vectors. Their relationship is then
measured using cosine, computed as:

Si,j =
z
(i)
qm · z(j)t

∥z(i)qm∥ ∥z(j)t ∥
.

To ensure numerical stability and regulate the scale of similarity scores, cosine similarity is adjusted
using a temperature parameter:

sim(z(i)qm, z
(j)
t ) =

Si,j

τ
.

where τ ∈ R>0 is the temperature parameter. We then define a scaled similarity matrix S̃ using a
concentration parameter β ≥ 0:

S̃i,j = β · Si,j .

The weight assigned to each negative sample in the loss is computed using a softmax-like reweighting
scheme, with diagonal entries (positive pairs) scaled by a hyperparameter α ∈ (0, 1]:

wi→t
i,j =


α, if i = j

(n− 1) · exp(S̃i,j)∑
k ̸=i

exp(S̃i,k)
, otherwise wt→i

j,i =


α, if j = i

(n− 1) · exp(S̃j,i)∑
k ̸=i

exp(S̃k,i)
, otherwise

Finally, the HN-NCE loss [29] is defined as followed, which emphasizes hard negatives by assigning
greater weights to semantically similar but incorrect targets. Given a batch B of triplets (qi,mi, ti),
the loss is defined as:

Lv(B) =
1

n

n∑
i=1

log
 n∑

j=1

exp(Si,j) · wi→t
i,j

+ log

 n∑
j=1

exp(Sj,i) · wt→i
j,i

− 2Si,i

 .

Here, Si,j is the cosine similarity between the composed query z
(i)
qm and the target video z

(j)
t , α is a

scalar constant (set to 1), τ is a temperature hyperparameter (set to 0.07). In our experiments, we set
α = 1 and β = 0, reducing the formulation to the standard InfoNCE [28] loss.
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Table 3: Evaluation of models fine-tuned on TF-CoVR using mAP@K for K ∈ {5, 10, 25, 50}. We
report the performance of various fusion strategies and model architectures trained on TF-CoVR.
Fusion methods include MLP and cross-attention (CA). Each model is evaluated using a fixed number
of sampled frames from both query and target videos. Fine-tuning on TF-CoVR leads to significant
improvements across all models. The results for TF-CoVR-Base (Stage-2 only) reflect the model’s
performance without Stage-1 temporal pretraining.

Modalities Model Fusion #Query #Target mAP@K (↑)
Video Text Frames Frames 5 10 25 50

Fine-tuned on TF-CoVR

✗ ✓ BLIP2 - - 15 10.69 13.02 15.35 16.41
✓ ✗ BLIP2 - 1 15 4.86 6.49 8.92 10.06
✓ ✓ CLIP MLP 1 15 7.01 8.35 10.22 11.38
✓ ✓ BLIP2 MLP 1 15 10.86 13.20 15.38 16.31
✓ ✓ CLIP MLP 15 15 6.40 7.46 9.21 10.40
✓ ✓ BLIP2 MLP 15 15 11.64 14.81 16.74 17.55
✓ ✓ BLIP-CoVR CA [41] 1 15 11.07 13.94 16.07 16.88
✓ ✓ BLIPCoVR-ECDE CA [37] 1 15 13.03 15.90 18.62 19.83
✓ ✓ TF-CoVR-Base (Stage-2 only) MLP 8 8 15.08 18.70 21.78 22.61
✓ ✓ TF-CoVR-Base (Ours) MLP 12 12 21.85 24.23 26.47 27.22

5 Discussion

Table 4: Performance of GME models on existing CoIR
benchmarks. We report mAP@5 and Recall@10 on Fash-
ionIQ, CIRR, and CIRCO using official evaluation protocols.
Values are directly taken from the original papers.

Model Metric FQ CIRR CIRCO
E5-V [15] Recall@10 3.73 13.19 -

GME-2B [51] Recall@10 26.34 47.70 -
MM-Embed [19] Recall@10 25.7 50.0 -

E5-V [15] mAP@5 - - 19.1
MM-Embed [19] mAP@5 - - 32.3

Evaluation Metric: To effectively
evaluate retrieval performance in the
presence of multiple ground-truth tar-
get videos, we adopt the mean Aver-
age Precision at K (mAP@K) met-
ric, as proposed in CIRCO [3]. The
mAP@K metric measures whether the
correct target videos are retrieved and
considers the ranks at which they ap-
pear in the retrieval results.

Here, K denotes the number of top-
ranked results considered for evalua-
tion. For example, mAP@5 measures precision based on the top 5 retrieved videos, capturing how
well the model retrieves relevant targets early in the ranked list. A higher K allows evaluation of
broader retrieval quality, while a lower K emphasizes top-ranking precision.

Specialized vs. Generalized Multimodal Models for CoVR: We compare specialized models
trained specifically for composed video retrieval, such as those trained on WebVid-CoVR [41], with
Generalized Multimodal Embedding (GME) models that have not seen CoVR data. Among the
specialized baselines, we include two image-based encoders (CLIP and BLIP) and one video-based
encoder (LanguageBind) to cover different modality types and fusion mechanisms. As shown in
Table 2, our evaluation reveals that GME models consistently outperform most specialized CoVR
methods in the zero-shot setting. For example, E5-V [15] achieves 5.22 mAP@50, outperforming
BLIP-CoVR (4.50) and BLIPCoVR-ECDE (1.37), and closely matching LanguageBind (5.92). Other
GME variants like MM-Embed and GME-Qwen2-VL-2B also show promising results. In contrast,
TF-CVR [9] performs worst among all tested models, with only 1.24 mAP@50, underscoring its
limitations in handling fine-grained action variations.

This performance gap is partly due to TF-CVR’s reliance on a captioning model to describe the query
video. We replaced the original Lavila [52] with Video-XL [33], which provides better captions for
structured sports content. However, even Video-XL fails to capture subtle temporal cues like twist
counts or somersaults, critical for accurate retrieval, causing TF-CVR to struggle with temporally
precise matches. In contrast, GME models benefit from large-scale multimodal training involving
text, images, and combinations thereof, allowing them to generalize well to CoVR without task-
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Figure 4: Qualitative results for the composed video retrieval task using our two-stage TF-CoVR-Base
model. Each column showcases a query video (top), the corresponding modification instruction
(middle), and the top-3 retrieved target videos (ranks 1–3) based on model predictions. TF-CoVR-
Base effectively captures subtle temporal variations and retrieves the correct target video at higher
ranks. In contrast, the baseline method BLIPCoVR-ECDE often fails to identify the correct action class
or resolve fine-grained temporal differences, as indicated by the errors highlighted in red.

specific fine-tuning. We expect their performance to improve further with fine-tuning on TF-CoVR,
though we leave this exploration to future work. See supplementary material for a comparison of
Lavila-generated captions.

Evaluating TF-CoVR-Base Against Existing Methods: We compare our proposed two-stage TF-
CoVR-Base framework with all existing CoVR baselines in Table 3. Our full model achieves 27.22
mAP@50, significantly outperforming the strongest prior method, BLIPCoVR-ECDE (19.83). Even our
Stage-2-only variant (trained without temporal pretraining) outperforms all existing methods with
22.61 mAP@50, highlighting the strength of our contrastive fusion strategy. Unlike BLIPCoVR-ECDE,
our model does not rely on detailed textual descriptions of the query video and instead learns temporal
structure directly from the visual input. This makes it especially effective in structured, fast-paced
sports videos, where subtle action distinctions, such as change in twist count or apparatus, are visually
grounded. Across all K values, TF-CoVR-Base shows consistent improvements of 4-6 mAP points.

Table 5: Performance comparison between the HN-NCE and
InfoNCE loss by varying the HN-weighting.

HN-Weighting mAP@5 mAP@10 mAP@25 mAP@50
0.7 20.40 22.46 24.63 25.37
0.5 21.02 22.89 25.21 25.91
0.3 20.86 23.35 25.44 26.16
0.0 21.85 24.23 26.47 27.22

Impact of Hard-Negative Weight-
ing on TF-CoVR: We further inves-
tigate the impact of hard-negative
(HN) weighting in the HN-NCE loss
function. Specifically, we compare
different weighting values, includ-
ing the baseline setting of 0, which
reduces the loss to the standard In-
foNCE [28] formulation. Our re-
sults show that InfoNCE (HN-weighting = 0) consistently outperforms the HN-NCE variants with
positive weighting values. While HN-NCE is designed to emphasize hard negatives by assigning
them higher weights, this approach can introduce optimization noise, particularly in fine-grained
settings where many negative samples are visually similar to the positives. In such scenarios, treating
all negatives equally, as in InfoNCE, appears to provide more stable training and better discrimination
based on subtle visual cues. As shown in Table 5, reducing the HN-weighting from 0.7 to 0.0 results
in a performance gain from 25.37 to 27.22 mAP, an increase of over 1.8 mAP points.
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Qualitative Analysis: Figure 4 illustrates the effectiveness of our method using qualitative examples.
The retrieved target videos accurately reflect the action modifications described in the input text.
Correctly retrieved clips are outlined in green, and incorrect ones in red. Interestingly, even incorrect
predictions are often semantically close to the intended target, revealing the fine-grained difficulty of
TF-CoVR. For example, in the third column of Figure 4, the query video includes a turning motion,
while the modification requests a “no turn” variation. Our method correctly retrieves “no turn”
actions at top ranks, but at rank 3, retrieves a “split jump” video, visually similar but semantically
different. We highlight this with a red overlay to emphasize the subtle distinction in motion, showing
the value of TF-CoVR for evaluating fine-grained temporal reasoning.

Domain-Specific Pretraining for Temporal Reasoning: Although TF-CoVR-Base is designed
to be domain agnostic, its current training leverages domain-specific datasets to better capture the
fine-grained and structured nature of different activity domains, such as surgery or daily tasks.
Domain-specific pretraining proves beneficial for learning distinct temporal patterns and visual cues
inherent to each domain. For example, in a surgical setting, a query video may depict a sequence
such as “insert needle at a 30-degree angle, advance 2 cm, then begin the suture loop with the right
hand,” while the corresponding target video modifies this to “insert needle at a 45-degree angle,
advance 3 cm, then begin the suture loop with the right hand.” The modification text, “change needle
insertion angle to 45 degrees and advance by 3 cm instead of 2 cm,” captures subtle changes in motion
angle and depth. Accurately modeling such fine-grained temporal variations necessitates temporally
discriminative features, which are challenging to learn without domain-specific pretraining. This
positions TF-CoVR-Base to provide a strong foundation for exploring more generalizable temporal
reasoning methods across diverse and less-structured video domains.

6 Limitations and Conclusion

Limitations. TF-CoVR offers a new perspective on composed video retrieval by focusing on
retrieving videos that reflect subtle action changes, guided by a modification text. While it adds
valuable depth to the field, the dataset has some limitations. One limitation is that it requires expert
effort to temporally annotate videos such as from FineGym and FineDiving, which is currently lacking
in the video-understanding community, and such annotation is expensive to scale up. This reflects
the trade-off between expert-driven annotations and scalability. Regarding the TF-CoVR-Base, it is
currently two-stage, which may not provide a fully end-to-end solution; a better approach could be a
single-stage model that simultaneously learns temporally rich video representations and aligns them
with the modification text.

Conclusion. In this work, we introduced TF-CoVR, a large-scale dataset comprising 180K unique
triplets centered on fine-grained sports actions, spanning 306 diverse sub-actions from gymnastics
and diving videos. TF-CoVR brings a new dimension to the CoVR task by emphasizing subtle
temporal action changes in fast-paced, structured video domains. Unlike existing CoVR datasets,
it supports multiple ground-truth target videos per query, addressing a critical limitation in current
benchmarks and enabling more realistic and flexible evaluation. In addition, we propose a two-stage
training framework that explicitly models temporal dynamics through supervised pre-training. Our
method significantly outperforms existing approaches on TF-CoVR. Furthermore, we conducted a
comprehensive benchmarking of both existing CoVR methods and General Multimodal Embedding
(GME) models, marking the first systematic evaluation of GME performance in the CoVR setting. We
envision TF-CoVR serving as a valuable resource for real-world applications such as sports highlight
generation, where retrieving nuanced sub-action variations is essential for generating engaging and
contextually rich video content.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that we propose a fine-grained sports action CoVR dataset FineGD-
CoVR in the abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations of our work in the section 6 of the paper.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We discussed the assumptions of the existing theory in the CoVR literature
and discussed in detail about it in the related work and dataset generation process.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have discussed our two-stage training method and the required details to
reproduce the main results of the paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided our FineGD-CoVR dataset and the codebases used for
conducting our experiments. The link to the codebase and dataset is shared in the abstract.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, both the training and testing splits of FineGD-CoVR, as well as the
hyperparameter and optimizer details, are provided in the Experimental Setup section.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Although our paper does not report error bars for statistical significance of
experiments, we did fair comparison by using the same setting with the existing methods.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: We have provided our compute resources details in the Experimental Setup.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have thoroughly reviewed the NeurIPS Code of Ethics, and our work
fully adheres to its guidelines.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal benefits and real-world applications of our
work in the Introduction section.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We provided the details about the safeguarding of our FineGD-CoVR dataset
in the dataset description.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have given proper credits and license to the original work of the assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented our FineGD-CoVR in great detail in our paper.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: As our work focuses on creating an automatic method for creating highlights
in broadcasting services. We were not able benchmark with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: For our dataset, we used publicly available video datasets and have cited their
respective licenses in the paper to clarify the terms of access and usage.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have given a detailed description of the usage of the LLM for generating
the modification in section 3.
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