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ABSTRACT

When random label noise is added to a training dataset, the prediction error of a
neural network on a label-noise-free test dataset initially improves during early
training but eventually deteriorates, following a U-shaped dependence on training
time. This behaviour is believed to be a result of neural networks learning the
pattern of clean data first and fitting the noise later, a phenomenon that we refer to
as clean-priority learning. In this study, we aim to explore the learning dynamics
underlying this phenomenon. We demonstrate that, in the early stage of training,
the update direction of gradient descent is determined by the clean samples of
training data, leaving the noisy samples have minimal to no impact, resulting in a
prioritization of clean learning. Moreover, we show both theoretically and exper-
imentally, as the clean-priority learning goes on, the dominance of the gradients
of clean samples over those of noisy samples diminishes, and finally results in a
termination of the clean-priority learning and fitting of the noisy samples.

1 INTRODUCTION
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Figure 1: Classification on MNIST us-
ing CNN. Test error exhibits a U-shaped
curve, and can be significantly lower
than the noise level during training.

Early stopping is an popular practice to achieve good per-
formance in machine learning. The effectiveness of early
stopping is evident in the setting where random label noise
is injected to the training dataset while the test dataset re-
mains intact. This noisy-training-label setting is common
in the literature to investigate properties of neural networks
(see for example (Zhang et al., 2021) and (Nakkiran et al.,
2021)). In this setting, The test prediction error often ex-
hibits a U-shaped dependence on training time, with an
initial decrease followed by an increase after the early stop-
ping point, see Figure 1. Interestingly, in the intermediate
steps, especially around the early stopping point, the test
performance can be significantly better than the label noise
level added to the training set (below the dashed line).

Prior studies (Arpit et al., 2017; Li et al., 2020) interpret
this U-shaped behaviour as a result of neural network (NN) first learning the patterns in the clean
data and overfitting the noise at a later stage. We coin the term clean-priority learning to describe
this phenomenon. Although this is intuitively correct, the underlying mechanism of clean-priority
learning phenomena remains unclear. Specifically, how can the model tell clean samples from noisy
ones (i.e., those with corrupted labels), without access to the ground-truth label? Furthermore, if it
somehow learned the clean samples in the early stage, why the model performance deteriorate later
on? In this paper we address the above puzzling and fundamental questions, for infinitely wide neural
networks.

At the outset, we analyze the configuration of sample-wise gradients on the training dataset, at
initialization of the infinitely wide neural network. Our analysis reveals that samples within the same
class (before label corruption), which are presumably more similar to each other, tend to have their
sample-wise gradients relatively closer in vector directions (compared to the samples from different
classes). The label corruption, which flips the label to a different class, flips the corresponding
sample-wise gradient to its opposite direction. Consequently, the sum of the noisy sample gradients
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is in sharp opposite direction of that of the clean sample gradients. It is worth noting that, due to
the “transition to linearity”(Liu et al., 2020) of infinitely wide neural network, these sample-wise
gradients do not change direction during training.

The key observation is that, due to the dominance of the population of the clean samples, in the
early stage of learning, the gradient of noisy segment is cancelled out, and essentially makes no
contribution on the gradient descent (GD) update direction1. It is also worth noting that almost all
clean sample-wise gradient vectors “agree” with the GD update (i.e., have positive projection), while
almost all noisy sample-wise gradients are “against” the GD update. As a result, the individual loss
on each clean sample is decreased, and that on each noisy sample is increased. Hence, we see that, in
the early stage, the GD algorithm is determined by the clean samples and exhibits the clean-priority
learning.

We further show that as the clean-priority learning process continues, the clean segment gradient’s
dominance in magnitude over the noisy segment gradually diminishes while keeping opposite in
direction, due to the decrease in the magnitude of clean segment gradients and the increase in the
magnitude of noisy segment gradients. This is particularly evident around the early stopping point,
where the dominance almost vanishes and the noisy segment gradient begins to make a meaningful
contribution, causing the model start to fit the noisy samples, which is expected to hurt the model’s
performance.

We experimentally verify these findings on neural networks with finite but large widths. These
experimental results also suggest that our findings may extend to finite width scenarios.

In summary, we make the following contributions:

• In the early stage of learning of neural networks, the noisy samples contribution to the GD update
is cancelled out by that of the clean samples, which is the key mechanism underlying clean-priority
learning.

• The clean-priority learning behavior gradually fades as the dominance of the clean segment
diminishes, particularly around the early stopping point. We experimentally verify our findings on
deep neural networks on various classification problems.

• For fully connected networks with mild assumption on data we theoretically prove our empirical
observation.

The paper is organized as follows: in Section 2, we describe the setup of the problems and introduce
necessary concepts and notations. In Section 3, we analyze the sample-wise gradients at initialization
of neural network, for binary classification. In Section 4, we show the learning dynamics, especially
the clean-priority learning, on binary classification. In Section 5, we extend our study and findings to
multi-class classification problems.

1.1 RELATED WORKS

Early stopping is often considered as a regularization technique and is widely used in practice to
obtain good performance for machine learning models (Gal & Ghahramani, 2016; Graves et al.,
2013). Early stopping also received a lot theoretical analyses, both on non-neural network models,
especially linear regression and kernel regression (Yao et al., 2007; Ali et al., 2019; Xu et al., 2022;
Shen et al., 2022), and on neural networks (Zhang et al., 2021; Ji et al., 2021).

Prior studies have experimental observed the phenomenon of clean-priority learning: when random
label noise presents, neural networks fit the clean data first and “overfit” the noise later on (Arpit et al.,
2017; Bai et al., 2021; Ren et al., 2022). For example, Ren et al. (2022) experimentally investigated
the learning paths of some “hard” samples, and observed that these learning paths have “zig-zag”
patterns and show an ability of refining “bad” samples. Based on experimental investigation of
critical samples, the work (Arpit et al., 2017) hypothesizes that clean samples have simple patterns
and are learned by neural networks first. Even with these interesting experimental investigations,
it remains unclear why clean samples represent simple patterns and what fundamental mechanism
makes for the clean samples learned before the noisy ones. Instead, our work focuses on studying the
underlying mechanism and theoretically explaining these phenomena from a fundamental point of
view. Some theoretical work also shed a bit light on this topic. For example, the work (Li et al., 2020),

1To be more precise, the only effect of the noisy segment gradient is resulting in a smaller GD step size.
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assuming (almost) perfectly cluster-able data and uniform conditioning on Jacobian matrices, proves
that clean data are fit by two-layer neural networks in an early stage. However, this data assumption
requires that, at the same location of each noisy sample, there must exist several (at least 1/δ, with
δ ∈ (0, 1/2) being the label noise level) clean samples. Namely, each noisy sample must be covered
by more clean samples. This assumption is often not met by actual datasets. Another work (Frei
et al., 2021), in the simple setting of linearly separable data (before label corruption) and two-layer
neural network, proved that a good generalization can be achieved. While these theoretical work are
encouraging, the settings remain limited.

2 PROBLEM SETUP AND PRELIMINARY

In this paper, we consider supervised classification problems.

Datasets. There is a training dataset D ≜ {(xi, yi)}ni=1 of size |D| = n, where xi ∈ Rd is the
input feature and yi is the label . For binary (2-class) classification, the label yi ∈ {0, 1} is binary; for
multi-class classification, the label is one-hot encoded, yi ∈ RC , where C is the number of classes.

We assume the labels in D are randomly corrupted. Specifically, if denote ŷ as the ground truth label
of (xi, yi) ∈ D, there exists a non-empty set Dnoise ≜ {(x, y) ∈ D : y ̸= ŷ}. Furthermore, the
labels yi in Dnoise is uniformly randomly distributed across all the class labels except ŷi. We call
Dnoise as the noisy segment and its elements as noisy samples. We also define the clean segment
Dclean as the compliment, i.e., Dclean = D\Dnoise, and call its elements as clean samples. Denote
D̂ as the ground-truth-labeled dataset: D̂ ≜ {(xi, ŷi)}ni=1. The noise level δ is defined as the ratio
|Dnoise|/|D|. In this paper, we set δ < 0.5, i.e., the majority of training samples are not corrupted.

We further denote D(c) ⊂ D, c ∈ {1, 2, · · · , C}, as the set of samples with ground truth label c. We
also define D(c)

clean ≜ D(c) ∩ Dclean and D(c)
noise ≜ D(c) ∩ Dnoise as the class-specific clean/noise

segment, respectively. In addition, there is a test dataset Dtest which is i.i.d. drawn from the same
data distribution as the training set D, except that the labels of test set Dtest are not corrupted.

Optimization. Given a dataset S and a model f which is parameterized by w and takes an input x,
we define the loss function as

L(w;S) = 1

|S|
∑

(xi,yi)∈S
l(w;xi, yi), (1)

with l(w;xi, yi) ≜ l(f(w;xi), yi) is evaluated on a single sample. We use ReLU neural networks
as the model, which are defined as:

f = σout(h(w;x)), h(w;x) = W (L+1)σ

(√
2

m
W (L) · · ·σ

(√
2

m
W (1)x

))
, (2)

Here, σ(·) = max(·, 0) is the ReLU activation function, w = (W (L+1),W (L), · · · ,W (1)) represent
the parameters. Each individual parameter is i.i.d. initialized using the normal distribution N (0, 1).
m is the network width, and we are interested in the infinite width limit m → ∞.

For binary classification, the network f has one output neuron, σout is the sigmoid function, and l is
the logistic loss; for multi-class classification, f has C output neurons, σout is the softmax function,
and l is the cross entropy loss. In both cases, each output neuron has a value in (0, 1).

We minimize the empirical loss function L(w) ≜ L(w;D) using gradient descent (or its stochastic
variants) which has the following update form:

wt+1 = wt − η∇L(wt;D) = wt − η
1

n

∑
(xi,yi)∈D

∇l(wt;xi, yi). (3)

Here, ∇l(w;xi, yi) is the gradient of loss l(w;xi, yi) w.r.t. the neural network parameters w.

Sample-wise gradients. We call ∇l(w;xi, yi) sample-wise gradient, as it is evaluated on a single
sample, and denote it as ∇li(w) for short. As there are n samples in D, at each point w in the
parameter space, we have n sample-wise gradients.
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Denote h(w;x) as the pre-activation output neuron(s), which is in R for binary classification, and is
in RC for multi-class classification. The sample-wise gradient for a given sample (xi, yi) has the
following form (Bishop & Nasrabadi, 2006):

∇li(w) = (f(w;xi)− yi)∇h(w;xi). (4)

Note that the above expression is a scalar-vector multiplication for binary classification, and is a
vector-matrix multiplication for multi-class classification.

We further denote the collection of sample-wise gradients for the segment D(c)
k , for k ∈

{clean, noise} and c ∈ [C], by G(c)
k (w), and define the corresponding segment gradient as

g
(c)
k (w) ≜

∑
∇l(w)∈G(c)

k

∇l(w), which represents the average gradient direction in the segment.

3 SAMPLE-WISE GRADIENTS AT INITIALIZATION FOR BINARY
CLASSIFICATION

In this section, we analyze the directions of sample-wise gradients at randomly initialization of neural
networks for binary classification, and show that the noisy segment gradients are opposite in direction
to the clean segment gradients.

Considering the close relation between the sample-wise gradient ∇li(w) and ∇h(w;xi) (see Eq.(4)),
we start with the model derivative ∇h.

Direction of the model derivative ∇h. Given two arbitrary inputs x, z ∈ Rd, we denote the angle
between x and z in the input space Rd by θd(x, z), and denote the angle between the two model
derivative vectors ∇h(w0;x) and ∇h(w0; z) by θh(x, z). The first observation is that: similar inputs
(relatively small angle θd) have similar model derivatives (relatively small angle θh), as formalized
in the following theorem (see proof in Appendix A.1).
Theorem 3.1. Consider an infinitely wide neural network h as defined in Eq.(2) at random initializa-
tion w0. The followings hold:

1. given two inputs x and z, if θd(x, z) ≪ 1, then θh(x, z) ≪ 1;

2. for any three inputs x, z and z′, if 0 ≤ θd(x, z) ≤ θd(x, z
′) ≤ π

2 , then 0 ≤ θh(x, z) ≤
θh(x, z

′) ≤ π
2 .
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Figure 2: Relation between θh and θd.
Similar inputs (small θd) implies similar
model derivatives (small θh).

We experimentally observe that the same relation also hold
on neural network with finite width. See Figure 2.

Hence, the map ∇h : x 7→ ∇h(x), from input space to the
space of model derivatives, is expected to preserve the clus-
ter structures. As illustrated in Figure 3, the two clusters
of data inputs are mapped to two clusters of model deriva-
tive vectors: data pairs from the same cluster (“within”)
still have similar model derivatives (small θh), while cross-
cluster pairs (“between”) have large θh. The implemen-
tation details for Figure 2 and Figure 3 can be found in
Appendix B.1.

Directions of the sample-wise gradients. By Eq.(4),
the direction of sample-wise gradient ∇l(w0) is mostly
determined by ∇h(w0;x), with the scalar y − f(w0;x)
only controls the sign.

Consider the subset of data from the same ground truth class, D(c) = D(c)
clean∪D(c)

noise. Noting that the
segments D(c)

noise and D(c)
clean have the same data distribution, they also have the same ∇h distribution.

However, the two segments have different labels, either 0 or 1. Recalling that 0 < f(w0;x) < 1, we
see that the scalar y − f(w0;x) have opposite signs for the two segments. Hence, for each sample in
D(c)

noise, the label corruption flips the sample-wise gradient to the opposite direction, as y − f(w0;x)
and ŷ − f(w0;x) have different signs.
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Figure 3: (Left) Data visualization: two
separated data clusters in 2-d space.
(Right) Distributions of θh for sample
pairs from the same cluster (“within”)
and from different clusters (“between”).
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Figure 4: The distributions of θg. Left: synthetic
data in Figure 3 (δ = 0.3), Right: two classes
MNIST ((“0” and 1”, δ = 0.3). Dash lines repre-
sent segment gradients. Both cases use a 2-layer
ReLU neural network.

This flip results in a split in the sample-wise gradient distributions between D(c)
noise and D(c)

clean.
Presumably, inputs from the same ground truth class tend to be more similar (with small angles θd),
compared to others. By the analysis for ∇h, we expect the angles θh within D(c) are also relatively
small. Let’s denote the angles between a pair of sample-wise gradients by θg . Within each segment,
either D(c)

noise or D(c)
clean, θg keeps relatively small. However, for cross segment pairs, θg becomes

close to 180◦ due to the flip. As a consequence, the segment gradients g(c)noise(w0) and g
(c)
clean(w0)

are sharply opposite to each other.

Figure 4 experimentally confirms this expectation 2 . We see that the distributions of G(c)
noise(w0) and

G(c)
clean(w0) are well-separated and symmetrically located. More importantly, the angle θg between

clean and noisy segment gradients (red dash line) is close to 180◦, meaning a sharp opposition
between the two segment gradients. In this figure, we add an “other” segment, which represents data
that is not in D(c), for reference.

Magnitudes of segment gradients. We are interested in the magnitudes of g
(c)
clean(w0) and

g
(c)
noise(w0). By definition, for k ∈ {clean, noise},

g
(c)
k (w0) = |D(c)

k |E[∇l] = |D(c)
k |E[f(w0;x)− y]E[∇h]

where the expectation is taken over the corresponding data segment. We know that E[∇h] is the same
for clean and noisy segments. In addition, E[f(w0;x)− y] are opposite for these two segments, as
E[f(w0;x)] is 0.5 by random guess and y = 1 for one segment and y = 0 for the other. Hence, we
see that the magnitudes ∥g(c)k ∥ are determined by the segment population, and we have

∥g(c)clean(w0)∥/∥g(c)noise(w0)∥ = (1− δ)/δ > 1. (5)

4 LEARNING DYNAMICS OF BINARY CLASSIFICATION

In this section, we analyze the learning dynamics of binary classification with label noise in the
training dataset.

Specifically, we show that in the early stage of training, the dynamics exhibits a clean-priority learning
characteristic, due to a dominance of the clean segment in first-order information, i.e., sample-wise
gradients. We further show that in later stage of training, this dominance fades away and clean-priority
learning terminates, resulting in a fitting of the noisy samples and worsening of the test performance.

We partition the optimization procedure into two stages: early stage which happens before the early
stopping point; and later stage which is after the early stopping point.

4.1 INITIALIZATION & EARLY STAGE

In Section 3, we have seen that, at initialization,

g
(c)
noise(w0) = −α0g

(c)
clean(w0), (6)

2For illustration purpose, we compare each sample-wise gradient with g
(c)
clean(w0).
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Figure 5: Learning dynamics on two classes (“7” and “9”) of MNIST (δ = 0.4) with FCN. Left:
clean segment error vs. noisy segment error. Middle: average residuals on clean and noisy segments.
Right: total test error and total training error. Vertical dash line represents the early stopping point.

with α0 ≜ δ/(1− δ) ∈ (0, 1). We note that, during training, the model derivative ∇h for an infinitely
wide neural network is found to be unchanged (Liu et al., 2020):

∇h(wt) = ∇h(w0), ∀t > 0, when m → ∞.

By Eq.(4), this implies that each sample-wise gradient ∇li keeps its direction unchanged during
training (but changes in magnitude through the factor f(w;x)− y). Therefore, it is reasonable to
make the following assumption:

Assumption 4.1. There exist a time T > 0 and a sequence {αt}Tt=0, with each αt ∈ (0, 1), such that,
for all t ∈ [0, T ] and c ∈ {0, 1}, the following holds g(c)noise(wt) = −αtg

(c)
clean(wt).

Define ĝ(c)(w) as the summation of the sample-wise gradients with ground truth labels, i.e.,
ĝ(c)(w) =

∑
(x,ŷ)∈D̂(c) ∇l(w;x, ŷ). By the assumption, we have for all 0 ≤ t ≤ T and c ∈ {0, 1},

g
(c)
clean(wt) =

1

αt + 1
ĝ(c)(wt). (7)

On the other hand, by definition, we have for full gradient

∇L(wt;D) =
∑
c

(
g
(c)
clean(wt) + g

(c)
noise(wt)

)
. (8)

Combining Assumption 4.1 and Eqs.(7) and (8), we easily have the following lemma:

Lemma 4.2 (Update rules). Suppose Assumption 4.1 holds with time T > 0 and sequence {αt}Tt=0 ∈
(0, 1)T . Then, the gradient descent (with learning rate η) have the following update rule

wt+1 = wt − η′t∇L(wt; D̂), for t ≤ T, (9)

with η′t =
1−αt

1+αt
η > 0.

Remark 4.3 (mini-batch scenario). In mini-batch SGD, similar relation of Eq.(9) also holds for a
mini-batch estimation ∇L(w0;B), as long as the sampling of the mini-batch is independent of the
label noise and the batch size |B| is not too small such that the majority of samples are clean in the
batches. Hence, in the following, we do not explicitly write out the dependence on the mini-batches.

The theorem states that, after adding label noise to the training dataset, the gradient descent update is
equivalent to the one without label noise (except a different learning rate η′t < η). In another word,
the gradient descent does not essentially “see” the noisy data and its update direction is determined
only by the clean samples.

Clean-priority learning. This theorem implies the following learning characteristics of what we
call clean-priority learning, as we described below.

Segment training loss and accuracy. The loss L(w;Dclean) on the clean segment keeps decreasing,
while the loss L(w;Dnoise) on the noisy segment is increasing, as formally stated in the following
Theorem (see the proof in Appendix A.3):
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Theorem 4.4. Suppose Assumption 4.1 holds with time T > 0 and sequence {αt}Tt=0, αt ∈ (0, 1).
We have, for all t ∈ [0, T ] and sufficiently small η,

L(wt+1;Dclean) < L(wt;Dclean);

L(wt+1;Dnoise) > L(wt;Dnoise).

Accordingly, the training accuracy on the clean segment is increased, and that on the noisy segment
is decreased.

Residual magnitude: |f(w;x) − y|. As a consequence of the decreasing clean segment loss
L(w;Dclean), the clean training samples are learned, in the sense that the network output f(w;x)
moves towards its corresponding label y, i.e., |f(w;x)− y| decreases on the clean segment. On the
other hand, the increase of the L(w;Dnoise) results in that, on the noisy segment, the network output
f(w;x) moves away from its corresponding label y, but towards its ground truth label ŷ. Namely,
the noisy segment is not learnt.

Test loss. As the test dataset Dtest is not label-corrupted and is drawn from the same data distribution
as D̂, it is expected that the update rule in Eq.(9) decreases the test loss L(w;Dtest).

Figure 5 shows the clean-priority learning phenomenon on a binary classification of two classes of
MNIST. The relevant part is the early stage, i.e., before the early stopping point (left of the vertical
dash line). As one can see, in this stage, the prediction error and noisy segment loss L(w;Dnoise)
keep increasing (See Appendix B for segment loss curves). Especially, the prediction error increases
from a random guess (error = 0.5) at initialization towards 100%. Meanwhile, the clean segment
loss and prediction error keep decreasing. Moreover, the average residual magnitude |f(w;x)− y|
decreases on the clean segment, but increases on the noisy segment, implying that only clean segment
is learnt. These behaviors illustrate that in the early stage the learning dynamics prioritize the clean
samples.

In short, in the early stage, the clean-priority learning prioritizes the learning on clean training
samples. The interesting point is that, although it seems impossible to distinguish the clean from the
noisy directly from the data, this prioritization is possible because the model have access to the first-
order information, i.e., sample-wise gradients. Importantly, it is this awareness of the clean samples
and this prioritization in the early stage that allow the possibility of achieving test performances better
than the noisy level.

4.2 EARLY STOPPING POINT & LATER STAGE

As we have seen in the above subsection, the dominance of the magnitude ∥g(c)clean∥ over ∥g(c)noise∥ is
one of the key reasons to maintain the clean-priority learning in the early stage. However, we shall
see shortly that this dominance diminish as the training goes on, resulting in a final termination of the
clean-priority learning.

Diminishing dominance of the clean gradient. Recall that the sample-wise gradient is proportional
to the magnitude of the residual: ∇l(w) ∝ y − f(w;x). The learning of a sample, i.e., decreased
|y − f(w;x)|, results in a decrease in the magnitude |∇l(w)|. As an effect of the clean-priority
learning, the residuals magnitude |f(w;x) − y| evolves differently for different data segments:
decreases on the clean segment Dclean, but increases on the noisy segment Dnoise. This difference
leads to the diminishment of the dominance of clean segment ∥g(c)clean(w)∥, which originates from
the dominance of the population of clean training samples.

Theorem 4.5 (Diminishing dominance of the clean gradient). Assume the neural network is infinitely
wide and the learning rate η of the gradient descent is sufficiently small. Suppose Assumption 4.1
holds with time T > 0 and sequence {αt}Tt=0 ∈ (0, 1)T . The sequence {αt}Tt=0 monotonically
increases: for all t ∈ [0, T ], αt+1 > αt.

Please find the proof in Appendix A.4. As αt measures this clean dominance (αt close to 1 means
less dominant), this theorem indicates that the dominance diminishes as the training goes on.

Figure 6 illustrates this diminishing dominance on the two class MNIST classification problem.In
the early stage, the ratio ∥g(c)clean(w)∥/∥g(c)noise(w)∥ starts with a value around the ratio of population
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(1 − δ)/δ = 1.5, and monotonically decrease to around 1 at or before the early stopping point,
indicating that the dominance vanishes.
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Figure 6: Diminishing dominance of
clean gradient.

Learning the noisy samples. In the later stage (i.e., after
the early stopping point), the magnitudes of ∥g(c)clean(w)∥
and ∥g(c)noise(w)∥ are similar, and there is no apparent dom-
inance of one over the other. Then, the model and algo-
rithm do not distinguish the clean segment from the noisy
one, and there will be no clean-priority learning. In this
stage, the model learns both the clean and noisy segments,
aiming at achieving exact fitting of the training data. Ulti-
mately, training errors of both segments converge to zero.

It is expected that in this stage the loss and prediction error
on the test dataset Dtest become worse, as the learning on
the noisy segment contaminates the performance achieved
by the clean-priority learning in the earlier stage.

As illustrated in Figure 5, after the early stopping point, the noisy segment starts to be learnt.
Specifically, both training loss and error on this segment turn to decrease towards zero; the average
residual magnitude |f(w;x) − y| turn to decrease, indicating that the network output f(w;x) is
learnt to move towards its (corrupted) label. It is worth to note that the learning on the clean segment
is still ongoing, as both training loss and error on this segment keeps decreasing.

In high level, before the first stage, the learning procedure prioritizes the clean training samples,
allowing the superior-noise-level performance on the test dataset; in later stage, the learning procedure
picks up the noisy samples, worsening the test performance toward the noise-level.

5 MULTI-CLASS CLASSIFICATION

In this section we show that multi-class classification problems exhibit the same learning dynamics
as described in Section 4. For multi-class classification, we consider a variant of the sample-wise
gradient, single-logit sample-wise gradient.

Single-logit sample-wise gradients. In a C-class classification problem, the neural network f has
C output logits, and the labels are a C-dimensional one-hot encoded vectors. One can view the neural
network as C co-existing binary classifiers. Specifically, for each c ∈ {1, 2, · · · , C}, the c-th logit fc
is a binary classifier, and the c-th component of the label yc ∈ {0, 1} is the binary label for fc.

By Eq.(4), the sample-wise gradient can be written as ∇l(w) =
∑C

c=1 ∇lc(w), where

∇lc(w) ≜ (fc(w;x)− yc)∇hc(w;x) (10)

is the single-logit sample-wise gradient, which only depends on the corresponding single logit.

We point out that, the cleanness of a sample is only well defined with respect to each single logit, but
not to the whole output. For example, consider a sample with ground truth label 0 but is incorrectly
labeled as class 1. For all the rest binary classifiers, except the 0-th and 1-st, this sample is always
considered as the negative class, as yc = 0 for all c ̸= 0, 1; hence, the noisy sample is considered
“clean”, for these C − 2 binary classifiers. Therefore, a noisy sample is not necessarily noisy for all
the C binary classifiers.

With this observation, we consider the single-logit sample-wise gradient ∇lc(w) instead.

At initialization. Given c ∈ {1, 2, · · · , C}, the c-logit sub-network hc (before softmax) is the
same as the network h discussed in Section 3, and the output fc ∈ (0, 1). Hence, all the directional
analysis for binary case (Section 3) still applies to the single-logit sample-wise gradient ∇lc(w). See
Appendix C for numerical verification.

Different from the sigmoid output activation which tends to predict an average of 0.5 before training,
the softmax has an average output fc around 1/C with random guess at initialization. This leads to
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Figure 7: Learning dynamics on multi-class classification. Left: clean segment error vs. noisy
segment error. Middle: average residuals on clean and noisy segments. Right: total test error and
total training error. Vertical dash line represents the early stopping point.

E|fc(w0;x)− yc| = 1− 1/C when yc = 1, and E|fc(w0;x)− yc| = 1/C when yc = 0. Recalling
that D(c)

clean and D(c)
noise (hence the corresponding ∇h) have the same distribution, using Eq.(10) we

have

g
(c)
noise(w0) ≈ −δĝ(c)(w0)/(C − 1), (11a)

g
(c)
clean(w0) ≈ (1− δ)ĝ(c)(w0). (11b)

Therefore, we have the dominance of ∥g(c)clean∥ over ∥g(c)noise∥ at initialization, with a ratio

∥g(c)clean(w0)∥/∥g(c)clean(w0)∥ ≈ (C − 1)(1− δ)/δ.
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Figure 8: Diminishing dominance of the clean gradient on
multi-class classification.

Learning dynamics. As the config-
uration of ∇lc is similar to that of a
binary classification, we expect simi-
lar learning dynamics as discussed in
Section 4, especially the clean-priority
learning, happen for multi-class clas-
sification.

We conduct experiments to classify
the MNIST (with added label noise
δ = 0.3) and CIFAR-10 (with added
label noise δ = 0.4) datasets using a
CNN and a ResNet, respectively. As
is shown in Figure 7 and Figure 8, in most of the early stage, the clean segment has clean dominance
over the noise segment and the dynamics shows the clean-priority learning characteristic, decreasing
the clean segment error and residual, but increasing the noisy segment error and residual. Furthermore,
the dominance of the clean segment monotonically decreases until the early stopping point. In the
later stage, the networks start to learn the noisy segments. See the experimental setup in Appendix B.

6 CONCLUSION

In this paper, we delved into the mechanism and dynamics of clean-priority learning by analyzing
sample-wise gradients of infinitely wide networks. We demonstrate that label noise flips a sample-
wise gradient to its opposite direction, causing the noisy sample-wise gradients being cancelled out
by the clean ones in the early stages of training. Consequently, the gradient descent update direction
aligns with that of the clean segment gradient, allowing the early learning of clean samples. Moreover,
as clean-priority learning progresses, the dominance of the clean sample-wise gradients gradually
diminishes, leading to a termination of the clean-priority learning around the early stopping point.
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