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Abstract
We address the problem of generating graphs that are structurally diverse. First,
we discuss how to define diversity for a set of graphs, why this task is non-trivial,
and how one can choose a proper diversity measure. Then, for a given diversity
measure, we propose and compare several algorithms optimizing it: we consider
approaches based on standard random graph models, local graph optimization,
genetic algorithms, and neural generative models. We show that it is possible to
significantly improve diversity over basic random graph generators and generate
graphs with diverse structural characteristics. This paper is an extended abstract
that briefly describes the main ideas of our work, see [1] for the full version.

1 Introduction

Figure 1: A sample of generated graphs

Many real-world objects can be naturally represented as graphs: biological and chemical entities,
interaction networks, road maps, and so on. Hence, the analysis of graph-structured data is an
important and rapidly developing research area. To generate realistic graph structures, many random
graph models have been proposed [2]. Such models aim to imitate properties typically observed in
natural structures: power-law degree distribution, small diameter, community structure, and others.

On the other hand, for some applications, it is important to have a set of graphs that are structurally
diverse. For instance, if one needs to automatically verify the correctness of a graph algorithm,
estimate how well a heuristic approach approximates the true solution for a graph problem, or
evaluate neural approximations of graph algorithms [3]. In all these cases, algorithms and models
should be tested on as diverse graph instances as possible since otherwise the results can be biased
towards particular properties of the test set. In other words, we need representative graphs that ‘cover’
(in some sense) the space of all graphs.

To the best of our knowledge, the problem of generating a dataset where graphs are maximally diverse
has not been addressed in the literature yet. In this paper, we fill this gap. For this purpose, we first
need to define diversity of a set of graphs. This is already a challenging task and we discuss it in
Section 2. After we have defined a performance measure for our problem, several approaches can
be used to optimize it. We develop and analyze the following strategies: a greedy method based on
diverse random graph generators, a local graph optimization approach, an adaptation of the genetic
algorithm to our problem, and a method based on neural generative modeling.
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We empirically investigate the proposed strategies and show that they indeed allow us to generate
structurally different graphs. In particular, we analyze various graph structural characteristics and
show increased diversity of their joint distribution. Moreover, since we consider diversity measures
based on several graph distances, our results shed light on the properties of these graph distances.
Indeed, depending on the function we optimize, the structural properties of the generated graphs
can vary since graph distances focus on different aspects of graph dissimilarity. Thus, by inspecting
the properties of generated graphs, one can better understand what graph characteristics a particular
graph distance is sensitive to.

2 Defining diversity for a set of graphs
This section discusses how to define diversity and why it is non-trivial. Intuitively, diverse graphs are
expected to cover (in some sense) the space of all graphs.1 However, just sampling graphs uniformly
at random from the set of all graphs (i.e., using the Erdős-Rényi model with p = 0.5) would not give
us diverse graphs. Indeed, it is known that with high probability graphs generated according to the
Erdős-Rényi model have very similar properties [4].

Intuitively, by diverse graphs we mean those having different structural properties such as degree
distribution, pairwise distances, subgraph counts, and so on. This intuition is hard to formalize as one
may potentially come up with countless properties. Defining graph dissimilarity is closely related to
graph distances. Graph distances have been studied for a long time, and many variants exist in the
literature [5]. Each graph distance captures particular graph properties and our paper does not aim to
answer which distance is better. In our experiments, we consider several representative options.

Now, assume that we have a multiset of N graphs S = G1, . . . , GN . Throughout the paper, we
consider undirected graphs without self-loops and multiple edges. Assume that we are given a distance
measure D(G,G′) that evaluates dissimilarity between two graphs. Then, we define diversity as:

Diversity(S) = F ({D(G,G′) : G,G′ ∈ S}) , (1)

where F is some function that computes diversity given a set of pairwise distances.

It remains to define the function F . Several variants have been considered in the literature [6, 7]. Some
popular options are average and minimum pairwise distance between the objects. The shortcoming of
minimum is that it is not sensitive to most of the distances (only to the smallest one). On the other
hand, optimizing average may lead to degenerate undesirable solutions.2

Motivated by the shortcomings of existing measures, we propose an alternative one inspired by the
energy of a system of equally charged particles. Namely, we define the energy of a set of graphs S as

− 1

N(N − 1)

∑
i ̸=j

1

D(Gi, Gj)
. (2)

This function can be naturally interpreted as the average pairwise energy for a system of equally
charged particles (we multiply by -1 to get a measure that is larger for more diverse sets of graphs).

3 Algorithms for diversity optimization
After we have defined the distance D(·, ·) and the measure of diversity, our primary goal is to find a
multiset of graphs S̄ of size N to maximize its diversity:

S̄ = argmax
G1,G2,...,GN∈Gn

Diversity({G1, G2, . . . , GN}), (3)

where Gn is the set of all graphs with n nodes.

We aim to investigate diverse algorithms for diversity optimization: from a basic approach based on
random graph generators to a more advanced one based on neural generative modeling. Note that the
proposed algorithms can be applied to any given measure of diversity.

1In this work, we use the terms ‘diversity’ and ’coverage’ interchangeably.
2We refer to the full version of the paper [1] for a detailed discussion of popular diversity measures, examples

of their undesirable behavior, and a formal approach to analyzing measures of diversity.
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Greedy algorithm. The main idea of this algorithm is to build a set of diverse graphs iteratively,
by adding at each step the most suitable graph from a predefined set Ŝ of a much larger size. This
set is not specified: it can be either user input, the result of another algorithm, or a set of graphs
generated by random graph models. The process initiates by randomly choosing a graph from Ŝ. At
each step, we have a set of already chosen graphs S and add one more graph from Ŝ that gives the
largest diversity improvement. In the full version [1], we provide more details, the analysis of the
computational complexity of this algorithm, and a lower bound on the diversity of graphs returned by
the greedy algorithm relative to the diversity of the initial set Ŝ.

Genetic algorithm. The genetic algorithm enhances the diversity of a graph population through
evolutionary operations. Starting with an initial set of N graphs, it iteratively refines this set by
selecting pairs of graphs as parents and generating a child through crossover and mutation processes.
This child can replace one of the graphs in the population if it increases the overall diversity; otherwise,
the algorithm tries to find more suitable offspring by repeating the process. To prevent itself from
getting stuck in local optima, the algorithm can accept a candidate that decreases the overall diversity
if the number of unsuccessful attempts exceeds a certain threshold. The algorithm iterates for a
predefined number of iterations, ultimately evolving the population towards greater diversity. This
approach adapts principles from genetics to solve optimization problems, as we try to preserve
beneficial graph characteristics, at the same time introducing novel configurations to achieve a diverse
set of graphs, see [1] for more details.

Local optimization algorithm. The main idea of the local optimization algorithm is the refinement
of the diversity of a graph population by iteratively modifying individual graphs. Starting from an
initial set, we randomly sample graphs and make small modifications to their structure (single edge
addition/deletion). Then, if the overall diversity improves, we accept the change. As in the other
algorithms, we can accept unsuccessful modifications after consecutive failed attempts to prevent
stagnation at a local optimum. Since local optimization makes small modifications at each step, this
approach is expected to be most efficient when the input set of graphs is already sufficiently diverse.
Thus, when we combine several algorithms, local optimization is always the last step.

Iterative graph generative modeling. Neural generative models are known to be a powerful tool
for generating graphs that imitate a given distribution [8–10]. Hence, we aimed to investigate whether
such approaches can be used for generating graphs that are structurally diverse. However, for this
task, there is no predefined distribution that needs to be captured. We address this via the following
iterative procedure. The process starts from an initial graph set S0 and then iteratively enhances the
diversity. At each iteration, the current set of graphs Si is used to train a generative model. Then, this
model is used to generate a significantly larger set of new graphs. From this new set, a smaller subset
of diverse graphs Si+1 is selected via the greedy approach. We expect that Si+1 is more diverse than
Si. So, we repeat the process by training a neural generative model on the new set Si+1. For the
neural network architecture, we use Discrete Denoising Diffusion Model (DiGress) [10]. We refer to
the full paper [1] for a more detailed description of this approach.

4 Experiments
Setup. In our experiments, we consider four representative distance measures: heat and wave
NetLSD [11], Graphlet Correlation Distance [12], and Portrait Divergence [13]. We select these
distances to be diverse: NetLSD is based on the Laplacian eigenvalues (we use NetLSD-heat and
NetLSD-wave kernels), Graphlet Correlation Distance (GCD) uses local structures, while Portrait
Divergence (Portrait-div) takes into account both local and global properties.

We evaluate the following approaches described in Section 3: Greedy, Genetic, Local Optimization
(LocalOpt), and iterative graph generative modeling (IGGM). Our evaluation also includes the
comparisons against simple baseline models, specifically the Erdős-Rényi graphs sampled with
various p (ER-mix) and a sample from diverse random graph generators (see [1]). In most of the
experiments, we generate N = 100 graphs with n = 16 vertices. We also conduct experiments with
non-neural algorithms on the set of 100 graphs with size n = 64.

Examples of generated graphs. Since in our main experiments we generated 100 graphs, each
having only 16 nodes, it is possible to visually inspect the generated graphs. To illustrate that the
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Figure 2: Joint distribution of graph characteristics for GCD, Portrait-div, NetLSD-heat

generated graphs have very different structural patterns, we show some examples in Figure 1. This
sample of graphs is chosen from the resulting set of the Genetic algorithm with diversity based on
Portrait-div. It is clear that graphs vary in density, internal structure, number of cycles, and planarity.
Importantly, these graphs are clearly distinct from the input distribution ER-mix. More examples
showing all generated graphs are shown in Figures 3-7. We see that when combined with Portrait-div,
both Genetic and IGGM generate visually diverse and interesting structures. One can also notice that
NetLSD tends to generate many extremely sparse graphs, while GCD generates more dense graphs.

Analysis of structural characteristics. Additionally, we analyze the structural characteristics of
generated graphs. Figure 2 visualizes various characteristics for the ER-mix baseline, IGGM, and
the combination of Greedy, Genetic, and LocalOpt. Obtaining a set of graphs in which an individual
characteristic is diverse is easy: this can be achieved with the basic ER-mix. Hence, we visualize the
joint distributions of pairs of characteristics.

It is clearly seen that compared to ER-mix, our algorithms lead to significantly more diverse pairs
of characteristics. Also, it is worth mentioning that we often should not expect to cover all possible
combinations: for instance, if the average degree is close to its maximal achievable value n− 1, then
the clustering coefficient has to be close to 1.

Visualizing pairwise graph characteristics can also help in the analysis and comparison of different
graph distances. As can be seen in Figure 2, the generated graphs significantly depend on a particular
graph distance used for computing diversity, see the full paper [1] for a detailed discussion.

In [1], we also conduct extensive numerical analysis of all the proposed algorithms and their various
combinations. We conclude that all the algorithms significantly improve the performance over
simple graph generators (see Table 1 in Appendix). Among the non-neural approaches, the best
performance is achieved by a combination of Greedy, Genetic, and LocalOpt (applied in this order).
In turn, the neural-network-based method IGGM gives a significant boost in diversity for GCD and
Portrait-div distances and exhibits comparative results for NetLSD-heat. However, IGGM is more
computationally expensive compared to other approaches. We refer to [1] for a detailed discussion.

5 Conclusion

In this work, we formulate the problem of generating structurally diverse graphs, define what it means
for a set of graphs to be diverse, and propose various approaches to address this problem. Via a series
of experiments, we show that the proposed approaches are capable of generating diverse graphs, both
in terms of diversity measures and structural characteristics. We hope that our work will encourage
researchers to dive deeper into this research direction. One particularly important and challenging
direction for future research is scalability of the approaches to singificantly larger graphs.
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[4] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5(1):17–60, 1960. 2

[5] Mattia Tantardini, Francesca Ieva, Lucia Tajoli, and Carlo Piccardi. Comparing methods for
comparing networks. Scientific Reports, 9(1):1–19, 2019. 2

[6] Dan Friedman and Adji Bousso Dieng. The Vendi score: A diversity evaluation metric for
machine learning. Transactions on Machine Learning Research, 2023. 2

[7] Yutong Xie, Ziqiao Xu, Jiaqi Ma, and Qiaozhu Mei. How much space has been explored?
Measuring the chemical space covered by databases and machine-generated molecules. In The
Eleventh International Conference on Learning Representations, 2023. 2

[8] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN:
Generating realistic graphs with deep auto-regressive models. In International conference on
machine learning, pages 5708–5717. PMLR, 2018. 3

[9] Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators,
2022.

[10] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh
International Conference on Learning Representations, 2023. 3

[11] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.
NetLSD: hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2347–2356, 2018. 3
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Table 1: Energy optimization results; the smaller value indicates greater diversity

Setup GCD Portrait-div NetLSD-heat NetLSD-wave

ER-mix 0.281 43.057 72.387 0.583
Random Graph Generators 0.553 6.009 116.685 1.334

Greedy[3M] 0.156 1.274 0.681 0.123
ER-mix→Genetic[3M] 0.139 1.264 0.677 0.117
Greedy[1M]→Genetic[2M] 0.139 1.263 0.674 0.118
ER-mix→Genetic[1M]→LocalOpt[2M] 0.138 1.259 0.675 0.117
Greedy[1M]→LocalOpt[2M] 0.139 1.255 0.679 0.118
Greedy[1M]→Genetic[1M]→LocalOpt[1M] 0.135 1.245 0.673 0.117
IGGM[1M] 0.120 1.213 0.675 0.148

Figure 3: Graphs from Genetic with Portrait-div
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Figure 4: Graphs from IGGM with Portrait-div
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Figure 5: Graphs from IGGM with netLSD-heat: most of the graphs are sparse
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Figure 6: Graphs from IGGM with netLSD-wave: most of the graphs are sparse
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Figure 7: Graphs from IGGM with GCD
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