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Abstract

Collaborative learning offers a promising avenue for leveraging decentralized data.
However, collaboration in groups of strategic learners is not a given. In this work,
we consider strategic agents who wish to train a model together but have sampling
distributions of different quality. The collaboration is organized by a benevolent
aggregator who gathers samples so as to maximize total welfare, but is unaware
of data quality. This setting allows us to shed light on the deleterious effect of
adverse selection in collaborative learning. More precisely, we demonstrate that
when data quality indices are private, the coalition may undergo a phenomenon
known as unravelling, wherein it shrinks up to the point that it becomes empty or
solely comprised of the worst agent. We show how this issue can be addressed
without making use of external transfers, by proposing a novel method inspired
by probabilistic verification. This approach makes the grand coalition a Nash
equilibrium with high probability despite information asymmetry, thereby breaking
unravelling.

1 Introduction

Collaborative learning is a framework in which multiple agents share their data and computational
resources to address a common learning task [Blum et al., 2017, Kairouz et al., 2021]. A significant
challenge arises when the quality of these distributions is unknown centrally and agents are strategic.
Indeed, participants may be tempted to withhold or misrepresent the quality of their data to gain
a competitive advantage. These strategic behaviors and their consequences have been studied
extensively in the literature on information economics [Mas-Colell et al., 1995, Laffont and Martimort,
2001]. In particular, information asymmetry is known to result in adverse selection, whereby low-
quality goods end up dominating the market. In the current paper we study collaborative learning
from the perspective of information economics.

A vivid illustration of adverse selection is found in Akerlof’s seminal work on the market for lemons
[second-hand cars of low quality, Akerlof, 1970]. Because buyers cannot properly assess the quality
of cars on the second-hand market, their inclination to pay decreases. As a consequence, sellers with
high-quality cars withdraw from the market, since the proposed price falls below their reservation
price. This in turn lowers the buyers’ expectation regarding the average quality of cars on the market,
so their willingness to pay decreases even more, which de facto crowds out additional cars. The
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market may therefore enter a death spiral, up to the point where only low-quality cars are exchanged in
any competitive Nash equilibrium. This phenomenon is known as unravelling. The insurance market
serves as another poignant example of this effect [Rothschild and Stiglitz, 1976, Einav and Finkelstein,
2011, Hendren, 2013]. In insurance, information asymmetry arises due to the fact that insurees possess
private knowledge about their individual risk profiles, which insurers lack. Individuals with higher
risk are more inclined to purchase policy, while those with lower risk opt out. Consequently, insurers
are left with a pool of policyholders skewed towards higher risk, leading to increased premiums to
cover potential losses. This, in turn, prompts low-risk individuals to exit the market, exacerbating
adverse selection further—a cycle reminiscent of the unravelling described by Akerlof.

We study the problem of whether collaborative learning could also fall victim to unravelling. We
consider strategic agents who have access to sampling distributions of varying quality and wish to
jointly train a model. They delegate the training process to a central authority who collects samples so
as to maximize total welfare. We ask whether adverse selection can arise when data quality is private
information. In particular, the presence of a low-quality data owner may harm the model, prompting
high-quality owner to leave the collaboration and train a model entirely on their own. Their departure
would decrease the average data quality even more, and create a vicious circle. In the worst case, the
coalition of learners would reduce to the lowest data quality owner alone. This question is of prime
importance from a practical point of view, because unravelling could jeopardize the long-run stability
of collaborative models deployed at large scale.

Our contribution is threefold:

1. We provide a rigorous framework for analyzing collaborative learning with strategic agents
having data distributions of varying quality. On the one hand, we leverage tools from do-
main adaptation to capture a notion of data quality formally. On the other hand, we model
collaboration as a principal-agent problem, where the principal is an aggregator in charge
of collecting samples so as to maximize social welfare. This setup allows us to derive the
benchmark welfare-maximizing collaboration scheme when data quality is public information.

2. We show that when data quality is private, a naive aggregation strategy which consists in
asking agents to declare their quality type and applying the optimal scheme results in a
complete unravelling. More precisely, the set of agents willing to collaborate is either empty
or made of the lowest-quality data owner alone at any pure Nash equilibrium.

3. We present solutions to unravelling. When transfers are allowed, the VCG mechanism
suffices to re-establish optimality. When transfers are not possible, we leverage probabilistic
verification techniques to design a mechanism which breaks unravelling. More precisely, we
ensure that the optimal, grand coalition ranks with high probability among the Nash equilibria
of the game induced by our mechanism. We demonstrate how to implement our mechanism
practically in the setting of classification.

Related work. The issue of information asymmetry in machine learning has been an area of recent
activity. Several learning settings have been considered, including bandits [Wei et al., 2024], linear
regression [Donahue and Kleinberg, 2021a,b], classification [Blum et al., 2021] and empirical risk
minimization [Dorner et al., 2023, Liu et al., 2023] in a federated context [Tu et al., 2022].

Most of these studies focus on the sub-problem of moral hazard, where agents take actions that are
unobserved by others. This situation usually results in under-provision of effort and inefficiency
at the collective scale [Laffont and Martimort, 2001]. This issue appears naturally in federated
learning, because model updates are performed locally. For instance, Karimireddy et al. [2022] show
that heterogeneity in sampling costs results in total free-riding without a proper incentive scheme.
Huang et al. [2022] show that under-provision of data points in federated learning arises from privacy
concerns. Yan et al. [2023] consider a federated classification game where agents can reduce the
noise in their data distribution but incur a costly effort to do so. In the same vein, Huang et al.
[2023] study the case of agents who are interested in different models, and may skew their sampling
measure accordingly. Saig et al. [2023] and Ananthakrishnan et al. [2023] study hidden actions when
a principal delegates a predictive task to another agent, and show that thresholds or linear contracts
are able to approximate the optimal contracts.

Adverse selection is another type of information asymmetry, where preferences of agents are un-
observed rather than actions. This issue also naturally arises in collaborative learning, because the
data distributions from which agents sample or about which they care may not be public. While
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data heterogeneity is a widely explored topic in federated learning (see for instance Gao et al. 2022
for a general survey, and Fu et al. 2023 for the specific problem of client selection), the strategic
aspect has been rarely considered. Most studies doing so focus on hidden sampling costs (see, e.g.,
Karimireddy et al. 2022, or Wei et al. 2024 in a bandit context), but few address the fundamental
problem of distribution shift. Ananthakrishnan et al. [2023] mentions the issue of adverse selection
when a principal delegates a predictive task to an agent, and provide qualitative insights about the
optimal contract. However, they consider a single agent and leave aside the question of participation.
Finally, Werner et al. [2024] and Tsoy and Konstantinov [2024] study the question of the stability of
collaborative learning between competing agents. However, their analysis relies on ad-hoc market
structures rather than information asymmetry per se. As such, our work is the first to demonstrate the
effect of imperfect information on the sustainability of collaborative learning.

Organization. Section 2 presents our model and assumptions. Section 3 studies a full information
benchmark, which allows us to derive the welfare-maximizing contribution scheme. In Section 4, we
turn to the more realistic case where data quality is private information. We first show that in this
case, a naive aggregation method leads to total unravelling. Second, we introduce a mechanism which
breaks unravelling by inducing a game where the grand coalition is a pure strategy Nash equilibrium
with high probability.

2 Model

Statistical framework. Let (X,X ) and (Y,Y) be two measurable spaces and denote by P a family
of probability measures on (X × Y,X ⊗ Y). We consider [J ] = {1, . . . , J} agents who aim to
perform a prediction task associated with a hypothesis class G ⊂ {g : X → Y}, a loss function
ℓ : Y × Y and a probability measure P0 ∈ P . Each agent seeks to minimize g ∈ G 7→ RP0

(g)
where for any probability distribution P ∈ P , RP (g) =

∫
ℓ(g(x), y)dP (x, y) is the risk associated

to g ∈ G with respect to P .

We leverage tools and results from statistical learning theory. Denote by {(Xi, Yi)}i⩾1 the canonical
process on X× Y and denote by PP and EP the canonical probability and expectation under which
{(Xi, Yi)}i⩾1 are i.i.d. random variables with distribution P ∈ P . With this notation, we can
introduce our assumptions on G and P .

H1. For δ ∈ (0, 1), there exist αδ > 0, β > 0 and γ > 0 such that for any distribution P ∈ P ,
hypothesis g ∈ G and n ⩾ 1

PP

(∣∣∣∣∣RP (g)−
1

n

n∑
i=1

ℓ(g(Xi), Yi)

∣∣∣∣∣ ⩽ αδ

(1 + n)γ
+ β

)
⩾ 1− δ .

This assumption covers a wide range of situations. For instance in the classification case where
Y = {−1, 1} and ℓ : (y, ỹ) 7→ 1{yỹ⩽0}, αδ =

√
ln(1/δ)/2, β = 2RAD(G ) and γ = 1/2

where RAD(G ) is the empirical Rademacher complexity of G [Bousquet et al., 2003]. Similarly,
the Bayesian PAC approach in the linear regression context with bounded loss leads to αδ =

KL(ρ∥π) + ln(1/δ), β = ∥ℓ∥2∞/8 and γ = 1 where ρ and π are any distributions on G [Shalaeva
et al., 2019, Corollary 4].

For ease of notation, we let Rj(g) serve as a shorthand for RPj
(g). It is moreover assumed that

agent j ∈ [J ] cannot directly sample from P0, but has instead access to a distribution Pj ∈ P which
deviates from P0 according to the G -divergence:

H2. For any j ∈ [J ], Pj ∈ P has finite G -divergence: θj = supg∈G |Rj(g)−R0(g)| < +∞ .

Intuitively, for any j ∈ [J ], θj ⩾ 0 models the bias incurred by having access to samples from Pj

instead of the target distribution P0. More precisely, the risk excess associated with empirical risk
minimization (ERM) based on samples from Pj is in the worst case at least θj . A poor sampling dis-
tribution Pj—which corresponds to a high θj in the previous expression—might be the consequence
of low-quality sensors or degraded experimental conditions resulting in noisier data points.

The class of discrepancies appearing in H2 has been considered in the domain adaptation literature [see,
e.g., Ben-David et al., 2010, Kifer et al., 2004, Konstantinov and Lampert, 2019]. It provides a natural
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framework to analyze the behavior of models trained on diverse distributions, and is practically
appealing since it can be easily estimated in the context of classification [Ben-David et al., 2010].

We make the following assumptions on the quality indexes (θ1, . . . , θJ), hereafter referred to as types.
H3. There exists (θ, θ̄) ∈ R2

+ such that θ ⩽ θ1 < θ2 < . . . < θJ ⩽ θ̄.

H3 The ordering assumption is just for ease of exposition but is neither used by the aggregator nor
the agents. Our condition that types are strictly different is for convenience in simplifying the proofs.

Collaborative learning framework. We further suppose that agent j ∈ [J ] can fit a model g ∈ G

based on i.i.d. samples {(Xj
1 , Y

j
1 ), . . . , (X

j
nj
, Y j

nj
)} of size nj ⩾ 0 from Pj ∈ P in one of two ways:

they can compute on their own, or collaborate. This is captured by the two following options:

Option 1) Agent j performs ERM on their own samples:

ĝj = argming∈G R̂j(g) , R̂j(g) = n−1
j

∑nj

i=1 ℓ(g(X
j
i ), Y

j
i ) . (1)

This non-collaborative procedure is referred to as the outside option.
Option 2) Agent j can take part in a coalition orchestrated by a central data aggregator, encoded
as B = (B1, . . . , BJ) ∈ {0, 1}J , where Bj = 1 means that agent j is member of the coalition.
We also write B = {j ∈ [J ] : Bj = 1}. In exchange for their samples, agent j gains access to the
collaborative model trained over the concatenation of samples:

ĝB = argmin
g∈G

R̂B(g) , (2)

where R̂B(g) = N−1
∑
j∈[J]

Bj

nj∑
i=1

ℓ(g(Xj
i ), Y

j
i ) and N =

∑
j∈[J]

Bjnj .

Agent utilities. We assume that agents incur a unitary cost for sampling from their distribution
and dislike statistical risk. Therefore, a baseline model for measuring the preferences associated
with a model g ∈ G and a number of samples n is based on a linear map: (g, n) 7→ −aR0(g)− cn
for a, c > 0. In practice, however, R0(g) is typically unknown so agents instead can use a PAC
bound of the form P(R0(ĝn) ⩽ R⋆

0 + ε) ⩾ 1 − δ to a assess a model ĝn ∈ G trained over their
samples, where ε > 0, δ ∈ (0, 1) and R⋆

0 = infg∈G R0(g). Our next result shows that H 1 and H 2
allow each agent to pin down such an ε > 0, under either Option 1) or Option 2). Assuming H1,
define the function ε for any (θ, n) ∈ Θ× R+ by

ε(θ, n) = 2
[
αδ(1 + n)−γ + β + θ

]
. (3)

Lemma 1. Assume H1 and H2.

(i) Any agent j ∈ [J ] picking the outside Option 1) obtains a model ĝj ∈ G achieving

R0(ĝj) ⩽ R⋆
0 + ε(θj , nj) with probability 1− δ .

(ii) Any coalition B ∈ {0, 1}J drawing n = (n1, . . . , nJ) ∈ RJ
+, samples obtains a model ĝB ∈ G

achieving
R0(ĝB) ⩽ R⋆

0 + ε(ϑ,N) with probability 1− δ ,

where N is the total of samples and ϑ is the weighted average type within the coalition:

N(B,n) =
∑
j∈[J]

Bjnj , ϑ(B,n) = N−1
∑
j∈[J]

Bjnjθj . (4)

When the context is clear, we write ε(B,n) = ε(ϑ(B,n), N(B,n)) to lighten notation. Based on
Lemma 1, we define the utility of agent j ∈ [J ] as

uj : (B,n) 7→ −a[R⋆
0 + (1−Bj)ε(θj , nj) +Bjε(B,n) ]− cnj . (5)
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Note that for any j ∈ [J ], we take nj ⩾ 0 to be a real number for ease of presentation. In (5), a/c > 0
captures the extent to which individuals are willing to trade off model quality against sampling cost.

For any j ∈ [J ] and B−j = (B1, . . . , Bj−1, Bj+1, . . . , BJ) ∈ {0, 1}J−1, we denote by a slight abuse
of notation (B,B−j) = (B1, . . . , Bj−1, B,Bj+1, . . . , BJ) for any B ∈ {0, 1}. Similarly for n−j =

(n1, . . . , nj−1, nj+1, . . . , nj) ∈ RJ−1
+ , we write (n,n−j) = (n1, . . . , nj−1, n, nj+1, . . . , nj) for

any n ⩾ 0. We can then characterize the optimal behavior of any agent picking the outside option as
follows.

Proposition 1. Assume H1 and H2. For any j ∈ [J ], B−j ∈ {0, 1}J−1 and n−j ∈ RJ−1
+ , the

optimal number of samples to draw under Option 1) is argmaxn≥0 uj((0,B−j), (n,n−j) ; θj) = n
where

n = (2ac−1γαδ)
1/(γ+1) − 1 . (6)

In what follows, we assume 2a/c > (γαδ)
−1 to exclude the pathological case where no agent is

willing to sample data points. From now on, we denote by

uj = uj((0,B−j), (n,n−j)) (7)

the best achievable utility under the outside option. Note that n does not depend on θj ∈ Θ (but
uj does) so all agents outside of the coalition draw a same number of data points n > 0. This
result, which may be surprising at first glance, comes from the fact that all agents have the same
accuracy-to-sampling-cost ratio a/c in their utility.

Aggregator. We finally assume that the aggregator acts benevolently to set up a Pareto-optimal
collaboration, by maximizing the total welfare under individual rationality. In other words, they
solve:

maximize W : (B,n) ∈ {0, 1}J × RJ
+ 7→

∑
j∈[J]

uj(B,n) (8)

subject to min
j∈[J]

uj(B,n)− uj ⩾ 0 .

In the Social Choice literature, W is referred to as the utilitarian social welfare function. The
participation constraint ensures that no agent within the coalition finds it beneficial to switch to
their outside option. Note that n ∈ RJ

+ is required to have non-negative entries, which prevents the
aggregator from giving away data points to agents.

3 Full-Information Benchmark: First-Best Collaboration

In this section, we assume that the profile of types (θ1, . . . , θJ) ∈ ΘJ is public, and study how the
aggregator can implement an optimal collaboration among agents under this most-favorable scenario.

Exact solution. We are looking for a solution to the aggregator’s problem (8). For any B ∈ {0, 1}J
and n ∈ RJ

+, denote by

nj(B,n) = max{n ⩾ 0 : uj((1,B−j), (n,n−j) ; θj) ⩾ uj}
= n− (a/c)[ε(B,n)− ε(θj , n)] , (9)

the maximum number of samples that agent j can be asked to provide within the coalition under its
participation constraint, where n is defined as in (6), and uj as in (7). With this notation, problem (8)
rewrites

maximize W (B,n) subject to min
j∈B

nj(B,n)− nj ⩾ 0 . (10)

Theorem 1. Assume H1, H2, H3. Problem (8) admits a unique solution (Bopt,nopt(θ)) ∈ {0, 1}J ×
RJ

+. Moreover,

(i) Bopt = 1 = (1, . . . , 1),
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(ii) Denoting nopt(θ) = (nopt
1 (θ), . . . , nopt

J (θ)), there exists Lopt ∈ [J ] such that for any j ∈ [J ],

nopt
j (θ)


= nj(1,n

opt(θ)) if j < Lopt,

∈ [ 0 , nj(1,n
opt(θ)) ] if j = Lopt,

= 0 otherwise.
(11)

The couple (Bopt,nopt) is referred to as the optimal contribution scheme. Although implicit, the
condition (11) provides insights about the optimal scheme. The aggregator makes everyone enter the
coalition, but only asks the Lopt > 0 first-best agents to contribute. This allows to obtain the best
possible collaborative model while sparing any sampling cost to other agents. Moreover, the number
of required samples nopt

j (θ) slightly differs from n according to the relative performance of the
collaborative model with respect to agent j’s one: if the agent gets a better accuracy by collaborating,
the aggregator can ask them for more data; if on the other hand the agent gets a worse model by
collaborating (i.e., they are a contributor with very high quality data), the aggregator can only ask
less data because of the participation constraint.

Relaxed solution. Working with the optimal scheme (Bopt,nopt) is difficult because
nj(1,n

opt(θ)) has no explicit expression. To make the analysis tractable, we slightly simply the
optimal contribution scheme in Theorem 1 and consider the simplified optimal contribution scheme
(B⋆,n⋆) where B⋆ = Bopt = (1, . . . , 1) and for any j ∈ [J ],

n⋆
j (θ) = 1{j⩽L⋆}nj(1,n

⋆(θ)) and L⋆ = min{j ∈ [J ] :
∑
k⩽j

nk(1,n
⋆(θ)) ⩾ N̄} , (12)

with N̄ = (n+ 1)J
1

1+γ − 1 .

Note that (B⋆,n⋆) only differs from (Bopt,nopt) in two ways. First, in (B⋆,n⋆) all contributors’
participation constraint bind, while in (Bopt,nopt) the Lopt-the one could be slack. Second, the total
number of data points required from the coalition is fixed and equal to N̄ = Θ(J

1
1+γ ). The quantity

N̄ comes from a natural relaxation of the original problem Equation (10) where we leave aside an
intricate term of the objective function. This relaxation, which is formally described in Appendix A,
provides a good approximation of the exact solution in reasonable settings. Indeed, the following
result establishes that applying (B⋆,n⋆) instead of (Bopt,nopt) comes at a negligible welfare cost
when types are sufficiently evenly spaced.

Lemma 2. Assume H1, H2 and θj − θj−1 = O(1/J) for any j ∈ {2, . . . , J}. Then,

W (Bopt,nopt(θ)) = W (B⋆,n⋆(θ)) +O(J
1

1+γ ) .

Moreover, the following proposition shows that n⋆(θ) admits a workable expression.

Corollary 1. Assume H1, H2 and H3. Then L⋆ = Θ(J
1

1+γ ) and for any j ∈ [J ],

n⋆
j (θ) = 1{j≤L⋆}

[
N̄

L⋆
+

2a

c

(
θj −

1

L⋆

L⋆∑
ℓ=1

θℓ

)]
.

Since (B⋆,n⋆) correctly approximates the optimal scheme while being more tractable, we work with
it in the remainder to lighten proofs.

H4. The aggregator applies the simplified contribution scheme (B⋆,n⋆).

4 Hidden information

The welfare-maximizing contribution scheme described in (12) depends explicitly on θ ∈ ΘJ , so it is
implementable only if types are public. This often unrealistic, either for legal or competitive reasons.
We therefore turn to the problem of setting up a collaboration when types are private.
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4.1 Naive aggregation and unravelling

A naive solution to coping with the private nature of θ ∈ ΘJ is for the aggregator to ask agents to
disclose their types, and apply the simplified optimal contribution scheme defined in (12). In this
setting, however, agents may declare a type θ̃j different from their true type θj .

This approach corresponds to a direct-revelation mechanism Γ : (B, θ̃) 7→ n⋆(θ̃) which unfolds as
follows.

1. Any agent j ∈ [J ] declares a tuple (Bj , θ̃j) ∈ {0, 1} × Θ ∪ {†}. If Bj = 1, then agent j
picks Option 2), and enters the coalition with type θ̃j . If Bj = 0, then agent j picks Option
1), their declared type θ̃j is † by convention.

2. Setting B = (B1, . . . , BJ) and θ̃ ∈ (Θ∪{†})J , then the aggregator applies the contribution
scheme defined in (12), so the vector of number of contributions within the coalition is
n⋆(θ̃).

Γ induces a direct revelation game ([J ],S J , (vj)j∈[J]) where the action space is S = {(1, θ̃) : θ̃ ∈
Θ} ∪ {(0, †)} and payoffs are for any j ∈ [J ] and s ∈ S J ,

vj(sj , s−j) = uj(B,n
⋆(θ̃)) = Bj

[
−a
(
R⋆

0 + ε(B,n⋆(θ̃))
)
− cn⋆

j (θ̃)
]
+ (1−Bj)uj .

This mechanism is obviously vulnerable to strategic manipulation, since it disregards incentive
compatibility. This has severe consequences for the coalition, as shown by the following proposition.
Theorem 2 (Unravelling). Assume H1, H2, H3, and H4. Let E ⊂ S J be the set of pure-strategy
Nash equilibria of the game induced by Γ. We have

(i) E ̸= ∅

(ii) at any s⋆ ∈ E , B = (0, . . . , 0) or B = (0, . . . , 0, 1) .

Theorem 2 shows that under Γ, the coalition undergoes a full unravelling: it is either empty or
comprised solely of the worst agent in any Nash equilibrium. Thus, collaborative learning is not
immune to adverse selection, and may suffer from unravelling as any market characterized by
information asymmetry.

Sketch of proof. The profile of actions ((0, †), . . . , (0, †)) corresponding to B = (0, . . . , 0) is a pure
Nash equilibrium, since forming a lone coalition cannot bring more utility than picking the outside
option. Conversely, consider a pure-strategy Nash equilibrium s ∈ E such that B ̸= (0, . . . , 0).
Denote by C = {j ∈ [J ] : Bj = 1 and n⋆

j (θ̃) > 0} the set of contributors under this equilibrium.
It can be shown that (i) for any (j, k) ∈ C2, θj − θ̃j = θk − θ̃k, and (ii) For any j ∈ C, (1, θ̃j) with
θ̃j > θ is strictly dominated by (1, θ) so θ̃j = θ at the equilibrium. As a consequence, θj = θk
for any (j, k) ∈ C2, which implies by H3 that |C| = 1. From the definition of the contribution
scheme (12), we can deduce that

∑
j∈[J] Bj = |B| = 1, because |B| > 1 would entail |C| > 1.

Finally, BJ = 1 because vJ((1, θ), s−J) > vJ((0, †), s−J) and s is a Nash equilibrium. This leads
to B = (0, . . . , 0, 1).

4.2 Breaking unravelling

The previous results motivate the design of a more sophisticated aggregation scheme that addresses
adverse selection. In this section, we discuss how to design such a procedure.

Is VCG available in our framework? Unravelling occurs under Γ because agents do not find it
beneficial to declare their true type and eventually opt for their outside option. This could be avoided
by modifying Γ to make it

(i) individually rational, that is vj((1, θj), s−j) ⩾ vj((0, †), s−j) for any j ∈ [J ], s−j ∈ S J−1,

(ii) and incentive compatible, that is vj((1, θj), s−j) ⩾ vj((1, θ̃j), s−j) for any θ̃j ∈ Θ.
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Under these conditions, the truthful, optimal profile of actions ((1, θ1), . . . , (1, θJ)) would emerge as
a Nash equilibrium. Since the aggregator seeks to minimize the utilitarian function W , one option
would be to rely on the VCG mechanism [Vickrey, 1961, Clarke, 1971, Groves, 1973], which is the
direct-revelation mechanisms fulfilling these desiderata [Green and Laffont, 1977, Holmstrom, 1979].
Formally, the VCG mechanism writes ΓVCG : θ̃ 7→ (n⋆(θ̃), t(θ̃)) where t(θ̃) = (t1(θ), . . . , tJ(θ)) ∈
RJ is a set of transfers satisfying for any j ∈ [J ]:

tj(θ̃) =
∑
k ̸=j

uk((0,1−j),n
⋆(θ̃))−

∑
k ̸=j

uk(1,n
⋆(θ̃)) .

It re-establishes truthfulness as a dominant strategy by aligning individual payoffs vVCG
j (θ̃) =

uj(1,n
⋆(θ̃))− tj(θ̃) with total social welfare. Unfortunately, the VCG approach is unavailable in

our framework, because of the following observation.

Lemma 3. There exists j ∈ [J ] such that −tj(θ̃) > 0.

Lemma 3 shows that some agent would need to receive a strictly positive transfer. This is impossible
without a monetary payment–utility can only be decreased by the aggregator, for instance through
accuracy shaping [Karimireddy et al., 2022]–, which we exclude here.

A probabilistic verification-based mechanism. We now show how to design a mechanism that
recovers the optimal collaboration as a Nash equilibrium in high probability without the need for
transfers. Inspired by the probabilistic verification approach [Caragiannis et al., 2012, Ferraioli and
Ventre, 2018, Ball and Kattwinkel, 2019], we assume that the aggregator can approximately estimate
θj with few samples from Pj for any j ∈ [J ]:
H5. There exists a decreasing function ηδ : R⋆

+ → R⋆
+, with δ ∈ (0, 1) defined in H1, such that

for any j ∈ [J ] and i.i.d samples (Xj
1 , Y

j
1 ), . . . , (X

j
q , Y

j
q ) of size q > 0 from Pj , there exists a

(Xj
1 , Y

j
1 ), . . . , (X

j
q , Y

j
q )-measurable estimator θ̂j satisfying

P(|θ̂j − θj | ⩽ ηδ(q)) ⩾ 1− δ .

In Section 4.2, we show how the aggregator can design such estimators. H5 allows us to consider a
new mechanism Γ̂ : B 7→ m(B) as follows:

1. any agent j ∈ [J ] declares Bj ∈ {0, 1}. If Bj = 1, the principal asks for q ⩽ n −
2(a/c)(θ̄ − θ) i.i.d samples from Pj and estimates types as θ̂ = (θ̂j)j∈B following H5.

2. Based on the estimated types θ̂ = (θ̂j)j∈B, the aggregator asks for [n⋆
j (θ̂ + ηj) − q ]+

additional samples from Pj , where n⋆( · ) is defined as in (12) and

ηj = ηδ/J(q)1− 2δjηδ/J(q), with δj = (0, . . . , 0, 1, 0, . . . , 0)T .

Thus, the number of draws required from agent j is max[q , n⋆
j (θ̂ + ηj)].

3. The aggregator keeps mj(θ̂) = 1{n⋆
j (θ̂ + ηj) > 0}max[q , n⋆

j (θ̂ + ηj)] samples from
agent j, and trains a collaborative model with these pooled samples.

Γ̂ induces a game ([J ], {0, 1}J , (v̂j)j∈[J]) where any agent j ∈ [J ] has a payoff function

v̂j : (Bj ,B−j) 7→ Bj

[
−a
(
R⋆

0 + ε(B,m(θ̂))
)
− cmax[q , n⋆

j (θ̂ + ηj)]
]
+ (1−Bj)uj .

The rationale behind this mechanism is fairly intuitive: since θ̂ is a correct estimate of θ, n⋆
j (θ̂+ηj) ≈

n⋆
j (θ̂) correctly approximates the optimal contribution n⋆

j (θ) for any contributor j ∈ B. Note that
type estimates are purposely biased by ηj when asking for samples. This is a safeguard against
over-estimated types, which would lead to asking to many data points and could deter agents from
participating in the coalition.

Critically, m(θ̂) does not depend on declared type, so agents are no longer able to strategically
manipulate the mechanism. Moreover, Γ̂ does not require agents to know their own types, which
would be an unrealistic assumption. Finally, observe that the number of data points asked to estimate
types q is low enough to never deter agents from participating in the coalition.
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Theorem 3. Assume H1, H2, H3, H4 and H5. B⋆ = (1, . . . , 1)T is a Nash equilibrium under Γ̂ with
probability 1− δ.

Theorem 3 shows that the optimal coalition is a sustainable equilibrium under Γ̂, which effectively
breaks unravelling: the set of (approximate) Nash equilibria is no more reduced to profiles of actions
where the coalition is empty, or reduced to the worst agent.

Practical implementation. We now explain how to practically implement Γ̂ in a collaborative
learning setting. This requires defining a collection of estimators (θ̂j)j satisfying H5. To this end, we
assume that few samples from the target distribution are available.
H6. There are q′ > 0 i.i.d samples

{
(X0

1 , Y
0
1 ), . . . , (X

0
q′ , Y

0
q′)
}

from P0 available to the aggregator
and agents.

Under H6, define R̂0(g) = q′−1
∑q′

i=1 ℓ(g(X
0
i ), Y

0
i ) for g ∈ G . This allows us to devise suitable

estimators θ̂j as follows.
Proposition 2. Assume H1, H2 and H6. For any j ∈ [J ] the estimator

θ̂ERM
0,j = sup

g∈G
|R̂j(g)− R̂0(g)| ,

satisfies H5 with
ηδ(q) = αδ/4

[
(q + 1)−γ + (q′ + 1)−γ

]
+ 2β . (13)

Proposition 2 shows that the empirical version of the G -divergence defined in H2 correctly estimate
types. Note that the tighter the PAC bound in H1, the better the approximation term in (13). The type
estimator θ̂ERM

0,j defined in H5 can easily be computed in the classification case, as shown with the
following example.
H7 (Classification setting). Y = {−1, 1}, ℓ = ℓ0,1 : (y, y′) ∈ Y × Y 7→ 1{yy′<0}, and G is a
symmetric (g ∈ G if and only if −g ∈ G ) class of classifiers.

Example 4. Assume H1, H2, H6 and H7.

(i) Denoting R̂j−(g) = n−1
j

∑nj

i=1 ℓ0,1(g(X
j
i ),−Y j

i ), we have

θ̂ERM
0,j = 1− inf

g∈G

{
R̂0(g) + R̂j−(g)

}
.

(ii) In H1, assume αδ = ln(1/δ)1/2, β = 2RAD(G ) and γ = 1 [Bousquet et al., 2003]. With θ̂ERM
0,j

defined in Proposition 2, we have

ηδ/J(q) = ln(4J/δ)1/2[(1 + q)−γ + (1 + q′)−γ ] + 2Rad(G ) .

Example 4 shows that in the classification case, it is sufficient to flip the labels of the data received
from each contributor, merge these samples with those from P0, and perform an empirical risk
minimization to compute θ̂ERM

0,j . The approximation error grows no more than logarithmically with
the number of agents, while decreasing at rate γ with the number of samples used in the estimation.

5 Conclusion

In this work, we show that information asymmetry has deleterious consequences when strategic
agents try to learn a collaborative model. More precisely, under a naive aggregation procedure, the
ignorance of others’ data quality leads the coalition of learners to be either empty or reduced to the
lowest-quality agent. We introduce a transfer-free mechanism based on estimation of types. This
effectively counteracts unravelling by letting the grand coalition ranks among the approximate Nash
equilibria with high probability.

Several possible extensions can be considered. First, it would be interesting to relax the assumption
that all agents have the same ratio a/c in their utility, and see how heterogeneity affects the results.

9



Second, the mechanism presented in Section 4 aims for individual rationality. A more desirable, yet
difficult to achieve, property would be core stability, to ensure that no group of agents would benefit
from a coordinated deviation, i.e., forming an alternative coalition. Finally, it would be interesting to
check whether there exist mechanisms where the optimal collaboration not only emerges as a Nash
equilibrium, but as a dominant equilibrium under imperfect information.
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A Relaxation of the optimal aggregation problem.

Let B ∈ {0, 1}J and the associated coalition B = {j ∈ [J ] : Bj = 1} be fixed. We present in this
appendix a natural relaxation of problem Equation (10) which motivates the choice

∑
j∈B n⋆

j (θ) =

N̄ = (n+ 1)|B|
1

1+γ − 1 in the simplified contribution scheme (B⋆,n⋆). The optimal aggregation
problem with B fixed is

maximize n ∈ RJ 7→
∑
j∈[J]

uj(B,n) subject to
{
maxj∈B nj − n(B,n) ⩽ 0

maxj∈[J] −nj ⩽ 0 ,

Since agents outside of the coalition maximize their utility, the problem can equivalently be stated as

(TB) : maximize n ∈ R|B| 7→
∑
j∈B

uj(B,n) + ζB subject to n ∈ ΞB ,

where

ΞB =

{
n ∈ RB

+ :
maxj∈B{nj − nj(B,n)} ⩽ 0

maxj∈B −nj ⩽ 0

}
and ζB =

∑
j /∈B

uj . (14)

We start by rewriting (TB) in a more convenient way. Instead of working with n ∈ R|B|
+ directly,

we make appear (i) the total number of samples and (ii) the sharing out of samples between agents.
Formally, for any n ∈ R|B|

+ consider N = nTB and λ = N−1n ∈ ∆|B|, where ∆|B| is the simplex
of dimension |B|. Observe that the average type in the coalition reads ϑ(B,n) = λTθ. Moreover,

12

https://EconPapers.repec.org/RePEc:oup:qjecon:v:90:y:1976:i:4:p:629-649.
https://EconPapers.repec.org/RePEc:oup:qjecon:v:90:y:1976:i:4:p:629-649.
https://api.semanticscholar.org/CorpusID:208857400
https://EconPapers.repec.org/RePEc:bla:jfinan:v:16:y:1961:i:1:p:8-37
https://EconPapers.repec.org/RePEc:bla:jfinan:v:16:y:1961:i:1:p:8-37
https://arxiv.org/abs/2406.15898


the welfare evaluated in (B,n) rewrites∑
j∈[J]

uj(B,n) =
∑
j∈[J]

Bj [−a(R⋆
0 + ε(B,λN))− cnj ] +

∑
j∈[J]

(1−Bj)uj

= −a|B|(R⋆
0 + ε(B,λN))− cN + ζB ,

= −a|B|
[
R⋆

0 + 2
(
αδ(1 +N)−γ + β + λTθ

)]
− cN + ζB

= W̃B(λ, N) .

We denote by Ξ̃B =
{
(λ, N) ∈ ∆|B| × R+ : λN ∈ ΞB

}
and T̃B the problem:

(T̃B) : minimize (λ, N) ∈ ∆|B| × R+ 7→ −W̃B(λ, N) subject to (λ, N) ∈ Ξ̃B . (15)

By definition, if (λ, N) is a solution to T̃B, then n = λN is a solution to TB. We can further
decompose T̃B by observing that

−W̃B(λ, N) = f(N) + g(λ) ,

with

f(N) = a|B|(R⋆
0 + 2αδ(1 +N)−γ + 2β) + cN + ζB and g(λ) = 2a|B|λTθ .

Finally, we denote a slice of Ξ̃B along N ⩾ 0 as Ξ̃B(N) = {λ ∈ ∆|B| : (λ, N) ∈ Ξ̃B} and
N = {N ⩾ 0 : Ξ̃B(N) ̸= ∅}. T̃B comes down to

min
(λ,N)∈Ξ̃B

{f(N) + g(λ)} = min
N∈N

{f(N) + min
λ∈Ξ̃B(N)

g(λ)} . (16)

A strategy to solve Equation (16) is to (i) address the innermost problem minλ∈Ξ̃B(N) g(λ) with

N ∈ N fixed, and denoting λ(N) ∈ Ξ̃B(N) its solution, (ii) solve the outermost problem:

min
N∈N

{f(N) + g(λ(N))} . (17)

Point (i) is done in the proof of Theorem 1. However, the resulting problem in (ii) is hard to tackle
because λ(N) has no simple form. Therefore, we leave aside the term g(λ(N)) (which can be easily
controlled, as shown in Lemma 2) to determine N and only consider the problem

min
N⩾0

f(N) . (18)

Since f is differentiable and strictly convex, its minimizer is uniquely defined by f ′(N̄) = 0, which
gives

N̄ = (n+ 1)|B|
1

1+γ − 1 , (19)
where n is defined in Proposition 1. As the solution of the relaxed problem (18), we take∑

j∈[J] n
⋆
j (θ) = N̄ is the simplified contribution scheme (B⋆,n⋆). In many reasonable settings, this

approximation is very satisfactory as shown by Lemma 2.

B Proofs

Lemma 1. Assume H1 and H2.

(i) Any agent j ∈ [J ] picking the outside Option 1) obtains a model ĝj ∈ G achieving

R0(ĝj) ⩽ R⋆
0 + ε(θj , nj) with probability 1− δ .

(ii) Any coalition B ∈ {0, 1}J drawing n = (n1, . . . , nJ) ∈ RJ
+, samples obtains a model ĝB ∈ G

achieving
R0(ĝB) ⩽ R⋆

0 + ε(ϑ,N) with probability 1− δ ,

where N is the total of samples and ϑ is the weighted average type within the coalition:

N(B,n) =
∑
j∈[J]

Bjnj , ϑ(B,n) = N−1
∑
j∈[J]

Bjnjθj . (4)
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Proof. (i) Let {(Xj
1 , Y

i
1 ), . . . , (X

j
nj
, Y j

nj
)} be nj > 0 i.i.d samples from Pj ∈ P and ĝj =

infg∈G R̂j(g). First, observe that

R0(ĝj) ⩽ Rj(ĝj) + sup
g∈G

|R0(g)−Rj(g)| = Rj(ĝj) + θj . (20)

Let υ > 0 and gυj ∈ G such that Rj

(
gυj
)
⩽ infg∈G Rj(g) + υ. Then with probability at least 1− δ,

Rj(ĝj) = Rj(ĝj)−Rj

(
gυj
)
+Rj

(
gυj
)

⩽
(
R̂j(g

υ
j )− R̂j(ĝj)

)
+Rj(ĝj)−Rj

(
gυj
)
+Rj

(
gυj
)

⩽ 2 sup
g∈G

∣∣∣Rj(g)− R̂j(g)
∣∣∣+ inf

g∈G
Rj(g) + υ

⩽ 2

(
αδ

(n+ 1)γ
+ β

)
+ inf

g∈G
Rj(g) , (21)

where the last inequality holds taking the limit υ → 0 and using H 1. Finally, observing that
infg∈G Rj(g) − R⋆

0 = infg∈G Rj(g) − infg∈G R0(g) ⩽ supg∈G |Rj(g)−R0(g)| = θj , and
combining (20) as well as (21) yields

R0(ĝj) ⩽ R⋆
0 + 2θj + 2

(
αδ

(n+ 1)γ
+ β

)
= R⋆

0 + ε(θj , n) , (22)

with probability at least 1− δ.

(ii) Let B ∈ {0, 1}J and n = (n1, . . . , nj) ∈ RJ
+. For any j ∈ B, let {(Xj

1 , Y
i
1 ), . . . , (X

j
nj
, Y j

nj
)}

be a collection of nj > 0 i.i.d samples from Pj ∈ P . Denote by N =
∑

j∈[J] Bjnj and consider
λ = (λ1, . . . , λJ) such that λj = Bjnj/N . Note that λ belongs to the J-dimensional simplex. For
any g ∈ G , the empirical risk over contributions is

R̂B(g) =
1

N

∑
j∈[J]

Bj

nj∑
i=1

ℓ(g(Xj
i ), Y

j
i ) =

∑
j∈[J]

BjλjR̂j(g) , (23)

and the population risk is

RB(g) = E
[
R̂B(g)

]
=
∑
j∈[J]

BjλjE
[
R̂j(g)

]
=
∑
j∈[J]

BjλjRj(g) . (24)

One the one hand, the collaborative model ĝB ∈ G satisfies:

R0(ĝB) ⩽ RB(ĝB) + sup
g∈G

|R0(g)−RB(g)| ⩽ RB(ĝB) + sup
g∈G

∑
j∈[J]

λj |Rj(g)−R0(g)|


⩽ RB(ĝB) +

∑
j∈[J]

λj sup
g∈G

|Rj(g)−R0(g)|

= RB(ĝB) + ϑ(B,n) , (25)

with ϑ(B,n) = N−1
∑

j∈[J] Bjnjθj =
∑

j∈[J] Bjλjθj . Now, let υ > 0 and gυ ∈ G such that
RB(g

υ) ⩽ infg∈G RB(g) + υ. We also have

RB(ĝB) = RB(ĝB)−RB(g
υ) +RB(g

υ)

⩽
(
R̂B(g

υ)− R̂B(ĝB)
)
+RB(ĝB)−RB(g

υ) +RB(g
υ)

⩽ 2 sup
g∈G

∣∣∣RB(g)− R̂B(g)
∣∣∣+ inf

g∈G
RB(g) + υ

⩽ 2

(
αδ

(N + 1)γ
+ β

)
+ inf

g∈G
RB(g) with probability at least 1− δ , (26)
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where the first inequality comes from R̂B(ĝB) = infg∈G R̂B(g) ⩽ R̂B(g
υ), and the

last is obtained by taking υ → 0 and applying assumption H 1. Now, observe that
infg∈G RB(g) − R⋆

0 = infg∈G RB(g) − infg∈G R0(g) ⩽ supg∈G |RB(g)−R0(g)| ⩽∑
j Bjλj supg∈G |Rj(g)−R0(g)| = ϑ(B,n). Combining this observation with Equation (25)

and Equation (26) gives with probability 1− δ

R0(ĝB) ⩽ R⋆
0 + 2

(
αδ

(N + 1)γ
+ β

)
+ 2ϑ(B,n) = R⋆

0 + ε(ϑ(B,n), N) . (27)

Proposition 1. Assume H1 and H2. For any j ∈ [J ], B−j ∈ {0, 1}J−1 and n−j ∈ RJ−1
+ , the

optimal number of samples to draw under Option 1) is argmaxn≥0 uj((0,B−j), (n,n−j) ; θj) = n
where

n = (2ac−1γαδ)
1/(γ+1) − 1 . (6)

Proof. For any j ∈ [J ] and n ≥ 0, Lemma 1 gives that

−uj((0,B−j), (n,n−j), θj) = a[R⋆
0 + 2(αδ(n+ 1)−γ + β + θj)] + cn = f(n) .

Since f is strictly convex and differentiable, it admits a unique maximizer n ⩾ 0 determined by
f ′(n) = 0. Simple algebra leads to n = (2aγc−1αδ)

1/γ+1 − 1.

Theorem 1. Assume H1, H2, H3. Problem (8) admits a unique solution (Bopt,nopt(θ)) ∈ {0, 1}J ×
RJ

+. Moreover,

(i) Bopt = 1 = (1, . . . , 1),

(ii) Denoting nopt(θ) = (nopt
1 (θ), . . . , nopt

J (θ)), there exists Lopt ∈ [J ] such that for any j ∈ [J ],

nopt
j (θ)


= nj(1,n

opt(θ)) if j < Lopt,

∈ [ 0 , nj(1,n
opt(θ)) ] if j = Lopt,

= 0 otherwise.
(11)

Proof. Recall that the optimal aggregation problem reads

maximize W (B,n) ∈ {0, 1}J × RJ
+ 7→

∑
j∈[J]

uj(B,n) (28)

subject to min
j∈[J]

uj(B,n)− uj ⩾ 0 .

Define for any j ∈ [J ],B−j ∈ {0, 1}J−1, and n−j ∈ RJ−1
+ , the maximum number of samples agent

j ∈ [J ] having Bj = 1 may be asked given their participation constraint:

nj(B,n) = max{n ⩾ 0 : uj((1,B−j), (n,n−j)) ⩾ uj} .

Given Equation (5) and Proposition 1, we obtain

nj(B,n) = n− ac−1(ε(B,n)− ε(θj , n)) , (29)

where N =
∑

j∈[J] Bjnj = nTB. Problem (28) rewrites in canonical form

minimize −W (B,n) subject to
{
maxj∈B nj − nj(B,n) ⩽ 0

maxj∈[J] −nj ⩽ 0 ,
(30)

where B = {j ∈ [J ] : Bj = 1}. We first show that it admits a unique minimum.

Fix a B ∈ {0, 1}J and consider problem (30) with respect to n ∈ RJ
+ only. We call this subproblem

TB. First, we show that it is enough to focus on (nj)j∈B rather than (nj)j∈[J] in TB. With nB =
(nj)j∈B and nBc = (nj)j /∈B, note that W (B,n) is decomposable in nB and nBc :

W (B,n) = W (B,nB) +W (B,nBc) ,
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where, by a slight abuse of notation W (B,nB) =
∑

j∈B uj(B,n) and W (B,nBc) =∑
j∈Bc uj(B,n). With

ΞB =

{
nB ∈ RB

+ :
maxj∈B{nj − nj(B,n)} ⩽ 0

maxj∈B −nj ⩽ 0

}
, (31)

problem TB is equivalent to

min
nB∈ΞB

−W (B,nB) + min
nBc∈RJ−|B|

+

−W (B,nBc) = min
nB∈ΞB

−W (B,nB) +
∑
j∈[J]

−(1−Bj)uj , (32)

by Proposition 1. Since
∑

j∈[J] −(1−Bj)uj is constant, by Equation (32) it is enough to focus on
the existence of minnB∈ΞB

−W (B,nB). On the one hand, ΞB is bounded. Indeed for any j ∈ B, by
Equation (29) and Lemma 1

nj(B,nB) = n− a

c
[ε(B,nB)− ε(θj , n)]

= n− a

c

[
R⋆

0 + 2

[
αδ

(1 + nT
BB)

γ
+ β + ϑ(B,n)

]
−R⋆

0 − 2

[
αδ

(1 + n)γ
− β − θj

]]
= n− 2a

c

[
αδ

(
(1 + nT

BB)
−γ − (1 + n)−γ

)
+ (ϑ(B,n)− θj)

]
⩽ n− 2a

c

[
αδ

(
1− (1 + n)−γ

)
+max

j∈B
θj

]
= M (33)

Thus, ΞB ⊂ [0,M ]|B|. Moreover, ΞB is closed and convex. For any j ∈ B, rewrite

nj(B,nB) = n− 2a

c

[
αδ

(
(1 + nT

BB)
−γ − (1 + n)−γ

)
+
((

nT
BB
)−1

nT
Bθ − θj

)]
= gj(nB) ,

and define hj : nB 7→ nB,j − gj(nB). Observe that ΞB = {nB ∈ R|B|
+ : ∀j ∈ B, nB,j ⩾

0 and hj(nB) ⩽ 0}, that is ΞB = A ∩ B with A = R|B|
+ and B = h−1

1 ((−∞, 0]) ∩
. . . ∩ h−1

|B|((−∞, 0]). For any j ∈ B, h−1
j ((−∞, 0]) is convex, because so is hj . Additionally,

h−1
j ((−∞, 0]) is closed as the inverse image of a closed set by a continuous function. It follows that

ΞB is convex and closed as the intersection of convex and closed sets.

As a consequence ΞB is compact and convex, and −W (B, · ) is strictly convex so TB admits a unique
minimizer nopt

B ∈ ΞB.

Since there are finitely many B ∈ {0, 1}J , min{−W (B,nopt
B ) +

∑
j∈Bc uj , B ∈ {0, 1}J} > 0

exists and coincide with the minimum of problem (30). We show later in the proof that the optimal
Bopt ∈ {0, 1}J is unique (see part 1), so the minimizer of Equation (30) is unique. This establishes
the point (i) of the result.

The remainder of the proof proceeds as follows: we first characterize the optimal Bopt ∈ {0, 1}J , and
then prove that the solution nopt

Bopt ∈ R|B|
+ of TBopt has the form presented in point (ii) of the result.

Part 1: Optimal B ∈ {0, 1}[J]

We show that Bopt = (1, . . . , 1)T. By contradiction, assume there exists B′ ̸= (1, . . . , 1)T and
n′ ∈ RJ

+ such that for any (B,n) ∈ {0, 1}J × RJ
+

−W (B′,n′) ⩽ −W (B,n) . (34)

Denote by j ∈ [J ] an agent such that B′
j = 0, and first assume θj ⩾ ϑ(B′,n′). Consider the

alternative allocation (B′′,n′′) = ((1,B′
−j), (0,n

′
−j)). Observe that B′

jn
′
j = B′′

j n
′′
j = 0, so

N ′ = B′Tn′ = B′′Tn′′ = N ′′ and ϑ(B′,n′) = ϑ(B′′,n′′) . (35)
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This in particular implies

ε(B′,n′) = 2
[
αδ(1 +N ′)−γ + β + ϑ(B′, N ′)

]
= 2
[
αδ(1 +N ′′)−γ + β + ϑ(B′′, N ′′)

]
= ε(B′′,n′′) . (36)

Thus by (36)

−uj(B
′,n′) = uj = a(R⋆

0 + ε(θj , n)) + cn > a(R⋆
0 + ε(θj , n))

⩾ a(R⋆
0 + ε(B′,n′)) = a(R⋆

0 + ε(B′′,n′′)) = −uj(B
′′,n′′) , (37)

where the second inequality results from θj ⩾ ϑ(B′,n′) and N ′ ⩾ n. Finally by definition of
(B′′,n′′), (35) and (36), for any k ̸= j such that B′′

k = 1:

−uk(B
′′,n′′) = a

[
R⋆

0 + 2
(
αδ(1 +N ′′)−γ + β + ϑ(B′′,n′′)

)]
+ cn′′

k

= a
[
R⋆

0 + 2
(
αδ(1 +N ′)−γ + β + ϑ(B′,n′)

)]
+ cn′

k = −uk(B
′,n′) . (38)

Hence, (38) together with (37) give

−W (B′′,n′′) = −
∑
k ̸=j

uk(B
′′,n′′)− uj(B

′′,n′′) = −
∑
k ̸=j

ui(B
′,n′)− uj(B

′′,n′′)

< −
∑
k ̸=j

ui(B
′,n′)− uj(B

′,n′) = −W (B′,n′) .

(39)

This contradicts (34). Now assume θj < ϑ(B′,n′), and let R ∈ [J ] be such that θR = max{θk, k ∈
B}. Consider (B′′,n′′) ∈ {0, 1}J × RJ

+ where

B′′ = (B′
1, . . . , B

′
j−1, 1 , B

′
j+1, . . . , B

′
J)

T

and n′′ = (n′
1, . . . , n

′
j−1, nj , n

′
j+1, . . . , n

′
R−1, max(0, n′

R − nj) , n
′
R+1, . . . , n

′
J)

T .

which is feasible. Observe on the one hand that

N ′′ = N ′ and ϑ(B′′,n′′) ⩽ ϑ(B′,n′) +
nj

N ′ (θj − θR) < ϑ(B′,n′) ,

because θj < ϑ(B′,n′) ⩽ θR. In particular

ε(B′′,n′′) = R⋆
0 + 2

[
αδ(N

′′ + 1)−γ + β + ϑ(B′′,n′′)
]

< R⋆
0 + 2

[
αδ(N

′ + 1)−γ + β + ϑ(B′,n′)
]
= ε(B′,n′) . (40)

(40) in turn implies that for any k ̸= j such that B′′
k = 1:

−uk(B
′′,n′′) = a[R⋆

0 + ε(B′′,n′′)] + cn′′
k < a[R⋆

0 + ε(B′,n′)] + cn′
k = −u′

k(B
′,n′) . (41)

because n′
k = n′′

k for k ∈ B \ {j, R} and n′′
R < n′

R. On the other hand, we have

uj(B
′′,n′′) = uj = uj(B

′,n′) , (42)

by definition (29) of nj(B
′′,n′′). (41) and (42) together yield

−W (B′′,n′′) = −
∑
k ̸=j

uk(B
′′,n′′)− uj(B

′′,n′′) = −
∑
k ̸=j

uk(B
′′,n′′)− uj(B

′,n′)

< −
∑
k ̸=j

uk(B
′,n′)− uj(B

′,n′) = −W (B′,n′) ,

which once again violates (34). Thus, we obtain Bopt = (1, . . . , 1)T, that is Bopt = [J ].

Part 2: Characterization of nopt
[J] ∈ RJ

+

We now focus on the problem TBopt . To lighten notations, we write nopt ∈ RJ
+ instead of nopt

Bopt , and
B instead of Bopt = (1, . . . , 1). We first reformulate TB in a more convenient way. Recall that TB
reads

(TB) : minimize −W (B,n) subject to n ∈ ΞB , (43)
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where ΞB is defined in (31). As explained in Appendix A, this problem can equivalently be stated as

(T̃B) : minimize − W̃B(λ, N) subject to (λ, N) ∈ Ξ̃B , (44)

where
−W̃B(λ, N) = f(N) + g(λ) ,

with
f(N) = aJ(R⋆

0 + 2αδ(1 +N)−γ) + cN and g(λ) = 2aJλTθ ,

and
Ξ̃B =

{
(λ, N) ∈ ∆|B| × R+ : λN ∈ ΞB

}
.

Writing Ξ̃B(N) = {λ ∈ ∆J : (λ, N) ∈ Ξ̃B} for N ⩾ 0 and N = {N ⩾ 0 : Ξ̃B(N) ̸= ∅}, T̃B
comes down to

min
(λ,N)∈Ξ̃B

{f(N) + g(λ)} = min
N∈N

{f(N) + min
λ∈Ξ̃B(N)

g(λ)} .

In this proof, we address the innermost problem, which is enough to show that nopt satisfies the
point (ii) of the result. Let N ⩾ 0 such that Ξ̃B(N) ̸= ∅, which exists because ΞB ̸= ∅ (for instance,
((1, 0, . . . , 0), (n, 0, . . . , 0)) ∈ ΞB). By definition of Ξ̃B, it reads

(T̃ (N)) : minimize λ ∈ ∆J 7→ 2aJλTθ subject to


∀j ∈ B : λj ⩾ 0

∀j ∈ B : λjN ⩽ nj(B,λN)∑
j∈B λj = 1 ,

(45)

The following lemma provides a necessary condition for any solution to problem (45).

Lemma 4. Let λ(N) = (λ
(N)
1 , . . . , λ

(N)
J ) ∈ ∆J be a solution to (45). If there exists r ∈ [J ] such

that λ(N)
r > 0, then λ

(N)
k = N−1nk(B, Nλ(N)) for any k < r.

Proof. We denote by n̄(B,n) = (n1(B,n), . . . , nJ(B,n))
T for any n ∈ RJ

+. The Lagrangian
associated to problem (45), with µ,ρ and ν the associated dual variables, reads:

L(λ,µ,ρ, ν) = 2aJλTθ − µTλ+ ν
(
1− λT1

)
+ ρT[Nλ− n̄(B, Nλ)]

= 2aJλTθ + cN − µTλ+ ν
(
1− λT1

)
+ ρT(Nλ− n1+

2a

c

[
αδ

(
(N + 1)−γ − (n+ 1)−γ

)
1+

(
(λTθ)1− θ

)]
) .

Since the objective and the constraints are convex, L admits a saddle point (λ(N),µ,ρ, ν) ∈
∆× RJ × RJ × R which is solution to problem (45) and verifies the following KKT conditions:

∀k ⩽ J : 2aJθk − µk + ρk(N + 2ac−1θk) = ν (46)

∀k ⩽ J : µkλ
(N)
k = 0, µk ⩾ 0 (47)

∀k ⩽ J : ρk

(
λ
(N)
k N − n

k
(B,λ(N)N)

)
= 0, ρk ⩾ 0 (48)∑

k∈B

λ
(N)
k = 1 . (49)

Assume there exists r ∈ B such that λ(N)
r > 0. By complementary slackness (47), µr = 0, and (46)

gives for any k < r:

2aJθk − µk + ρk(N + 2ac−1θk) = 2aJθr + ρr(N + 2ac−1θr) , (50)

That is

ρk =
2aJ(θr − θk) + µk

N + 2ac−1θk
+ ρr

N + 2ac−1θr
N + 2ac−1θk

.

By assumption θr > θk, and since µk ⩾ 0 as well as ρr ⩾ 0, we have ρk > 0. It follows from (48)
for agent k that λopt

k N = n(B, Nλ(N)).
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Now, define

Mj =
∑
k⩽j

nk(B,λ
(N)N) and L = min{j ∈ B : Mj ⩾ N} . (51)

We show that

λ
(N)
k = nk(B, Nλ(N))N−1 for any k < L and λ

(N)
k = 0 for any k > L . (52)

To prove the first point, assume by contradiction that there exists ℓ < L such that λ
(N)
ℓ <

nℓ(B,λ
(N)N)N−1. By the contrapositive of Lemma 4, λopt

ℓ+1 = . . . = λopt
J = 0. Thus∑

k⩽J

λ
(N)
k =

∑
k⩽ℓ

λ
(N)
k ⩽

∑
k⩽ℓ

nk(B,λ
(N)N)N−1 = MℓN

−1 < 1 ,

by definition of L Equation (51) and ℓ < L. This violates the third constraint of problem (45).
For the second point, assume there exists ℓ > L such that λ(N)

ℓ > 0. By Lemma 4, λ(N)
k =

nk(B,λ
(N)N)N−1 for any k ⩽ L < ℓ, so∑

k⩽J

λ
(N)
k ⩾

∑
k⩽L

λ
(N)
k + λ

(N)
ℓ =

∑
k⩽L

nk(B,λ
(N)N)N−1 + λ

(N)
ℓ

= MLN
−1 + λ

(N)
ℓ

⩾ 1 + λ
(N)
ℓ > 1 ,

which once again violates the constraints of the problem. Finally by (52),

λ
(N)
iL

= 1−
∑
k<L

λ
(N)
k −

∑
k>L

λ
(N)
k = 1−ML−1N

−1 , (53)

by (52). By (52) and (53) we obtain for any j ∈ [J ]:

λ
(N)
j = N−1nj(B, Nλ(N))1{j<L} + (1−N−1Mj−1)1{j=L} , (54)

Now, consider the solution nopt(θ) ∈ RJ to the initial problem (45), and define
Nopt =

∑
j∈[J] n

opt
j (θ)

λopt(θ) = 1
Noptn

opt(θ)

Lopt = min{j ∈ [J ] :
∑

k⩽j nk(B,n
opt(θ)) ⩾ Nopt} .

λopt(θ) satisfies (54), and multiplying by Nopt yields for any j ∈ [J ]:

nopt
j (θ) = nj(B,n

opt(θ))1{j<Lopt} + (Nopt −
∑
k⩽j

nopt
j (θ))1{j=Lopt} , (55)

which establishes point (ii), and concludes the proof.

Corollary 1. Assume H1, H2 and H3. Then L⋆ = Θ(J
1

1+γ ) and for any j ∈ [J ],

n⋆
j (θ) = 1{j≤L⋆}

[
N̄

L⋆
+

2a

c

(
θj −

1

L⋆

L⋆∑
ℓ=1

θℓ

)]
.

Proof. By definition of the simplified scheme (12), n⋆
j (θ) = 1{j⩽L⋆}nj(1,n

⋆(θ)) = 1{j⩽L⋆}[n−
(2a/c)(ε(1,n⋆(θ))− ε(θj , n))] for any j ⩽ L⋆. Since

∑
j∈[J] n

⋆
j (θ) = N̄ , we get

N̄ = L⋆n− a

c

L⋆ε(1,n⋆(θ))−
∑
j⩽L⋆

ε(θj , n)


= L⋆

[
n− 2a

c

[
αδ

(
(1 + N̄)−γ − (1 + n)−γ

)
+ (ϑ(1,n⋆(θ))− θ̄L⋆)

]]
,
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By Lemma 1 and denoting θ̄L⋆ = L⋆−1
∑

j⩽L⋆ θj . This yields

ϑ(1,n⋆(θ)) = θ̄L⋆ − αδ((1 + N̄)−γ − (1 + n)−γ) + (c/2a)(n− N̄/L⋆) .

Plugging back this value in n⋆
j (1,n

⋆(θ)) = n − (2a/c)[αδ

(
(1 + N̄)−γ − (1 + n)−γ

)
+

(ϑ(1,n⋆(θ))− θj)] gives for any j ∈ [J ]:

n⋆
j (θ) = 1{j⩽L⋆}

[
N̄

L⋆
− 2a

c
(θ̄L⋆ − θj)

]
. (56)

We now determine the order of magnitude of L⋆ ∈ {1, . . . , J}. Recall on the one hand that by
(33), there exists M > 0 such that 0 ⩽ n⋆

j (θ) ⩽ M for any j ∈ [J ], and on the other hand that
θ̄L⋆ − θj ⩽ θ̄ − θ = diam(Θ) < ∞. Therefore by (56),

2a

c
diam(Θ) ⩽

N̄

L⋆
⩽ M +

2a

c
diam(Θ) so

N̄

L⋆
= Θ(1) . (57)

Since N̄ = (n+ 1)|B⋆|
1

1+γ − 1 and B⋆ = [J ], (57) results in L = Θ(J
1

1+γ ).

Lemma 2. Assume H1, H2 and θj − θj−1 = O(1/J) for any j ∈ {2, . . . , J}. Then,

W (Bopt,nopt(θ)) = W (B⋆,n⋆(θ)) +O(J
1

1+γ ) .

Proof. Recall that for any admissible n ∈ ΞB, we can define N = 1Tn and λ = N−1n so that the
social cost rewrites

−W (B,n) = −W̃B(λ, N) = f(N) + g(λ) ,

with
f(N) = aJ(R⋆

0 + 2αδ(1 +N)−γ) + cN and g(λ) = 2aJλTθ .

By definition,
∑

j∈[J] n
⋆
j (θ) = N̄ where N̄ = (n+ 1)J

1
1+γ − 1 = argminN⩾0 f(N). Hence,

W (Bopt,nopt(θ))−W (B⋆,n⋆(θ)) = W̃B(λ
opt, Nopt)− W̃B(λ

⋆, N̄)

= f(N̄) + g(λ⋆)− f(Nopt)− g(λopt)

⩽ g(λ⋆)− g(λopt) = 2aJ(λ⋆ − λopt)Tθ .

Since θj ⩽ θL⋆ for any j ∈ [J ] such that λ⋆
j > 0, and θj ⩾ θ1 for any j ∈ [J ] such that λopt

j > 0:

W (Bopt,nopt(θ))−W (B⋆,n⋆(θ)) ⩽ 2aJ(θL⋆ − θ1) ,

By assumption, for any j ∈ {2, . . . , J} θj − θj−1 = O(1/J) so there exists kj > 0 and Rj ⩾ 0
such that θj − θj−1 ⩽ kjJ

−1 for J ⩾ Rj . Denoting R = maxj∈[J] Rj and k = maxj∈[J] kj , for
any J ⩾ R we have θL⋆ − θ1 ⩽ kL⋆, so:

W (Bopt,nopt(θ))−W (B⋆,n⋆(θ)) ⩽ 2aJ
kL⋆

J
= 2akL⋆ ,

so W (Bopt,nopt(θ))−W (B⋆,n⋆(θ)) = O(L⋆) = O(J
1

1+γ ) by Corollary 1.

Theorem 2 (Unravelling). Assume H1, H2, H3, and H4. Let E ⊂ S J be the set of pure-strategy
Nash equilibria of the game induced by Γ. We have

(i) E ̸= ∅

(ii) at any s⋆ ∈ E , B = (0, . . . , 0) or B = (0, . . . , 0, 1) .
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Proof. First, we show that the situation where the coalition is empty is a Nash equilibrium. Consider
s = ((0, †), . . . , (0, †)) ∈ S N . For any j ∈ [J ] and deviation (1, θ̃j), B = {j} so ĝB = ĝj and
vj((0, †), s⋆−j) = uj ⩾ vj((1, θ̃j), s−j) by Proposition 1. Thus, s⋆ ∈ E .

Now, consider a pure-strategy Nash equilibrium s⋆ ∈ E such that B = {j ∈ [J ] : Bj = 1} ̸= ∅.
Denote by C = {j ∈ B : n⋆

j (θ̃) > 0} the set of contributors. We start with two technical lemmas:

Lemma 5. There exists ∆ ∈ R such that for any (j, k) ∈ C2

θj − θ̃j = θk − θ̃k = ∆ .

Proof. To lighten notation, we write in this proof

ϑ(θ̃) = N−1
∑
j∈C

n⋆
j (θ̃) θj and ϑ̃(θ̃) = N−1

∑
j∈C

n⋆
j (θ̃) θ̃j , where N =

∑
k∈C

n⋆
k(θ̃) .

By Equation (12) and H4, for any j ∈ C, n⋆
j (θ̃) = nj(B,n

⋆(θ̃)) = n− a
c (ε(ϑ̃(θ̃), N)− ε(θ̃j , n)),

so their payoff reads

vj((1, θ̃j), s−j) = −a(R⋆
0 + ε(ϑ(θ̃), N)− c

[
n− a

c

(
ε(ϑ̃(θ̃), N)− ε(θ̃j , n)

)]
= −a(R⋆

0 + ε(θj , n))− cn

+ a
[(

ε(θj , n)− ε(θ̃j , n)
)
−
(
ε(ϑ(θ̃), N)− ε(ϑ̃(θ̃), N)

)]
= uj + 2a

[(
θj − θ̃j

)
−
(
ϑ(θ̃)− ϑ̃(θ̃)

)]
. (58)

Since s is a Nash equilibrium and uj = vj((0, †), s−j), we have in particular that

2a
[(

θj − θ̃j

)
−
(
ϑ(θ̃)− ϑ̃(θ̃)

)]
⩾ 0 ,

that is θj − θ̃j = ∆j ⩾ ∆ = ϑ(θ̃) − ϑ̃(θ̃) for any j ∈ C. We now show that this holds with strict
equality for any j ∈ C. By contradiction, assume there exists r ∈ C such that ∆r = ∆ + χ with
χ > 0. Then

∆ = ϑ(θ̃)− ϑ̃(θ̃) =
∑
j∈C

λ⋆
j (θ̃)∆j =

∑
j∈C\{r}

λ⋆
j (θ̃)∆j + λ⋆

r(θ̃)(∆ + χ)

⩾ ∆+ λ⋆
r(θ̃)χ > ∆ ,

because λ⋆
r(θ̃) > 0 as r ∈ C. This is a contradiction, and establishes the result.

Lemma 6. For any j ∈ C, θ̃j = θ .

Proof. Let j ∈ C, by (58):

vj((1, θ̃j), s−j) = uj + 2a
[(

θj − θ̃j

)
−
(
ϑ(θ̃)− ϑ̃(θ̃)

)]
= uj + 2a

(1− λ⋆
j (θ̃)

)(
θj − θ̃j

)
−

∑
k∈C\{j}

λ⋆
k(θ̃)

(
θk − θ̃k

)
= uj + 2a

 ∑
k∈C\{j}

λ⋆
k(θ̃)

(θj − θ̃j

)
−

∑
k∈C\{j}

λ⋆
k(θ̃)

(
θk − θ̃k

)
= uj + 2aqj(θ̃j , θ̃−j) ,

where
qj(θ̃j , θ̃−j) =

∑
k∈C\{j}

λ⋆
k(θ̃)[(θj − θ̃j)− (θk − θ̃k)] . (59)
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We prove that vj((1, · ), s−j) is strictly decreasing in θ̃j for j ∈ C, by showing that
∂v̂j((1, θ̃j), s−ij )/∂θ̃j < 0 For any j ∈ C. For vj to be differentiable, we need qj to be differ-
entiable, that is λ⋆

j (θ̃) = (
∑

k∈C n
⋆
k(θ̃))

−1n⋆
j (θ̃) to be differentiable for any j ∈ C. We re-index

C as {i1, . . . , i|C|} so that θ̃i1 < . . . < θ̃i|C| . Observe that for 0 < h < δ for δ > 0 sufficiently
small, θ̃ij−1

< θ̃j + h < θ̃ij+1
because θ̃ij−1

< θ̃j < θ̃ij+1
by Lemma 5 and H3. Hence, the bid

ordering does not change for any infinitesimal variation dθ̃j > 0, nor does the indicator 1{ij ⩽ i|C|}.
Consequently by Corollary 1, n⋆

j (θ̃) is differentiable in θ̃j and so is λ⋆(θ̃). We have for any j ∈ C:

∂vj((1, θ̃j), sk)

∂θ̃j
= 2a

∂qj(θ̃j , θ̃−j)

∂θ̃j

= 2a
∑

k∈C\{j}

[
∂λ⋆

k(θ̃)

∂θ̃j

((
θj − θ̃j

)
−
(
θk − θ̃k

))
− λ⋆

k(θ̃)

]

= 2a
∑

k∈C\{j}

∂λ⋆
k(θ̃)

∂θ̃j
(∆−∆)− 2a

∑
k∈C\{j}

λ⋆
k(θ̃) (60)

< 0 . (61)
where we have used Lemma 5 at the third line. This implies

θ̃j = θ for any j ∈ C . (62)

To see why, assume by contradiction that there exists j ∈ C such that sj = (1, θ̃j) with θ̃j > θ. Then
for any h ∈ (0, θ̃j − θ], by (61):

vj((1, θ̃j − h), s−j) = vj((1, θ̃j), s−j)−
∫ θ̃j

θ̃j−h

∂vj((1, t), sk)

∂t
dt > vj((1, θ̃j), sk) ,

which contradicts s being a Nash equilibrium.

Combining Lemma 5 and Lemma 6 gives for any (j, k) ∈ C2:
θj = θk . (63)

Recall that by H3, θm = θn if and only if m = n, so (63) implies |C| = 1. This in turn implies
|B| = 1. Indeed, assume by contradiction |C| = 1 and |B| ⩾ 2. Denote r ∈ B the only contributing
agent. They are asked n⋆

r(θ̃) = nr(θ̃) = n. Moreover by (19) N̄ = |B|1/1+γ
(n + 1) − 1 > n, so

by definition of the contribution scheme (12), there exists k ∈ B \ {r} such that n⋆
k(θ̃) > 0. This

contradicts |C| = 1.

We now show that B = {J}. By contradiction, assume B = {j} with j < J . In particular,
sJ = (0, †). Consider a deviation s′J = (1, θ̃J) with θ̃J ∈ Θ, so B = {j, J} under (s′J , s−J). By
Lemma 6, θ̃j = θ̃J = θ, so (58) rewrites:

vk((1, θ̃k), s−k) = uk + 2a(θk − ϑ(B,n⋆(θ̃)) , (64)

for any k ∈ {j, J}. Since θj < ϑ(B,n⋆(θ̃)) < θJ by H3, we have

vJ((1, θ̃J), s−J) > uJ = vJ((0, †), s−J) ,

which contradicts s begin a Nash equilibrium. Hence, B = {J}. This concludes the proof.

Lemma 3. There exists j ∈ [J ] such that −tj(θ̃) > 0.

Proof. Let (B, θ̃) ∈ {0, 1}J ×ΘN be an equilibrium of the game induced by ΓVCG. Since the VCG
mechanism is strategyproof in dominant strategy, θ̃ = θ. For any j ∈ [J ], the VCG payment is

tj(θ̃) =
∑
k ̸=j

uk((0,1−j),n
⋆(θ))−

∑
k ̸=j

uk(1,n
⋆(θ))

= W ((0,1−j),n
⋆(θ))−W (1,n⋆(θ))

(I)

−[uj((0,1−j),n
⋆(θ))− uj(1,n

⋆(θ))

(II)

] . (65)
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Consider j ∈ {1, . . . , L⋆}. By the contribution scheme Corollary 1,

uj(1,n
⋆(θ)) = −a(R⋆

0 + ε(1,n⋆(θ)))− cn⋆
j (θ) = uj = uj((0,1−j),n

⋆(θ)) ,

where we used in the third inequality that n⋆
j (θ) = nj(B,n

⋆(θ)). Thus, (II) = 0. Moreover by
Theorem 1, W ((0,1−j),n

⋆(θ)) < W (1,n⋆(θ)) so (I) < 0. Thus, by (65) we have tj(θ̃) < 0.

Theorem 3. Assume H1, H2, H3, H4 and H5. B⋆ = (1, . . . , 1)T is a Nash equilibrium under Γ̂ with
probability 1− δ.

Proof. Let B⋆ = (1, . . . , 1)T, so the aggregator has at her disposal θ̂1, . . . , θ̂J .

We first focus on the event under which θ̂j correctly approximates θj for any j ⩽ J . Define
Ej(δ) = {ω ∈ Ω : |θ̂j(ω)− θj | ⩽ ηδ} and E(δ) =

⋂
j⩽J Ej(δ). We have

P(E(δ/J)) ⩾ 1− δ , (66)

because P(E(δ)) = P(∩j⩽JEj(δ)) = 1 − P(∪j⩽JEj(δ)) ⩾ 1 −
∑

j⩽J P(Ej(δ)) = 1 − Jδ,
and setting δ′ = Jδ leads to Equation (66). In what follows, we assume that E(δ/J) is true so
|θ̂j − θj | ⩽ ηδ/J(q) for any j ∈ [J ]. We denote by C = {j ∈ [J ] : mj(θ̂) = n⋆

j (θ̂ + ηj) > 0} the
set of contributors, and to lighten notations we write

ϑ(θ̂) = N̄−1n⋆(θ̂ + ηj)
Tθ = λ⋆(θ̂ + ηj)

Tθ

and ϑ̂j(θ̂) = N̄−1n⋆(θ̂ + ηj)
T(θ̂ + ηj) = λ⋆(θ̂ + ηj)

T(θ̂ + ηj) ,

where ηj = ηδ/J(q)1− 2δjηδ/J(q), with δj = (0, . . . , 0, 1, 0, . . . , 0) ,

for any j ∈ [J ]. Note that ϑ(θ̂) is the actual weighted type within the coalition, whereas ϑ̂(θ̂) is
the weighted type estimated by the aggregator. Consider first a contributor j ∈ C who is asked
n⋆
j (θ̂ + ηj) > 0 samples. Their payoff under B⋆ is

v̂j(1,1−j) = −a(R⋆
0 + ε(ϑ(θ̂), N))− cn⋆

j (θ̂ + ηj)

= −a(R⋆
0 + ε(ϑ(θ̂), N))− c

[
n− a

c

(
ε(ϑ̂j(θ̂), N)− ε(θ̂j − ηδ/J(q), n)

)]
= −a(R⋆

0 + ε(θj , n))− cn

+ a
[(

ε(θj , n)− ε(θ̂j − ηδ/J(q))
)
−
(
ε(ϑ(θ̂), N)− ε(ϑ̂j(θ̂), N)

)]
= uj + 2a

[(
θj − (θ̂j − ηδ/J(q))

)
−
(
ϑ(θ̂)− ϑ̂j(θ)

)]
= v̂j(0,1−j) + 2a(1− λ⋆

j (θ̂ + ηj))(θj − (θ̂j − ηδ/J(q)))

− 2a
∑

ℓ∈C\{j}

λ⋆
ℓ (θ̂ + ηj)(θℓ − (θ̂ℓ + ηδ/J(q))) ,

and since E(δ/J) is true, θj ⩾ θ̂j − ηδ/J(q) and θℓ ⩽ θ̂ℓ + ηδ/J(q) for any ℓ ∈ C \ {j}, so

v̂j(1,1−j) ⩾ v̂j(0,1−j) . (67)

Second, consider j /∈ C who is asked q ⩽ n − 2(a/c)(θ̄ − θ) samples, and denote by r ∈ [J ] the
agent such that θr = maxk∈C θk. Observe that q ⩽ n⋆

r(θ̂ + ηr), so

v̂j(1,1−j) = −a(R⋆
0 + ε(ϑ(θ̂), N))− cq

⩾ −a(R⋆
0 + ε(ϑ(θ̂), N))− cn⋆

r(θ̂ + ηr)

⩾ ur ,

where the last inequality comes from r ∈ C and (67). Since j /∈ C, we have θj ⩾ θ̂j − ηδ/J(q) ⩾

θ̂r + ηδ/J(q) ⩾ θr so ur ⩾ uj , and it follows that

v̂j(1,1−j) ⩾ uj = v̂j(0,1−j) .

23



Proposition 2. Assume H1, H2 and H6. For any j ∈ [J ] the estimator

θ̂ERM
0,j = sup

g∈G
|R̂j(g)− R̂0(g)| ,

satisfies H5 with
ηδ(q) = αδ/4

[
(q + 1)−γ + (q′ + 1)−γ

]
+ 2β . (13)

Proof. Let j ∈ [J ] and g ∈ G , we have

θ̂ERM
0,j = sup

g∈G

∣∣∣R̂j(g)− R̂0(g)
∣∣∣

⩽ sup
g∈G

∣∣∣R̂j(g)−Rj(g)
∣∣∣+ sup

g∈G
|Rj(g)−R0(g)|+ sup

g∈G

∣∣∣R̂0(g)−R0(g)
∣∣∣

⩽ αδ/4

[
(q + 1)−γ + (q′ + 1)−γ

]
+ 2β + θj , (68)

(69)

with probability 1− δ/2 by H2, H1, H6, and a union bound. Similarly,

θj = sup
g∈G

|Rj(g)−R0(g)|

⩽ sup
g∈G

∣∣∣Rj(g)− R̂j(g)
∣∣∣+ sup

g∈G

∣∣∣R̂j(g)− R̂0(g)
∣∣∣+ sup

g∈G

∣∣∣R̂0(g)−R0(g)
∣∣∣

⩽ αδ/4

[
(q + 1)−γ + (q′ + 1)−γ

]
+ 2β + θ̂ERM

0,j , (70)

with probability 1− δ/2. Combining (68) and (70) along with an union bound yields

|θ̂ERM
0,j − θj | ⩽ αδ/4

[
(q + 1)−γ + (q′ + 1)−γ

]
+ 2β ,

with probability 1− δ.

Example 4. Assume H1, H2, H6 and H7.

(i) Denoting R̂j−(g) = n−1
j

∑nj

i=1 ℓ0,1(g(X
j
i ),−Y j

i ), we have

θ̂ERM
0,j = 1− inf

g∈G

{
R̂0(g) + R̂j−(g)

}
.

(ii) In H1, assume αδ = ln(1/δ)1/2, β = 2RAD(G ) and γ = 1 [Bousquet et al., 2003]. With θ̂ERM
0,j

defined in Proposition 2, we have

ηδ/J(q) = ln(4J/δ)1/2[(1 + q)−γ + (1 + q′)−γ ] + 2Rad(G ) .

Proof. (i) Let j ∈ B. Observe that under H7,we have

R̂j(−g) = n−1
j

nj∑
i=1

1{−g(Xj
i )Y

j
i < 0} = n−1

j

nj∑
i=1

(1− 1{g(Xj
i )Y

j
i < 0}) = 1− R̂j(g) .

Since the hypothesis class G is symmetric, we have

θ̂ERM
j = sup

g∈G

∣∣∣R̂j(g)− R̂0(g)
∣∣∣ = sup

g∈G

(
R̂j(g)− R̂0(g)

)
= sup

g∈G

(
1−

(
R̂j(−g) + R̂0(g)

))
= 1− inf

g∈G

(
R̂j−(g) + R̂0(g)

)
.

(ii) Let j ∈ [J ], we have

ηδ/J(q) = αδ/4J [(q + 1)−γ + (1 + q′)−γ ] + 2β

= ln(4J/δ)1/2[(1 + q)−γ + (1 + q′)−γ ] + 2Rad(G ) .
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the claimed contributions are supported by proven theorems.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: all the made assumptions are clearly highlighted and discussed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: no experimental result in the paper
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: no experimental result in the paper
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: no experimental result in the paper
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: no experimental result in the paper
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: no data used for this work
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: no societal impact of the work performed
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: no data
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: no existing assets
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: no new asset
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: no crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: no crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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