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ABSTRACT

Missing data are pervasive in electronic health records (EHR) and oftentimes the
missingness is informative (i.e. Missing Not At Random). Presently available
imputation methods typically do not account for this informative missingness or
are computationally infeasible to handle the scale of EHR data. We develop a
deep learning imputation method based on recalibrating a Wasserstein Generative
Adversarial Network (WGAN) to account for informative missingness in high-
dimensional quantitative medical data. We propose a new quantile re-weighting
technique to ensure distributional equivariance under informative missingness and
integrate it with WGAN to enable efficient imputations in large-scale observa-
tional data in presence of informative missingness and covariate imbalance. Re-
sults from our proposed algorithm show better recovery compared to present meth-
ods in both synthetic and real-world data from the Reactions to Acute Hospitaliza-
tion (REACH) and laboratory test results of COVID-19 patients in the New York
Metropolitan area from the INSIGHT dataset.

1 INTRODUCTION

In the wake of the COVID-19 pandemic, the responsible use of big data for healthcare is an es-
pecially urgent and important issue. Large-scale electronic health records (EHR) have been in-
creasingly used to inform clinical decisions and discover disease etiologies. Although they contain
unprecedentedly rich information, EHR are incomplete and sporadic records of individual patients’
health conditions. When a patient visits a healthcare facility, variables recorded during that visit
often depend on their health conditions. Such missingness in variables are informative as they are
directly linked with the patient’s underlying health conditions. For example, patients with diabetes
will have more frequent glucose records compared to non-diabetic patients. A subject’s systolic
blood pressure or heart rate is less likely to be measured if it is low Yoon et al. (2018b). In psycho-
logical questionnaires, variables that measure the severity of depression or mania may be correlated
to the likelihood of response. Another key feature of EHR is its high dimensionality; this attribute
also conceals multifarious hidden relationships between different variables and their missingness.

There are several ways to make missing data amenable for analysis. One simple way is by
deleting entire vectors of variables or subjects (Silva and Zárate (2014)). However, this approach can
remove important aspects of the data and lead to compounded errors with unintended consequences
(Graham (2009)). Imputation, or filling in missing values with plausible predicted values from a
given model that uses the existing observed variables, is another approach. Imputation using deep
learning (DL) have been a recent trend due to its computational advantages: many of these method
assume that data are missing completely at random (MCAR), where missingness is independent
from the data, or only dependent on observed data (missing at random (MAR)) (Yoon et al. (2018a);
Li et al. (2019); Yoon and Sull (2020)). However, in the real world, this assumption is not necessarily
correct for analyzing EHR (Albers et al. (2018)), as covariates are often not MAR.

These problems of informative missingness (IM) have been addressed in inverse probability
weighted (IPW) approaches from nonparametric statistics (Wei et al. (2012); Yuan and Dong (2019);
Xie and Zhang (2017)). The advantage of DL methods over these above methods, however, is that
they are faster and can handle “bigger” data, but they also suffer disadvantages in their inaccuracy
and inability to extend beyond the MCAR realm. Wang et al. (2021) demonstrate that traditional
methods like multiple imputation by chained equations (MICE) outperforms DL based approaches
for small to moderately sized datasets. However, MICE is much slower. To account for these gaps in
imputation methodology, we introduce a novel method based on WGAN with improved accuracy in
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recovering the distributive properties of the missing data. Our novel contributions are twofold: (1)
introduction of a new WGAN-based imputation method whose objective function is recalibrated by
estimated missingness probabilities to account for the drawbacks of the Wasserstein distance (noted
by Stanczuk et al. (2021); Fedus et al. (2017)), (2) application to high-quality real EHR data with
quasi-experimental missingness settings, together with simulations that approximate them.

2 PRELIMINARIES AND RELATED WORK

We describe several existing methods that are commonly used for imputing missing data. One
commonly used approach is MICE. MICE fits regression models for each variable that has miss-
ing values after conditioning on all other observed variables (Breiman et al. (1983); van Buuren
and Groothuis-Oudshoorn (2011)). MICE is regarded as a state-of-the-art approach, but the biggest
limitation is that computation time increases quadratically as with the number of variables (Wang
et al. (2021)). Another class of methods use neural networks (NN). MIDA is one example based on
denoising autoencoders (Gondara and Wang (2017)). Generative adversarial networks (GANs) are
another popular framework for imputation (Goodfellow et al. (2014)); examples include GAIN and
WGAIN (Friedjungová et al. (2020); Yoon et al. (2018a); Li et al. (2019)). Luo et al. (2018) pro-
posed a GAN-based imputation in time series that also implicitly account for time-serial informative
missingness. In the following section, we describe GAN and its Wasserstein variant in detail.

2.1 (WASSERSTEIN) GENERATIVE ADVERSARIAL NETWORKS

Broadly speaking, GANs train two neural networks generator G and discriminator D to compete
against each other to reach a global maximum. Talas et al. (2020) describe GAN as an evolutionary
arms race between two parties wherein one keeps trying to outdo the other. G tries to generate
a distribution PG that is as similar to ‘real’ distribution Pdata. D tells if what is generated by G
comes from Pdata rather than PG. Wasserstein GAN (WGAN) is an alternative GAN that yields
demonstrable advantages over the original by minimizing the Wasserstein distance between the Pdata
and PG (Arjovsky et al. (2017)).

Consider a p-dimensional space X = X1 × ... × Xp, let (xdata, xG) be elements in X whose
marginal distributions are Pdata, PG. γ(xdata, xG) indicates how much mass must be transported from
xdata to xG in order to transform the distribution Pdata into PG. The Wasserstein-1 distance W1 is
the minimum cost of the optimal transport plan between the distributions (details in Appendix A
(Villani (2008))). The competing objectives of G and D is motivated by the Kantorovich Duality,
which restates the Wasserstein distance as the supremum of differences in expectations of densities
with Lipschitz functions f as follows:

W1(Pdata, PG) ≡ sup
∥f∥L≤1

Ex∼Pdata [f(x)]− ExG∼PG
[f(xG)]. (1)

The overall objective of WGAN is to minimize W1 (we use W1 throughout the manuscript without
loss of generalization for p > 1) for Pdata and PG. (W)GANs are popular tools of imputation because
they are fast, but they also naturally encourage multiple imputation. Yoon et al. (2018a) and Yang
et al. (2019) in particular, posit that GAN-based approaches can be considered forms of multiple
imputation because its generative aspect “models all features with missing values simultaneously”.
However, they are not without its limitations. Wang et al. (2021) demonstrates that MICE actually
outperforms nearly all NN-based approaches for small to moderately sized datasets , but its comput-
ing time increases quadratically compares to DL methods (Gondara and Wang (2017)). Stanczuk
et al. (2021) remark that existing WGAN methods do not necessarily minimize the Wasserstein dis-
tance or KL divergence (also noted by Fedus et al. (2017)). Furthermore, even if W1 is minimized,
Stanczuk et al. (2021) demonstrate that it is not even necessarily a desirable criterion for generative
modeling. Li et al. (2017) note that few (W)GANs guarantee theoretical convergence except under
very specific conditions. Stanczuk et al. (2021)) attribute the effectiveness of WGAN instead to the
D regularizer in the gradient penalty implementation (Gulrajani et al. (2017)).

We propose a method that more accurately imputes the data distribution by learning from the
observed data as well as its estimated missingness. We aim to “ preserv[e] the distributional char-
acteristics of the data” (Little and Rubin), by using a recalibrated Wasserstein-like distance that is
reweighted by the estimated missing probability to achieve better fidelity and minimize bias in re-
construction. We describe this in Section 3. Noting the absence of theoretical guarantees for WGAN
minimization, we are guided by a practical approach to empirically best redistribute observed data
and imputations using estimated missingness probabilities. In Section 5 we demonstrate that our
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proposed method outperforms other existing methods in (ordinary) W1 distance minimization on
real data, following evaluation of simulations in Section 4.

2.2 NOTATION

Suppose that X = (X1, ...Xp) are random variables in X (defined in Section 2.1 with n observations
with missing entries. For each j-th index, let Xobs

j represent the section of the variable that is
observed, and let Xmsg

j be the subset of the vector that is missing. The mask matrix M = M1, ...,Mp

takes values of 1 if the value of Xij is observed, and 0 if it is missing. Each Mj is the indicator
vector for each column (feature), and Mij represents the specific entry at the i-row and j-th column.
Let Xj and X represent the data vector/matrix as defined in previous sections. Note that X is the
matrix of observations with missing entries filled in with uniform noise U. G is the generator with
associated parameters ΘG and D is the discriminator with ΘD. A flowchart of the relationships
between these variables is found in Figure 1.

3 PROPOSED METHOD

We use the model framework for imputation proposed by Yoon et al. (2018a) (GAIN). The main
features of the model architecture are generator G and D. The generator generates fake data (i.e.
imputations) and the discriminator judges the quality of the generation and updates its ability to
discern between the synthetic and the real data. D estimates the probability of mask M (Yoon et al.
(2018a)), and the quality of the estimate of M is used to score D. D and G each have 3 layers
(details in Appendix C.1). All inputs and outputs of G and D are matrices with dimensions n× p.

In each iteration of our proposed method, random noise U is added into the observed data
matrix with missing XNA: X = M ⊙ XNA + (1 − M) ⊙ U. Then X is fed into generator G:
G(X|ΘG) := Ẋ, which denotes the purely imputed dataset, of which the observed entries are also
imputations. Ẋ takes fake synthetic values for the entries which are observed as well. X̂ is matrix
of the mixture of observed and imputed missing values:

X̂ = M⊙X+ (1−M)⊙ Ẋ. (2)

Figure 1 (the other parts of the diagram is described in the following sections) shows the differences
between the three types of data matrices X (input with random noise), Ẋ (pure imputation), and X̂

(composite). These data matrices are fed into D, each with outputs M̃, Ṁ, M̂ that take on estimated
probabilities between 0 and 1 (as in Yoon et al. (2018a)). Ṁ = D(Ẋ|ΘD) represents the “fake”
M estimate of imputations (using the terminology of Arjovsky et al. (2017), though X is a mixture
of observed and random noise), while M̃ = D(X|ΘD) represents the “real” (i.e. real observations
plus noise) estimates. Their difference are assessed in relation to M to train D. M̂ := D(X̂|ΘD)
represents the composite (i.e. best guess) and will serve as the probability weights for the quantile
reshaping adjustment, which will be described in Section 3.1.

3.1 MISSINGNESS ASSUMPTIONS

Prior work has predominantly focused on the the MAR and MCAR cases (as mentioned in Section
2), citing the difficulty of correcting for MNAR. We wish to impute missing values in data that is not
at random. We make two assumptions about missingness. The first is one of informative missingness
(IM) within a variable. An example is a variable that is be more likely to be un-recordable if its
value (inclusive of missings) is very high. The second is that of covariate imbalance (CI), where
the other variables inform the missingness of the variable Xj itself. We adjust empirical cumulative
distribution functions (CDF) of observed and missing data adjusted by their estimated missingness
probabilities M̂. We note that the weighted summation of such CDFs are used in prior work in
multiple imputation from the nonparametric statistics perspective (Wei et al. (2012)). If variable Xj

is IM, then P(Xj is missing) = P(Mj = 0|Xj). To correct for such dependency, we model the
missingness of each variable with the output M̂ of D,

P(Xj is missing) := 1−D(X̂|ΘD)j := 1− M̂j .

To impose distributional equivariance between the missing and observed variables (Section 3.2) we
reweight empirical CDFs of each variable with missingness probabilities M̂ iteratively. More details
on these assumptions are found Appendix B.
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M

X = XNA ⊙M+U⊙ (1−M)XNA

U
GΘG

Ẋ = G(X|ΘG)

X̂ = X⊙M+ Ẋ⊙ (1−M)

D

M̃ = D(X|ΘD)

Ṁ = D(Ẋ|ΘD)

ΘD

M̂ = D(X̂|ΘD)

“real”

“fake”

composite

“real”

“fake”

composite

(from prev. iter.)

Input with Noise U ∼ Unif(0, 1) → G-Step → D-Step

Figure 1: Diagram of a single iteration of the proposed algorithm. The diagram flows in order from left to
right, where the same XNA is combined with a randomly generated U. First the G step is applied to generate
Ẋand D step on right. Blue trapezoids represent the NNs G and D with associated parameters ΘG and ΘD .
White boxes represent raw data, yellow boxes represent synthethic variables that are used iteratively to train
parameters. Green boxes represent the parameters to be trained using stochastic gradient descent (ADAM
algorithm) from Tensorflow. Dashed arrows represent variables used to train the parameters. Input M̂ to G
from the prior step from the D optimization. (“ =⇒ ”) signifies the fixing parameters ΘG,ΘD for NNs G,D.

3.2 QUANTILE RECALIBRATION METHOD FOR DISTRIBUTIONAL EQUIVARIANCE

We develop a method to reshape the empirical distributions of data with missing entries. We follow
the approach of Yuan and Dong (2019), who reweigh empirical likelihoods by missingness probabil-
ities, and recalibrate the Wasserstein distance between observed and missing (imputed) components
by reweighing it by estimated missingness probabilities (3). For fixed j, let Xj be the jth variable
and let Mj be its associated mask vector. For any of the variables µij = πij , Mij , Xij , Vij , nj ,qk
(to be defined within Algorithm 1), let µ∗

ij denote either µob
ij or µmsg

ij . This method re-weights each

Algorithm 1 Quantile reshaping method for data vectors with missing entries
Input: Data vector Xj with missing entries

1. Partition jth variable Xj into components Xobs
j := Xj |Mj=1 and X̂msg

j := X̂j |Mj = 0. Associated
estimated missingness probabilities are written as π∗

ij = M̂∗
ij = D(X̂|ΘD)ij

∣∣
Mj

2. For each j, define each V ∗
ij (with associated length n∗

j ): V ∗
ij := 1/π∗

ij

/∑n∗
j

i=1 1/π
∗
ij

3. Now we take the observed and imputed (if missing) values of variable Xj . Rank each X*
j (in the

observed or missing regime) and then define each V ∗
(l)j as V ∗

ij that corresponds with the index of X∗
(l)j ,

the l-th ranked X∗
j . Define each quantile height q∗k (∗ for either observed or missing) to be:

q∗1 = V *
j(1)

/ n∑
l=1

V *
j(l), ..., q

∗
h =

h∑
k=1

V *
j(k)

/ n∗
j∑

l=1

V *
j(l), ..., q

∗
n∗−1 =

n∗−1∑
k=1

V *
j(k)

/ n∗
j∑

l=1

V *
j(l), 1

4. For a range of τk, where k = 1, ...,K, the quantile functions Q̃∗ (for either observed or missing) can
then be calculated as follows :

Q̃∗(τk, Xj |Mj) = inf
{
X∗

(k),j s.t. q∗k ≤ τ
}

Choose evenly gridded quantiles τ = {τ1, ..., τK}, then linearly interpolate the K points.
Calculate Q̃∗(τk, Xj |Mj) across all τ1, ..., τK for observed and missing variables, calculate the norms of
their difference, ∥Q̃(τk, Xj |Mj = 1)− Q̃(τk, Ẋj |Mj = 0)∥, then add to obtain (3).

empirical CDF of each variable based on its probability of being observed. This technique is known
as inverse probabilty weighting (IPW) when it is applied to reweigh coefficients;similar approaches
have been used in quantile regression settings (Cheng and Wei (2018); Seaman and White (2013)).
We adjust the overall likelihood (W1 in WGAN) to encourage distributional equivariance between
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observations and imputations. For each vector Xj with mask vector Mj ; each i-th entry is Xij and
Mij respectively. Let ΦX(x,ω|Mj) be a generalized conditional CDF that allows for reweighting
of different quantile segments given mask vector Mij where ω is the weight of each indicator (Wei
et al. (2012)). We use the “composite” estimate of M̂j = D(X̂|ΘD) and xj represents an array of
values that correspond to a grid of evenly-spaced inverse quantiles for each Xj . This grid approach
is used often as a density redistribution method in quantile regression (Wei and Yang (2014)),

ΦXj (x,ω|Mj = 1) =

∑n
i=1 ωi1(Xi ≤ x)1(Mij = 1)∑n

i=1 ωi1(Mij = 1)
.

The overall loss of the adjusted Wasserstein Distance W is

W(Pdata, PG,ΘG) =
1

p

p∑
j=1

∥∥∥∥Φ−1
Xj

(xj , M̂j |Mj = 1)−Φ−1
G(X,ΘG)j

(xj , 1− M̂j |Mj = 0)

∥∥∥∥, (3)

We write Ẋ as G(X,ΘG) to emphasize the optimization of parameter ΘG. We posit that W(·) is
more useful than the canonical W1 for imputation in that it rebalances the missing data using the
iterative estimates of the missingness probabilities. We show later in Section 5 that the method does
empirically minimize W1 for real data as well.

3.3 OBJECTIVE FUNCTIONS

We introduce an imputation method that uses the method of quantile reshaping to correct for in-
formative missingness which we call Recalibrated Wasserstein Imputation GAN (RWIGAN). The
criterion for RWIGAN is comprised of two parts: maximizing the D loss and minimizing the G
loss. These steps are alternated and a schematic diagram for the implementation is shown in Figure 1.
When training D, the differences between true mask M and “real” (i.e M−M̃) and “fake”(M−Ṁ)
estimates are made as as far apart as possible. The goal of D is to make the fake guess as bad as
possible (i.e. in competition with G). First, we define a monotone transformation for the output
probability estimate of D(·) that better captures its distance from its ground-truth value M,

E[D′(X,ΘD)|M] = −
n∑

i=1

p∑
j=1

logit
(
(D(X,ΘD)ij −Mij)

2
)
. (4)

We apply the logit transformation to the squared difference between M and each of D(X) and
D(Ẋ) to obtain a normalized value to better train the D loss which is the difference of the two
expectations. These loss functions are written as follows:

max
ΘD

LD(X,M,ΘD) = max
ΘD,∥ΘD∥L≤1

EX∼Pdata [D
′(X,ΘD)|M]− EẊ∼PG

[D′(Ẋ,ΘD)|M], (5)

min
ΘG

LG(X,M,ΘG) = min
ΘG

W(Pdata, PG,ΘG). (6)

The logit transform aligns with the gradient direction of G minimization as per the primal formu-
lation of the W1 ((8) in Appendix A) before it is transformed into its Kantorovich Dual (Villani
(2008)). The D-loss is constructed from the assumption that the distance between M and Ṁ is
greater than that between M and M̃, and the bigger this difference is, the better D is able to dis-
criminate, as G in turn becomes better at generating samples.

Gulrajani et al. (2017)’s WGAN uses a gradient penalty (WGAN-GP) to enforce the Lipschitz
constraint while training D; following this, we augment the D−loss with a penalty parameter to
Lλ
D(X,M,ΘD) during the training steps. For Y = ξX + (1− ξ)Ẋ, and ξ is randomly drawn from

a uniform (0,1) distribution,

Lλ
D(X,M,ΘD) = EX∼Pdata(X)[D

′(X,ΘD)|M]− EẊ∼PG
[(D′(Ẋ,ΘD)|M]

+ λEY[∥∇ΘD
D′(Y,ΘD)∥2 − 1)2|M].

(7)

The G loss is equivalent to minimizing W (3). We constrain the gradient to be positive to ensure
monotonocity for global convergence; we demonstrate that the objective is monotonic and also show
empirical convergent properties in Appendix C.3. In the implementation of the algorithm, we set the
batch size to be 100 for the simulations (around one-third of n) and set λ = 1. Differing settings of
λ and batch size (the only free parameters of the method) do not alter the outcome in a significant
way. We cycle a single iteration of D, though more than one is possible for smoother training (as is
done in Arjovsky et al. (2017)). Pseudocode for the proposed method is presented in Algorithm 2.
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Algorithm 2 Algorithm for proposed method RWIGAN
Input: Data matrix XNA with missing entries, and M (implicit in XNA)
Initialize:

• Randomly initialize ΘG,ΘD using the Xavier Initialization (Yoon et al. (2018a)).
• Standardize every (observed) data column to be between 0 and 1

while ∇ΘGL
t
G at iteration t does not converge do

Sample batch with indices B. For each step assume all data (i.e. X,M, Ẋ, Ṁ) are subset at B:
• Generate random uniform(0,1) matrix U (subset at B)
• X← XNA ⊙M+ (1−M)⊙U , then create Ẋ using generator G: Ẋ := G(X|ΘG).
• (1) “D-Optimization”: update ΘD by minimizing the D loss function using SGD:
∇ΘDL

λ
D(X,M,ΘD)

– X̂← X⊙M+ (1−M)⊙ Ẋ

– M̂← D(X̂|ΘD).
• (2) G-optimization: update ΘG by SGD using ∇ΘGW(Pdata, PG,ΘD) using the inverse quantile re-

calibration in Algorithm 1.
end while

4 SIMULATION STUDY AND METHOD COMPARISON

We design and conduct experiments on several sets of synthetic data. We simulate two types of ex-
periments: (1) informative missing (IM), where the missingness of a variable is dependent on itself,
(2) covariate imbalance (CI), where the missingness of variable is dependent on other variables (in
addition to IM). The proposed method is primarily designated for heavy-tailed distributions whose
patterns of missingness are self-dependent. However, we model the missingness as dependent on
both latent and observed patterns. Most DL methods are not catered to MNAR data (Yoon et al.
(2018a); Wang et al. (2021)), except under very specific conditions Ma and Zhang (2021); Dai et al.
(2021). Albers et al. (2018) note that real EHR datasets are rarely comprised of multivariate normal
variables. In the following Section 5 this phenomena is evident in REACH data, so we simulate
several scenarios involving heavy-tailed distributions that look similar to the distributions of the
EHR data that is used in the case studies. We simulate several high-dimensional datasets with IM
(details in Table 1, right). Variables such as glucose, lipase, and creatinine are commonly modeled
as lognormal or generalized extreme value (GEV) distributions (Albers et al. (2018)).

EHR data in real-world examples roughly look like the simulations in this section. We simulate
several cases of data with IM and CI. Each of these distributions have 300 observations and 100
variables. In each simulation, we generate either correlated or independent random variables or
mixtures of random variables. We generate independent exponential (.1) and uniform variables
for the IM experiments. Higher values are more likely to be missing as to be informative in the
experiments. Details of missingness are described in Table 1 (right). Further details can be found
in Appendix E.2. These modes of missingness partially match those from the PCL variables from
REACH data in Section 5. In IM-exp, each variable is additionally missing if the value of the entry
is greater than the 80% quantile of the variable. In the IMCI cases, variables were generated in pairs
(Yj , Zj), such that the final dataset X is their concatenation . but the variables are correlated with
each othe. Details of these simulations are described in Table 1. In order to ease interpretation and
avoid skewed results (Gondara and Wang (2017)), all columns were scaled between 0 and 1.

4.1 METHOD COMPARISON

To evaluate the proposed method, we designed experiments on synthetic datasets and compared it
with MICE, MIDA, and GAIN. MICE, as we have described, is considered state of the art for miss-
ing data. GAIN is theoretically sound and has partly inspired the framework of RWIGAN, but it
does have limitations: Wang et al. (2021) have shown that it does not impute as well as MICE. We
also compare to another method called multiple imputation using denoising autoencoders (MIDA)
(Gondara and Wang (2017)). MIDA uses a decoder, which outputs a low-dimensional approxima-
tion of the input data, and an encoder which projects the approximation to the back to the data space.
This two step process is similar to that of GAIN, but does not rely on the missingness structure. We
simulate 50 Monte Carlo replicates for each distributional specification. Operationally, because
MICE is much slower than the other methods, we only use 20 replicates. MSE and normalized MSE
(nMSE) (details in Appendix E.1), where each variable is scaled by the (true) column mean, were
used to assess the model performance (Yoon et al. (2018a); Gondara and Wang (2017)).
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Mean Squared Error (MSE)

Label Distribution RWIGAN GAIN MIDA MICE

IM-exp exp(.1) .04± .001 .07± .002 .05± .001 .05±.006

IM-u-a unif (0,1) .40±.015 .38±.002 .45±.008 .49± .008

IM-u-b unif(0,1) .09± .003 .27±.012 .20± .004 .19 ±.006

IMCI-a MVN(.25),
exp(.5)

.09±.003 .28±.009 .16± .002 .14±.002

IMCI-b exp(.1),
exp(.01)

.039±.002 .061±.004 .047±.002 .045±.003

Legend

Distribution Missingness

IM-exp Xj ∼ exp(.1) Pmsg(Xij) =

X = {Xj}p
log(Xij+1)

maxi(log(Xij+1))
,

Pmsg(Xij) = 1

if Xij ≥80% qtl

IM-u-a Xj ∼ unif(0,1) Pmsg(Xij) = .50

X = {Xj}p if Xij ≥ 70% qtl

IM-u-b Xj ∼ unif(0,1) Same as (IM-exp)

X = {Xj}p
Normalized Mean Squared Error (NMSE)

Label Distribution RWIGAN GAIN MIDA MICE

IM-exp exp(.01) .19 ± .005 .32±.003 .26±.007 .24± .005

IM-u-a unif(0,1) .32 ±.003 .33±.004 .46±.018 .55±.015

IM-u-b unif(0,1) .13± .003 .44±.012 .32±.004 .28± .010

IMCI-a MVN(.25),
exp(.5)

.16 ± .007 .54 ±.020 .29 ±.007 .24± .004

IMCI-b exp(.1),
exp(.01)

.19 ±.005 .31 ±.014 .24±.010 .21±.007

IMCI-a Uj ∼ unif(0,1) Pmsg(Zj) as IM-exp

Z ∼ MVN(0, 1, ρ =
.25)

Pmsg(Yj ,Zj) ∝
only Zj

Yj ∼ 1+2Uj+Xj
+exp(.5)

Uj is ⊥ latent vari-
able

X = {Yj , Zj}p
IMCI-b Zj ∼ exp(.01) Pmsg(Zj) as IM-exp

Yj ∼ 1 + 2Xj +
exp(.1)

Pmsg(Yj ,Zj) ∝
Zj only

X = {Yj , Zj}p

Table 1: Simulations for Informative Missing (IM), and IM with Covariate Imbalance (IMCI). All variables
except for the (standard) multivariate normals are independent. The right side is a key describing the X repre-
sents the total dataset for imputation. Pmsg(Xj) represents the missingness rates of the j−th variable Xj . In
each scenario the number of observations n = is 300 and variables p = 100. The simulations are normalized
between 0 and 1. For each IMCI experiment, 50 Xj and Yj are generated and the resulting matrix X is com-
prised from their concatenation. MSE and nMSE of the imputed values versus the ground-truth values of the
induced-missing values were calculated as a measure of performance. 50 synthetic experiments for each setting
is carried out and the Monte Carlo average of the MSE and nMSE are presented.

RWIGAN outperforms other methods in most cases. For IM-u-a (where the missingness struc-
ture is more simplistic and closer to MAR), RWIGAN outperforms most other methods except for
GAIN (for MSE). Though our proposed method works across a range of modes of missingness,
the closer the missingness is to randomness, the less obvious its advantage is in relation to other
methods. Figure 2 shows one case of the IM simulations from Table 1 and its imputations by the
different methods. The reconstruction contour density plots from RWIGAN (left) is centered around
the median for both true and imputed values; they are much less skewed than in the other methods.
In terms of speed, on average, MICE is the slowest and expends about 600 CPU seconds per run (for
REACH it takes 1000, and is prohibitively slow for INSIGHT). Empirically, a simulation dataset
of n = 300, p = 100 takes MICE approximately 15 minutes. DL methods (RWIGAN, GAIN, and
MIDA) are much faster, especially when p becomes large. RWIGAN is slower than MIDA, which
is in turn slower than GAIN, but the increase in time with respect to increased p or n is linear.

Figure 2: Imputation results compared to the true values (left) for different methods for the IM simulation and
densities of missing and observed entries and reconstructed densities (right).

5 CASE STUDY

We use two sources of Electronic Health Records: (1) REactions to Acute Care and Hospitaliza-
tion (REACH) and (2) INSIGHT clinical research network. We develop a method of evaluating
the missingness in imputations by modeling the existing missingness and then to induce additional
missingness in the observed parts of the variables. REACH is a rich dataset that contains the mental
and physical health conditions of 1776 subjects from Columbia University Medical Center. These
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EHR include symptoms, lab results, and other related information. A major function of REACH is to
analyze the association between post-traumatic stress disorder (PTSD) and cardiovascular risk. The
PTSD Checklist (PCL) is a continuous, long-tailed metric and has shown “convergent and discrimi-
nant validity, [internal] consistency, and [test-test] reliability” Ruggiero et al. (2003). Indeed, many
subsequent measures focus on the various aspects of the PCL score. In many cases, PCL scores
function as the predicted variables and is the driving factor of the analysis (Birk et al. (2019)). The
INSIGHT Clinical Research Network houses EHR data of over 12 million patients in New York
City from its largest private healthcare systems (INS) .

REACH yields two overlapping datasets: a raw where n = 1776, and cleaned where n = 764.
The raw dataset has more missing, but some of these values are observed in the cleaned (more
details in Table 3). We conduct two analyses on both the datasets; for the cleaned analysis we
create NAs in the observed data where the raw data is missing, and use the real values as ground
truth. Exploratory analysis (Figure 7 in Appendix) shows that the densities between the observed
and missing look inherently different; details of missingness modeling can be found in Appendix
D.1. For the (larger) raw analysis, we simulate artificial NAs because we do not know the ground
truth; we “bootstrap” a notion of ground truth for missing data in the raw analysis and model the
missingness of the raw variables by using the difference in missingness between the raw and cleaned
datasets. We follow prior studies in emphasizing the imputation on PCL variables Birk et al. (2019).
Results show that RWIGAN is preferable to GAIN and MIDA consistently in terms of MSE, nMSE,
as well as the (canonical) W1 (1) in both raw and cleaned cases. MICE does slightly better than
RWIGAN in some cases, but it is much slower. In the smaller analysis, the advantages of RWIGAN
is less pronounced because the real rates of missingness are not as strongly defined as the induced
missingness in the largest, but the completeness of REACH may not be indicative of typical EHR.

Figure 3: (Left) Contour plots of imputed values for the REACH PCL Combo (Baseline) data. The MSE for
each method for this variable in particular is QWIGAN: .066, GAIN: .115, MIDA: .130, MICE: .079. (Right)
density plots are shown for the observed, missing, and imputed values

RWIGAN’s advantages are apparent in both the raw and cleanred analyses. In the full data, the
nMSE, MSE, and average W1 (Table 2, third row). In the smaller analysis with real missingness,
for PCL variables, RWIGAN results yields the lowest nMSE, and comparatively low errors across
all measures. Figure 3 shows an example of resultant imputations plotted against induced missing
values for the PCL (baseline) variable. Though the variance of imputations among is fairly wide,
RWIGAN suffers from much less bias than the other methods. MICE does well in minimizing errors
(Table 2), but the numerical results only show one side of the story: visual representations in Figure
3 show some of the more nuanced advantages of our proposed method.

The INSIGHT dataset has many different datasets such as diagnoses, vital statistics, and lab-
oratory tests. We center this analysis on the laboratory tests. Albers et al. (2018) emphasize the
importance of lab tests, but also describe them as “noisy, outlier-ridden,and biased”. We aggregated
quantitative results of all lab tests for every patient who tested positive for COVID-19 from 2020-
2021 (with some thresholds). Details of the data and missingness are described in Table 2; further
specificities are in Appendix D.3. The resultant data is fairly sparse; each variable is heavy tailed.
This is indicative of the nature of most EHR data; Figure 4 shows a few of these variables. Unlike
REACH, INSIGHT does not have any internal benchmarks for assessing missingness; we induce
NAs on the observed variables with the same scheme that was used in REACH. Table 2 shows
that RWIGAN outperforms the other methods across a several metrics for INSIGHT. MICE was not
used because it was prohibitively slow. Figure 4 show imputation comparisons for a single variable;
competing methods again produce more bias.

Across simulations and data, our proposed method reconstructs missing data more effectively
both numerically and visually. Density plots show that RWIGAN imputations are more similar to the
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Figure 4: Density and contour plots for various imputations of Carbon dioxide (partial pressure) in blood
variable from Insight. Left shows contour plots for the (induced) missing vs imputed values for each of the
methods, right shows density plots of the true observed and missing values and imputations.

original data; it does not look exactly like the observed nor missing densities but a mixture. We use
MSE and W1 as the tools to judge the consensus imputation results but these are not perfect tools.
Point-by-point inspections of distributions in Figures 3, and 4 show that RWIGAN produces more
less unbiased and centered imputations. In GAIN, a “hint” (subsample of M) is used in training to
encourage distributional similarity between missingness and observed. In RWIGAN we omit this
and note instead that the W recalibration achieves the same goal of distributional equivariance, if
not moreso empirically as shown by Figures 2-4. Additional visual examples (more typical of GAN
studies) are found in Appendix E.3.

Method Evaluation for Real EHR Data

REACH

Var. Metric RWIGAN GAIN MIDA MICE

PCL nMSE .47±.020 .63±.020 .76±007 .48±.005

(full) MSE .068±.004 .089±.004 .10±.001 .067±.002

W̄1 .18±.002 .23±.006 .30 ±.003 .20±.005

PCL nMSE 1.1± .051 2.2±.056 1.2±.120 1.4±.071

(small) MSE .08±.053 .19±.004 .06±.004 .09±.009

W̄1 .57±.076 .79±.017 .65±.017 .49±.047

INSIGHT

Metric RWIGAN GAIN MIDA

nMSE .117 ±.001 .315 ±.010 .132 ±.006

MSE .005 ±.001 .020 ±.002 .006 ±.002

W̄1 .116 ±.006 .310 ±.005 .171±.003

Legend

Label Missingness (n, p)(eval.) (n, p) (analysis)

PCL (full) Pmsg(Xj) = log(κj + 1)/max(log(κj + 1)) where κj = (nj/4 − rank(Xj))
2/nj (1776,24) (1776,62)

PCL (small) Real missingness (764,4) (764,13)

INSIGHT (Same as PCL(full)) (4764,162) (4764,162)

Table 2: Imputation evaluations for MSE and nMSE for REACH and INSIGHT data. Each variable is scaled
between 0 and 1. Results on top left is for the full REACH data and bottom left is for the cleaned data only.
Only PCL variables are evaluated for REACH. Results for INSIGHT are in the top right; all variables are used
and evaluated. MICE is not used for INSIGHT because it is prohibitively slow.

6 DISCUSSION

RWIGAN is a novel algorithm to impute missing data when the missingness is not at random. The
efficacy of the method is supported by the results of synthetic experiments (Section 4.1) and real data
(Section 5). Our proposed method generally outperforms existing methods for real data. MICE does
slightly better in some cases but it could not computationally handle the sizes of larger datasets like
INSIGHT. Another contribution of this work in DL-based imputation studies is in our usage of high-
quality real clinical data; in REACH we have a quasi-experimental setting for assessing benchmarks
of missing data where certain data are missing at one time point but observed at another. RWIGAN is
designed for specific forms of EHR data, which is heavy tailed and likely to be informative missing
(Albers et al. (2018)). We have demonstrated empirical evidence for IM as a real mechanism of
missingness in EHR in Appendix D.1. We discussed in Section 2 that existing WGAN methods
do not actually serve as W1 minimizers (Stanczuk et al. (2021)), which leaves ample room for
redesigning criterion (i.e. recalibration) for DL-based imputation. Ostrovski et al. (2018) have
investigated the relationship between quantiles and Wasserstein distance, but further work will be
fruitful. We have demonstrated the empirical advantages of the recalibrated Wasserstein metric W ,
further work may explore its theoretical properties.
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reconstruction using a wasserstein generative adversarial imputation network. In Valeria V.
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A WASSERSTEIN DISTANCE

We first define Wasserstein distance. Let X be a Borel set with P(X ) as the set of probability
measures defined on X . For two distributions PS , PS ∈ P(X ), Π(PR, PS) is the set of all possible
joint distributions γ(x, y) (x, y are elements of X ) whose marginal distributions are PR, PS . γ(x, y)
indicates how much mass must be transported from x to y in order to transform the distribution PR

into PS . The Wasserstein-1 distance is the cost of the optimal transport plan.

W1(PR, PS) = inf
γ∈Π(PR,PS)

E(x,y)∼γ(x,y)∥x− y∥ (8)

Let ∥x − y∥ as the analogous to cost, of, for example, of moving bread from bakery x to cafe y
Villani (2008). Under the first definition of Wasserstein Distance, the objective is to minimize the
cost of transporting bread.

Perhaps the most important consequence of Arjovsky et al. (2017) is their application of
Kantorovich-Rubinstein Duality to the minimax optimization problem in Goodfellow et al. (2014).
The duality is a re-conceptualization of the cost-minimization problem in production to a price-
maximization problem in distribution. Suppose the ownership of the bakery and cafe is controlled
by a collective that produces as well as sells goods. f(·) serves as the analogy for the price that the
collective sets after the bread is baked. f(x) represents the price that the bread is bought at barkery
x, and f(y) is the price at which it is sold at cafe y. Now the whole cost that the collective pays is
f(y)−f(x) for the total cost of transport as the total revenue instead of simply |y−x|. f is Lipschitz
because of the material constraints in transforming the dough into a sellable good (i.e. bread is only
as good as the raw materials that make it). To be competitive, the bakery-cafe collective must set up
prices in a way that f(y)−f(x) ≤ |y−x| ∀x, y Then, the duality comes from when the collective
makes decisions instead of only the bakery: the bakery seeks to minimize costs, but the collective
seeks to maximize the profits while keeping the costs constrained at a minimum. Mathematically,
this can be written as:

sup
{∫

X
f(y)dPR(y)−

∫
X
f(x)dPS(x); f(y)− f(x) ≤ |y − x|

}
The Kantorovich Duality states that an equivalent definition of the Wasserstein distance is the

supremum of differences in expectations of densities with Lipschitz functions f .

W1(PR, PS) ≡ sup
∥f∥L≤1

Ex∼PR
[f(x)]− Ey∼PS

[f(y)]

the supremum of the Lipschitz functions f is analogous to the maximization of the discriminator. Let
Pdata denote the data distribution , PG is distribution of the generator output . The global objective
is to minimize the Wasserstein distance between the generated and the ‘real’ distribution:

min
ΘG

W1(Pdata, PG) = min
ΘG

max
ΘD:D∈D

(
EX∼Pdata(X)D(X)− EẊ∼PG

[(D(Ẋ)]
)
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where D is set of all 1-Lipschitz functions. WGAN Arjovsky et al. (2017) enforces the Wasserstein
distance by clipping the estimated weights, which has many problems such as exploding and van-
ishing gradients. Guljarani et al discuss improved training of Wasserstein GANS using the gradient
penalty Gulrajani et al. (2017).

B EQUIVALENCE UNDER INFORMATIVE MISSING THROUGH PROBABILITY
REDISTRIBUTION

Under informative missingness, the distributions of the observed data and missing data are directly
not equivalent, i.e. Pobs ̸= Pmiss. However, one could re-acheive the distributional equivalence
by re-distributing the probability mass of Pobs and Pmsg. To illustrate this concept, let’s consider a
simple case without covariates, where P(δi = 1) = π(yi). Let δ be the missingness vector of a
single vector (i.e. Mj for some variable j). Following Bayes theorem, we have

P (Y | δ = 1) ∝ P (δ = 1 | y)p(Y ), and P (Y | δ = 0) ∝ P (δ = 0 | y)p(Y ).

It follows that
P (Y | δ = 1)

π(Y )
∝ p(Y ) and

P (Y | δ = 0)

1− π(Y )
∝ p(Y ) (9)

In other words, if we adjust the distribution of observed data (i.e. P (Y | δ = 1)) by π(Y ) and adjust
the distribution of missing data (i.e. P (Y | δ = 0)) by 1 − π(Y ), the two adjusted distributions
should be equivalent. Such distributional equivalence is the cornerstone of the proposed algorithm.

Let n0 be the number of missing y′is, and n1 = n − n0 is the number of observed yi’s. The
empirical distributions of the observed y′is and missing y′is can be written as

F̂ (obs)
n (x) =

n∑
i=1

1

n1
1{yi < x}1{δi = 1}, and F̂ (msg)

n (x) =

n∑
i=1

1

n0
1{yi < x}1{δi = 0}.

In other words, each of observed yi in Pobs receives a probability mass of 1/n1, and each of missing
yi in Pmis receives a probability mass of 1/n0. Following (9), we re-assign the probability mass of
the observed yi and the missing yjs as in the following table

Observed data (yi’s) Missing data (yj’s)

Probability mass on Original 1
n1

1
n0

individual observations Reassigned ωi =
1/π(yi)∑n1

k=1 1/π(yk)
ωj =

1/(1−π(yj)∑n0
k=1 1/(1−π(yk))

Replacing the original equal weights by ωi and ωj , we reconstruct empirical distributions by

F̃ (obs)
n (x, ω) =

n1∑
i=1

ωi1{yi < x}, and F̃ (msg)
n (x, ω) =

n∑
j=1

ωj1{yj < x}.

Following the Bayesian theorem, we expect the re-weighted distributions F̃
(obs)
n (x, ω) and

F̃
(msg)
n (x, ω) are equivalent. Such distributional equivalance is the corner stone of the proposed

algorithm. In the proposed GAN framework, we use Discriminator D to generate the weights ωi

and use Generator G to generate imputations, and interatively updates D and G to achieve a global
optimization in re-weighted distributional equivalence.

Sample Illustration To illustrate this idea, we generate a random sample (yi, δi), where yi follows
a u(0, 1) distributions, and δi is a binomial distribution with P(δi = 1) = log(yi + 1). As result,
the higher the value of yi, the less likely to be missing. Overall, it leads to approximately 62% yi’s
are missing. In figure 1 (a), we illustrate the empirical distributions of the observed yi’s (i.e. those
δi = 1) and “missing” yi’s (i.e. those δi = 0). It is clear that they are different from each other.

13



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QQ plot

observed y (y1)

m
is

si
ng

 y
 (

y2
)

unadjusted

corrected

Figure 5: QQplot of the distributions of observed and missing y’s under informative missing before
and after corrections.

Quantile function is an equivalent form of distribution function. The re-weighted distributional
equivalence also indicates the quantile equivalence. Let {y(obs)(1) , y

(obs)
(2) , ..., y

(obs)
(n1)

} be the order statis-
tics of the observed yi’s, and (ω(1), ..., ω(i), ..., ω(n1)) are their corresponding re-assigned probability
mass; Likewise, we define {y(mis)

(1) , y
(mis)
(2) , ..., y

mis)
(n0)

} as the order statistics of the missing yj’s, and
(ω(1), ..., ω(j), ..., ω(n0)) are their corresponding re-assigned probability masses. The re-weighted
empirical quantile functions can be written as

Q̃(obs)
n (τ, ω) = inf{y(obs)(k) :

k∑
i=1

ω(i) ≥ τ ; k = 1, ..., n1}, and

Q̃(mis)
n (τ, ω) = inf{y(mis)

(k) :

k∑
j=1

ω(j) ≥ τ ; k = 1, ..., n0}

We expect Q̃(obs)
n (τ, ω) and Q̃

(obs)
n (τ, ω) to be equivalent as well, and use a recalibrated Wasserstein

Distance to assess quantile equivalence in the proposed RWIGAN imputation algorithm.

C DETAILS OF THE PROPOSED METHOD

C.1 NEURAL NETWORK ARCHITECTURE

G and D are both fully connected 3-layer neural networks. The input for G is: X with dimensions
n× p.

hG
1 = relu(W 1

GX+ b1G)

hG
2 = relu(W 2

Gh
G
1 + b2G)

Ẋ = relu(W 3
Gh

G
2 + b3G)

The output is the imputation Ẋ, also with dimensions n× p. We use the relu activation function in
this case but the elu or sigmoid functions may also be used. The input for D is: X (or Ẋ, or X̂,)
with dimensions n× p.

hD
1 = relu(W 1

DX+ b1D)

hD
2 = relu(W 2

DhD
1 + b2D)

M̃ = relu(W 3
DhD

2 + b3D)

The output is a probability of the mask matrix M̃ , as in GAIN Yoon et al. (2018a).

14
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C.2 CRITERION OF G

The criterion function of the generator G, in contrast with the discriminator, is the following mini-
mization.

min
ΘG

LG(X,M,ΘG) = min
ΘG

EX̂∼Pdata
[X|M]− EG(X)∼PG

[D(G(X,ΘG))|M]. (10)

by the Kantorovich-Rubinstein Duality (which motivates Wasserstein GAN in the first place), the G
likelihood is equivalent to the Wasserstein distance

LG(X,M) = sup
ΘD∈D

EX∼Pdata [D(X)|M]− EẊ∼PG
[D(Ẋ)|M]

= sup
∥f∥L≤1

EX∼Pdata [f(X)]− EẊ∼PG
[f(Ẋ)]

= W(PG, Pdata).

where, in this case, the function f(·) represents the conditional expectation E[D(·)|M] of the dis-
criminator given mask M .

C.3 GENERATOR LOSS IS DIFFERENTIABLE AND MONOTONE

Recall that M̂ is the estimated mask of X̂. Since in G-minimization the ΘD is fixed, we write
M̂X(ΘG) only as a function of ΘG. Let M be a mask vector (i.e. Mj for some arbitrary variable
index j). WLOG let X be a data vector, also with the index j omitted. To simplify notation, we
define M̂X(ΘG) as the output probability from D, depending on ΘG for backpropagation.

M̂X(ΘG) := D(X̂|ΘD)j

= D(M(j) ⊙X(j) + (1−M)⊙G(X,ΘG)(j)|ΘD).

for some arbitrary j. Note that ΦX(x, M̂X |Mi = 1) does not depend on G so we omit for now. But
ΦẊ(x, 1− M̂X(θG)i|Mi = 0) is then the value of interest

ΦẊ(x, 1− M̂X(ΘG)i|Mi = 0) =

∑n
i=1(1− M̂X(ΘG)i) · 1(G(X|ΘG)i ≤ x) · 1(Mi = 0)∑n

i=1(1− M̂X(ΘG)i)1(Mi = 0)

Note that X̂ is also a function of ΘG: X̂ = M⊙X+ (1−M)⊙G(X|ΘG).

To ensure that W convergences when we estimate the proposed RWIGAN algorithm, we re-
strict the domain of the gradient of ΘG, ∇ΘG

with respect to L(·). In the typical GANs, convergence
is not guaranteed. For WGAN, the Kantorovich Rubinstein duality guarantees a unique global min-
ima with respect to ΘG. We seek to reinforce the notion by ensuring that every step of the descent
algorithm is monotonic. We first derive the gradient of the quantile function Φ for random variable
X ,

∇GΦ(Ẋ, 1− m̂X ,ΘG|Mi = 0) = ∇G

∑n
i=1 vi(M)1(G(X|θG)i ≤ x)∑n

i=1 vi(M)

where for simplicity we write

vi(M) = (1− M̂X,i)1(Mi = 0),

This derivative exists as it is a sum and quotient of differentiable terms wrt ΘG. By properties
of the inverse derivative.

∇GΦ
−1(Ẋ, m̂X ,ΘG|Mi = 0) =

1

∇GΦ(Φ−1(Ẋ, 1− m̂X ,ΘG|Mi = 0)|Mi = 0)
(11)

Note that the indicator function is not differentiable in the typical sense, but the discontinuity
could be assumed away using the delta dirac function δ. We can replace this with a ‘soft’ continuous
approximator of indicator:

1(G(X,ΘG)i ≤ x) : ≈ exp(C(x−G(X|ΘG)i))

1 + exp(C(x−G(X,ΘG)i))

:= S(X|ΘG)
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for some fixed constant C.

∇GS(X,ΘG) = −C · ∇GG(X,ΘG)i · exp(C(x+G(X,ΘG)i)))

exp(C(G(X,ΘG)i) + exp(C(x))2

so if ∇GG(X,ΘG)i > 0 then this derivative is positive, implying that the overall gradient for
variable i is negative. In practice , to constrain the gradient to be positive, we can use weight clipping
that was employed in the WGAN (Arjovsky et al. (2017)) to make sure the gradient is positive.

Figure 6 shows the convergence of G and D losses for a sample run. G appears to be smooth
and convergence over 1000 runs , (Negative) D loss appears to increase at first while the generator
loss has not yet attenuated, but then converges as generator converges. The convergence of the G
loss, however, is the primary focus.

Figure 6: Convergence of G-loss and negative D loss in a sample run from a simulation

D REACH DETAILS

Approximately 20% of PCL variables from raw have missing entries that has been retroactively filled
in or imputed. Moreover, exploratory analysis shows that the densities between the observed and
missing (of which we know the ground-truth values of REACH (raw) appear inherently different
(Figure 7 in Appendix). We also analyze only the real missing values of the raw dataset, whose
ground-truth values are found in the smaller cleaned dataset.

There are two instantiations of the REACH data – the full dataset has 1776 subjects with 393 to-
tal variables. We call this REACH (a) (within the appendix). 62 of these variables are numeric and at
least approximately continuous. Many variables are questionnaire responses on an ordinal (ranked)
scale, but some responses are numerous enough as to be considered approximately ‘quantitative’.
We set the threshold of the number of (ranked ordinal) responses to be 9 for it to be considered quan-
titative for the purposes of imputation. Indeed, if the number of responses was only 5, for example,
then the assumptions of heavy-tailedness in EHR data that would also apply to the Insight data (i.e.
from Albers et al. (2018)) would not have much meaning.

The other is a smaller, more curated subset of the REACH (a). We call this REACH (b). Some
of the data that is missing in (a) are filled in by subsequent additional observations in (b). While
others imputed in (b) by expert imputations. There are instances where the data is missing in the raw,
but observed in cleaned (imputed) version. These expert imputations are performed qualitatively;
we assume that the mixture of these imputations with retrospective filled-in data are a surrogate for
ground truth. We subset the data further to only continuous variables, which include the EHT time to
arrival, many instantiations of PCL scores (that are not available in the smaller REACH (b) dataset),
EDP, and PHQ scores. The resultant dataset has 62 variables with the full 1776 observations. The
ground truth data has approximately 36% entries missing, but the induced-missing dataset as in
method in Table 2.

D.1 MISSINGNESS ASSUMPTIONS OF REACH
The PCL Combo data in REACH is perhaps the most variegated, informative, and consequential
sub-category of the REACH data. The PCL score is taken longitudinally in the larger dataset, with
many different strata across different times. PCL data is also the only subset of data that has a
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REACH Dataset Missingness Characteristics

Data n p P(missing)

REACH(a): Large (Raw) 1776 373 .30

REACH(b): Small (Cleaned) 764 99 .01

Processed REACH (a) 1776 62 .37

Processed REACH (a)(induced missing) 1776 62 .54

REACH (a)-PCL (induced missing) 1776 24 .64

REACH (b)-PCL (real missing) 764 4 .21

Table 3: Basic properties of the REACH dataset, and the resultant REACH datsets for analysis
(bottom).The bottom 4 examples are used for actual imputations in Table 2.

Figure 7: (left) Density plots for observed (i.e. same value in raw and cleaned datasets) and missing
(i.e. retroactively filled-in in the “cleaned” dataset) PCL baseline and (right) PCL 12 months
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Figure 8: Ratios of the proportions of missing (i.e. Y I
j ) variables for PCL Combo scores at baseline, 6mo,

12mo, to those that are only observed (i.e. Y O
j ) , that fall within the decile levels as derived from the common

dataset Y C
j . The red line indicates an average of the PCL score ratios between missing (i.e. expert imputed)

and observed . The red line shows a pattern of increasing missingness among the upper quantiles. This pattern
implies that for PCL data (which in a sense undergirds the rest of the REACH data).

sizeable proportion of missing from the raw (i.e. REACH(a))that has been retroactively filled in or
imputed. Approximately 20% of the PCL scores are missing from the raw data (REACH (a)), but
there exists a substantial sample of data that fit this category. Moreover, upon inspection, exploratory
visual analysis shows that the densities between the observed and missing (of which we know the
ground-truth values of in REACH (b)) do look inherently different (Figure 7).

We model missingness in REACH based on the different forms of PCL data that is present in
both datasets. As such, we posit that one way to model the missingness by using the patterns drawn
from parallels the patterns evinced from the aggregate of the PCL scores. We estimate missingness
rates by comparing the PCL variables from the raw REACH data where n = 1776 and the cleaned
where n = 764. Indeed, prior studies place much emphasise on PCL variables Birk et al. (2019) .
Let YI be the expert imputed [PCL] data, or retrospectively filled-in tru observations, and let YC

be the observed data that is common to both raw and cleaned. We “bootstrap” the information in
the discrepancy between the raw and cleaned.

For each PCL variable (baseline, 1, 6, and 12 months follow-up), we evaluate the relative
ratios observed and missing (i.e. imputed) fixed quantile grids for the common dataset. We treat the
quantiles τq(Y C

j ) of the common (i.e. identical entries between Reach (a) and (b) as the ground truth
quantiles. We then calculate the proportion of the observed data that is only present in the larger
dataset (REACH (a)) and the missing data that is only present in the smaller dataset )REACH (b)).
We calculate what proportion of the above missing Pmsg

j and observed Pobs
j points fall in the bins

demarcated by τq(Y
C
j ), for deciles q = 0, 10, 20, ..., 100. , and then take the ratio Rj := Pmsg

j /Pobs
j

of missing to observed proportions to derive a metric that measures the relative prevalence of value-
ranges based on the missingness rates of the variable in question. Figure 8 shows the pattern of Rj

for various PCL variables.

We posit that if the quantiles of YI , τq(YI) (at some fixed level q) are consistently higher
than τq(Y

C), then there is evidence of underestimation of the initial imputations, then the actual
missingness rate may be higher. There is a sizeable difference between the quantiles between the
missing entries in the PCL variables in Y I

j . Indeed, most of the PCL variables that are imputed
(or filled-in in some way) have higher concentrations in the upper quantiles. We posit that this
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signals an underestimate. As such, we calculate the ratios between the missing and imputed, then
fit a spline-like function through these ratios and fit a function that approximates this pattern. We
then use this function to induce additional missingness in the data, which will be described in the
following sub-section.

Let YI be the expert imputed [PCL] data, or retrospectively filled-in true observations, and let
YC be the observed data that is common to both raw and cleaned. We “bootstrap” the information
in the discrepancy between the raw and cleaned. Details on the design of inducing missingness is
found in Appendix D.1. The missingness for a given Xj is modeled as:

P(Xj is missing) =
log(κj + 1)

max(log(κj + 1))

where κj =
(nj/4−rank(Xj))

2

nj
. This function forms a check-shape in Figure 11. This pattern implies

that at very low values, entries are more likely to be missing, but then after the quantile reaches 30
or 40%, the missingness begins to increase as the values get larger, with a probability of 1 as the5
values approach maximum.

Figure 9: Induced missingness rates per decile for two sample variables hospitalization count and
Charlson Scores (new) as the parallel the estimates of the PCL scores

D.2 REACH ANALYSIS DETAILS

We estimate missingness rates by comparing the PCL variables from the raw REACH data where
n = 1776 and the cleaned where n = 764. Prior studies place much emphasis on PCL variables Birk
et al. (2019). We model the missingness of PCL by using the difference in missingness between the
raw and cleaned datasets. Approximately 20% of PCL variables from raw have missing entries that
has been retroactively filled in or imputed. Moreover, exploratory analysis shows that the densities
between the observed and missing (of which we know the ground-truth values of REACH (raw)
appear inherently different (Figure 7 in appendix). We also analyze only the real missing values of
the raw dataset, whose ground-truth values are found in the smaller cleaned dataset. Results show
that RWIGAN is preferable to GAIN and MIDA consistently in terms of MSE, nMSE, as well as the
(canonical) W1 distance (defined in (1)). MICE does slightly better than RWIGAN in some cases.
Although it is much slower. When subset to the smaller dataset, RWIGAN performs worse because
the real rates of missingness are not as strongly defined as induced. Though we have reason to
believe that the real missingnesss rates obscure hidden, and since the cleaned dataset is well curated,
and the observed variables have hidden additional biases, it may be reasonable in real-world settings
to assume that the modeled mechanism of MNAR is understating the true missingness.

D.3 INSIGHT DETAILS

For subjects with positive tests for COVID-19, we aggregated all quantitative (i.e. non-binary)
laboratory tests which exceed 1000 tabulations (across the entire population) and took the median
test value for subjects with repeated measurements. As such, the There are a total of 754 laboratory
test codes that fit in this criteria. However, we remove those with too many missing (as to collapse
most imputation algorithms) and set the minimum observed values for variables (i.e. columns) to
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be 40, and the minimum observed values for subjects to be 400. This is to ensure that the data is not
overly sparse so that imputation algorithms would actually run. The resultant dataset has 4764 total
subjects (rows) and 162 variables (columns).

E DETAILS FOR SIMULATION AND DATA ANALYSIS

E.1 EVALUATION CRITERIA

We use MSE and nMSE for Mean squared error (MSE) measures the distance between imputed
value X̂ij at row i and column j, and the ground-truth value Xij . Each value has a mask Mij that is
equal to 1 if the data is observed and 0 if it is induced missing. nj represents the number of observed
points for variable j. This metric is serves as the mean distance of all the (true) missing values with
their imputed values by the various methods.

MSE(Xj) =

∑nj

i=1(X̂ij −Xij)
2(1−Mij)

nj
,

nMSE(Xj) =
1∑nj

k=1 Xkj/nj

nj∑
i=1

(X̂ij −Xij)
2(1−Mij).

E.2 DETAILS OF SIMULATIONS

In the first set of IM simulations (IM-exp), each column is a vector indexed at j Xj is generatred
from independent exp(.1) distributions. The missingness is:

P(Xij is missing) =
log(Xj + 1)

max(log(Xj + 1))

In IM-u-a, each column Xj is a vector generated from unif(0,1). The missingness is 50 % if the
value of the i-th entry of Xij is over the 70 % quantile of the column.

In the first IMCI simulation (IMCI-a) , each Xj is drawn from a multivariate normal distribution
with correlation ρ = .25 (in relation to the other Xj’s ) and each Yj is composed of Xj with an
unobserved independent standard uniform Uj : Yj ∼ 1 + 2Uj + Xj + exp(.5) . The second set
of IMCI simulations (IMCI-b) is comprised of independent exp(.01) variables Xj with Yj which is
dependent on Xj in the following way Yj ∼ 1 + 2Xj + exp(.1).

E.3 ADDITIONAL SIMULATION FIGURES

Figure 10: Another example of IM simulation imputation

20



Under review as a conference paper at ICLR 2023

Figure 11: Another example of an INSIGHT variable Cholesterol in HDL (mass volume) in blood
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