
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DICR: DIRECT INTRA-IMAGE CONTRASTIVE
REGULARIZATION FOR CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Typical contrastive self-supervised learning methods apply inter-image contrast to
post-projector embeddings, thereby indirectly encouraging the pre-projector repre-
sentations’ invariance to several augmentation operators.1 While effective, these
methods do not account for the inherent difference between semantics-altering
(such as cropping and cutout2 ) and semantics-preserving augmentation opera-
tors (such as resizing, flipping and color distortion), and thereby lack an explicit
mechanism to encourage distinguishable representations for semantically differ-
ent contents within the same image. We explain, both in reason and in practice,
that these issues can harm the generalizability of the representations in down-
stream tasks. To address these issues, we propose Direct Intra-image Contrastive
Regularization (DICR), a plug-and-play regularization method that directly applies
intra-image contrast to pre-projector representations. Empirical results show that
DICR can significantly enhance the generalizability of existing methods in down-
stream tasks, and validate the crucial role of semantic content distinguishability in
the generalizable performance of contrastive learning.

1 INTRODUCTION

Recently, contrastive self-supervised learning has emerged as a powerful paradigm for learning
generic representations from unlabeled datasets (He et al., 2020; Grill et al., 2020; Chen & He,
2021; Caron et al., 2021; Bardes et al., 2022; Geiping et al., 2023; Zhang et al., 2024; Gui et al.,
2024). These approaches primarily focus on inter-image contrast, which aims to attract views of the
same image while repulsing views from different images (Wu et al., 2018; Oord et al., 2018; Hjelm
et al., 2018; Bachman et al., 2019; Tian et al., 2020; Yeh et al., 2022). Contrastive learning have
demonstrated remarkable results in downstream tasks by indirectly encouraging the representations’
invariance to a handful of different augmentation operators indiscriminately (Chen et al., 2020).

However, these augmentation operators are born different. Loosely speaking, some augmentation
operators such as resizing, flipping, and color distortion do not alter the semantics of an input image,
and thus it is desirable to enforce their invariance in (semantic) representations; other operators such
as cropping and cutout do change semantic content, and thereby a mechanism is expected to prevent
them from collapsing into a single identical representation. To better understand this intuitive idea,
we first explicitly explain it in reason (Section 2.1), and then motivate it from empirical observation
perspective (Section 2.2).

Dealing with fundamentally different things indiscriminately can lead to serious problems. In the
context of contrastive learning, it will confuse correlation with identity between augmented views of
an input image. Concretely, this problem may occur in two cases: when one view is from foreground
object and the other is from background (as illustrated in Figure 1a), or when two views show different
parts of the foreground object (as illustrated in Figure 1b). This confusion in representation learning
will probably lead to performance degeneration on downstream tasks where the correlation does not
necessarily hold (for example in Figure 2).

1By default, we refer ’representations’ to the pre-projector representations used in downstream tasks, while
we define ’embeddings’ as the post-projector representations that are used during pretraining.

2We focus on cropping in the experiments because it is a more commonly used and crucial augmentation
operator in contrastive learning. Its significance has been empirically demonstrated by Chen et al. (2020) and
theoretically explained by Wang et al. (2021).
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(a) Attracting foreground and background into identi-
cal representations can confuse downstream models.

(b) Attracting different parts of the same object into the
same representations can mislead downstream models.

Figure 1: Illustration of two kinds of correlation and their effects on the generalization of contrastive
learning. The boxes in the same color represent views with similar semantics.

To tackle this problem, we develop a regularization method, called Direct Intra-image Contrastive
Regularization (DICR, pronounced duiker3). It explicitly tries to guarantee the distinguishability of
different but co-occurring contents via intra-image contrast on representations, and also preserve their
correlation via inter-image contrast on embeddings. Our contribution is threefold:

• Firstly, we identify that treating semantics-altering and semantics-preserving augmentation
operators indiscriminately can be suboptimal for downstream tasks, as it confuses correlation
with identity, and does not prevent representations of different yet co-occurring contents
from collapsing into a single identical representation.

• Secondly, as existing methods lack a mechanism to address this issue, we propose DICR,
which adds no extra parameters and can efficiently regularizes existing methods.

• Finally, our empirical results demonstrate DICR’s capacity to differentiate between different
semantic contents within an image, and its effectiveness in improving the generalizable
downstream performance of existing methods.

2 MOTIVATION

2.1 EXPLICIT EXPLANATION IN REASON

Typical inter-image contrastive learning methods attract the post-projector embeddings between views
from the same image to model the invariance to certain augmentation operators. Such direct attraction
on post-projector embeddings can lead to an indirect attraction on the pre-projector representations,
thus encouraging, though not guaranteeing, invariance of the pre-projector representations to these
augmentation operators.

However, augmentation operators are inherently different, and encouraging invariance indiscrimi-
nately to all the operators can be suboptimal. On the one hand, some augmentation operators are
semantics-preserving, such as resizing, flipping, and color distortion. Modeling invariance to these
operators is tantamount to modeling semantic identity, which can help downstream models focus on
core semantic features instead of spurious style features (Mitrovic et al., 2020). On the other hand,
other augmentation operators, such as cropping and cutout, are semantics-altering. Modeling invari-
ance to them involves modeling the correlation between different yet co-occurring semantic contents
through attracting their representations. Although the correlation between co-occurring contents
does exist in the real world, the co-occurrence does not always hold true under all circumstances.
For instance, camels typically roam in the sandy deserts, and dogs usually frolic in the green grass.

3A duiker is a small to medium-sized antelope as depicted in Figure 1b.
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However, as illustrated in Figure 1a, when camels appear amidst a grass background and dogs appear
amidst a desert background in the downstream task, attracting the foreground and the background to
an identical representation during pretraining can lead to confusion in downstream models. Another
example to consider involves the correlation between object parts (Figure 1b). During pretraining,
many images of zebra duikers are included, while in the downstream tasks, images of mice and
tigers are included. Similar features exist between the head of a mouse and the head of a duiker, as
well as between the back of a tiger and the back of a duiker. Therefore, indistinguishable pretrained
representations of the duiker’s head and its striped back can mislead downstream models when
classifying mice and tigers.

Based on the above explicit analysis, in order to obtain more generalizable representations, it is
crucial to develop an explicit mechanism to decouple identity and correlation, thereby ensuring
distinguishable representations for different semantic contents.

2.2 IMPLICIT EMPIRICAL DEMONSTRATION
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Figure 2: Distinguishability and downstream perfor-
mance of different layers.

Our insight stems from two observations.
The first observation is that lower layers
have more distinguishable (less invariant)
representations for augmentation opera-
tors, especially for cropping (Figure 2a,
solid lines). The second observation is
that some lower layers have more gener-
alizable representations than higher lay-
ers (Figure 2b, solid lines). To measure
the generalizability, we pretrain ResNet-
18 through SimCLR on STL10 and re-
port in-distribution (STL10) and out-of-
distribution (CIFAR100) linear readout of
each residual block’s representations and
the post-projector embeddings.

As for the distinguishability to each augmentation operator separately, we first apply one-vs.-rest
augmentation to images in the pretraining dataset to generate views. As depicted in Figure 6, for
each image x, we generate 10 views through keeping other augmentations constant and applying
a specific augmentation operator aug (·) 10 times to the image. Then, for all the views generated
by the given one-vs.-rest augmentation

{
vaug(x)

}
x
, we measure the distinguishability of each layer

l by: NormStd
({

hl
vaug(x)

}
x

)
= Ex

[
σvaug(x)

[
hl
vaug(x)

]
/σv

[
hl
v

]]
, where the std in the numerator

σx

[
hl
vaug(x)

]
is calculated as the expectation of L2 distance between each representation and the

mean representation across the 10 views from the same image. And to make the std comparable
across different layers, it is normalized by the std in the denominator that is computed across all
views generated by all augmentation operators on the entire dataset. The NormStd can depict the
degree of representation dispersion at each layer for a specific augmentation operator. The larger
the NormStd is, the more dispersed the representations are for views generated by the augmentation
operator, thereby making the representations more distinguishable for the augmentation operator.

As observed in Figure 2a (solid lines), lower layers are better at differentiating different contents
compared with higher layers, as they exhibit a larger difference between the NormStd of cropping and
the NormStd of semantics-preserving augmentation operators. As observed in Figure 2b (solid lines),
some lower layers perform better than higher layers. Pre-projector representations (residual block 8)
outperform the post-projector embeddings on both InD (in-distribution) and OOD (out-of-distribution)
datasets. Additionally, although residual block 7 is not the final residual block, it surpasses residual
block 8 on the OOD dataset.

We empirically observe an association between the representations’ capacity to differentiate different
semantic contents and their generalizability in both InD (train-test shifts) and OOD (pretrain-train-test
shifts) settings, which echoes our explicit explanation in Section 2.1. However, such an effect in exist-
ing methods is implicit, so we aim to make it explicit by introducing DICR, which decouples identity
and correlation by using representations to model identity and embeddings to model correlation,
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Figure 3: The overall framework of DICR consists of two branches. In the top branch, typical
inter-image contrastive learning such as SimCLR (Chen et al., 2020) or SimSiam (Chen & He, 2021)
is performed on embeddings. In the bottom branch, intra-image contrast is directly applied to RoI
representations. DICR decouples the modeling of identity and correlation, and thereby explicitly
promotes different representations for different semantic contents within each image.

respectively. We also include the results of DICR as dashed lines in Figure 2. DICR significantly
promotes distinguishable representations of different semantic contents within an image, and achieves
more generalizable performance than the baseline on both residual block 8 and residual block 7.

3 METHOD

The overall framework of Direct Intra-image Contrastive Regularization (DICR) is illustrated in
Figure 3. The framework consists of two branches, where the first branch is the typical inter-
image contrastive learning method, and the second branch is our proposed DICR. We start by
reviewing how inter-image contrastive learning methods work and why they confuse identity with
correlation (Section 3.1). Next, we introduce DICR and describe how it explicitly addresses the
issues (Section 3.2).

3.1 INTER-IMAGE CONTRASTIVE SELF-SUPERVISED LEARNING

The typical view generation process begins with sampling an image, followed by applying augmenta-
tion operators such as random resized cropping, flipping, and color distortion to obtain a positive
view pair v1, v2. From the view pair, we identify four regions: o1, o2, n1, n2. Here, the subscript
i indicates that the region is from the view vi. o1, o2 represents the overlapping region between
v1, v2, while n1, n2 represents the non-overlapping region. As illustrated in Figure 3, the overlapping
regions o1, o2 always contain the same semantic content but with potentially different styles, while
region pairs other than o1, o2 can contain semantically different contents. Then, the view pair v1, v2
is processed by a shared encoder (e.g., ResNet (He et al., 2016)) to obtain feature maps f1,f2 with
spatial and channel dimensions.

Inter-image contrastive learning methods (Chen et al., 2020; He et al., 2020; Chen & He, 2021; Zhang
et al., 2024) apply global average pooling to f1,f2 to obtain the representation hi. Here, the global
average pooling operation can be seen as approximating the expectation of the entire feature map
through sampling:

hi = Evi [fi] =

∫
vi
fi · dS∫
vi
dS

≈ AvgPool (fi) , i ∈ {1, 2} , (1)

where the representation hi captures the average features of the entire view vi, as the expectation
is taken over the whole view. Then these representations are fed into a projection head to obtain
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embeddings z1, z2, and a loss function, such as InfoNCE loss (Oord et al., 2018), is minimized to
attract the positive view pair to similar embeddings:

LInfoNCE = −t log
exp(cos(z1, z2)/t)

exp(cos(z1, z2)/t) +
∑N

i=1 exp(cos(z1, z
-
i)/t)

, (2)

where cos(·) denotes the cosine similarity, {z-
i}

N
i=1 denotes N randomly sampled negative embed-

dings, and t is a temperature parameter.

Optimizing this loss function can lead to confusion between identity and correlation. We will use a
simplified model to explain this. In fact, based on the formulation in Equation 1, the representation
hi can be decoupled into representations that capture features of specific regions oi, ni:

hi =

∫
vi
fi · dS∫
vi
dS

=

∫
oi+ni

fi · dS∫
vi
dS

=
Soihoi + Snihni

Svi

, i ∈ {1, 2} , (3)

where Soi ,Sni ,Svi denote the areas of regions oi, ni, vi, and hoi ,hni denote the representations of
regions oi, ni. Assuming a linear projection head z = Wh, based on the representation decoupling
in Equation 3, the similarity of the embeddings can be further decoupled into:

cos(z1, z2) =

Identity term.︷ ︸︸ ︷
So1So2 · h⊤

o1W
⊤Who2 +

Correlation term.︷ ︸︸ ︷∑
{x,y}∈N

SxSy · h⊤
x W

⊤Why

∥z1∥ ∥z2∥Sv1Sv2

, (4)

where N = {{o1, n2} , {n1, o2} , {n1, n2}} denotes the non-intersecting region pairs between two
views. The identity term in Equation 4 encourages the use of representations to capture the identity
of identical contents with different styles. Take the duiker image in Figure 3 as an example. Both
overlapping regions o1, o2 cover the duiker’s head, but o1 is smaller and grayscale, whereas o2
is larger and flipped. To maximize the identity term, the embeddings of o1, o2 should remain
invariant under these semantic-preserving augmentations, thereby encouraging the representations
ho1 ,ho2 to capture identical semantic contents. The correlation term in Equation 4 encourages
the use of representations to model the correlation between different image contents. For instance,
in Figure 3, the non-overlapping region n1 covers the duiker’s body, while the non-overlapping
region n2 primarily covers the background. Therefore, maximizing the correlation term encourages
similar representations for the correlated semantic contents, i.e., the duiker’s head, the body, and the
background.

Inter-image contrastive learning confuses identity with correlation by using the same mechanism to
model both, and there is no explicit mechanism to prevent the representations of different contents
from collapsing into a single identical representation. However, such distinguishability is necessary
for representations to be generalizable, as discussed in Section 2.

3.2 DIRECT INTRA-IMAGE CONTRASTIVE REGULARIZATION

We propose DICR to decouple identity and correlation. The basic idea behind DICR is that the
similarity in representation space should reflect the identity between contents, while the similarity
in embedding space should reflect the correlation between contents. Therefore, besides the typical
inter-image contrastive loss on embeddings, there should be a mechanism to ensure different yet
co-occurring contents have different representations. A straightforward implementation of this
idea would be to sample some semantically identical views as positive views and different yet co-
occurring views as negative views, then apply a contrastive loss to their representations as a form
of regularization. However, this implementation can be computationally slow, as it does additional
forward and backward propagation to optimize the regularization term. In fact, as discussed in
Section 3.1, there are ready-made regions with semantically identical and different yet co-occurring
contents in views generated by the typical view generation process, and their representations can
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be derived by decoupling representations as described in Equation 3. Therefore, DICR can be
implemented as:

LDICR = −τ log
exp(sim(ho1 ,ho2)/τ)

exp(sim(ho1 ,ho2)/τ) +
∑

{x,y}≠{o1,o2} exp(sim(hx,hy)/τ)
, (5)

where sim(ho1 ,ho2) denotes the similarity between overlapping regions’ representations ho1 ,ho2 ,
while {sim(hx,hy)}{x,y}̸={o1,o2} denotes the similarity of representations between region pairs
other than {o1, o2}, and the temperature τ is a hyperparameter controlling the softness of LDICR. For
the overlapping region oi, which is always rectangular, we can directly apply RoIAlign to the feature
map fi to approximate the representation hoi :

hoi = Eoi [fi] =

∫
oi
fi · dS∫
oi
dS

≈ RoIAlignoi (fi) . (6)

As for the non-overlapping region ni, which is not necessarily rectangular, we can acquire its
representation hni

by substituting the approximations of hoi ,hi into Equation 3. We use cosine
similarity to measure the similarity between two representations. However, there are three edge cases
to consider when the region areas Soi ,Soj are trivial:

• For completely non-overlapping views v1, v2, we should repulse their representations.

• For completely overlapping views v1, v2, we should attract their representations.

• When one view vi is strictly contained in the other view vj , we should attract the overlapping
region’s representation and repulse the pairs

{
hoi ,hnj

}
and

{
hoj ,hnj

}
.

To handle these edge cases we introduce a hyperparameter ϵ. If both region areas are less than ϵ, we
set the similarity to 1. Conversely, if only one area is less than ϵ and the other area is greater than or
equal to ϵ, we set the similarity to 0.4 The final similarity function is defined as:

sim(hx,hy) =


cos(hx,hy), if both Sx and Sy ≥ ϵ

1, if both Sx and Sy < ϵ

0, if either Sx or Sy but not both < ϵ

. (7)

The overall objective is formulated as the weighted sum of the inter-image contrastive loss LSSL and
our proposed regularization term LDICR:

L = LSSL + λLDICR, (8)

where λ is a hyperparameter controlling the weight of LDICR. We adopt a simple warm-up strategy,
which initializes λ to 0 and increases λ linearly every epoch, to avoid occasional training failures in
the early stages of training.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of DICR. We first demonstrate the superior
generalizability of DICR by comparing it with existing contrastive learning methods. Then, we
investigate the behavior of DICR through analytical experiments.

4We assume that the representations of null regions have the same direction, and assume that the representa-
tions between a null region and a meaningful region are orthogonal.
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Table 1: Linear readout accuracy (%) on the in-distribution datasets and out-of-distribution datasets.
The best results are highlighted in bold.

Pretrain Evaluate SimCLR MoCo6 SimSiam Matrix-SSL

Base DICR Base DICR Base DICR Base DICR

CIFAR10

CIFAR10 89.130 90.150 90.410 91.210 90.580 90.580 91.430 92.280
CIFAR100 49.090 53.200 47.550 52.690 48.550 50.560 47.370 53.670

Tiny200 28.920 31.850 26.490 30.880 28.080 28.700 26.010 31.670
STL10 75.338 76.600 76.412 78.100 75.600 75.862 76.287 77.075

CIFAR100

CIFAR100 60.860 62.570 62.190 63.300 63.390 64.220 66.590 66.680
CIFAR10 76.170 79.260 75.320 77.920 77.530 79.150 78.390 80.660
Tiny200 31.490 34.440 30.590 33.840 31.800 33.130 31.930 35.260
STL10 66.525 67.838 66.650 67.912 66.812 67.700 66.213 69.175

Tiny200

Tiny200 44.030 44.990 48.280 47.680 41.990 42.150 45.280 45.550
CIFAR10 71.620 72.100 72.160 74.430 68.410 69.950 69.810 72.520
CIFAR100 46.830 48.740 47.740 50.610 36.650 39.410 39.140 43.290

STL10 73.112 75.550 75.888 76.400 70.650 71.537 72.338 73.088

STL10

STL10 87.750 88.338 89.188 89.475 86.737 87.088 88.312 88.862
CIFAR10 72.210 74.700 74.030 75.490 65.130 69.090 68.140 72.530
CIFAR100 40.590 44.630 43.200 45.300 23.540 27.420 24.350 34.610

TinyImagenet 37.940 40.700 39.720 40.970 28.490 29.950 28.260 32.950

4.1 DICR ENHANCES GENERALIZABILITY IN DOWNSTREAM TASK PERFORMANCE.

Pretraining. We conduct experiments on CIFAR10/CIFAR100 (Krizhevsky, 2009), TinyIma-
genet (Le & Yang, 2015), and STL10 (Coates et al., 2011). We consider SimCLR (Chen et al., 2020),
MoCo (He et al., 2020), SimSiam (Chen & He, 2021) and MatrixSSL (Zhang et al., 2024) as baselines.
Following Chen et al. (2020), we set the augmentation strategy to resized cropping, flipping, and color
distortion. We adopt ResNet-18 (He et al., 2016) as the backbone for all the experiments, modifying
it by removing the first max pooling operation and replacing the first 7x7 convolutional layer of stride
2 with a 3x3 convolutional layer of stride 1, to accommodate the smaller image sizes in our selected
datasets compared to ImageNet. For optimization, we use the SGD optimizer with momentum 0.9
and weight decay 1× 10−4, and perform cosine-annealing learning rate scheduling. For CIFAR10
and CIFAR100, we initialize the learning rate as 0.5 and pretrain the models for 500 epochs with
batch size 512. For TinyImagenet and STL10, we initialize the learning rate as 0.25 and pretrain the
models for 250 epochs with batch size 256.

Regarding our approach, we adjust the hyperparameters for each baseline individually, due to their
distinct loss functions. For SimCLR, we assign a final weight λ of 40 and a temperature τ of 0.05 for
all datasets. In the case of MoCo, we set a final weight λ of 10 and a temperature τ of 0.02 across
all datasets. For SimSiam, we determine a final weight λ of 2 and a temperature τ of 0.005 for all
datasets. In the case of Matrix-SSL, we set a final weight λ of 10 and a temperature τ of 0.02 across
all datasets. We configure the threshold ϵ to 2× 2 pixels for CIFAR10 and CIFAR100, and to 3× 3
pixels for TinyImagenet and STL10.5

Evaluation protocol. We follow the typical linear readout protocol (He et al., 2020), training a
linear classifier on top of the frozen backbone for 100 epochs using the SGD optimizer. We evaluate
the representations on in-distribution and out-of-distribution datasets. For each dataset, we evaluate
the in-distribution on the pretraining dataset itself, and the out-of-distribution on the other three
datasets.

Main results. The results are shown in Table 1. In most settings, DICR significantly improves
the linear readout accuracy compared to the baselines. The improvements are more pronounced on
out-of-distribution datasets, demonstrating DICR’s generalizable performance in out-of-distribution
downstream tasks.

5Our code is built upon the implementation of Peng et al. (2022). All the experiments can be run on 2
NVIDIA 3090 GPUs.
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4.2 ANALYTICAL STUDY
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(a) The relationship be-
tween IoU and NormDist.

(b) Illustrations of almost
non-overlapping view
pairs.

Figure 4: Quantitative and qualitative evaluation of con-
tent distinguishability.

DICR encourages distinguishable repre-
sentations for different contents. The
motivation of DICR is to decouple identity
and correlation, promoting distinguishable
representations for semantically different
contents within the same image. In this ex-
periment, we further explore whether the
representations achieve this. We use in-
tersection over union (IoU) between pos-
itive views as a measure of the amount
of the identical contents between views.
We then investigate the distinguishability
of the representations for view pairs with
low IoU. The representations are pretrained
on STL10 using SimCLR with and with-
out DICR. The view pairs with different
IoU are generated through one-vs.-rest augmentation (see Figure 6). We derive the formula

to measure the pairwise distance by decoupling the NormStd: NormDist
(
hl

v
crop(x)
i

,hl

v
crop(x)
j

)
=∥∥∥∥hl

v
crop(x)
i

− hl

v
crop(x)
j

∥∥∥∥ /σv

[
hl
v

]
, where v

crop(x)
i is a specific view generated by cropping the image x.

NormDist can be interpreted as the distinguishability of layer l for the view pair vcrop(x)
i , v

crop(x)
j with

potentially low content overlap (IoU).

Figure 4 shows that DICR increases the representation distance for views with low IoU, while it does
not significantly affect the embedding distance compared to the baseline. The results indicate that
DICR explicitly promotes distinguishable representations for different contents, while it does not
affect the modeling of contents’ correlation in the embedding space. We also illustrate some nearly
non-overlapping view pairs that exhibit similar representations for the baseline but have significantly
different representations for DICR in Figure 4b. The first image shows a foggy ship image. The
baseline confuses the ship’s aerial and hull due to the fog, while DICR differentiates them. The
second image is a deer in grass. The baseline fails to distinguish the deer’s neck and legs, but DICR
does. The last image is a flying bird. The baseline treats the bird and the bird-less background
similarly, but DICR identifies them as different.
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Figure 5: Distinguishability and downstream perfor-
mance of DIRR, DICR and baseline.

The effect of intra-image contrast in
DICR. The repulsion of non-intersecting
representations in DICR is achieved in a
contrastive way, as the basic idea behind
DICR is that different yet co-occurring
contents should have less similar repre-
sentations than semantically identical con-
tents. In this experiment, we investi-
gate the necessity of contrastive learn-
ing in DICR. We propose a variant of
DICR called Direct Intra-image Repulsion
Regularization (DIRR), where the term
sim(ho1 ,ho2) in Equation 5 is replaced
with a constant hyperparameter s. ResNet-
18 models are pretrained using SimCLR
and DIRR on CIFAR10 dataset. We set s to 0.6, 0.7, 0.8, 0.9, 1 and set the same other hyperpa-
rameters as DICR. Then, the pretrained models are evaluated on in-distribution (CIFAR10) dataset
and out-of-distribution (CIFAR100) dataset. As shown in Figure 5b, DIRR performs consistently
better than the baseline. We attribute its superiority over the baseline to its direct promotion of

6We implement the symmetric version of MoCo following Chen et al. (2020) to make LDICR more easily
optimized.
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distinguishable representations for different contents, as shown in Figure 5a. However, it performs
consistently worse than DICR. We attribute this to DIRR’s inability to model the identity of semanti-
cally identical contents with different styles. As shown in Figure 5a, it is significantly less invariant
to semantics-preserving augmentation operators (especially for flipping) than DICR and the baseline.
These results demonstrate the necessity of contrastive learning in DICR, to correctly model identity.

Table 2: Comperison between DICR and ICR. The su-
perscript of ICR indicates layer count in ICR projectors.

Method In-distribution Out-of-distribuion

CIFAR10 CIFAR100 TinyImagenet STL10

Base 89.130 49.090 28.920 75.338
DICR 90.150 53.200 31.850 76.600
ICR1 90.010 52.740 31.660 76.075
ICR2 89.790 50.910 30.330 76.312

The effect of directness in DICR. In
DICR, the regularization is directly applied
on the representations, as our goal is to
explicitly promote the pre-projector repre-
sentations’ distinguishability to different
contents. In this experiment, we study
the effect of directness in DICR. We con-
sider a variant of DICR called Intra-image
Contrastive Regularization (ICR), where
the RoI representations are first projected
to embeddings by a parameterized projec-
tor, then we replace the representations in
Equation 5 with these embeddings. We use the same projector architecture as SimCLR, and tune
the temperature τ for DIRR. We set τ to 0.2, and set other hyperparameters the same as DICR.
In Table 2, we observe that DICR outperforms ICR on both in-distribution and out-of-distribution
datasets. Additionally, ICR1

2, which uses a linear projector in regularization, achieves the performance
closest to that of DICR2. We conjecture that attracting and repulsing within a linear subspace of the
representations has a similar effect to directly doing so on the representations.

Table 3: Sensitive analysis of hyperparameters.

(a) Sensitive analysis of λ.

λ
In-distribution Out-of-distribution

CIFAR10 CIFAR100 Tiny200 STL10

Base 89.130 49.090 28.920 75.338
10 90.300 52.860 31.670 76.838
20 89.890 52.630 32.010 77.100
40 90.150 53.200 31.850 76.600

100 90.070 54.190 32.410 76.912
200 89.780 53.940 32.630 76.237

(b) Sensitive analysis of τ .

τ
In-distribution Out-of-distribution

CIFAR10 CIFAR100 Tiny200 STL10

Base 89.130 49.090 28.920 75.338
0.01 90.080 53.110 32.170 76.938
0.02 90.110 52.730 31.860 76.000
0.05 90.150 53.200 31.850 76.600
0.1 90.260 53.170 31.130 77.700
0.2 89.760 48.290 28.090 76.325

Sensitive analysis of hyperparameters. We conduct sensitivity analyses of the hyperparameters
λ and τ on the CIFAR10 dataset, using SimCLR as the baseline. The results in Table 3 show that
DICR can robustly improve downstream performance compared to the baseline.

4.3 COMPARISON WITH OTHER IMPLICIT OR EXPLICIT METHODS

In this section, we compare DICR with three other methods that implicitly or explicitly promote
distinguishable representations for different contents.

Comparison with implicit methods. As observed in Figure 2a, the projector in inter-image
contrastive learning can implicitly enhance the distinguishability of representations for different
contents. Therefore, we consider employing deeper projectors in SimCLR without other regularization
terms as an implicit baseline. The results in Table 4 show that the improvements brought by implicit
methods are limited compared to DICR.

Comparison with explicit methods. Zhang & Ma (2022) introduces augmentation embeddings
to facilitate the projector to explicitly model invariance to a specific augmentation operator (such
as cropping), to ensure that useful information is stored in the representations. We compare DICR
with this method on CIFAR10 dataset using SimCLR as the baseline, which we refer to as CropEmb.
The results in Table 4 show that DICR outperforms CropEmb on both in-distribution and out-of-
distribution datasets.
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Table 4: Comperison between DICR and other implicit or explicit methods. The subscript of implicit
methods indicates the number of layers in SSL projectors.

Method In-distribution Out-of-distribuion

CIFAR10 CIFAR100 TinyImagenet STL10

Base SimCLR 89.130 49.090 28.920 75.338

Implicit SimCLR3 89.640 51.060 30.760 75.987
SimCLR4 88.750 50.790 29.990 75.388

Explicit CropEmb 89.050 49.650 31.020 75.325
DICR 90.150 53.200 31.850 76.600

5 RELATED WORK

Contrastive self-supervised learning. Contrastive learning is a widely adopted self-supervised
learning paradigm that aims to learn a generic representation from unlabeled pretraining datasets (He
et al., 2020; Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Bardes et al., 2022; Geiping
et al., 2023; Zhang et al., 2024; Gui et al., 2024). The key idea of contrastive learning is to perform
inter-image contrast, which is to attract views generated from the same images and to repulse views
generated from different images (Wu et al., 2018; Oord et al., 2018; Hjelm et al., 2018; Bachman
et al., 2019; Tian et al., 2020; Yeh et al., 2022). Different from inter-image contrast adopted by
the above mentioned methods, DICR applies intra-image contrast to existing contrastive learning
methods to enhance their generalizability on downstream tasks.

Learning object-level representations through intra-image contrast. Some works involve intra-
image contrast (Hénaff et al., 2021; Xiao et al., 2021; Wang et al., 2022; Yan et al., 2022) to better
align with pixel-wise tasks. The main difference between these methods and DICR is how they
contruct positive and negative pairs. Hénaff et al. (2021); Wang et al. (2022) rely on external tools
(external segmentation algorithms in Hénaff et al. (2021) and copy-paste in Wang et al. (2022)) to
generate positive and negative pairs. The positive view pairs generated by these methods can be
different parts of the same object, and thereby do not decouple identity from correlation, which differs
from DICR. The work by Yan et al. (2022) adapts contrastive learning for pretraining on anatomical
images. It applies global and local pixel-level contrast, involving intra-image pixels as negatives. The
correlation between different pixels within single images is somewhat overlooked in Yan et al. (2022),
since different pixels are never treated as positive pairs. However, in contrastive learning for regular
images, the correlation between different pixels is misleading but can be useful for downstream tasks,
so DICR is designed to preserve both the identity and correlation. Xiao et al. (2021) involves both
intra-image contrast that attract the same contents with different styles and inter-image contrast that
attract different contents from the same image. However, the intra-image contrast in Xiao et al. (2021)
is not directly applied on representations, which has been shown to be essential in decoupling identity
from correlation in Section 4.2. Additionally, the method by Xiao et al. (2021) handle the edge case
where the two views are completely non-overlapping by simply ignoring the repulsion between them,
which is different from DICR.

6 CONCLUSION

In this work, we identify the importance of decoupling identity and correlation in contrastive learning
to enhance the generalizability of downstream performance. We propose DICR, a regularization
method that can decouple identity and correlation in existing contrastive learning methods. It
apply intra-image contrast on representations, and also preserve their correlation via inter-image
contrast on embeddings. Our empirical evidence shows that DICR substantially improves the
generalizability of downstream performance in existing methods, underscoring the pivotal role that
content distinguishability plays in the robust performance of contrastive learning.
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Figure 6: Illustration of one-vs.-rest augmentations. We keep other augmentations constant and apply
a selected augmentation aug (·) ten times to the image. This generates ten views vaug(x), all of which
share the same set of other augmentations but vary in the chosen augmentation.
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