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Abstract

Black-Box prompt optimization methods have001
emerged as a promising strategy for refining002
input prompts to better align large language003
models (LLMs), thereby enhancing their task004
performance. Although these methods have005
demonstrated encouraging results, most stud-006
ies and experiments have primarily focused on007
smaller-scale models (e.g., 7B, 14B) or earlier008
versions (e.g., GPT-3.5) of LLMs. As the scale009
of LLMs continues to increase, such as with010
DeepSeek V3 (671B), it remains an open ques-011
tion whether these black-box optimization tech-012
niques will continue to yield significant perfor-013
mance improvements for models of such scale.014
In response to this, we select three well-known015
black-box optimization methods and evaluate016
them on large-scale LLMs (DeepSeek V3 and017
Gemini 2.0 Flash) across four NLU and NLG018
datasets. The results show that these black-box019
prompt optimization methods offer only lim-020
ited improvements on these large-scale LLMs.021
Furthermore, we hypothesize that the scale of022
the model is the primary factor contributing023
to the limited benefits observed. To explore024
this hypothesis, we conducted experiments on025
LLMs of varying sizes (Qwen 2.5 series, rang-026
ing from 7B to 72B) and observed an inverse027
scaling law, wherein the effectiveness of black-028
box optimization methods diminished as the029
model size increased.030

1 Introduction031

Prompt optimization methods have emerged as an032

effective strategy for enhancing task performance033

by carefully refining input prompts to better align034

with LLMs (Brown et al., 2020). Broadly speak-035

ing, existing prompt optimization methods can be036

classified into two categories: white-box and black-037

box prompt optimization methods. White-box038

prompt optimization techniques typically involve039

utilizing gradient information to refine prompts.040

For instance, AutoPrompt (Shin et al., 2020) uses041

gradient-based methods to iteratively replace dis-042

crete prompt tokens, refining the initial prompt and 043

improving performance on downstream tasks. Sim- 044

ilarly, prefix tuning (Liu et al., 2022) and prompt 045

tuning (Lester et al., 2021) fine-tune additional 046

soft continuous embeddings, referred to as "soft 047

tokens," to construct more effective task-specific 048

prompts. Although these methods show promising 049

results, they require access to the model’s internal 050

gradients or parameters, limiting their applicabil- 051

ity in many closed-source models, such as GPT4o 052

(Hurst et al., 2024) and Gemini (Anil et al., 2023). 053

Another category of prompt optimization meth- 054

ods is based on nonparametric black-box tech- 055

niques. These methods typically optimize prompts 056

through calling external APIs, without the need to 057

access the internal model parameters or gradients. 058

For example, EvoPrompt (Guo et al., 2023) utilizes 059

evolutionary algorithms to iteratively search for bet- 060

ter task prompts through crossover and mutation. 061

Similarly, methods like ProTeGi (Pryzant et al., 062

2023), BPO (Cheng et al., 2023), and OPRO (Yang 063

et al., 2023) use LLMs themselves as optimizers, 064

generating improved task prompts by leveraging 065

text feedback signals from the LLMs. Despite these 066

methods demonstrating substantial performance 067

improvements, they have primarily been tested on 068

smaller-scale LLMs (e.g., those with fewer than 069

14B parameters) or earlier versions of LLMs (e.g., 070

GPT-3.5 (Ye et al., 2023)). As LLMs continue to 071

scale up, it is still uncertain whether these black- 072

box optimization techniques will maintain their 073

ability to deliver substantial performance gains. 074

To address this question, we selected three popu- 075

lar black-box optimization methods and evaluated 076

their performance on large-scale LLMs, DeepSeek 077

V3 (DeepSeek-AI, 2024) and Gemini 2.0 Flash 078

(Pichai et al., 2024), across four NLU and NLG 079

benchmark datasets. The experimental results 080

demonstrate that the performance improvements 081

from these methods have become less significant. 082

For the NLU datasets, the average accuracy im- 083

1



provements for DeepSeek V3 and Gemini 2.0084

Flash across these three optimization methods were085

0.86% and 1.16%, respectively. Similarly, for the086

NLG datasets, the corresponding metric improve-087

ments for DeepSeek V3 and Gemini 2.0 Flash were088

1.04% and 2.03%, respectively. We hypothesize089

that the limited improvements are primarily due to090

the issue of model scale. To investigate this further,091

we conducted experiments on LLMs of varying092

sizes, specifically the Qwen 2.5 series, with model093

sizes ranging from 7B to 72B parameters. The094

results revealed an inverse scaling law, in which095

the efficacy of black-box optimization methods de-096

creased as the model size increased. In brief, our097

work offers two key contributions:098

• We evaluate three black-box optimization099

methods on large-scale LLMs using four NLU100

and NLG datasets, finding only limited im-101

provements in performance.102

• Our findings reveal an inverse scaling pat-103

tern, where the effectiveness of black-box op-104

timization decreases as the size of the LLM105

increases.106

2 Related Work107

2.1 White-Box Prompt Optimization Methods108

Early white-box prompt optimization methods,109

such as AutoPrompt (Shin et al., 2020), utilize110

gradients to search for discrete prompt tokens to111

improve model performance. Wen et al. (2023)112

expanded these hard prompt optimization meth-113

ods to multimodal tasks, including text-to-image114

generation. Prefix-Tuning (Li and Liang, 2021) in-115

troduced continuous, task-specific vectors as “soft116

tokens," optimizing them via gradients to boost per-117

formance. Furthermore, P-Tuning v2 (Liu et al.,118

2022) optimized “soft embeddings" across mul-119

tiple transformer layers, achieving improvements120

across a broader range of tasks. More recently,121

GReaTer (Das et al., 2024) incorporated reason-122

ing path information into gradient-based prompt123

searches, yielding significant performance improve-124

ments over prior methods.125

2.2 Black-Box Prompt Optimization126

Black-box prompt optimization methods seek to en-127

hance task performance by refining prompts with-128

out accessing the model’s internal parameters or129

gradients. For example, EvoPrompt (Guo et al.,130

2023) employs evolutionary algorithms, includ- 131

ing crossover and mutation, to iteratively refine 132

prompts. APE (Zhou et al., 2022) frames black-box 133

prompt optimization as a program synthesis prob- 134

lem, refining prompts through top-k sampling and 135

resampling. OPRO (Yang et al., 2023) integrates 136

historical optimization trajectory information to im- 137

prove the stability of the optimization process. Pro- 138

TeGi (Pryzant et al., 2023) refines prompts through 139

iterative language feedback, resulting in enhanced 140

performance. Likewise, BPO (Cheng et al., 2023) 141

optimizes prompts using human feedback and uti- 142

lizes a small LLM as a prompt optimizer, reducing 143

the high costs associated with large-scale LLMs. 144

3 The Effectiveness of Black-Box Prompt 145

Optimization Methods on Large-Scale 146

LLMs 147

3.1 Datasets and Evaluation Metrics 148

The four datasets used in this study include SST-5 149

(Socher et al., 2013), a dataset for sentiment clas- 150

sification based on movie reviews; AG’s News 151

(Zhang et al., 2015), a corpus for news catego- 152

rization across four primary topics: World, Sports, 153

Business, and Sci/Tech; SAMSum (Gliwa et al., 154

2019), a dialogue summarization using messenger- 155

style conversations and ASSET (Alva-Manchego 156

et al., 2020), a dataset for sentence simplification, 157

where each sentence is paired with multiple refer- 158

ence simplifications. For NLU datasets, we ran- 159

domly sample 500 examples as training dataset 160

for prompt optimization and 500 examples as test 161

dataset for evaluation, while the NLG datasets are 162

trained and assessed on their complete examples re- 163

spectively. For evaluation metrics, accuracy is used 164

for SST-5 and AG’s News, while ROUGE-L (Lin, 165

2004) and SARI (Xu et al., 2016) are employed for 166

SAMSum and ASSET, respectively. 167

3.2 Experimental Design 168

Three black-box prompt optimization methods are 169

utilized for evaluation. Specifically, the EvoPrompt 170

method (Guo et al., 2023) refines the initial prompts 171

through a stepwise evolutionary process, generat- 172

ing candidate prompts via crossover and mutation, 173

and selecting the best-performing prompt after four 174

iterative optimization cycles on the training data. 175

The ProTeGi method (Pryzant et al., 2023) opti- 176

mizes initial prompts by leveraging text language 177

gradients derived from the training data, also under- 178

going four optimization rounds. The BPO method 179
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Model SST-5 (acc.) AG’s News (acc.) SAMSum (ROUGE) ASSET (SARI)

DeepSeek V3

+ EvoPrompt 56.0 → 56.6 83.6 → 84.8 34.4 → 35.4 45.3 → 45.8
+ ProTeGi 56.0 → 56.4 84.0 → 85.8 33.9 → 33.7 46.4 → 46.9
+ BPO 56.0 → 56.4 84.6 → 83.8 33.9 → 34.1 45.3 → 45.8
Average % Increase 0.83% 0.88% 0.97% 1.10%

Gemini 2.0 Flash

+ EvoPrompt 56.4 → 56.8 82.4 → 85.4 37.2 → 38.5 45.4 → 47.6
+ ProTeGi 55.6 → 56.2 82.5 → 83.5 37.2 → 37.6 44.6 → 46.0
+ BPO 57.6 → 58.2 82.8 → 82.2 37.2 → 36.9 44.2 → 44.4
Average % Increase 0.94% 1.38% 1.25% 2.81%

Table 1: Performance of Black-Box Prompt Optimization Methods on DeepSeek V3 & Gemini 2.0 Flash.

Model Comparison of the Initial and Optimized Prompts on the AG’s News Dataset

Initial Identify the category of the text (e.g. Technology, Sports, World, Business).
DeepSeek V3 Identify the main topic of the content and select from the categories: World, Sports, Business, or Tech.
Gemini 2.0 Flash Categorize the following news article under one of these themes: World, Sports, Business, or Tech.

Identify the article’s primary subject to make your selection.

Model Comparison of the Initial and Optimized Prompts on the SAMSum Dataset

Initial Please summarize the main context.
DeepSeek V3 Provide a clear and concise summary of the main idea, removing any redundant or extraneous

information.
Gemini 2.0 Flash Create a very short, jargon-free summary that captures the core message and vital information,

avoiding any repetition or fluff.

Table 2: Comparison of the Initial and Optimized Prompts on DeepSeek V3 and Gemini 2.0 Flash.

(Cheng et al., 2023) directly applies the released180

sequence-to-sequence prompt optimizer, perform-181

ing five optimization rounds. For all three black-182

box prompt optimization methods, we evaluate183

them on these four datasets using large-scale LLMs,184

including DeepSeek V3 (DeepSeek-AI, 2024) and185

Gemini 2.0 Flash (Pichai et al., 2024).186

3.3 Results and Analysis187

As presented in Table 1, Black-Box prompt opti-188

mization methods show limited improvements in189

performance when applied to larger scale LLMs.190

Specifically, for DeepSeek V3, the average im-191

provement across NLU tasks was only 0.86%, and192

1.16% for NLG tasks. Similarly, for Gemini 2.0193

Flash, the NLU task improvement was 1.04%, and194

the NLG task improvement was 2.03%. These195

results suggest that prompt optimization has a min-196

imal effect on very large models. To explore this197

further, we conducted a comparative analysis of198

prompts before and after optimization using the199

EvoPrompt method. As shown in Table 2, the op-200

timized prompts exhibit only slight modifications201

compared to the initial prompts for both datasets.202

The primary adjustments involve replacing syn-203

onyms and subtly rephrasing to improve clarity. For 204

instance, in the SAMSum dataset, the initial prompt 205

simply instructs, “Please summarize the main con- 206

text.” After optimization, the prompts become more 207

detailed, such as “Provide a clear and concise sum- 208

mary of the main idea, removing any redundant or 209

extraneous information.” (DeepSeek V3), or “Cre- 210

ate a very short, jargon-free summary that captures 211

the core message and vital information, avoiding 212

any repetition or fluff.” (Gemini 2.0 Flash). These 213

minor synonym substitutions are unlikely to have a 214

significant impact on large-scale LLMs. This could 215

be because, generally, larger LLMs exhibit more 216

refined alignment, making them less sensitive to 217

such subtle variations in lexical choices. Similar 218

findings are discussed in (Shirafuji et al., 2023), 219

where the authors explore the effects of superficial 220

prompt changes in code generation tasks. 221

4 The Impact of LLMs Scale for 222

Black-Box Prompt Optimization 223

4.1 Experimental Design 224

To examine whether the size of an LLM influences 225

the effectiveness of black-box prompt optimization, 226
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Figure 1: Performance Improvements of EvoPrompt Across Different Scales of Qwen 2.5 Series.

Model Comparison of the Initial and Optimized Prompts on AG’s News Dataset.

Initial Identify the category of the text (e.g. Technology, Sports, World, Business).
Qwen2.5 7B Identify the main topic of the news article and classify it under "World", "Sports", "Tech", or "Business".
Qwen2.5 14B Based on the primary theme of the provided news article, categorize it as "World", "Sports", "Tech", or

"Business".
Qwen2.5 32B Determine the primary topic of the news article and select from the following categories: World, Sports,

Business, or Tech.
Qwen2.5 72B Your task is to identify the primary topic of the news article and choose from World, Sports, Business and

Tech.

Model Comparison of the Initial and Optimized Prompts on SAMSum Dataset.

Initial Please summarize the main context.
Qwen2.5 7B Use concise language to summarize the main points, avoiding any unnecessary details or repetition.
Qwen2.5 14B Summarize the main context briefly, focusing only on the key points and omitting any redundant or

irrelevant information.
Qwen2.5 32B Summarize the key points briefly, omitting any extraneous details or repetition.
Qwen2.5 72B Use concise language to summarize the key points, ensuring clarity and omitting unnecessary details or

repetition.

Table 3: Comparison of the Initial and Optimized Prompts across different Qwen 2.5 Scales.

we evaluated the Qwen-2.5 family, encompassing227

models from 7B to 72B parameters. Specifically,228

we applied the EvoPrompt black-box optimiza-229

tion method under the same experimental setup230

described in Section 3.231

4.2 Results and Analysis232

Figure 1 illustrates a distinct inverse-scaling phe-233

nomenon, wherein the improved performance234

gains obtained from black-box prompt optimiza-235

tion methods decline significantly as model scale236

increases. Specifically, on the SST-5 benchmark,237

accuracy improvements diminish notably from 12%238

for the Qwen-2.5 7B model to 5.9% for the Qwen-239

2.5 72B model, ultimately reaching just 1.1% for240

the DeepSeek-V3 671B model. Comparable trends241

are observed across other datasets.242

To further investigate the underlying reasons for243

these observations, we analyzed performance gains244

across the Qwen 2.5 series. As illustrated in Table245

3, smaller LLMs (7B and 14B) exhibit a relative246

significant improvement, likely attributable to the247

incorporation of domain-specific clues in the opti- 248

mized prompts. For instance, in the case of AG’s 249

News, the optimized prompt explicitly includes 250

the phrase “news article”, providing clear, context- 251

specific guidance that smaller models greatly bene- 252

fit from. 253

Meanwhile, larger models (32B and 72B) yield 254

relatively modest improvements. This may be due 255

to the fact that larger models inherently possess 256

a more comprehensive domain understanding and 257

semantic alignment, making explicit domain cues 258

gradually redundant, while lexical refinements or 259

synonym replacements, such as "identify" to "de- 260

termine," become ineffective. 261

5 Conclusion 262

In this paper, we investigate whether black-box 263

prompt optimization can deliver substantial bene- 264

fits for large-scale LLMs. Our experiments reveal 265

that as model size increases, the performance gains 266

on both NLU and NLG datasets progressively di- 267

minish, exhibiting a clear inverse scaling trend. 268
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Limitations269

Our preliminary experiments indicate that270

black-box prompt optimization yields only limited271

benefits for large-scale LLMs. Nonetheless,272

several limitations temper the scope of our273

conclusions. First, the largest Qwen-2.5 model274

we assess contains 72B parameters, leaving275

an unexplored gap between this scale and the276

671B DeepSeek-V3, intermediate-sized models277

therefore remain untested. Second, our analyses278

focus on English-language benchmarks, restricting279

the generalizability of the findings to multilingual280

contexts, especially low-resource languages,281

whose response to prompt optimization is still282

unknown. Third, we only consider text-based283

prompts, leaving multi-modal prompt optimiza-284

tion, incorporating visual or audio modality285

unexamined. Furthermore, our evaluation omits286

treasoning-oriented LLMs, such as DeepSeek R1287

(DeepSeek-AI, 2025) or OpenAI o3 (OpenAI,288

2025), which may display distinct scaling behavior289

and prompt-sensitivity characteristics.290
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