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ABSTRACT

The computational complexity of the self-attention mechanism in popular trans-
former architectures poses significant challenges for training and inference, and
becomes the bottleneck for long inputs. Is it possible to significantly reduce the
quadratic time complexity of computing the gradients in multi-layer transformer
models? This paper proves that a novel fast approximation method can calculate
the gradients in almost linear time n1+o(1) where n is the input sequence length,
while it maintains a polynomially small approximation error 1/poly(n) across the
entire model. Our theory holds for general loss functions and when the multi-layer
transformer model contains many practical sub-modules, such as residual connec-
tion, casual mask, and multi-head attention. By improving the efficiency of gradi-
ent computation, we hope that this work will facilitate more effective training and
deployment of long-context language models based on our theoretical results.

1 INTRODUCTION

Large Language Models (LLMs), such as ChatGPT (Schulman et al., 2022), GPT-4 (Achiam et al.,
2023), Claude 3.5 (Anthropic, 2024), Llama 3.1 (Llama Team, 2024), and others, have demon-
strated immense potential to enhance various aspects of our daily lives, e.g., conversation AI (Liu
et al., 2024), AI agent (Xi et al., 2023; Chen et al., 2024c), search AI (OpenAI, 2024), AI assis-
tant (Mahmood et al., 2023; Zhang et al., 2023) and many so on. One of the most emergent abilities
of LLMs is dealing with long-context information, a format that is crucial for recording material
like academic papers, official reports, legal documents, and so on. LLMs have proven adept at tack-
ling long-context tasks, including Retrieval Augmented Generation (RAG) (Lewis et al., 2020; Gao
et al., 2023d), zero-shot summarization (Liu et al., 2023; Zhang et al., 2024c), and maintaining very
long-term conversations (Xu et al., 2021b; 2022), and so on. This proficiency has necessitated the
development of long-context modeling capabilities within LLMs.

The self-attention mechanism is crucial for the success of LLMs, since LLMs are mainly based on
Transformer architecture whose key module is attention. In attention computation, we will compute
the attention score between each pair of tokens, which is the complexity bottleneck during long
context training and inference. In detail, we need to spend O(n2d) running time for each self-
attention block, which is quadratic in n, where n is the length of the context input and d is the
hidden feature dimension of the model. For example, LLaMA 3.1 405B (Llama Team, 2024), one
of the cutting-edge LLMs, supports n =128k and d = 4096, while taking 30.84M GPU training
hours, which underscores the need for more efficient training processes for such extensive context
models. Given the extensive context lengths of LLMs, this quadratic time complexity results in
critical challenges: (i) a marked decrease in training efficiency (He et al., 2023; Lv et al., 2023); and
(ii) significant energy usage, which in turn contributes to higher carbon dioxide emissions (Samsi
et al., 2023; Stojkovic et al., 2024).

One seminal work (Alman & Song, 2023) showed that the self-attention inference can be approxi-
mated in almost linear time. However, this result is for the inference time (forward pass), but does
not address the main challenge, which is the expensive computation in the training time (backward
pass). In this work, we address this main challenge, by proving that the gradient computation in the
back-propagation of self-attention can be approximated in almost linear time. This suggests we may
be able to save the substantial resources required for training LLMs.
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1.1 KEY BACKGROUND

We first introduce some basic background, starting with defining the softmax function and the self-
attention module.
Definition 1.1 (Softmax). Let z ∈ Rn. We define Softmax : Rn → Rn satisfying

Softmax(z) := exp(z)/⟨exp(z),1n⟩.

Here we apply exp to a vector entry-wise.
Definition 1.2 (Self-attention module). Let X ∈ Rn×d denote the input sequence, where n is the
number of input tokens and d is the hidden dimension size. Let WQ,WK ,WV ∈ Rd×d be the query,
key and value weight matrix. The self-attention function Attn(X) with weights is:

Attn(X) = Softmax(XWQW
⊤
KX⊤/d) ·XWV .

where Softmax is applied to each row of its input matrix. The attention can be re-written as:

Attn(X) = f(X) ·XWV ,

where (1) A := exp(XWQW
⊤
KX⊤/d) ∈ Rn×n and exp is applied element-wise, (2) D :=

diag(A1n) ∈ Rn×n, and (3) f(X) := D−1A ∈ Rn×n is the attention matrix.

In contemporary LLMs, the architecture typically incorporates multiple layers of attention. Conse-
quently, in order to design a fast training algorithm for the entire model, it is imperative to examine
self-attention within the multi-layer transformer structure formally defined as follows.
Definition 1.3 (Multi-layer transformer). Let m denote the number of transformer layers in the
model. Let X be the input sequence. Let gi denote components other than self-attention in the i-th
transformer layer, and assume its forward and backward computations can be run in time linear in
its input sequence length. Let Attni denote the self-attention module in the i-th transformer layer
with weights WQi ,WKi ,WVi (see also Definition 1.2). We define an m-layer transformer as

Fm(X) := gm ◦ Attnm ◦ gm−1 ◦ Attnm−1 ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X),

where ◦ denotes function composition.

In Definition 1.3, the gi includes the layer norm, MLP, residual connection, dropout, positional
encoding, multi-head concatenation, and other operations. All forward and backward computations
of these practical modules can be run in linear time with respect to n. Thus, in this work, we
mainly focus on the acceleration of self-attention module. Specifically, as shown in Definition 1.2,
the n × n attention matrix f(X) dominates the computational complexity, introducing a quadratic
bottleneck. In the exact computation case, if the attention matrix is full rank, no acceleration is
possible. However, by compromising negligible accuracy, designing a fast sub-quadratic algorithm
becomes feasible. Fortunately, by employing the polynomial kernel approximation method from
Aggarwal & Alman (2022), we can approximate the attention matrix and achieve an almost linear
time n1+o(1) algorithm, effectively breaking the quadratic bottleneck.

1.2 OUR CONTRIBUTIONS

We now state our main result as follows:
Theorem 1.4 (Main result, informal version of Theorem 4.2). Let n be the number of tokens, and
d the hidden dimension size. We assume d = O(log n) and each number in matrices can be written
using O(log n) bits. Assume the number of layers m is constant. There exists an algorithm (Al-
gorithm 1) that can compute the gradient of multi-layer self-attention (see also Definition 1.3) in
almost linear time n1+o(1), where the approximation error of the entire model can be bounded by
1/ poly(n).

Our assumption is mild when the context length n is large, as the feature dimension d is usually
regarded as a constant, which is also used in Aggarwal & Alman (2022); similarly, the number of
layers is usually much smaller than n and regarded as a constant. Our results indicate that large
language models (LLMs) can be trained in almost linear time n1+o(1) and maintain a robust ap-
proximation guarantee, while the traditional way takes Ω(n2) time. This advancement is realized
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through the application of polynomial kernel approximation (Alman & Song, 2023; 2024a). To be
more specific, by leveraging the inherent sparsity within the dense attention matrix, we perform
efficient low-rank approximation, thereby significantly accelerating the computation of the dense
matrices. Our framework is applicable to general loss functions, making it universally applicable.
Furthermore, our analysis holds when the multi-layer transformer model contains many practical
sub-modules, such as residual connection, casual mask, and multi-head attention (Section 6).

Numerous studies, including FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024), quan-
tization techniques (Hu et al., 2024a; Lin et al., 2024), and sparsity approaches (Han et al., 2024; Ma
et al., 2024a), have empirically focused on accelerating attention mechanisms. However, theoreti-
cally, these methods are still constrained by quadratic time complexity. In this study, we introduce an
innovative acceleration technique (Algorithm 1) that effectively overcomes this quadratic bottleneck,
backed by solid theoretical foundations (Theorem 4.2). Moreover, this new method is designed to be
seamlessly integrated with existing approaches to further enhance their performance (see Section 6).

Our contributions are as follows:

• We introduce a fast computation method that allows the gradient of each self-attention layer
to be approximated in almost linear time n1+o(1) with 1/ poly(n) error, where n is the input
sequence length, breaking the quadratic time complexity bottleneck (Theorem 4.1).

• We extend our single-layer results to module-wise gradient computation so that our Algo-
rithm 1 approximates gradient computation in m · n1+o(1) time for m-layer transformer.
Importantly, the approximation of the gradient diverges from the exact gradient by an error
of 1/ poly(n) across the entire model (Theorem 4.2).

• Additionally, our analysis holds for general loss functions and when the multi-layer trans-
former model contains residual connection, casual mask, and multi-head attention. Our re-
sults can be applied to any gradient-based algorithm, e.g., training, full fine-tuning, prompt-
tuning, and so on (Section 6).

2 RELATED WORK

Long-context modeling in LLMs. As LLMs grow in size and capability, in-context learning
(ICL) (Min et al., 2022; Shi et al., 2024b; Xu et al., 2024b; Chen et al., 2024a) has become a pre-
ferred method for directing these models to perform a variety of tasks, as opposed to the resource-
intensive process of fine-tuning. Nonetheless, research has indicated that longer prompts can im-
pair LLMs performance due to the limitation on maximum sequence length during pre-training (Li
et al., 2024b). Consequently, extending the maximum sequence length during pre-training and fine-
tuning stages is imperative. Enhancing training efficiency is crucial given the prevalent use of the
Transformer architecture in LLMs, which incurs a quadratic computational cost relative to sequence
length. Addressing this challenge, some studies have explored continued fine-tuning of LLMs with
extended context lengths (Tworkowski et al., 2024), while others have experimented with the in-
terpolation and extrapolation capabilities of positional embedding (Chen et al., 2023). Shi et al.
(2024a) handles long context by compressing the input tokens. However, these approaches have not
fundamentally addressed the core issue: the quadratic computational cost associated with sequence
length in the attention mechanism (Keles et al., 2023; Fournier et al., 2023). In this study, we delve
into accelerating the attention mechanism, thereby addressing the long-context modeling issue at its
essence.

Attention acceleration. Attention mechanism has faced criticism due to its quadratic time com-
plexity with respect to context length, a concern exacerbated by the increasing length in modern
large language models (LLMs) such as GPT-4 (Achiam et al., 2023), Claude 3.5 (Anthropic, 2024),
Llama 3.1 (Touvron et al., 2023; Llama Team, 2024), etc. Nevertheless, this limitation can be cir-
cumvented by employing polynomial kernel approximation techniques (Aggarwal & Alman, 2022),
which enable the derivation of a low-rank representation of the attention matrix. This innovation
significantly accelerates both the training and inference processes of a single attention layer, achiev-
ing almost linear time complexity (Alman & Song, 2023; 2024a), while our work supports both
training and inference for any multi-layer transformer. The foundational concept underpinning the
work of Alman & Song (2023; 2024a) is the extension of the notion that polynomials can effectively
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approximate exponential functions to the domain of matrices. Given that each entry of the attention
matrix is activated by a softmax function, the author of Alman & Song (2023) proposed the use
of a polynomial matrix to approximate the softmax-activated attention matrix. Additionally, they
demonstrated that this polynomial matrix can be factorized into the product of two low-rank ma-
trices. By strategically reordering the sequence of matrix multiplications, these low-rank matrices
are employed to diminish the computational complexity of the attention mechanism’s forward pass
to almost linear time. For more details, please refer to Section 3 in Alman & Song (2023). Fur-
thermore, this approach can be extended to higher-order attention mechanisms, i.e., tensor attention
(Alman & Song, 2024b; Liang et al., 2024h). Moreover, there are other theoretical approaches. For
instance, Liang et al. (2024a) introduces the conv-basis method to accelerate attention computation.
Han et al. (2024) proposes a near-linear time algorithm under the assumptions of uniform softmax
column norms and sparsity.

Roadmap. Our paper is organized as follows. Section 3 provides essential conceptions and key
definitions across the whole paper. Section 4 presents our primary findings, where we articulate our
novel algorithm that is capable of calculating gradients across the entire model in almost linear time.
In Section 5, we explain the techniques we employ, including low-rank approximation, techniques
for accelerating the computation of gradients, and an analysis of the approximation error. Section 6
provides various extensions of our algorithm. Lastly, we conclude this paper in Section 7.

3 PRELIMINARY

Notations. For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For two vectors
x ∈ Rn and y ∈ Rn, we use ⟨x, y⟩ to denote the inner product between x, y. Namely, ⟨x, y⟩ =∑n

i=1 xiyi. We use ei to denote a vector where only i-th coordinate is 1, and other entries are 0. For
each a, b ∈ Rn, we use a ⊙ b ∈ Rn to denote the Hardamard product, i.e. the i-th entry of (a ⊙ b)
is aibi for all i ∈ [n]. We use 1n to denote a length-n vector where all the entries are ones. We use
∥A∥∞ to denote the ℓ∞ norm of a matrix A ∈ Rn×d, i.e., ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use
poly(n) to denote some polynomial in n.

3.1 LOSS FUNCTION

The loss function is the optimization objective in the training of LLMs, and we define it as follows.
Definition 3.1 (Loss function L(X)). For some input matrix X ∈ Rn×d, we define the one-unit loss
function ℓ(X)j,k : Rn×d → R, for any j ∈ [n], k ∈ [d], and assume differentiability. Furthermore,
we define the overall loss function L(X), such that

L(X) =

n∑
j=1

d∑
k=1

ℓ(X)j,k

Remark 3.2. Typically, the most widely used loss function in the LLM training procedure is the
cross-entropy loss function, which can also be viewed as a summation of one unit loss function as in
Definition 3.1. The output matrix of the multi-layer transformer needs to pass an additional linear
layer to map the hidden dimension d to the vocabulary size dvoc. Assuming dvoc is a constant,
the weight matrix dimensions for this additional MLP layer are d × dvoc. The probability tensor
Ypred ∈ Rn×dvoc is the final output. We denote the ground truth as Ygt ∈ Rn×dvoc corresponding to
Ypred. According to the cross-entropy loss definition, the formula is expressed as

Lcross−entropy(X) = −
n∑

j=1

dvoc∑
k=1

(Ygt)j,k log((Ypred)j,k)

where the summation iterates over all elements, and the ground truth (Ygt)j,k = 1 for the correct
class and 0 otherwise.

3.2 CLOSED FORMS OF GRADIENT COMPONENTS

In training large language models (LLMs), updating the model necessitates computing the gradient
of weights for every layer. Consequently, it becomes essential to derive the closed-form expressions
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for all corresponding gradient components with respect to the weights of the query, key, and value
matrices in the transformer model. We first define some intermediate variables before detailing these
gradient components in each self-attention transformer layer.

Definition 3.3 (Intermediate variables Ti). Let m denote the number of transformer layers in the
model. Let m-layer self-attention transformer be defined as Definition 1.3. Let d denote the hidden
dimension. Let n denote the sequence length. Let X ∈ Rn×d be the input sentence. Let gi denote
components other than self-attention in the i-th transformer layer. Let Attni denote the self-attention
module in the i-th transformer layer (see also Definition 1.2).

For i ∈ {0, 1, 2, · · · ,m}, we define Ti(X) ∈ Rn×d be the intermediate variable (hidden states)
output by i-th layer self-attention transformer. Namely, we have

Ti(X) =

{
g0(X), i = 0;

(gi ◦ Attni)(Ti−1(X)), i ∈ [m].

Here, we use ◦ to denote function composition.

Then, we are ready to introduce the closed forms of the three gradient components in a single self-
attention transformer layer. Notably, according to the chain rule, the gradient of the k-th transformer
layer in LLMs depends on the gradient components from the (k + 1)-th transformer layer. The gra-
dient can be calculated for every transformer layer by combining the upstream and local gradients.
The closed forms of the gradients for each layer in multi-layer transformers are formalized in the
following lemma (Lemma 3.4).

Lemma 3.4 (Closed form of gradient components, informal version of Lemma C.4). Let L(X)
be defined as in Definition 3.1, and the m-layer transformer defined as in Definition 1.3. Let
WQi

,WKi
,WVi

∈ Rd×d denote the attention weight in the i-th attention. Let Ti(X) denote
the intermediate variable output by i-th self-attention transformer layer (see Definition 3.3). Let
Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule up to the
function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) . For j ∈ [n], k ∈ [d], let Gi(j, k) denote the (j, k)-th entry of

Gi, let dAttni(Ti−1(X))j,k
dTi−1(X) ∈ Rn×d denote the gradient of (j, k)-th entry of Attni(Ti−1(X)). Then,

we can show that

• Part 1.

dL(X)

dTi−1(X)
=

n∑
j=1

d∑
k=1

Gi(j, k) ·
dAttni(Ti−1(X))j,k

dTi−1(X)
.

• Part 2. Let W∗i
be WQi

,WKi
or WVi

, then

dL(X)

dW∗i

=

n∑
j=1

d∑
k=1

Gi(j, k) ·
dAttni(Ti−1(X))j,k

dW∗i

.

Our main results are based on the above closed forms of four gradient components.

4 MAIN RESULTS

In this section, we present our main findings. In Section 4.1, we delineate the computational ef-
ficiency of our gradient calculation methods in each single layer. Section 4.2 introduces our main
theorem (Theorem 4.2) for multi-layer transformer by integrating the preceding results and provide
our main algorithm (Algorithm 1). Section 4.3 discusses how we transcend the previous works.

4.1 FAST COMPUTING FOR SINGLE LAYER

In the case of single-layer attention, we provide our theorem that state the three gradient components
can be calculated in almost linear time with negligible error.

5
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Theorem 4.1 (Single-layer gradient approximation). We assume d = O(log n) and each number
in matrices can be written using O(log n) bits. Let L(X) be defined as Definition 3.1. Suppose we
have a single-layer self-attention transformer model (m = 1 in Definition 1.3). We can approximate
one-layer self-attention for three gradient components, i.e. dL(X)

dX , dL(X)

dWQW⊤
K

and dL(X)
dWV

, in n1+o(1)

time with 1/ poly(n) error.

Proof. We finish the proof by combining Lemma 5.1, 5.2 and 5.3.

Next, we present the formal algorithm for our method, detailed in Algorithm 1. Our algorithm
comprises two primary functions: SINGLEGRAD, which computes the gradient for a single trans-
former layer (Line 12), and MULTIGRAD, which calculates the gradient across an m-layer trans-
former (Line 26). SINGLEGRAD function computes each gradient component using the techniques
described in the Appendix and subsequently integrates these approximated components into the gra-
dients for Ti, WQiW

⊤
Ki

, and WVi . MULTIGRAD function iterates through each layer, leveraging the
gradient for Ti from preceding layer to compute the gradients in current layer.

Algorithm 1 Almost Linear Time (ALT) Multi-layer Transformer Gradient Approximation

1: datastructure ALTGRAD ▷ Theorem 4.1 and 4.2
2: members
3: n ∈ R: the length of input sequence
4: d ∈ R: the hidden dimension
5: m ∈ R: the number of transformer layers
6: L(X) ∈ R: the loss function ▷ Definition 3.1
7: Ti ∈ Rn×d: the output of i-th transformer layer
8: Attni ∈ Rn×d: the output that pass i-th attention layer
9: WQi ,WKi ,WVi ∈ Rd×d : the weight matrices in i-th transformer layer

10: end members
11:
12: procedure SINGLEGRAD(dL(X)

dTi
) ▷ Theorem 4.1

13: Compute Gi =
dL(X)
dAttni

via Lemma 5.4 ▷ n1+o(1) time

14: Compute D̃6, D̃7, D̃8, D̃2, D̃4 via Lemma E.5, E.6, E.8, E.10 ▷ n1+o(1) time
15: /* Approximate dL(X)

dTi−1
, Lemma 5.1 */

16: g̃t ← D̃6 + D̃7 + D̃8 + D̃2 + D̃4 ▷ n1+o(1) time
17: /* Approximate dL(X)

dWQi
W⊤

Ki

, Lemma 5.2 */

18: Construct U3, V3 via Lemma 5.2 ▷ n1+o(1) time
19: g̃w ← (T⊤

i−1U3) · (V ⊤
3 Ti−1) ▷ n1+o(1) time

20: /* Approximate dL(X)
dWVi

, Lemma 5.3 */

21: Construct U1, V1 via Lemma C.13 ▷ n1+o(1) time
22: g̃v ← (T⊤

i−1U1) · (V ⊤
1 Gi) ▷ n1+o(1) time

23: return g̃t, g̃w, g̃v ▷ g̃t is the approximated dL(X)
dTi−1

for back-propagation
24: end procedure
25:
26: procedure MULTIGRAD(L(X)) ▷ Theorem 4.2
27: Compute dL(X)

dTm
▷ O(nd) time

28: g̃t ← dL(X)
dTm

29: for i = m→ 1 do
30: g̃t, g̃w, g̃v ← SINGLEGRAD (g̃t)
31: Optimize WQi

,WKi
via g̃w using optimizer

32: Optimize WVi via g̃v using optimizer
33: end for
34: end procedure
35: end datastructure

6
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4.2 FAST COMPUTING FOR MULTI-LAYER TRANSFORMERS

Based on the results demonstrated in previous sections, we are ready to introduce our main result:
the gradients of the whole transformer model can be approximated in almost linear time.

Theorem 4.2 (Main result, formal version of Theorem 1.4). Let m denote the number of transformer
layers. Assume the number of layers m is constant. We assume d = O(log n) and each number in
matrices can be written using O(log n) bits. We can show that, for any i ∈ [m], all the gradient
components (see also Lemma 3.4) of the i-th layer can be computed by Algorithm 1 in almost linear
time n1+o(1), and the approximation error of the entire m layer transformer model can be bounded
by 1/poly(n).

Proof. We prove the theorem by directly combining Theorem 4.1 and Lemma 5.5.

Theorem 4.2 demonstrates that, during the training of a multi-layer transformer model, at each
training iteration, the gradient computation for the weight matrices of each layer can be performed
in almost linear time n1+o(1). This result supports the feasibility of fast training for any transformer-
based large language models (LLMs). Algorithm 1 highlights the significance of the gradient with
respect to the intermediate variables Ti(X). Due to the application of the chain rule in gradient
computation, the gradient of Ti(X) is indispensable for determining the gradients of the weight
matrices WQi

,WKi
and WVi

at the i-th layer. Consequently, by iteratively computing the gradient
for Ti(X), we systematically propagate the gradient through to the initial transformer layer. The
rate of error accumulation in a transformer with m layers grows exponentially as nm. Namely, the
error increases from 1/ poly(n) to nm/ poly(n). Nevertheless, because m is a constant and the
polynomial poly(n) has a high degree, the total error remains insignificant in practical scenarios.

4.3 BEYOND THE PREVIOUS WORK

Our algorithm exhibits significant advancements over two seminal prior studies, Alman & Song
(2023) and Alman & Song (2024a). In Alman & Song (2023), the authors proposed an almost linear
time algorithm for computing the forward process of the attention mechanism. In contrast, Alman &
Song (2024a) introduced an almost linear time algorithm for the backward of attention mechanism.
However, Alman & Song (2024a) has the following limitations: (i) only computing gradients for
a single layer of the attention mechanism, which cannot extend to multiple layers; (ii) calculating
gradients with respect to a specific loss, namely the ℓ2 loss; (ii) computing gradients only for the
weight matrix WQi ,WKi (as defined in Definition 1.2), but ignore other crucial components such as
the MLP layer following attention computation and the activation function.

In our work, we have the following improvements beyond previous work: (i) we enable almost linear
time gradient computation across an entire transformer layer, incorporating both the MLP layer and
the activation function; (ii) our algorithm supports gradient calculation for general loss function
L(X) (see Definition 3.1); (ii) we extend the gradient calculation to include not only WQi ,WKi but
also Ti(X) and WVi . These advancements collectively demonstrate a substantial leap forward from
the methodologies in Alman & Song (2023) and Alman & Song (2024a).

5 TECHNICAL OVERVIEW

5.1 LOW-RANK APPROXIMATION FOR ATTENTION MATRIX

In this section, we delve into the crucial techniques behind our work: the low-rank approxima-
tion of the attention matrix, which is achieved through the polynomial method (Alman et al., 2020;
Aggarwal & Alman, 2022). Drawing inspiration from Alman & Song (2023), the intuition of this
approximation lies in the fact that the attention matrix f(X) ∈ Rn×n (as defined in Definition 1.2),
also referred to as the similarity matrix in attention mechanism, can be effectively approximated by
low-rank matrices U1, V1 ∈ Rn×k1 , where k1 = no(1). The naive method for calculating the atten-
tion matrix f(X) has a time complexity of O(n2), whereas the input data X ∈ Rn×d contains only
d · n = n1+o(1) entries. This discrepancy suggests the potential of using low-rank representations
of f(X) to design a fast algorithm.
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An example of how to use the low-rank representations is the attention forward. First note that ap-
proximating f(X) alone does not lead to a fast algorithm, since U1V

⊤
1 still requires n × n entries.

But by using the structure of the attention Attn(X) := f(X)V where V = XWV , we can do
it faster. By expressing f(X) as U1V

⊤
1 , the attention forward becomes U1︸︷︷︸

n×k1

V ⊤
1︸︷︷︸

k1×n

V︸︷︷︸
n×d

. It is well

known that different multiplication sequences can lead to dramatically different numbers of opera-
tions required, so the order of matrix multiplications matters, which is indeed the case here. We first
perform V ⊤

1 V ∈ Rk1×d and this cost O(k1nd) = n1+o(1) time. Then we can compute U1V
⊤
1 V

within O(nk1d) = n1+o(1) time.

This method significantly reduces the computation time of the attention forward from O(n2) to
almost linear time, n1+o(1). Driven by this technique and analyzing the close forms of the gradients,
we extend the acceleration to the gradient of the entire model.

5.2 ACCELERATING GRADIENT COMPUTATION OF Ti(X)

Based on the low-rank approximation method mentioned in Section 5.1, we compute the gradient
of L(X) with respect to the intermediate variable Ti(X), which denotes the output of the i-th trans-
former layer. This computation is critical as it enables us to calculate gradients for other gradient
components because of the chain rule.

Extending to general loss functions. According to the findings in Deng et al.
(2023b), the gradient dL(X)

dTi(X) can be decomposed into five components, namely
C2(X), C4(X), C6(X), C7(X), C8(X), as detailed in Lemma D.1. However, the gradient
result presented in previous work is tailored to a specific loss function, the ℓ2 loss, limiting its
applicability to a narrow range of scenarios. The primary challenge in extending the scope to
encompass general loss functions is the absence of a unified analytical framework. Previous
analyses are limited to individual, specific loss functions. In this work, we introduce a compre-
hensive analysis framework (Definition 3.1) and we have demonstrated its applicability to the
cross-entropy loss (Remark 3.2). Consequently, by utilizing this generalized analysis framework,
we extend the notation L(X) to include a wide range of general loss functions.

Accelerating the gradient computation. A crucial aspect of speeding up gradient computation
for the entire multi-layer transformer model involves accelerating the calculation of gradients with
respect to the intermediate variables Ti(X). The main challenge lies in the fact that comput-
ing the gradient of Ti(X) requires calculating the gradients for other components within a trans-
former layer, including the residual connection, multi-head attention, and causal attention mask
(see Section 6). We have conducted an extensive analysis of these components within the trans-
former layer (see Section I, J, and K) and demonstrated that, through the application of low-rank
approximation techniques, the gradient dL(X)

dTi(X) can be computed in almost linear time n1+o(1)

(Lemma 5.1). In particular, we apply the low-rank approximation technique on the five terms
C2(X), C4(X), C6(X), C7(X), C8(X) respectively, demonstrating that each term can be computed
in almost linear time, n1+o(1), as shown in Section E. Then we aggregate those terms, as described
in Section E.6. Since all five terms are n × d matrices, the summation of these terms takes O(nd)
time. We then conclude that for any single-layer transformer, the gradient computation with respect
to the input can be performed in almost linear time n1+o(1), as stated in Lemma 5.1.

The statement made for a single transformer layer can be readily generalized to any layer within an
m-layer transformer model. For instance, consider the intermediate variables Ti(X) and Ti−1(X)

(as defined in Definition 3.3), where Ti(X) = (gi ◦ Attni)(Ti−1(X)). Given the gradient dL(X)
dTi(X) ,

as established in the previous paragraph, we compute the gradient with respect to Ti−1(X), namely
dL(X)

dTi−1(X) , in almost linear time n1+o(1). For a multi-layer transformer model, the above process
can be conducted recursively. Thus, we can compute the gradient of the loss function L(X) on any
Ti(X) in almost linear time n1+o(1).

Lemma 5.1 (Fast computation for dL(X)
dTi(X) , informal version of Lemma E.11). Let L(X) be de-

fined as Definition 3.1. Let m denote the number of self-attention transformer layers (see Defini-
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tion 1.3). Let Ti(X) denote the intermediate variable output by i-th self-attention transformer layer
(see Definition 3.3). We show that dL(X)

dTi(X) can be approximated in n1+o(1) time, with 1/ poly(n)

approximation error.

Proof sketch. In Lemmas E.3, E.5, E.6, E.8, and E.10, we have delineated several essential gra-
dient components, D6, D7, D8, D2, D4 ∈ Rn×d. We have established that these components can
be computed in almost linear time n1+o(1), with the approximation error bounded by ϵ/ poly(n).
Moreover, Lemma D.9 illustrates that the gradient w.r.t. Ti can be expressed as the sum of these
gradient components. That is, dL(X)

dTi−1(X) =
∑

i∈{2,4,6,7,8} Di. Given that the computational com-
plexity of the summation operation is O(nd), the aggregate time complexity for approximating the
gradient dL(X)

dTi−1(X) with g̃t remains n1+o(1). For the approximation error, by setting ϵ to 1/ poly(n),
we ensure that the error of the gradient approximation g̃t is also 1/poly(n).

5.3 ACCELERATING GRADIENT COMPUTATION OF Wi AND WVi

Let Wi := WQiW
⊤
Ki

, with WQi and WKi representing the query and key weight matrices, respec-
tively, the gradients of Wi and WVi represent all trainable weight matrices in a transformer layer.
Consequently, by determining the gradients for Wi and WVi across each layer, we achieve almost
linear time gradient back-propagation throughout multi-layer transformer models.

Fast gradient computation. The prior study in Alman & Song (2024a) demonstrated that the
gradient of Wi can be computed in almost linear time. We extend their findings by adapting their
approach to accommodate general loss function L(X) (as defined in Definition 3.1) and further
generalize their results to include the gradient computation for both Wi and WVi

in each transformer
layer (Lemma 5.2 and 5.3).

Lemma 5.2 (Fast computation for dL(X)
dWi

, informal version of Lemma F.5). Let L(X) be defined as
Definition 3.1, and m be the number of self-attention transformer layers (Definition 1.3). For any
i ∈ [m], let Wi = WQi

W⊤
Ki

,WVi
∈ Rd×d denote the attention weight in the i-th transformer layer.

We show that dL(X)
dWi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.

Lemma 5.3 (Fast computation for dL(X)
dWVi

, informal version of Lemma G.4). Let L(X) be defined
as Definition 3.1, and m be the number of self-attention transformer layers (Definition 1.3). For any
i ∈ [m], let Wi = WQi

W⊤
Ki

,WVi
∈ Rd×d denote the attention weight in the i-th transformer layer.

We show that dL(X)
dWVi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.

5.4 ACCELERATING GRADIENT COMPUTATION FOR MULTI-LAYER TRANSFORMERS

In this section, our focus turns to extending the single-layer transformer result from the previous
section to a multi-layer transformer.

Running time analysis. We derive the closed-form gradient for the non-attention components
within a transformer layer gi (Definition 1.3). With the closed-form gradient of gi established in
Lemma H.1, we then demonstrate in Lemma 5.4 that the gradient computation for gi can also be
achieved in n1+o(1) time. Given that the number of layers m is constant and the computation time
for gradients on each layer is n1+o(1), we iteratively repeat this procedure for m times. Therefore,
the overall running time for computing gradients across the entire model is m · n1+o(1) = n1+o(1).

Lemma 5.4 (Computation time for Gi, informal version of Lemma H.2). Let Ti(X) be defined as
Definition 3.3, i.e. Ti(X) = (gi ◦ Attni)(Ti−1(X)). Let Gi ∈ Rn×d denote the gradient matrix
resulting from the application of the chain rule up to the function gi, i.e., Gi = dL(X)

dAttni(Ti−1(X)) .

Assume we already have dL(X)
dTi(X) . Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and

gi(Z) = ϕ(Z · Wg), where Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation
function. Let ϕ′ denote the derivative of ϕ. Then, we show that Gi can be computed in n1+o(1) time.

9
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Error propagation analysis. Here, we consider the approximation error. The approximation error
originates from the low-rank approximation of the attention matrix, as detailed in Lemma C.13. As
discussed in previous sections, the approximation error in each layer can be bounded by 1/ poly(n).
Then, we only need to focus on how error propagates in different layers.

We first prove that our 1/poly(n) approximation error statement holds for one layer transformer, as
evidenced in Lemma H.3. Subsequently, through mathematical induction and leveraging the results
of error propagation over the gradient of gi, we show that the approximation error can be bounded
by 1/poly(n) for any m-layer transformer (Lemma 5.5), where m is considered as constant.

Lemma 5.5 (Multi-layer transformer gradient approximation, informal version of Theorem H.4).
Let L(X) be defined as Definition 3.1. Let X be defined as Definition 1.2. Suppose we have a m-
layer transformer (see Definition 1.3). Then, for any i ∈ [m], we can show that: (i) Running time:
Our algorithm can approximate dL(X)

dTi−1(X) , dL(X)
dWi

, and dL(X)
dWVi

in n1+o(1) time; (ii) Error bound:
The approximation of the entire transformer model can be bounded by 1/poly(n). Namely, our
algorithm output g̃ satisfies ∥g̃ − dL(X)

dX ∥∞ ≤ 1/ poly(n).

6 EXTENSIONS

Multi-head attention and residual connections. Multi-head attention and residual connections
are important components in attention mechanisms. These components were not involved in our ini-
tial analysis for simplicity. Incorporating them into our algorithm is straightforward. This suggests
that our algorithm can be readily adapted to more practical transformer models. The detailed analy-
sis for incorporating residual connection can be found in Section J and Lemma J.3. For the synergy
with multi-head attention, we provide comprehensive analysis in Section K and Lemma K.2.

Causal attention mask. The causal attention mask is critical to prevent transformers from “cheat-
ing” during training by ensuring future information is not used. The full-rank characteristic of the
causal attention mask poses challenges for low-rank approximations. Nevertheless, we have iden-
tified a method to accelerate the computation of causal masked attention by exploiting its inherent
properties, showing almost linear time complexity. A comprehensive explanation is provided in
Section B.3. More detailed analysis can be found in Section I and Lemma I.7 and I.8.

Prompt tuning. Prompt tuning is a prevalent approach in parameter-efficient fine-tuning (PEFT),
which requires the calculation of gradients on input data X . Given our algorithm can compute
gradients for intermediate variables Ti in almost linear time, we can adapt this acceleration to the
gradient for the input data X , thus enhancing the efficiency of the prompt tuning process. Additional
details are provided in Section B.5.

Synergy with system-level attention acceleration. Many contemporary works focus on system-
level acceleration of attention mechanisms, often by leveraging caching and mitigating I/O bottle-
necks. Our algorithm has the potential to integrate with such advancements. By combining our
theoretical improvements in computation time (from O(n2) to n1+o(1)) with system-level optimiza-
tions, the overall efficiency of attention mechanism computation may improve further. We leave the
implementation of our method on GPU as future work. More details can be found in Section B.4.

7 CONCLUSION

The attention mechanism in transformer models has quadratic time complexity with respect to the
input token length. In this work, we proposed a novel Algorithm 1, which can approximately train a
multi-layer transformer model in almost linear time, introducing only a small error. Importantly, our
algorithm is designed to be compatible with general loss functions, practical sub-modules (residual
connection, casual mask, multi-head attention), and general gradient-based algorithms. It may be
seamlessly integrated with other system-level acceleration techniques. While we lack enterprise-
scale computational resources for training large language models to provide empirical support, our
theoretical findings suggest that we can accelerate the training of LLMs in practice.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials
and gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity
Conference, pp. 1–23, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural
Information Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541–552. IEEE, 2020.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
tune: A framework for privately fine-tuning large language models with differential privacy. In
2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 560–566. IEEE,
2022.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model
for layout generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18349–18358, 2023.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2020.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent, 2024a.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024b.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024c.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of large
language models? arXiv preprint arXiv:2308.12247, 2023.

11

https://www-cdn.anthropic.com
https://www-cdn.anthropic.com


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
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Roadmap. In Section A, we provide further related works of this paper. In Section B, we provide a
detailed discussion about several potential extensions of our framework.

In Section C, we introduce basic notations and concepts used in our paper, along with the low-
rank approximation technique introduced in Alman & Song (2023) and Alman & Song (2024a). In
Section D, we provide details about how we integrate the gradient of Ti(X) into matrix form. In
Section E, we explain how to apply the low-rank approximation technique to accelerate the compu-
tation for the gradient on Ti(X). In Section F, we extend the result of Alman & Song (2024a) to
arbitrary loss functions and accelerate the computation of gradient on W via the low-rank approxi-
mation technique. In Section G, we calculate the gradient on WV and accelerate the computation of
the gradient on WV . In Section H, with the help of math induction, we analyze the time complexity
and the approximation error across the entire model. In Section I, we discuss how our framework
can expand to an attention mechanism with a causal attention mask. In Section J, we provide details
about how to integrate our framework with attention mechanism with the residual connection. In
Section K, we argue that, with the addition of multi-head attention, our algorithm can still achieve
almost linear time gradient computation.

A MORE RELATED WORK

Attention mechanism. Attention mechanisms, including self-attention and cross-attention, are
pivotal techniques employed in state-of-the-art neural networks. Since it was introduced in Vaswani
et al. (2017), it has gained widespread adoption across various domains. In particular, it is integral
to decoder-only LLMs (Radford et al., 2019) and the Vision Transformer (ViT) architecture (Doso-
vitskiy et al., 2020). The former has been instrumental in the remarkable success of LLMs, while
the latter has significantly advanced the field of computer vision, encompassing applications such
as image generation (Rombach et al., 2022; Wang et al., 2023c; 2024b), detection (Li et al., 2022),
segmentation (Zhang et al., 2022), and layout generation (Gupta et al., 2021; Chai et al., 2023; Wang
et al., 2023a). Moreover, attention mechanism can be integrated into multi-modal models (Xu et al.,
2021a; Zhang et al., 2024a; Liang et al., 2024h; Wang et al., 2024a), math reasoning (Li et al.,
2024a), diffusion models (Peebles & Xie, 2023; Liang et al., 2024f; Hu et al., 2024f; Esser et al.,
2024; Ma et al., 2024b; Li et al., 2024g), differential privacy (Behnia et al., 2022; Shi et al., 2022;
Wang et al., 2023b; Liang et al., 2024g; Singh et al., 2024; Chu et al., 2023; Liang et al., 2024c; Li
et al., 2024d; Song et al., 2023a) and many other techniques (Liang et al., 2024d; Li et al., 2024f;
Qin et al., 2023a;b;c; Song et al., 2023b; Xiao et al., 2024; Viswanathan et al., 2023).

Attention theory. Bahdanau et al. (2014) introduced attention mechanisms in NLP, enhancing
encoder-decoder architecture with variable-length vectors to improve machine translation. Build-
ing on this, Luong et al. (2015) developed local and global attention variants, further refining NLP
tasks. Recent Large Language Model research has focused extensively on attention computation
(Deng et al., 2023a; Alman & Song, 2023; Zandieh et al., 2023). Studies by Zandieh et al. (2023);
Chen et al. (2020); Kitaev et al. (2020) use Locality Sensitive Hashing for attention approximation,
with Zandieh et al. (2023) offering efficient dot-product attention. Brand et al. (2023) and Alman
& Song (2023) explore static and dynamic attention calculations, while Li et al. (2023b) investi-
gates hyperbolic regression regularization. Deng et al. (2023a) proposes algorithms for reducing
attention matrix dimensionality in LLMs. Attention has also been examined from optimization and
convergence perspectives (Li et al., 2023a; Gao et al., 2023a; Snell et al., 2021; Zhang et al., 2020),
investigating word co-occurrence learning (Li et al., 2023a), regression problems with exponential
activation functions (Gao et al., 2023a), attention mechanism evolution during training (Snell et al.,
2021), and the impact of heavy-tailed noise on stochastic gradient descent (Zhang et al., 2020).
Theoretical explorations of attention variants include quantum attention (Gao et al., 2023c), tensor
attention (Alman & Song, 2024b; Liang et al., 2024h), and differentially private attention (Liang
et al., 2024g; Gao et al., 2023b; Liang et al., 2024c).
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More methods for model acceleration. Various techniques have been developed for model
acceleration. One approach involves modifying model architectures to enable faster inference,
such as Mamba (Gu & Dao, 2023), Linearizing Transformers (Zhang et al., 2024b), PolySketch-
Former (Kacham et al., 2023), and the Hopfield Model (Hu et al., 2024b;a; Wu et al., 2024a; Xu
et al., 2024a; Hu et al., 2024c; Wu et al., 2024b; Hu et al., 2023; 2024e) and so on. Another line
of work is to prune the weights in a neural network to reduce running time and memory consump-
tion (Hubara et al., 2021; Jin et al., 2022; Frantar & Alistarh, 2022; 2023; Sun et al., 2024; Li et al.,
2024c; Liang et al., 2024b). In addition, specific techniques have been developed to accelerate LLM
generation (Chen et al., 2024b;a; Song & Yang, 2023; Li et al., 2024e).

B DISCUSSION AND EXTENSION DETAILS

In Section B.1, we argue that our framework can easily adapt to the multi-head attention mechanism.
In Section B.2, we introduce how to integrate residual connection to our framework. In Section B.3,
we detail the integration of the causal attention mask into our algorithm. In Section B.4, we discuss
the possibility of the synergy between our theoretical side attention acceleration and the existing
system-level attention acceleration mechanism. In Section B.5, we show how to expedite prompt
tuning using our results.

B.1 MULTI-HEAD ATTENTION

The multi-head attention mechanism was first introduced by Vaswani et al. (2017). This innovation
allows a token to simultaneously attend to multiple positions within the same layer, thereby enriching
the model’s capacity for capturing various dependencies. However, this enhanced capability comes
with an increase in the size of the attention matrix f(X) from 1 × n × n to h × n × n, where
h is the number of attention heads. To mitigate the computational burden, each head’s vector is
derived by splitting the original vector, reducing the dimensionality of each head to dh := d/h. To
summarize, the key distinctions between multi-head and single-head attention are (1) an enlarged
attention matrix f(X) and (2) a reduced dimensionality dh within each attention head.

Enlarged attention matrix. As previously discussed, the attention matrix’s dimensionality in-
creases with the number of heads, h. Despite this expansion, the application of the low-rank approx-
imation technique, as outlined in Section 5.1, ensures that the computation time for the attention
matrix remains almost linear. Specifically, for a constant number of heads h in the multi-head mech-
anism, the time complexity for computing f(X) ∈ Rh×n×n is h · n1+o(1) = n1+o(1).

Reduced dimensionality. Another differentiating factor of multi-head attention is the lower di-
mensionality processed by each head, i.e. dh := d/h, compared the full d in single-head attention.
This reduction ensures that the gradient computation time does not increase with the introduction of
multiple attention heads.

We provide comprehensive analysis of the synergy of our algorithm with multi-head attention in
Section K. We first prove in Lemma K.2, with the addition of multi-head attention, the gradient over
the attention mechanism can be computed in almost linear time. Then, we further prove that for any
multi-layer transformer, with multi-head attention, the gradient can be computed in almost linear
time as well.

B.2 RESIDUAL CONNECTION

Residual connection is a pivotal technique in deep neural network architectures, effectively address-
ing issues such as vanishing and exploding gradients during training process, and facilitating faster
convergence of the model. Residual connection is also integrated into the standard attention mech-
anism. Formally, given the intermediate variable Ti(X) output by the i-th transformer layer as
defined in Definition 3.3, we provide the formal definition of residual connection in Definition J.1
and J.2. Since the residual connection only brings an additional add operation to each component
and with Ti(X) belonging to the space Rn×d, the residual connection introduces only a marginal
computational overhead of O(n · d) per layer. Consequently, the total computational cost for each
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layer is O(n · d) + n1+o(1) = n1+o(1). Hence, by intuition, the inclusion of residual connections
does not compromise the overall complexity of our method.

The detailed analysis is provided in Section J, where we first prove in Lemma J.3, that if the gradient
over one structure can be computed in almost linear time, then with the addition of the residual
connection, the gradient can also be computed in almost linear time. Then we use math induction to
extend our result to the entire multi-layer transformer model.

B.3 CAUSAL ATTENTION MASK

In transformer training, attention mask is a crucial component, designed to prevent a given token
from attending to future tokens in the sequence. Causal attention mask is a widely used attention
mask, which is configured as a lower triangular matrix, where elements on or below the main diag-
onal are ones, with all other entries being zeros.

Now we describe how to incorporate this into our algorithm. Let M ∈ {0, 1}n×n represent the
causal attention mask (see Definition I.2). Let f̂(X) := D−1(M ⊙A) where A = exp(XWX⊤/d)
and D := diag((M ⊙ A) · 1n). Lemma I.1 reveals that A has a low-rank representation given by
U0V

⊤
0 . Using Lemma I.3, we know (M ⊙ (U0V

⊤
0 )) · v for any vector v ∈ Rn can be computed in

almost linear time.

To integrate the causal mask into the gradient computation within each transformer layer, we first
find all instances that have the structure of f(X) ·H or (f(X) ⊙ (UV ⊤)) ·H , where H,U, V are
low rank matrices. Then, we replace f(X) with f̂(X) in these instances. More detailed analysis of
causal attention can be found in Section I. To be more specific, we group the gradient components for
Ti,Wi,WVi

into two categories, one for dot product (Lemma I.7), another for Hadamard product
(Lemma I.8). After showing each component can be calculated in almost linear time, the overall
gradient computation remains n1+o(1) time. Thus, our framework can seamlessly accommodate
causal attention masks.

B.4 SYSTEM-LEVEL ATTENTION ACCELERATION

The attention computing acceleration involves a two-pronged strategy that leverages both system-
level improvements (e.g. Flash Attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024)) and the
theoretical time complexity improvements (e.g. our work and Han et al. (2024)).

Numerous efforts have been made in the literature to accelerate attention calculations at the sys-
tem level. For instance, Flash Attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) targets
the I/O bottleneck inherent in attention mechanisms. Studies such as block-wise parallel decod-
ing (Stern et al., 2018) focus on implementing parallel decoding within transformer models to en-
hance inference speed. Additionally, recent advancements in the field of speculative decoding, such
as Medusa (Cai et al., 2024), leverage a smaller, more efficient model to generate predictions, with
the larger model only responsible for validating, the smaller model’s outputs (Leviathan et al., 2023).

Despite these innovations, the aforementioned methods do not address the fundamental quadratic
time complexity O(n2) of the attention mechanisms. This presents an opportunity to complement
our low-rank approximation technique, with these system-level optimizations, thereby achieving
an even greater acceleration in attention computation. For instance, we could design an I/O-aware
algorithm for Algorithm 1, similar to the approach taken by Flash Attention, to effectively leverage
GPU acceleration.

To implement our algorithm practically on GPU, we have some coding challenges to fix: (1) we
need to define some new tensor operations in PyTorch, e.g. Eq. (5), Eq. (8); (2) we need to sys-
tematically re-implement some back-propagation function of the current PyTorch function; (3) we
need to implement some CUDA function to run our algorithm in parallel for the casual mask, see
discussion in Section B.3. We may leave this as our future work.

B.5 PROMPT TUNING

Prompt tuning, as introduced by various studies (Li & Liang, 2021; Lester et al., 2021; Liu et al.,
2022; Mu et al., 2024; Hu et al., 2024d; Liang et al., 2024e), has emerged as a parameter-efficient
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fine-tuning strategy for large language models (LLMs). Specifically, prompt tuning involves ad-
justing “soft prompts” conditioned on frozen LLMs. This method requires relatively small number
of tuneable parameters compared with fine-tuning the entire LLMs, making it a popular choice for
conserving training resources, including data and computational power.

The analysis reveals that the essence of prompt tuning involves computing gradients with respect to
the soft prompts Xp across the entire model. In both prompt tuning and full fine-tuning, the quadratic
O(n2) computational complexity of gradient calculation remains the same due to the self-attention
mechanism inherent in LLMs.

In this work, leveraging the low-rank approximation technique discussed in Section 5.1, our algo-
rithm (Algorithm 1) efficiently computes gradients on soft prompts Xp over the entire model in
almost linear time. This suggests that our method is universal and can also be applied within tradi-
tional prompt tuning frameworks.

C PRELIMINARY ON GRADIENT CALCULATION

In Section C.1, we list several useful math facts used in the following sections of this paper. In
Section C.2, we provide the close forms of the gradient components. In Section C.3, we introduce
some mathematical definitions to facilitate understanding of gradient calculations. In Section C.4,
we list some low rank approximation technique introduced in Alman & Song (2023) and Alman &
Song (2024a). In Section C.5, we demonstrate that the entries of matrices defined in Section C.3 are
bounded.

Notations. For two vectors x ∈ Rn and y ∈ Rn, we use ⟨x, y⟩ to denote the inner product
between x, y. Namely, ⟨x, y⟩ =

∑n
i=1 xiyi. We use ei to denote a vector where only i-th coordinate

is 1, and other entries are 0. For each a, b ∈ Rn, we use a ⊙ b ∈ Rn to denote the Hardamard
product, i.e. the i-th entry of (a ⊙ b) is aibi for all i ∈ [n]. We use 1n to denote a length-n
vector where all the entries are ones. We use ∥A∥∞ to denote the ℓ∞ norm of a matrix A ∈ Rn×d,
i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use poly(n) to denote polynomial time complexity with
respective to n.

C.1 BASIC MATH FACTS

In this section, we provide some useful basic math facts,

Fact C.1. Let x, y, z ∈ Rn. Then we have

• ⟨x⊙ y, z⟩ = x⊤ diag(y)z.

• ⟨x, (y ⊙ z)⟩ = ⟨y, (x⊙ z)⟩ = ⟨z, (y ⊙ x)⟩

• ⟨x, y⟩ = ⟨x⊙ y,1n⟩.

Then, we introduce a classical folklore used for the Hadamard product of two matrices.

Fact C.2 (Folklore, (Alman & Song, 2024a)). Let U1, V1 ∈ Rn×k1 . Let U2, V2 ∈ Rn×k2 . Then we
have

( U1︸︷︷︸
n×k1

V ⊤
1︸︷︷︸

k1×n

)⊙ ( U2︸︷︷︸
n×k2

V ⊤
2︸︷︷︸

k2×n

) = (U1 ⊘ U2)︸ ︷︷ ︸
n×k1k2

(V1 ⊘ V2)
⊤︸ ︷︷ ︸

k1k2×n

Here, given U1 ∈ Rn×k1 and U2 ∈ Rn×k2 , the U1 ⊘ U2 ∈ Rn×k1k2 is the row-wise Kronecker
product, i.e., (U1 ⊘ U2)i,l1+(l2−1)k1

:= (U1)i,l1(U2)i,l2 for all i ∈ [n], l1 ∈ [k1] and l2 ∈ [k2].

C.2 CLOSE FORM OF THREE GRADIENT COMPONENTS

We first restate the definition of self-attention, where we denote W := WQW
⊤
K ∈ Rd×d for sim-

plicity.
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Definition C.3 (Self-attention module). Let X ∈ Rn×d denote the input sequence, where n is the
number of input tokens and d is the hidden dimension size. Let WV ∈ Rd×d be the value weight
matrix, and let W := WQW

⊤
K ∈ Rd×d be the key-query weight matrix. The self-attention function

Attn(X) with weights W,WV is:

Attn(X) = Softmax(XWX⊤/d) ·X ·WV .

where Softmax is applied to each row of its input matrix. The attention can be re-written as:

Attn(X) = f(X) ·X ·WV ,

where (1) A := exp(XWX⊤/d) ∈ Rn×n and exp is applied element-wise, (2) D := diag(A1n) ∈
Rn×n, and (3) f(X) := D−1A ∈ Rn×n is the attention matrix.

Note that the gradient of WQ and WK can easily be calculated from the gradient of W , i.e.,

dL(X)

dWQ
=

dL(X)

dW
· dW

dWQ

=
dL(X)

dW
·WK

where the first step follows from the chain rule, and the second step follows from basic calculus.

Then, we show how to derive the close form for the gradient components within each layer of a
multi-layer transformer.
Lemma C.4 (Close form of gradient components, formal version of Lemma 3.4). If we have the
below conditions,

• Let L(X) be defined as Definition 3.1.

• Let Wi := WQiW
⊤
Ki
∈ Rd×d be the key-query weight matrix, WVi ∈ Rd×d be the value

weight matrix for the i-th transformer layer.

• Let Ti(X) denote the intermediate variable output by i-th self-attention transformer layer
(see Definition 3.3).

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi, let
dAttni(Ti−1(X))i2,j2

dTi−1(X) ∈ Rn×d denote the gradient of (i2, j2)-th entry of Attni(Ti−1(X)).

Then, we can show that

• Part 1.

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

• Part 2.

dL(X)

dWi
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWi
.

• Part 3.

dL(X)

dWVi

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWVi

.

Proof. We have
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• L(X) ∈ R.

• Attni(Ti−1(X)) ∈ Rn×d, Ti−1(X) ∈ Rn×d.

• Wi ∈ Rd×d,WVi
∈ Rd×d.

Therefore, we have

• dL(X)
dTi−1(X) ∈ Rn×d, dAttni(Ti−1(X))

dTi−1(X) ∈ R(n×d)×(n×d).

• dL(X)
dWi

∈ Rd×d, dAttni(Ti−1(X))
dWi

∈ R(n×d)×(d×d).

• dL(X)
dWVi

∈ Rd×d, dAttni(Ti−1(X))
dWVi

∈ R(n×d)×(d×d).

Then, simply applying chain rule, we can get the final results.

C.3 BASIC NOTATIONS FOR COMPUTING GRADIENTS

Before we move on to compute gradients, we need to define some useful notations.

We begin with introducing the index for a matrix.
Definition C.5 (Simplified notations). For any matrix Z ∈ Rn×d, for i ∈ [n], j ∈ [d], we have
following definitions:

• Let Zi,j︸︷︷︸
scalar

and Z(i, j) denote the (i, j)-th entry of Z.

• Let Zi,∗︸︷︷︸
d×1

and Z(i, ∗) denote the i-th row of Z.

• Let Z∗,j︸︷︷︸
n×1

and Z(∗, j) denote the j-th column of Z.

Then, we define the exponential matrix in the attention mechanism.
Definition C.6 (Exponential function u). If we have the below conditions,

• Let X ∈ Rn×d

• Let W := WQW
⊤
K ∈ Rd×d

We define u(X) ∈ Rn×n as follows

u(X) := exp(XWX⊤)

Then, we introduce the summation vector of the aforementioned exponential matrix.
Definition C.7 (Sum function of softmax α). If we have the below conditions,

• Let X ∈ Rn×d

• Let u(X) be defined as Definition C.6

We define α(X) ∈ Rn as follows

α(X) := u(X) · 1n

Then, with the help of the summation vector, we are ready to normalize the exponential matrix and
get the softmax probability matrix.
Definition C.8 (Softmax probability function f ). If we have the below conditions,
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• Let X ∈ Rn×d

• Let u(X) ∈ Rn×n be defined as Definition C.6

• Let α(X) ∈ Rn be defined as Definition C.7

We define f(X) ∈ Rn×n as follows

f(X) := diag(α(X))−1u(X)

where we define f(X)⊤j0 ∈ Rn is the j0-th row of f(X).

Besides the probability matrix introduced above, we introduce the value matrix in the following
definition.
Definition C.9 (Value function h). If we have the below conditions,

• Let X ∈ Rn×d

• Let WV ∈ Rd×d

We define h(X) ∈ Rn×d as follows

h(X) = XWV

Then, we introduce s(X) to represent the output of the attention mechanism.
Definition C.10 (Self-attention output s). If we have the below conditions,

• Let f(X) be defined as Definition C.8

• Let h(X) be defined as Definition C.9

We define s(X) ∈ Rn×d as follows

s(X) = f(X)h(X)

Then, we introduce q(X) and p(X) to facilitate the calculation of the gradient on W .
Definition C.11 (Definition of q(X)). If we have the below conditions,

• Let h(X) ∈ Rn×d be defined as in Definition C.9.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

We define q(X) ∈ Rn×n as

q(X) = Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

.

where we define q(X)⊤j0 ∈ Rn is the j0-th row of q(X).

Definition C.12 (Definition of p(X), Definition C.5 in Alman & Song (2024a)). For every index
j0 ∈ [n], we define p(X)j0 ∈ Rn as

p(X)j0 := (diag(f(X)j0)− f(X)j0f(X)⊤j0)q(X)j0

where we have p(X) ∈ Rn×n and we define p(X)⊤j0 ∈ Rn is the j0-th row of p(X).

Furthermore, we define p1(X) = f(X)⊙q(X) and p2(X) = diag(p1(X) ·1n)f(X). Additionally,
we can calculate p(X) as

p(X) = p1(X)− p2(X)
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C.4 LOW RANK REPRESENTATIONS

Using Alman & Song (2023)’s polynomial method techniques, we can obtain the following low-rank
representation result.
Lemma C.13 (Low rank representation to f , Section 3 of Alman & Song (2023), Lemma D.1
of Alman & Song (2024a)). For any A = o(

√
log n), there exists a k1 = no(1) such that: Let

X ∈ Rn×d and W ∈ Rd×d be a square matrix. It holds that ∥XW∥∞ ≤ R, ∥X∥∞ ≤ R,
then there are two matrices U1, V1 ∈ Rn×k1 such that ∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Here

f(X) = D−1 exp(XWX⊤) (see also Definition C.8) and we define D = diag(exp(XWX⊤)1n)
(see also Definition C.7). Moreover, these matrices U1, V1 can be explicitly constructed in n1+o(1)

time.

A similar technique can be applied to s(X).
Lemma C.14 (Low rank representation to s). Let d = O(log n). Assume that each number in the
n×d matrices h(X) ∈ Rn×d can be written using O(log n) bits. Let n×d matrix s(X) ∈ Rn×d be
defined as Definition C.10. Then, there are two matrices U1, V1 ∈ Rn×k1 we have ∥U1V

⊤
1 h(X) −

s(X)∥∞ ≤ ϵ/poly(n).

Proof. We can show that

∥U1V
⊤
1 h(X)− s(X)∥∞ = ∥U1V

⊤
1 h(X)− f(X)h(X)∥∞

= ∥(U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

)h(X)︸ ︷︷ ︸
n×d

∥∞

≤ n∥U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

∥∞∥h(X)︸ ︷︷ ︸
n×d

∥∞

≤ n∥U1V
⊤
1︸ ︷︷ ︸

n×n

− f(X)︸ ︷︷ ︸
n×n

∥∞ · poly(n)

≤ ϵ/ poly(n)

where the 1st step is from the choice of s(X), the 2nd step comes from AC − BC = (A − B)C
holds for any matrices A, B, and C, the 3rd step is because of basic linear algebra, the 4th step
is due to each number in h(X) can be written using O(log(n)) bits, the fifth step follows from
∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/ poly(n).

We can also get a low-rank representation of p1(x) and p2(x).
Lemma C.15 (Low rank representation to p1(X), Lemma D.4 of Alman & Song (2024a)). Let
k1 = no(1). Let k2 = no(1). Assume that p1(X) := f(X) ⊙ q(X). Assume U1, V1 ∈ Rn×k1

approximates the f(X) such that ∥U1V
⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Assume U2, V2 ∈ Rn×k2

approximates the q(X) ∈ Rn×n such that ∥U2V
⊤
2 − q(X)∥∞ ≤ ϵ/ poly(n). Then there are

matrices U3, V3 ∈ Rn×k3 such that ∥U3V
⊤
3 − p1(X)∥∞ ≤ ϵ/ poly(n). The matrices U3, V3 can be

explicitly constructed in n1+o(1) time.
Lemma C.16 (Low rank representation p2(X), Lemma D.5 of Alman & Song (2024a)). Let k1 =
no(1). Let k2 = no(1). Let k4 = no(1). Assume that p2(X) is an n× n where j0-th row p2(X)j0 =
f(X)j0f(X)⊤j0q(X)j0 for each j0 ∈ [n]. Assume U1, V1 ∈ Rn×k1 approximates the f(X) such
that ∥U1V

⊤
1 − f(X)∥∞ ≤ ϵ/poly(n). Assume U2, V2 ∈ Rn×k2 approximates the q(X) ∈ Rn×n

such that ∥U2V
⊤
2 − q(X)∥∞ ≤ ϵ/ poly(n). Then there are matrices U4, V4 ∈ Rn×k4 such that

∥U4V
⊤
4 − p2(X)∥∞ ≤ ϵ/ poly(n). The matrices U4, V4 can be explicitly constructed in n1+o(1)

time.

C.5 BOUNDED ENTRIES OF MATRICES

In this section, we provide proof that entries of matrices are bounded.

We begin with the exponential matrix f(X).
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Lemma C.17 (Bounded entries of f(X)). If we have the below conditions,

• Let f(X) ∈ Rn×n be defined in Definition C.8.

Then, we can show that

∥f(X)∥∞ ≤ 1

Proof. By Definition C.8, we have

f(X) = diag(α(X))−1u(X)

By Definition C.7, we have

α(X) = u(X)1n

Combining above two equations, we have

∥f(X)∥∞ ≤ 1

A similar analysis can be applied to h(X) and s(X) as well.

Lemma C.18 (Bounded entries of h(X)). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV can be re represented using O(log(n)) bits.

• Let h(X) ∈ Rn×d be defined in Definition C.9.

Then, we can show that

∥h(X)∥∞ ≤ poly(n)

Proof. By Definition C.9, we have

h(X) := XWV

Then, we have

∥h(X)∥∞ = ∥XWV ∥∞
≤ n∥X∥∞∥WV ∥∞
≤ poly(n)

where the 1st step is from the definition of h(X), the 2nd step comes from basic linear algebra, the
3rd step is because of each entry in X and WV can be represented by O(log(n)) bits.

Lemma C.19 (Bounded entries of s(X)). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV can be re represented using O(log(n)) bits.

• Let s(X) ∈ Rn×d be defined in Definition C.10.

Then, we can show that

∥s(X)∥∞ ≤ poly(n)
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Proof. By Definition C.10, we have

s(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

h(X)︸ ︷︷ ︸
n×d

Then, we have

∥s(X)∥∞ = ∥f(X)h(X)∥∞
≤ n∥f(X)∥∞∥h(X)∥∞
≤ poly(n)

where the 1st step is from the definition of c(X), the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma C.17, C.18.

D MATRIX VIEW

In this section, we dive into analyzing the gradient of dL(X)
dTi−1(X) .

In Section D.1, we give the gradient of s(X) with respective to X . In Section D.2, we show the close
form of the gradient on Ti(X) via the chain rule. In Section D.3, we integrate each Ci(X) to its
corresponding matrix term Bi(X). In Section D.4, applying the similar technique used in the previ-
ous section, we integrate the gradient on Ti(X) into its corresponding matrix view. In Section D.5,
we further apply matrix integration on each matrix term in the gradient on Ti(X) calculated in the
previous section. In Section D.6, we give the matrix view of all gradient components.

D.1 GRADIENT OF s(X)

In this section, we give the gradient of s(X) with respective to X .

The results from Deng et al. (2023b) give the gradient of c(X). By chain rule, the gradient of s(X)
is equivalent to the gradient of c(X) from Deng et al. (2023b), since c(X) = s(X)−B where B is
a constant matrix.
Lemma D.1 (Gradient of s(X)i0,j0 , Lemma B.16 in Deng et al. (2023b)). If we have the below
conditions,

• Let s(X) ∈ Rn×d be defined as Definition C.10

Then, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X)

where we have definitions:

– C1(X) := −s(X)i0,j0 · f(X)i0,i0 · ⟨Wj1,∗, Xi0,∗⟩
– C2(X) := −s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩
– C3(X) := f(X)i0,i0 · h(X)i0,j0 · ⟨Wj1,∗, Xi0,∗⟩
– C4(X) := ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩
– C5(X) := f(X)i0,i0 · (WV )j1,j0

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C6(X) + C7(X) + C8(X)

where we have definitions:

– C6(X) := −s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩
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* This is corresponding to C1(X)

– C7(X) := f(X)i1,i0 · h(X)i1,j0 · ⟨Wj1,∗, Xi0,∗⟩
* This is corresponding to C3(X)

– C8(X) := f(X)i1,i0 · (WV )j1,j0

* This is corresponding to C5(X)

D.2 GRADIENT ON Ti(X)

In the Lemma D.2, we use the chain rule to calculate the close form of the gradient on Ti(X).
Lemma D.2 (Gradient for Ti(X)). If we have the below conditions,

• Let Attni be defined as Definition C.3.

• Let Ti(X) ∈ Rn×d be defined as Definition 3.3.

• Let s(X) be defined as Definition C.10.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, for i1 ∈ [n], j1 ∈ [d], we have

dL(X)

dTi−1(X)i1,j1
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0) ·
ds(X)i0,j0
dXi1,j1

Proof. By Lemma C.4, we have

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

By Definition C.3 and Definition C.10, we have

Attni(Ti−1(X)) = s(Ti−1(X))

Therefore, by combining above two equations and substituting variable Ti−1(X) = X , we have

dL(X)

dTi−1(X)i1,j1
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0) ·
ds(X)i0,j0
dXi1,j1

D.3 MATRIX VIEW OF C(X)

In this section, we will provide the matrix view of Ci(X) ∈ R, for i ∈ {6, 7, 8, 2, 4}. We will
consider each Ci(X) one by one. We begin with C6(X).
Lemma D.3 (Matrix view of C6(X)). If we have the below conditions,

• Let C6(X, i1, j1) := −s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩ be defined as in Lemma D.1.

• We define a matrix B6(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B6(i1, j1) denote the
(i1, j1)-th entry of B6(X). We define B6(i1, j1) = C6(X, i1, j1).

Then, we can show that

B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d
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Proof. We have

C6(X, i1, j1) = − s(X)i0,j0 · f(X)i1,i0 · ⟨Wj1,∗, Xi0,∗⟩
= − s(X)i0,j0 · f(X)i1,i0 ·X⊤

i0,∗Wj1,∗

where the 1st step is from the choice of C6(X), the 2nd step comes from ⟨a, b⟩ = a⊤b holds for any
a, b ∈ Rd.

We have

B6(X)(i1, ∗)︸ ︷︷ ︸
d×1

= − s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)i1,i0︸ ︷︷ ︸
1×1

W︸︷︷︸
d×d

Xi0,∗︸ ︷︷ ︸
d×1

Then, we have

B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

A similar analysis procedure can also be applied on C7(X).

Lemma D.4 (Matrix view of C7(X)). If we have the below conditions,

• Let C7(X, i1, j1) := f(X)i1,i0 · h(X)j0,i1 · ⟨Wj1,∗, Xi0,∗⟩ be defined as in Lemma D.1.

• We define a matrix B7(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B7(i1, j1) denote the
(i1, j1)-th entry of B7(X). We define B7(i1, j1) = C7(X, i1, j1).

Then, we can show that

B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Proof. We have

C7(X, i1, j1) = f(X)i1,i0 · h(X)i1,j0 · ⟨Wj1,∗, Xi0,∗⟩
= f(X)i1,i0 · h(X)i1,j0 ·W⊤

j1,∗Xi0,∗

where the 1st step is from the choice of C7(X), the 2nd step comes from ⟨a, b⟩ = a⊤b holds for any
a, b ∈ Rd.

We have

B7(X)(i1, ∗) = f(X)i1,i0 · h(X)i1,j0 ·W ·Xi0,∗

Then, we have

B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

Then, we provide an analysis of C8(X).

Lemma D.5 (Matrix view of C8(X)). If we have the below conditions,

• Let C8(X, i1, j1) := f(X)i1,i0 · (WV )j1,j0 be defined as in Lemma D.1.

• We define a matrix B8(X) ∈ Rn×d. For all i1 ∈ [n], j1 ∈ [d], let B8(i1, j1) denote the
(i1, j1)-th entry of B8(X). We define B8(i1, j1) = C8(X, i1, j1).
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Then, we can show that

B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

Proof. We have

C8(X, i1, j1) = f(X)i1,i0 · (WV )j1,j0

where the 1st step is from the choice of C7(X).

We have

B8(X)(i1, ∗) = f(X)i1,i0 · (WV )∗,j0

Then, we have

B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

Now, we consider C2(X).
Lemma D.6 (Matrix view of C2(X)). If we have the below conditions,

• Let C2(X, j1) := −s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩ be defined as in Lemma D.1.

• We define a matrix B2(X) ∈ Rd. For all j1 ∈ [d], the j1-th entry of B2(X) is defined as
C2(X, j1).

Then, we can show that

B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

Proof. We have

C2(X, j1) = − s(X)i0,j0 · ⟨f(X)i0,∗, XW∗,j1⟩
= − s(X)i0,j0 · (XW∗,j1)

⊤f(X)i0,∗

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤
∗,j1︸ ︷︷ ︸

1×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

where the 1st step is from the choice of C2(X), the second step follows from ⟨a, b⟩ = a⊤b, for any
a, b ∈ Rn.

Then, we have

B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

Finally, we analyze C4(X), which is the last term we need to compute.
Lemma D.7 (Matrix view of C4(X)). If we have the below conditions,

• Let C4(X, j1) := ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩ be defined as in Lemma D.1.

• We define a matrix B4(X) ∈ Rd. For all j1 ∈ [d], the j1-th entry of B4(X) is defined as
C4(X, j1).
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Then, we can show that

B4(X)︸ ︷︷ ︸
d×1

= W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

(f(X)i0,∗ ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

Proof. We have

C4(X, j1) = ⟨f(X)i0,∗ ⊙ (XW∗,j1), h(X)∗,j0⟩
= ⟨f(X)i0,∗ ⊙ h(X)∗,j0 , (XW∗,j1)⟩
= (XW∗,j1)

⊤(f(X)i0,∗ ⊙ h(X)∗,j0)

where the 1st step is from the choice of C4(X), the 2nd step comes from Fact C.1, and the last step
follows from basic linear algebra.

D.4 MATRIX VIEW OF GRADIENT ON Ti(X)

Since we have got the matrix view of each Ci(X) term in the previous section, we can get the matrix
view of the gradient on Ti(X) in Lemma D.8.

Lemma D.8 (Matrix view of single entry of gradient). If we have the below conditions,

• Let s(X) be defined as Definition C.10.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let B6(X), B7(X), B8(X) ∈ Rn×d be defined in Lemma D.3, Lemma D.4, and
Lemma D.5

• Let B2(X), B4(X) ∈ Rd be defined in Lemma D.6 and Lemma D.7.

For any i0 ∈ [n], j0 ∈ [d], we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Proof. By Lemma D.1, we have

• Part 1. For all i0 = i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C1(X) + C2(X) + C3(X) + C4(X) + C5(X) (1)

• Part 2. For all i0 ̸= i1 ∈ [n], j0, j1 ∈ [d],

ds(X)i0,j0
dXi1,j1

= C6(X) + C7(X) + C8(X) (2)

Since for any i1 ∈ [n], j1 ∈ [d], let Gi(i0, j0) ·
ds(X)i0,j0

dXi1,j1
denote the (i1, j1)-th entry of Gi(i0, j0) ·

ds(X)i0,j0

dX , we consider the following two cases:

• Case 1. The i0-th row of Gi(i0, j0) ·
ds(X)i0,j0

dX .

• Case 2. The other n− 1 rows of Gi(i0, j0) ·
ds(X)i0,j0

dX where i1 ̸= i0.
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We first consider Case 1.

Recall that the matrix view of C2(X), C4(X) ∈ R are B2(X), B4(X) ∈ Rd, and the matrix view
of C6(X), C7(X), C8(X) ∈ R are B6(X), B7(X), B8(X) ∈ Rn×d, respectively.

For k ∈ {6, 7, 8}, we use Bk(X)(s, ∗) ∈ Rd to denote the s-th row of Bk(X).

We use (Gi(i0, j0) ·
ds(X)i0,j0

dX )(i0, ∗) ∈ Rd to denote the i0-th row of Gi(i0, j0) ·
ds(X)i0,j0

dX .

Since C6(X), C7(X), C8(X) are the corresponding parts of C1(X), C3(X), C5(X), and by Eq. (1),
then we can have the following

(Gi(i0, j0) ·
ds(X)i0,j0

dX
)(i0, ∗)

= Gi(i0, j0)︸ ︷︷ ︸
1×1

· (B6(X)(i0, ∗) +B7(X)(i0, ∗) +B8(X)(i0, ∗) +B2(X) +B4(X))︸ ︷︷ ︸
d×1

We then consider Case 2.

For k ∈ {6, 7, 8}, we use Bk(X)( ̸= s, ∗) ∈ R(n−1)×d to denote the matrix Bk(X) with the s-th
row removed.

Similarly, we use (Gi(i0, j0) ·
ds(X)i0,j0

dX )( ̸= i0, ∗) ∈ R(n−1)×d to denote the matrix Gi(i0, j0) ·
ds(X)i0,j0

dX with the i0-th row removed.

By Eq. (2), we have

(Gi(i0, j0) ·
ds(X)i0,j0

dX
)( ̸= i0, ∗) = Gi(i0, j0)︸ ︷︷ ︸

1×1

· (B6(X)( ̸= i0, ∗) +B7(X)(̸= i0, ∗) +B8(X)( ̸= i0, ∗))︸ ︷︷ ︸
d×(n−1)

Combining Case 1 and Case 2 together, we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Then, we have the matrix view of Ti(X) gradient.

Lemma D.9 (Matrix view of Ti(X) gradient). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let T (X) be defined as Definition 3.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let B6(X), B7(X), B8(X) ∈ Rn×d be defined in Lemma D.3, Lemma D.4, and
Lemma D.5

• Let B2(X), B4(X) ∈ Rd be defined in Lemma D.6 and Lemma D.7.

Then, we have

dL(X)

dTi−1(X)
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)
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Proof. By Lemma D.8, we have

Gi(i0, j0) ·
ds(X)i0,j0

dX
= Gi(i0, j0)︸ ︷︷ ︸

1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

Then, by Lemma C.4 we have

dL(X)

dTi−1(X)
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dTi−1(X)
.

After combining the above two equations, we are done.

D.5 MATRIX VIEW OF EACH TERM IN GRADIENT ON Ti(X)

In this subsection, we reduce the double summation to a matrix product for easy and clear analysis.

We first work on the B6 term.
Lemma D.10 (Matrix view of B6(X) term). If we have the below conditions,

• Let B6(X)︸ ︷︷ ︸
n×d

= −s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

be defined in Lemma D.3.

• We define z6(X) ∈ Rn×n, which satisfies

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

• Let f(X) ∈ Rn×n be defined in Definition C.8.

• Let W ∈ Rd×d be defined in Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B6(X)︸ ︷︷ ︸
n×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Proof.

n∑
i0=1

d∑
j0=1

Gi(i0, j0)B6(X) = −
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d
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where the 1st step is from the choice of B6(X), the 2nd step comes from basic algebra, the 3rd step
is because of a⊤b =

∑d
i=1 ai · bi holds for any a, b ∈ Rd, the 4th step is due to (AB)⊤ = B⊤A⊤

for any matrices A and B.

Recall that we have z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

.

Then, we have

−
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= −
n∑

i0=1

z6(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of z6(X), the 2nd step comes from basic linear algebra.

Then, we can get the matrix view of B7(X) term.
Lemma D.11 (Matrix view of B7(X) term). If we have the below conditions,

• Let B7(X)︸ ︷︷ ︸
n×d

= (f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

be defined in Lemma D.4.

• We define z7(X) ∈ Rn×n, which satisfies

z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

).

• Let X ∈ Rn×d,W ∈ Rd×d be defined in Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Proof. We have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

(f(X)∗,i0 ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

· (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

=

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

h(X)∗,j0︸ ︷︷ ︸
n×1

)) · (W ·Xi0,∗)
⊤︸ ︷︷ ︸

1×d

=

n∑
i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)) · (X⊤
i0,∗W

⊤)︸ ︷︷ ︸
1×d

where the 1st step is from the choice of B7(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra.
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Recall that we have z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

).

Then we have
n∑

i0=1

(f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)) · (X⊤
i0,∗W

⊤)︸ ︷︷ ︸
1×d

=

n∑
i0=1

z7(X)∗,i0︸ ︷︷ ︸
n×1

X⊤
i0,∗︸ ︷︷ ︸

1×d

W⊤︸︷︷︸
d×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

where the 1st step is from the choice of z7(X), the 2nd step comes from basic linear algebra.

Then, we consider B8(X).

Lemma D.12 (Matrix view of B8(X) term). If we have the below conditions,

• Let B8(X)︸ ︷︷ ︸
n×d

= f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

be defined in Lemma D.5.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

Proof. We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

=
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

f(X)∗,i0︸ ︷︷ ︸
n×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

=

n∑
i0=1

f(X)∗,i0︸ ︷︷ ︸
n×1

(

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

(WV )
⊤
∗,j0︸ ︷︷ ︸

1×d

)

=

n∑
i0=1

f(X)∗,i0︸ ︷︷ ︸
n×1

Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

W⊤
V︸︷︷︸

d×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

where the 1st step is from the choice of B8(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.

Now, we can do the matrix view of B2(X) term.

Lemma D.13 (Matrix view of B2(X) term). If we have the below conditions,
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• Let B2(X)︸ ︷︷ ︸
d×1

= −s(X)i0,j0︸ ︷︷ ︸
1×1

W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

f(X)i0,∗︸ ︷︷ ︸
n×1

be defined in Lemma D.6

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• We define z2(X) ∈ Rn×n, which satisfies

z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

• Let X ∈ Rn×d,W ∈ Rd×d be defined in Definition C.3

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Proof. We have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= −
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

(

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

s(X)i0,j0︸ ︷︷ ︸
1×1

) ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) ei0︸︷︷︸
n×1

f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

ei0︸︷︷︸
n×1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of B2(X), the 2nd step comes from basic algebra, the 3rd step
is because of a⊤b =

∑d
i=1 ai · bi holds for any a, b ∈ Rd, the 4th step is due to (AB)⊤ = B⊤A⊤

holds for any matrix A,B.

Recall that we have z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

.

Then, we have

−
n∑

i0=1

ei0︸︷︷︸
n×1

(Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= −
n∑

i0=1

ei0︸︷︷︸
n×1

z2(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of z2(X), the 2nd step comes from basic linear algebra.

Finally, we do a similar analysis for the term B4(X). Then, we get all the matrix views we need.
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Lemma D.14 (Matrix view of B4(X) term). If we have the below conditions,

• Let B4(X)︸ ︷︷ ︸
d×1

= W⊤︸︷︷︸
d×d

X⊤︸︷︷︸
d×n

(f(X)i0,∗ ⊙ h(X)∗,j0)︸ ︷︷ ︸
n×1

be defined in Lemma D.7.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• We define z4(X) ∈ Rn×n, which satisfies

z4(X)i0,∗︸ ︷︷ ︸
n×1

= f(X)i0,∗︸ ︷︷ ︸
n×1

⊙ (h(X)Gi(i0, ∗))︸ ︷︷ ︸
n×1

Then we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Proof. We have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗ ⊙ h(X)⊤∗,j0)︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗︸ ︷︷ ︸
1×n

⊙(
d∑

j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

h(X)⊤∗,j0︸ ︷︷ ︸
1×n

)) X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

(f(X)⊤i0,∗︸ ︷︷ ︸
1×n

⊙ (h(X)Gi(i0, ∗))⊤︸ ︷︷ ︸
1×n

) X︸︷︷︸
n×d

W︸︷︷︸
d×d

=

n∑
i0=1

ei0︸︷︷︸
n×1

z4(X)⊤i0,∗︸ ︷︷ ︸
1×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

where the 1st step is from the choice of B4(X), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to the choice of z4(X), the 5th step follows
from basic linear algebra.

D.6 COMPONENTS OF GRADIENT ON Ti(X)

Definition D.15 (Definition of Dk). If we have the below conditions,

• For k1 ∈ {6, 7, 8}, let Bk1(X) ∈ Rn×d be defined as Lemma D.3, D.4, and D.5, respec-
tively.

• For k2 ∈ {2, 4}, let Bk2
(X) ∈ Rd×1 be defined as Lemma D.6 and D.7, respectively.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .
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We define Dk ∈ Rn×d as follows:

• For k1 ∈ {6, 7, 8}, we define

Dk1
:=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

Bk1
(X)︸ ︷︷ ︸

n×d

• For k2 ∈ {2, 4}, we define

Dk2 :=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

Bk2(X)⊤︸ ︷︷ ︸
1×d

Definition D.16 (Definition of K). If we have the below conditions,

• Let s(X) ∈ Rn×d be defined as Definition C.10.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

We define K ∈ Rn, where for each i0 ∈ [n], we define

Ki0︸︷︷︸
1×1

= Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

Furthermore, we have

K︸︷︷︸
n×1

= (Gi ⊙ s(X))︸ ︷︷ ︸
n×d

1d︸︷︷︸
d×1

Lemma D.17 (Close form of Dk). If we have the below conditions,

• Let X ∈ Rn×d,W ∈ Rd×d be defined as Definition C.3.

• For k ∈ {6, 7, 8, 2, 4}, let Dk ∈ Rn×d be defined as Definition D.15.

• For k3 ∈ {6, 7, 2, 4}, let zk3
(X) ∈ Rn×n be defined as Lemma D.10, D.11, D.13, and

D.14, respectively.

• Let K ∈ Rn be defined as Definition D.16.

• We define z6(X) ∈ Rn×n, which satisfies

z6(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

diag(K)︸ ︷︷ ︸
n×n

.

• We define z7(X) ∈ Rn×n, which satisfies

z7(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(h(X)︸ ︷︷ ︸
n×d

G⊤
i︸︷︷︸

d×n

)

• We define z2(X) ∈ Rn×n, which satisfies

z2(X)︸ ︷︷ ︸
n×n

= diag(K)︸ ︷︷ ︸
n×n

f(X)︸ ︷︷ ︸
n×n

• We define z4(X) ∈ Rn×n, which satisfies

z4(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙( Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

)
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Then, we can show that the close forms of Dk can be written as follows:

• D6 = − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

.

• D7 = z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

.

• D8 = f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

.

• D2 = − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

.

• D4 = z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

.

Proof. We finish the proof by parts.

• By Lemma D.10, we have the close form of D6.

• By Lemma D.11, we have the close form of D7.

• By Lemma D.12, we have the close form of D8.

• By Lemma D.13, we have the close form of D2.

• By Lemma D.14, we have the close form of D4.

E FAST COMPUTATION FOR GRADIENT ON T (X)

In this section, we give an almost linear time n1+o(1) algorithm for each Bi(X) term. Namely,
we consider B6(X), B7(X), B8(X), B2(X), B4(X) in Section E.1, E.2, E.3, E.4, and E.5, respec-
tively.

E.1 FAST COMPUTATION FOR B6(X) TERM

Before we introduce the almost linear time algorithm for B6(X) term, we need to introduce the
accelerated algorithm for the key component term, z6(X), in Lemma E.2.

We first compute K, which is defined in Definition D.16

Lemma E.1 (Computation time for K). If we have the below conditions,

• Let K ∈ Rn be defined as Definition D.16.

Then, we can show that K can be computed in O(n · d) time.

Proof. Since for each i0 ∈ [n], we have

Ki0︸︷︷︸
1×1

= Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

Then, we have that it takes O(d) time for calculating each entry.

Since there are total n entries in K, the overall computation time for K is O(n · d).
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We now compute z6(X).
Lemma E.2 (Fast computation for z6(X)). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let z6(X) ∈ Rn×n be defined in Lemma D.10.

Then, for some k6 = no(1), there are matrices U6, V6 ∈ Rn×k6 such that ∥U6V
⊤
6 − z6(X)∥∞ ≤

ϵ/ poly(n). The matrices U6, V6 can be constructed in n1+o(1) time.

Proof. Recall in Lemma D.10, we have define z6(X) satisfying the following equation

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

(3)

Recall that K ∈ Rn has been defined in Definition D.16. By Lemma E.1, we have K can be
computed in O(n · d) time.

We also have

z6(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

diag(K)︸ ︷︷ ︸
n×n

By Lemma C.13, we have U1, V1 ∈ Rn×k1 such that

∥U1V
⊤
1 − f(X)∥∞ ≤ ϵ/ poly(n)

Let U6 = U1, V6 = diag(K)V1.

We have V6 = diag(K)︸ ︷︷ ︸
n×n

V1︸︷︷︸
n×k1

can be computed in nk1 time.

The overall running time for constructing U6 and V6 is n1+o(1).

Then, we consider the error bound.

We have

∥U6V
⊤
6 − z6(X)∥∞ = ∥U1V

⊤
1 diag(K)− f(X) diag(K)∥∞

≤ n∥U1V
⊤
1 − f(X)∥∞∥ diag(K)∥∞

≤ n(ϵ/poly(n))∥ diag(K)∥∞
≤ ϵ/ poly(n)

where the 1st step is from the choice of U6, V6, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma C.13, the 4th step is due to ∥ diag(K)∥∞ ≤ poly(n).

Then, we are ready to introduce the almost linear time algorithm for B6(X) term.
Lemma E.3 (Fast computation for B6(X) term). If we have the below conditions,

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let B6(X) ∈ Rn×n be defined in Lemma D.3.
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• We define D6 ∈ Rn×d, where D6 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)B6(X).

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D6 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃6 satisfying

∥D6 − D̃6∥∞ ≤ ϵ/poly(n)

Proof. Recall that in Lemma D.10, we have defined z6(X) ∈ Rn×n, which satisfies

z6(X)∗,i0︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)∗,i0︸ ︷︷ ︸
n×1

And, in that Lemma, we also have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B6(X)︸ ︷︷ ︸
n×d

= − z6(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Let U6, V6 ∈ Rn×k6 be defined as Lemma E.2.

Let z̃6(X) = U6V
⊤
6 .

By Lemma E.2, we have

∥z̃6(X)− z6(X)∥∞ ≤ ϵ/poly(n) (4)

Proof of running time.

We compute in the following way:

• Compute V ⊤
6︸︷︷︸

k6×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
6 X︸ ︷︷ ︸
k6×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U6︸︷︷︸
n×k6

V ⊤
6 XW⊤︸ ︷︷ ︸
k6×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃6(X)XW⊤ − z6(X)XW⊤∥∞
≤ d · n∥z̃6(X)− z6(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(4), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

E.2 FAST COMPUTATION FOR B7(X) TERM

Similar to the analysis process of B6(X) term, we first provide the almost linear time algorithm for
z7(X), then provide that algorithm for B7(X).
Lemma E.4 (Fast computation for z7(X)). If we have the below conditions,

• Let z7(X) ∈ Rn×n be defined in Lemma D.11.

• By Lemma C.13, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −

f(X)∥∞ ≤ ϵ/ poly(n).

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k7 = no(1), there are matrices U7, V7 ∈ Rn×k7 such that ∥U7V
⊤
7 − z7(X)∥∞ ≤

ϵ/ poly(n). The matrices U7, V7 can be constructed in n1+o(1) time.

Proof. Recall that in Lemma D.11, we have defined z7(X) ∈ Rn×n, where the i0-th column of
z7(X) satisfies

z7(X)∗,i0︸ ︷︷ ︸
n×1

= f(X)∗,i0︸ ︷︷ ︸
n×1

⊙(h(X)︸ ︷︷ ︸
n×d

Gi(i0, ∗)︸ ︷︷ ︸
d×1

)

which is equivalent to

z7(X)︸ ︷︷ ︸
n×n

= f(X)︸ ︷︷ ︸
n×n

⊙(h(X)︸ ︷︷ ︸
n×d

G⊤
i︸︷︷︸

d×n

)

By Lemma C.13, we know f̃(X) := U1V
⊤
1 is a good approximation for f(X).

We choose U7 = U1 ⊘ h(X) and V7 = V1 ⊘Gi, where U7, V7 ∈ Rn×k1d.

Proof of running time.

For U7 = U1 ⊘ h(X), since U1 ∈ Rn×k1 , h(X) ∈ Rn×d, constructing U7 takes O(ndk1) =
O(n1+o(1)) time.

Similarly, constructing V7 takes O(n1+o(1)) time.

Proof of error bound.

Using Fact C.2, we have

∥U7V
⊤
7 − z7(X)∥∞ = ∥U7V

⊤
7 − f(X)⊙ (h(X)G⊤

i )∥∞
= ∥(U1 ⊘ h(X))(V1 ⊘Gi)

⊤ − f(X)⊙ (h(X)G⊤
i )∥∞

= ∥(U1V
⊤
1 )⊙ (h(X)G⊤

i )− f(X)⊙ (h(X)G⊤
i )∥∞

= ∥f̃(X)⊙ (h(X)G⊤
i )− f(X)⊙ (h(X)G⊤

i )∥∞
≤ d∥h(X)∥∞∥Gi∥∞ · ϵ/ poly(n)
≤ ϵ/ poly(n) (5)

where the 1st step is from the definition of z7(X), the 2nd step comes from the choice of U7 and V7,
the 3rd step is because of Fact C.2, the 4th step is due to the definition of f̃(X), the 5th step follows
from ∥f̃(X) − f(X)∥∞ ≤ ϵ/ poly(n), the sixth step follows from Lemma C.18 and ∥Gi∥∞ ≤
poly(n).
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Then, we can do similarly fast computation for B7 term.
Lemma E.5 (Fast computation for B7(X) term). If we have the below conditions,

• Let B7(X) ∈ Rn×d be defined in Lemma D.4.

• We define D7 ∈ Rn×d, where D7 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)B7(X).

• Let X ∈ Rn×d,W,WV ∈ Rd×d, B ∈ Rn×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D7 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃7 satisfies

∥D7 − D̃7∥∞ ≤ ϵ/poly(n)

Proof. In Lemma D.11, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B7(X)︸ ︷︷ ︸
n×d

= z7(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W⊤︸︷︷︸
d×d

Let U7, V7 ∈ Rn×k7 be defined in Lemma E.4.

Let z̃7(X) := U7V
⊤
7 .

By Lemma E.4, we have

∥z̃7(X)− z7(X)∥∞ ≤ ϵ/poly(n) (6)

Proof of running time.

We compute in the following way:

• Compute V ⊤
7︸︷︷︸

k7×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
7 X︸ ︷︷ ︸
k7×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U7︸︷︷︸
n×k7

V ⊤
7 XW⊤︸ ︷︷ ︸
k7×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃7(X)XW⊤ − z7(X)XW⊤∥∞
≤ d · n∥z̃7(X)− z7(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/poly(n)
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where the 1st step is from basic linear algebra, the 2nd step comes from Eq. (6), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.3 FAST COMPUTATION FOR B8(X) TERM

Then, we can do fast computations on B8(X) term.

Lemma E.6 (Fast computation for B8(X) term). If we have the below conditions,

• Let B8(X) ∈ Rn×d be defined in Lemma D.5.

• We define D8 ∈ Rn×d, where D8 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)B8(X).

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D8 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃8 satisfies

∥D8 − D̃8∥∞ ≤ ϵ/poly(n)

Proof. Recall that in Lemma D.12, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

B8(X)︸ ︷︷ ︸
n×d

= f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

W⊤
V︸︷︷︸

d×d

Let f̃(X) := U1V
⊤
1 denote the approximation of f(X).

By Lemma C.13, we have

∥f(X)− f̃(X)∥∞ ≤ ϵ/ poly(n) (7)

Proof of running time.

We compute in the following way:

• Compute V ⊤
1︸︷︷︸

k1×n

Gi︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
1 Gi︸ ︷︷ ︸
k1×d

W⊤
V︸︷︷︸

d×d

, which takes n1+o(1) time.

• Compute U1︸︷︷︸
n×k1

V ⊤
1 GiW

⊤
V︸ ︷︷ ︸

k1×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.
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We have

∥f̃(X)GiW
⊤
V − f(X)GiW

⊤
V ∥∞

≤ d · n∥f̃(X)− f(X)∥∞∥Gi∥∞∥WV ∥∞
≤ d · n(ϵ/ poly(n))∥Gi∥∞∥WV ∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(7), the 3rd step is
because of ∥Gi∥∞ ≤ poly(n) and ∥WV ∥∞ ≤ poly(n).

E.4 FAST COMPUTATION FOR B2(X) TERM

Then, we provide the proof of how to do fast computation on B2(X).
Lemma E.7 (Fast computation for z2(X)). If we have the below conditions,

• Let z2(X) ∈ Rn×n be defined as in Lemma D.13.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k9 = no(1), there are matrices U9, V9 ∈ Rn×k9 such that ∥U9V
⊤
9 − z2(X)∥∞ ≤

ϵ/ poly(n). The matrices U9, V9 can be constructed in n1+o(1) time.

Proof. Recall that in Lemma D.13, we have defined z2(X) ∈ Rn×n, where the i0-th row of z2(X)
satisfies

z2(X)i0,∗︸ ︷︷ ︸
n×1

= (Gi(i0, ∗)⊤︸ ︷︷ ︸
1×d

s(X)i0,∗︸ ︷︷ ︸
d×1

) f(X)i0,∗︸ ︷︷ ︸
n×1

Recall that K ∈ Rn has been defined in Definition D.16.

By Lemma E.1, we have K can be computed in O(n · d) time.

We also have

z2(X)︸ ︷︷ ︸
n×n

= diag(K)︸ ︷︷ ︸
n×n

f(X)︸ ︷︷ ︸
n×n

By Lemma C.13, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −f(X)∥∞ ≤

ϵ/ poly(n).

Let U9 = diag(K)U1, V6 = V1.

We have U9 = diag(K)︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k1

can be computed in nk1 time.

The overall running time for constructing U9 and V9 is n1+o(1).

Then, we consider the error bound.

We have

∥U9V
⊤
9 − z2(X)∥∞ = ∥diag(K)U1V

⊤
1 − diag(K)f(X)∥∞

≤ n∥U1V
⊤
1 − f(X)∥∞∥ diag(K)∥∞
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≤ n(ϵ/poly(n))∥ diag(K)∥∞
≤ ϵ/ poly(n) (8)

where the 1st step is from the choice of U6, V6, the 2nd step comes from basic linear algebra, the
3rd step is because of Lemma C.13, the 4th step is due to ∥ diag(K)∥∞ ≤ poly(n).

Lemma E.8 (Fast computation for B2(X) term). If we have the below conditions,

• Let B2(X) ∈ Rn×d be defined in Lemma D.6.

• We define D2 ∈ Rn×d, where D2 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)︸ ︷︷ ︸

1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

.

• Let X ∈ Rd×n,W,WV ∈ Rd×d, B ∈ Rn×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , B,Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D2 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃2 satisfies

∥D2 − D̃2∥∞ ≤ ϵ/poly(n)

Proof. In Lemma D.13, we have

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B2(X)⊤︸ ︷︷ ︸
1×d

= − z2(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Let U9, V9 ∈ Rn×k9 be defined in Lemma E.7.

Let z̃2(X) := U9V
⊤
9 .

By Lemma E.7, we have

∥z̃2(X)− z2(X)∥∞ ≤ ϵ/poly(n) (9)

Proof of running time.

We compute in the following way:

• Compute V ⊤
9︸︷︷︸

k9×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
9 X︸ ︷︷ ︸
k9×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

• Compute U9︸︷︷︸
n×k9

V ⊤
9 XW︸ ︷︷ ︸
k9×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.
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We have

∥z̃2(X)XW − z2(X)XW∥∞
≤ d · n∥z̃2(X)− z2(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(9), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.5 FAST COMPUTATION FOR B4(X) TERM

Finally, our analysis shows that we can do fast computations for B4(X) term. After that, we showed
that all terms can be computed quickly.
Lemma E.9 (Fast computation for z4(X)). If we have the below conditions,

• Let z4(X) ∈ Rn×n be defined in Lemma D.14.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, for some k10 = no(1), there are matrices U10, V10 ∈ Rn×k10 , let z̃4(X) := U10V
⊤
10 , such that

∥z̃4(X)− z4(X)∥∞ ≤ ϵ/poly(n). The matrices U10, V10 can be constructed in n1+o(1) time.

Proof. In Lemma D.14, we have defined z4(X) ∈ Rn×n, where the i0-th column of z4(X) satisfies

z4(X)i0,∗︸ ︷︷ ︸
n×1

= (f(X)i0,∗︸ ︷︷ ︸
n×1

⊙ (h(X)Gi(i0, ∗))︸ ︷︷ ︸
n×1

)

which is equivalent to

z4(X)︸ ︷︷ ︸
n×n

= (f(X)︸ ︷︷ ︸
n×n

⊙ Gi︸︷︷︸
n×d

h(X)⊤︸ ︷︷ ︸
d×n

)

By Lemma C.13, let U1, V1 be the low rank approximation of f(X), such that ∥U1V
⊤
1 −f(X)∥∞ ≤

ϵ/ poly(n).

We choose U10 = U1 ⊘Gi and V10 = V1 ⊘ h(X), where U10, V10 ∈ Rn×k1d.

Proof of running time.

For U10 = U1⊘Gi, since U1 ∈ Rn×k1 , Gi ∈ Rn×d, constructing U10 takes O(ndk1) = O(n1+o(1))
time.

Similarly, constructing V10 takes O(n1+o(1)) time.

Proof of error bound.

Let f̃(X) := U1V
⊤
1 .

Using Fact C.2, we have

∥z̃4(X)− z4(X)∥∞
= ∥U10V

⊤
10 − f(X)⊙ (Gi · h(X)⊤)∥∞
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= ∥(U1 ⊘Gi)(V1 ⊘ h(X))⊤ − f(X)⊙ (Gi · h(X)⊤)∥∞
= ∥(U1V

⊤
1 )⊙ (Gi · h(X)⊤)− f(X)⊙ (Gi · h(X)⊤)∥∞

where the 1st step is from the definition of z̃4(X), z4(X), the 2nd step comes from the choice of
U10 and V10, the 3rd step is because of Fact C.2.

∥(U1V
⊤
1 )⊙ (Gi · h(X)⊤)− f(X)⊙ (Gi · h(X)⊤)∥∞

= ∥U1V
⊤
1 − f(X)∥∞∥Gi · h(X)⊤∥∞

≤ d · (ϵ/ poly(n))∥h(X)∥∞∥Gi∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from ∥U1V1 − f(X)∥∞ ≤
ϵ/ poly(n), the 3rd step is because of Lemma C.18 and ∥Gi∥∞ ≤ poly(n).

Lemma E.10 (Fast computation for B4(X) term). If we have the below conditions,

• Let B4(X) ∈ Rn×d be defined in Lemma D.7.

• We define D4 ∈ Rn×d, where D4 :=
∑n

i0=1

∑d
j0=1 Gi(i0, j0)︸ ︷︷ ︸

1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

Then, we can show that, there is an algorithm to approximate D4 in n1+o(1) time, and it can achieve
ϵ/ poly(n) accuracy.

Namely, the algorithm output D̃4 satisfies

∥D4 − D̃4∥∞ ≤ ϵ/poly(n)

Proof. In Lemma D.14, we have
n∑

i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

ei0︸︷︷︸
n×1

B4(X)⊤︸ ︷︷ ︸
1×d

= z4(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

W︸︷︷︸
d×d

Let z̃4(X) := U10V
⊤
10 .

By Lemma E.9, we have

∥z̃4(X)− z4(X)∥∞ ≤ ϵ/poly(n) (10)

Proof of running time.

We compute in the following way:

• Compute V ⊤
10︸︷︷︸

k10×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

• Compute V ⊤
10X︸ ︷︷ ︸

k10×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.
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• Compute U10︸︷︷︸
n×k10

V ⊤
10XW︸ ︷︷ ︸
k10×d

, which takes n1+o(1) time.

Therefore, the overall running time is n1+o(1).

Proof of error bound.

We have

∥z̃4(X)XW − z4(X)XW∥∞
≤ d · n∥z̃4(X)− z4(X)∥∞∥X∥∞∥W∥∞
≤ d · n(ϵ/ poly(n))∥X∥∞∥W∥∞
≤ ϵ/poly(n)

where the 1st step is from basic linear algebra, the 2nd step comes from Eq.(10), the 3rd step is
because of ∥W∥∞ ≤ poly(n) and ∥X∥∞ ≤ poly(n).

E.6 PUTTING EVERYTHING TOGETHER

After we have analyzed each Bi(X) term in the previous section, we put them together in this
section, to analyze the overall running time and error bound of the gradient of L(X) on Ti(X) in
Lemma E.11.
Lemma E.11 (Fast computation for dL(X)

dTi−1(X) , formal version of Lemma 5.1). If we have the below
conditions,

• Let L(X) be defined as Definition 3.1.

• Let m denote the number of self-attention transformer model (see Definition 1.3).

• For any i ∈ [m], let Ti(X) be defined as Definition 3.3.

• Let X ∈ Rn×d,W,WV ∈ Rd×d be defined in Definition C.3.

• Assuming each entry of X,W,WV , Gi can be re represented using O(log(n)) bits.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assume Gi can be computed in n1+o(1) time.

We can show that dL(X)
dTi−1(X) can be approximated in n1+o(1) time, with 1/ poly(n) approximation

error. Namely, our algorithm can output g̃t in n1+o(1) time, which satisfies

∥g̃t −
dL(X)

dTi−1(X)
∥∞ ≤ 1/ poly(n)

Proof. By Lemma D.9, we have

dL(X)

dTi−1(X)
=

n∑
i0=1

d∑
j0=1

Gi(i0, j0)︸ ︷︷ ︸
1×1

·(B6(X) +B7(X) +B8(X)︸ ︷︷ ︸
n×d

+ ei0︸︷︷︸
n×1

(B2(X) +B4(X))⊤︸ ︷︷ ︸
1×d

)

=
∑

i∈{2,4,6,7,8}

Di

where the 1st step is from Lemma D.9, the 2nd step comes from the definition of
D6, D7, D8, D2, D4.

Then, by Lemma E.3, E.5, E.6, E.8, E.10, we have D6, D7, D8, D2, D4 ∈ Rn×d can be approxi-
mated in n1+o(1) time, with up to ϵ/ poly(n) error.
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Namely, for i ∈ {2, 4, 6, 7, 8}, let D̃i ∈ Rn×d denote the approximated version of D, we have

∥D̃i −D∥∞ ≤ ϵ/ poly(n)

Let g̃t =
∑

i∈{2,4,6,7,8} D̃i.

Proof of running time.

The running time for computing g̃t =
∑

i∈{2,4,6,7,8} D̃i is O(nd).

Therefore, the overall running time for computing g̃t is n1+o(1).

Proof of error bound.

We have

∥g̃t −
dL(X)

dTi−1(X)
∥∞ = ∥

∑
i∈{2,4,6,7,8}

(D̃i −Di)∥∞

≤
∑

i∈{2,4,6,7,8}

∥(D̃i −Di)∥∞

≤ ϵ/poly(n)

where the 1st step is from the definition of g̃t and dL(X)
dTi−1(X) , the 2nd step comes from basic algebra,

the 3rd step is because of ∥D̃i −D∥∞ ≤ ϵ/ poly(n).

Then, choose ϵ = 1/ poly(n), we have

∥g̃t −
dL(X)

dTi−1(X)
∥∞ ≤ 1/ poly(n)

F FAST COMPUTATION FOR GRADIENT ON W

In Section F.1, we introduce some essential notations used in this section. In Section F.2, we offer the
gradient of s(X) on W , which is equivalent to the gradient of the output of the attention mechanism
on W . In Section F.3, we illustrate the gradient of L(X) on W . In Section F.4, we introduce the
almost linear time algorithm for calculating the gradient of L(X) on W , along with the error bound
analysis.

F.1 KEY CONCEPTS

Definition F.1 (Definition of A, (Alman & Song, 2024a)). Let A1, A2 ∈ Rn×d be two matrices.
Suppose that A = A1 ⊗ A2 ∈ Rn2×d2

. We define Aj0 ∈ Rn×d2

be a n× d2 size sub-block from A.
Note that there are n such sub-blocks.

Remark F.2. Note that the A1, A2 matrices in Definition F.1 is X in our setting. Since in Alman &
Song (2024a), they consider a more general setting, where A1, A2 can be difference matrices, while
in our problem, we consider self-attention. Therefore, in our paper, we have A1 = A2 = X .

F.2 GRADIENT OF s(X) ON W

We begin with introducing the close form of the gradient of s(X).

Alman & Song (2024a) proved the close form of the gradient of c(X) = s(X)− B with respect to
W for a constant matrix B. By chain rule, this is equivalent to the gradient of s(X) with respect to
W .
Lemma F.3 (Gradient of s(X) on W , Lemma B.1 in Alman & Song (2024a)). If we have the below
conditions,
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• Let A be defined as Definition F.1. For every i ∈ [d2], define Aj0,i ∈ Rn to be the i-th
column for Aj0 ∈ Rn×d2

.

• Let f(X), h(X), s(X) be defined as Definition C.8, C.9, C.10.

• Let W ∈ Rd×d be defined as Definition C.3. Let w ∈ Rd2

denote the vector representation
of W .

Then, for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d]

ds(X)j0,i0
dwi

= ⟨Aj0,i⊙f(X)j0 , h(X)i0⟩ − ⟨f(X)j0 , h(X)i0⟩ · ⟨Aj0,i, f(X)j0⟩

F.3 GRADIENT OF L(X) ON W

Differing from the ℓ2 loss function used in Alman & Song (2024a), our framework supports arbitrary
loss functions. Therefore, we use Lemma F.4 to illustrate the gradient of L(X) on W .

Lemma F.4 (Gradient of L(X) on W ). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let W ∈ Rd×d, X ∈ Rn×d be Defined as Definition C.3.

• Let p(X) be defined as Definition C.12.

Then, we can show that

dL(X)

dWi
= X⊤ · p(X) ·X

Proof. By Lemma F.3, we have, for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d]

ds(X)j0,i0
dwi

= ⟨Aj0,i︸︷︷︸
n×1

⊙ f(X)j0︸ ︷︷ ︸
n×1

, h(X)i0︸ ︷︷ ︸
n×1

⟩ − ⟨f(X)j0︸ ︷︷ ︸
n×1

, h(X)i0︸ ︷︷ ︸
n×1

⟩ · ⟨Aj0,i︸︷︷︸
n×1

, f(X)j0︸ ︷︷ ︸
n×1

⟩ (11)

By Fact C.1, we have

⟨Aj0,i⊙f(X)j0 , h(X)i0⟩ = A⊤
j0,i diag(f(X)j0)h(X)i0

and

⟨f(X)j0 , h(X)i0⟩ · ⟨f(X)j0 ,Aj0,i⟩ = A⊤
j0,i f(X)j0f(X)⊤j0h(X)i0

By Eq. (11), for each i ∈ [d2], we have For each j0 ∈ [n], for every i0 ∈ [d], we have

ds(X)j0,i0
dwi

= A⊤
j0,i(diag(f(X)j0)− f(X)j0f(X)⊤j0)h(X)i0

which implies,

ds(X)j0,i0
dW

= A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

(12)

By Lemma C.4, for i ∈ [m], we have

dL(X)

dWi
=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWi
. (13)
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By the definition of s(X) (Definition C.10), we have

s(X) = Attni(Ti−1(X))

Combining Eq. (12) and Eq. (13), for each i ∈ [m], we have

dL(X)

dWi
=

n∑
j0=1

d∑
i0=1

Gi(j0, i0)︸ ︷︷ ︸
1×1

· A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

(14)

Recall that we have defined q(X) in Definition C.11,

q(X)j0 :=

d∑
i0=1

Gi(j0, i0) · h(X)i0 (15)

Recall that p(x)j0 ∈ Rn is define as Definition C.12,

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 . (16)

Then, we have

dL(X)

dWi

=

n∑
j0=1

d∑
i0=1

Gi(j0, i0)︸ ︷︷ ︸
1×1

· A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

h(X)i0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0︸︷︷︸

d2×n

(diag(f(X)j0)− f(X)j0f(X)⊤j0)︸ ︷︷ ︸
n×n

q(X)j0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0 pj0(X)

= X⊤︸︷︷︸
d×n

p(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

where the 1st step is from Eq. (14), the 2nd step comes from Eq. (15), the 3rd step is because of
Eq. (16), the 4th step is due to the tensor tricks.

F.4 FAST COMPUTATION

Finally, we introduce the almost linear time algorithm and its error analysis of the gradient of L(X)
on W in Lemma F.5.
Lemma F.5 (Fast computation for dL(X)

dWi
). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let m denote the number of self-attention transformer layers (see Definition 1.3).

• For any i ∈ [m], let Wi = WQi
W⊤

Ki
denote the attention weight in the i-th transformer

layer.

We can show that dL(X)
dWi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.
Namely, our algorithm can output g̃w in n1+o(1) time, which satisfies

∥g̃w −
dL(X)

dWi
∥∞ ≤ 1/ poly(n)
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Proof. Recall by Lemma C.15, C.16, we have defined p1(X), p2(X) ∈ Rn×n.

In those Lemmas, we have p1(X), p2(X) have low rank approximation U3V
⊤
3 and U4V

⊤
4 , respec-

tively.

By the definition of p(X) (Definition C.12), we have

p(X) = p1(X)− p2(X) (17)

Then, by Lemma F.4, we have

dL(X)

dWi

= X⊤p(X)X

= X⊤(p1(X)− p2(X))X

where the 1st step is from Lemma F.4, the 2nd step comes from Eq. (17).

Let p̃1(X), p̃2(X) denote the low rank approximations for p1(X), p2(X), respectively.

Proof of running time. We first compute X⊤p̃1(X)X in following order

• Compute X⊤︸︷︷︸
d×n

U3︸︷︷︸
n×k3

, which takes n1+o(1) time.

• Compute X⊤U3︸ ︷︷ ︸
d×k3

V ⊤
3︸︷︷︸

k3×n

, which takes n1+o(1) time.

• Compute X⊤U3V
⊤
3︸ ︷︷ ︸

d×n

X︸︷︷︸
n×d

, which takes n1+o(1) time.

The overall running time for X⊤p̃1(X)X is n1+o(1).

Similarly, the overall running time for X⊤p̃2(X)X is n1+o(1).

Since X⊤p̃1(X)X,X⊤p̃2(X)X ∈ Rd×d, the computation time for X⊤(p̃1(X) − p̃2(X))X is
O(d2).

Therefore, the overall running time for X⊤(p̃1(X)− p̃2(X))X is n1+o(1).

Proof of error bound.

We consider the error for X⊤p̃1(X)X first.

∥X⊤p̃1(X)X −X⊤p1(X)X∥∞
= ∥X⊤(p̃1(X)− p1(X))X∥∞
≤ n2∥X∥2∞∥p̃1(X)− p1(X)∥∞
≤ n2(ϵ/poly(n))∥X∥2∞
≤ ϵ/ poly(n) (18)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd step
is because of ∥p̃1(X)− p1(X)∥∞ ≤ ϵ/poly(n), the 4th step is due to ∥X∥∞ ≤ poly(n).

Similarly, we can have

∥X⊤p̃2(X)X −X⊤p2(X)X∥∞ ≤ ϵ/ poly(n) (19)

Therefore, we have

∥X⊤p̃(X)X −X⊤p(X)X∥∞
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= ∥X⊤p̃1(X)X −X⊤p1(X)X +X⊤p̃2(X)X −X⊤p2(X)X∥∞
≤ ∥X⊤p̃1(X)X −X⊤p1(X)X∥∞ + ∥X⊤p̃2(X)X −X⊤p2(X)X∥∞
≤ (ϵ/ poly(n)) + (ϵ/ poly(n))

= ϵ/poly(n)

where the 1st step is from basic algebra, the 2nd step comes from triangle inequality, the 3rd step is
because of Eq. (18) and Eq. (19), the 4th step is due to basic algebra.

Then, we choose ϵ = 1/ poly(n), we have

∥g̃w −
dL(X)

dWi
∥∞ ≤ 1/ poly(n)

G FAST COMPUTATION FOR GRADIENT ON WV

In Section G.1, we introduce the close form of the gradient of s(X) on WV . In Section G.2, we
provide the close form of the gradient of L(X) on WV . In Section G.3, based on the close form
calculated in the previous section, we introduce the almost linear time algorithm for computing the
gradient of L(X) on WV .

G.1 GRADIENT OF s(X) ON WV

Since s(X) = f(X)h(X), we begin with considering the gradient of h(X) on WV in Lemma G.1.
Lemma G.1 (Gradient of h(X) on WV ). If we have the below conditions,

• Let h(X) be defined as Definition C.9.

• Let WV be defined as Definition C.3.

Then, for any i0 ∈ [n], j0 ∈ [d] and any i1, j1 ∈ [d], we have

dh(X)i0,j0
d(WV )i1,j1

=

{
Xi0,i1 j0 = j1
0 j0 ̸= j1

Proof. Since hi0,j0 satisfies

hi0,j0 = X⊤
i0,∗(WV )∗,j0 ,

we have hi0,j0 only depends on (WV )∗,j0 .

Hence, we have, for j0 ̸= j1,

dh(X)i0,j0
d(WV )i1,j1

= 0

For j0 = j1 case, we have

dh(X)i0,j0
d(WV )i1,j0

= Xi0,i1

Combining the result in the previous Lemma and the chain rule, we can have the gradient of s(X)
on WV in Lemma G.2.
Lemma G.2 (Gradient of s(X) on WV ). If we have the below conditions,

• Let s(X) be defined as Definition C.10.
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• Let WV be defined as Definition C.3.

Then, for any i2 ∈ [n], j2 ∈ [d] and any i1, j1 ∈ [d], we have

• Part 1.

ds(X)i2,j2
d(WV )i1,j1

=

{
f(X)⊤i2,∗X∗,i1 j2 = j1
0 j2 ̸= j1

• Part 2.
ds(X)i2,j2

dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

Proof. Proof of Part 1.

By Definition C.10, we have

s(X)i2,j2 := f(X)⊤i2,∗h(X)∗,j2 (20)

Therefore, s(X)i2,j2 is only depends on h(X)∗,j2 , which further means s(X)i2,j2 is only depends
on (WV )∗,j2 .

Hence, for j1 ̸= j2, we have

ds(X)i2,j2
d(WV )i1,j2

= 0

We consider j1 = j2 case.

By, Eq. (20), we can derive that

ds(X)i2,j2
dh(X)i3,j2

= f(X)i2,i3 (21)

By chain rule, we have

ds(X)i2,j2
d(WV )i1,j2

=

d∑
i3=1

ds(X)i2,j2
dh(X)i3,j2

dh(X)i3,j2
d(WV )i1,j2

=

d∑
i3=1

f(X)i2,i3
dh(X)i3,j2
d(WV )i1,j2

=

d∑
i3=1

f(X)i2,i3Xi3,i1

= f(X)⊤i2,∗X∗,i1 (22)

where the 1st step is from chain rule, the 2nd step comes from Eq. (21), the 3rd step is because of
Lemma G.1, the 4th step is due to basic linear algebra.

Proof of Part 2.

By Eq (22), we have

ds(X)i2,j2
d(WV )∗,j2︸ ︷︷ ︸

d×1

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1
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which implies
ds(X)i2,j2

dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

G.2 GRADIENT OF L(X) ON WV

Since we have already got the close form of the gradient of s(X) on WV , we can easily extend it
and get the close form of the gradient of L(X) on WV in Lemma G.3.
Lemma G.3 (Gradient of L(X) on WV ). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let WV be defined as Definition C.3.

Then, we can show that
dL(X)

dWVi︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

Proof. We slightly abuse the notation, using WV to represent Vi in Lemma G.1, G.2.

By Lemma G.2, we have
ds(X)i2,j2

dWV︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

(23)

By Lemma C.4, we have

dL(X)

dWVi

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2) ·
dAttni(Ti−1(X))i2,j2

dWVi

. (24)

By Definition C.10 and Definition C.3, we have
s(X) = Attni(Ti−1(X))

Therefore, combining Eq. (23) and Eq. (24), we have
dL(X)

dWVi

=

n∑
i2=1

d∑
j2=1

Gi(i2, j2)︸ ︷︷ ︸
1×1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

e⊤j2︸︷︷︸
1×d

=

n∑
i2=1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

d∑
j2=1

Gi(i2, j2)︸ ︷︷ ︸
1×1

e⊤j2︸︷︷︸
1×d

=

n∑
i2=1

X⊤︸︷︷︸
d×n

f(X)i2,∗︸ ︷︷ ︸
n×1

Gi(i2, ∗)⊤︸ ︷︷ ︸
1×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

where the 1st step is from Eq. (23) and Eq. (24), the 2nd step comes from basic algebra, the 3rd step
is because of basic linear algebra, the 4th step is due to basic linear algebra.
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G.3 FAST COMPUTATION

Finally, we can introduce our almost linear time algorithm for computing the L(X) gradient on WV .

Lemma G.4 (Fast computation for dL(X)
d(WV )i

). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let m denote the number of self-attention transformer layers (see Definition 1.3).

• For any i ∈ [m], let WVi ∈ Rd×d denote the attention weight in the i-th transformer layer.

We can show that dL(X)
dWVi

can be approximated in n1+o(1) time, with 1/poly(n) approximation error.

Namely, our algorithm can output g̃v in n1+o(1) time, which satisfies

∥g̃v −
dL(X)

dWVi

∥∞ ≤ 1/ poly(n)

Proof. Recall in Lemma C.13, U1V
⊤
1 is the low rank approximation of f(X).

Let f̃(X) := U1V
⊤
1 denote the low rank approximation of f(X).

Recall in Lemma G.3, we have

dL(X)

dWVi︸ ︷︷ ︸
d×d

= X⊤︸︷︷︸
d×n

f(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

Proof of running time.

We compute X⊤f̃(X)Gi in following order

• Compute X⊤︸︷︷︸
d×n

· U1︸︷︷︸
n×k1

, which takes n1+o(1) time.

• Compute X⊤ · U1︸ ︷︷ ︸
d×k1

· V ⊤
1︸︷︷︸

k1×n

, which takes n1+o(1) time.

• Compute X⊤ · U1 · V ⊤
1︸ ︷︷ ︸

d×n

· Gi︸︷︷︸
n×d

, which takes d2 · n time.

The overall running time is n1+o(1).

Proof of error bound.

We have

∥X⊤ · f(X) ·Gi −X⊤ · f̃(X) ·Gi∥∞
= ∥X⊤ · (f(X)− f̃(X)) ·Gi∥∞
≤ n2∥X∥∞∥f(X)− f̃(X)∥∞∥Gi∥∞
≤ n2(ϵ/poly(n))∥X∥∞∥Gi∥∞
≤ ϵ/ poly(n)

where the 1st step is from basic algebra, the 2nd step comes from basic linear algebra, the 3rd
step is because of ∥f(X) − f̃(X)∥∞ ≤ ϵ/ poly(n), the 4th step is due to ∥X∥∞ ≤ poly(n) and
∥Gi∥∞ ≤ poly(n).

Let g̃v = X⊤ · f̃(X) ·Gi.
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We choose ϵ = 1/ poly(n). Then, we have

∥g̃v −
dL(X)

dWVi

∥∞ ≤ 1/ poly(n)

H GRADIENT APPROXIMATION FOR ENTIRE MODEL

In Section H.1, we introduce the close form of Gi and argue that Gi can be computed in almost linear
time n1+o(1). In Section H.2, we provide the almost linear time algorithm for gradient computing
on a single-layer transformer. In Section H.3, with the help of math induction, we introduce the
almost linear time algorithm for computing the gradient of the multi-layer transformer, along with
its approximation error.

H.1 COMPUTATION TIME FOR Gi

Here we consider gi in Definition 1.3 as a linear layer with an arbitrary non-linear activation ϕ. Since
gi can be viewed as a composition of an MLP and an activation function, we begin with analyzing
the Ti gradient on Attni.
Lemma H.1 (Gradient of Ti on Attni ). If we have the below conditions,

• Let Ti(X) be defined as Definition 3.3.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(ZWg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• We simplify the notation, using Ti and Attni to represent Ti(X) and Attni(Ti−1(X)),
respectively.

• For any matrix Z ∈ Rn×d, we use Z(i, j) to denote the (i, j)-th entry of Z.

Then, we can show that, for any i4, i5 ∈ [n], j4, j5 ∈ [d],

• Part 1.

dTi(i4, j4)

dAttni(i5, j5)
=


ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

i4 = i5

0 i4 ̸= i5

• Part 2.
dTi(i4, j4)

dAttni︸ ︷︷ ︸
n×d

= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

Proof. Proof of Part 1.

By the definition of Ti (Definition 3.3), for i4 ∈ [d], j4 ∈ [n], we have

Ti(i4, j4) = ϕ(Attni(i4, ∗)⊤Wg(∗, j4))

Therefore, for any i5 ̸= i4, we have

dTi(i4, j4)

dAttni(i5, j5)
= 0

Then, we consider i4 = i5 case.
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By basic calculus, we have

dTi(i4, j4)

dAttni(i4, j5)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

Combining two equations mentioned above, we have the result for Part 1.

Proof of Part 2.

By result of Part 1, for i5 = i4, we have

dTi(i4, j4)

dAttni(i4, j5)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(j5, j4)︸ ︷︷ ︸
1×1

which implies

dTi(i4, j4)

dAttni(i4, ∗)
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

Wg(∗, j4)︸ ︷︷ ︸
d×1

By result of Part 1, for i5 ̸= i4, we have

dTi(i4, j4)

dAttni(i5, ∗)
= 0

By basic linear algebra, combining the two equations mentioned above, we have

dTi(i4, j4)

dAttni
= ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸

1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

Then, we can argue that the computation for Gi can be done in almost linear time n1+o(1).
Lemma H.2 (Computation time for Gi, formal version of Lemma 5.4). If we have the below con-
ditions,

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Assuming we already have dL(X)
dTi(X) .

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(ZWg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• We simplify the notation, using Ti and Attni to represent Ti(X) and Attni(Ti−1(X)),
respectively.

• For any matrix Z ∈ Rn×d, we use Z(i, j) to denote the (i, j)-th entry of Z.

Then, we can show that Gi can be computed in n1+o(1) time.

Proof. Let gTi
:= dL(X)

dTi
, and for any i4 ∈ [n], j4 ∈ [d], let gTi

(i4, j4) denote the (i4, j4)-th entry
of gTi .

Similarly, for any i5 ∈ [n], j5 ∈ [d], let Ti(i5, j5) denote the (i5, j5)-th entry of Ti.

We can have

Gi =
dL(X)

dAttni
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=
dL(X)

dTi
· dTi

dAttni

= gTi
· dTi

dAttni

=

n∑
i4=1

d∑
j4=1

gTi
(i4, j4) ·

dTi(i4, j4)

dAttni

where the 1st step is from the definition of Gi, the 2nd step comes from chain rule, the 3rd step is
because of the definition of gTi , the 4th step is due to chain rule.

n∑
i4=1

d∑
j4=1

gTi(i4, j4) ·
dTi(i4, j4)

dAttni

=

n∑
i4=1

d∑
j4=1

gTi
(i4, j4)︸ ︷︷ ︸
1×1

ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

ei4︸︷︷︸
n×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

=

n∑
i4=1

ei4︸︷︷︸
n×1

d∑
j4=1

gTi
(i4, j4)︸ ︷︷ ︸
1×1

ϕ′(Attni(i4, ∗)⊤Wg(∗, j4))︸ ︷︷ ︸
1×1

Wg(∗, j4)⊤︸ ︷︷ ︸
1×d

=

n∑
i4=1

ei4︸︷︷︸
n×1

(Wg︸︷︷︸
d×d

(gTi(i4, ∗)︸ ︷︷ ︸
d×1

⊙ϕ′(Attni(i4, ∗)⊤Wg)︸ ︷︷ ︸
d×1

))⊤

= (gTi ⊙ ϕ′(AttniWg))︸ ︷︷ ︸
n×d

W⊤
g︸︷︷︸

d×d

(25)

where the 1st step is from Lemma H.1, the 2nd step comes from basic algebra, the 3rd step is because
of basic linear algebra, the 4th step is due to basic linear algebra.

By Eq. (25), we have the close form of Gi.

We can compute Gi in the following order

• Compute (gTi
⊙ ϕ′(AttniWg))︸ ︷︷ ︸

n×d

, which takes n · d time.

• Compute (gTi
⊙ ϕ′(AttniWg))︸ ︷︷ ︸

n×d

W⊤
g︸︷︷︸

d×d

, which takes d2 · n time.

Therefore, the overall running time for Gi is n1+o(1).

H.2 FAST COMPUTATION FOR SINGLE-LAYER TRANSFORMER

In this section, we dive into the computation time and approximation error of the gradient of a
single-layer transformer. We demonstrate in the following Lemma that the gradient of a single-
layer transformer can be computed in almost linear time n1+o(1), and its error can be bounded by
1/ poly(n).
Lemma H.3 (Single-layer transformer gradient approximation). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let X be defined as Definition C.3.

• Let the gradient matrix Gi ∈ Rn×d be defined as Gi =
dL(X)

dAttni(Ti−1(X)) .
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• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(Z ·Wg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• Suppose we have a single-layer transformer (see Definition 1.3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the single-layer transformer can be
bounded by 1/ poly(n). Namely, our algorithm output g̃1 satisfies

∥g̃1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. By Definition 1.3, a single-layer transformer has following structure:

g1 ◦ Attn1 ◦ g0(X)

By the definition of Gi, we have

G1 =
dL(X)

dAttn1(T0(X))

=
dL(X)

dT1(X)
· dT1(X)

dAttn1(T0(X))
(26)

By Lemma H.2, we have G1 can be computed in n1+o(1) time.

Proof of Part 1: running time.

For less confusion, in this part of the proof, we ignore the approximation error temporarily.

Since we have got G1, we use methods mentioned in Lemma E.11, F.5, G.4 to compute
dL(X)
dT0(X) ,

dL(X)
dW1

, dL(X)
dWV1

, respectively, which takes n1+o(1) time for each.

Then, since we have dL(X)
dT0(X) , again by Lemma H.2, we have dL(X)

dX can be computed in n1+o(1)

time.

Therefore, the overall running time is n1+o(1).

Proof of Part 2: error bound.

Then, we move on to the error bound.

By Lemma H.2 and Eq. (26), there is no approximation error when computing G1.

By Lemma E.11, F.5, G.4, we have there is 1/ poly(n) approximation error on
dL(X)
dT0(X) ,

dL(X)
dW1

, dL(X)
dWV1

, respectively.

Let g̃t0 , g̃w1 , g̃v1 denote the approximation results of dL(X)
dT0(X) ,

dL(X)
dW1

, dL(X)
dWV1

, respectively.

We have

∥g̃t0 −
dL(X)

dT0(X)
∥∞ ≤ 1/ poly(n) (27)

and

∥g̃w1
− dL(X)

dW1
∥∞ ≤ 1/poly(n)
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and

∥g̃v1 −
dL(X)

dWV1

∥∞ ≤ 1/ poly(n)

Let G̃0 = g̃t0 ·
dT0(X)

dX denote the approximated version of G0.

We have

∥G̃0 −G0∥∞

= ∥(g̃t0 −
dL(X)

dT0(X)
) · dT0(X)

dX
∥∞

≤ n · d∥g̃t0 −
dL(X)

dT0(X)
∥∞∥

dT0(X)

dX
∥∞

≤ n · d(1/ poly(n))∥dT0(X)

dX
∥∞

≤ 1/ poly(n)

where the 1st step is from the definition of G̃0, the 2nd step comes from basic linear algebra, the 3rd
step is because of Eq. (27), the 4th step is due to each entry can be written by O(log n) bits.

Let g̃1 = G̃0.

Therefore, we have

∥g̃1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

H.3 FAST COMPUTATION FOR MULTI-LAYER TRANSFORMER

Since we have already demonstrated that almost linear time gradient computation can be applied to
a single-layer transformer, with the help of math induction, we can easily generalize that result to
the multi-layer transformer. In the following Lemma, we display that the gradient of the multi-layer
transformer can be computed in almost linear time, and its approximation error can be bounded by
1/ poly(n).
Lemma H.4 (Multi-layer transformer gradient approximation, formal version of Lemma 5.5). If we
have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let X be defined as Definition C.3.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• For i2 ∈ [n], j2 ∈ [d], let Gi(i2, j2) denote the (i2, j2)-th entry of Gi.

• Let gradient components for each layer be computed according to Lemma E.11, F.5, G.4.

• Assuming for any Z ∈ Rn×d, we have gi(Z) ∈ Rn×d, and gi(Z) = ϕ(Z ·Wg), where
Wg ∈ Rd×d and ϕ : R → R denotes any element-wise activation function. Let ϕ′ denote
the derivative of ϕ.

• Suppose we have a m-layer transformer (see Definition 1.3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.
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• Part 2: error bound. The approximation error of the multi-layer transformer can be
bounded by 1/ poly(n). Namely, our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. We use math induction to prove this Lemma.

Step 1: Proof of a single-layer transformer.

Firstly, by Lemma H.3, we have that for one-layer transformer, our conclusion is established.

Step 2: Assumption for k-layer transformer.

Secondly, we assume for any k, for k-layer transformer model, we have

• Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• The approximation error of the k-layer transformer can be bounded by 1/ poly(n). Namely,
our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Step 3: Proof of (k + 1)-layer transformer.

Thirdly, we consider the (k + 1)-layer transformer model.

Without loss of generality, we assume that the additional transformer layer is added at the beginning
of the model.

Namely, let Fk denote a k-layer transformer model. We have

Fk(X) = gk ◦ Attnk ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X)

Let the (k + 1)-layer transformer model have the following structure:

Fk+1(X) = Fk ◦ Attn ◦ g(X) (28)

Let T0 := g(X).

By assumption, we have

• dL(X)
dAttn(T0)

can be approximated in n1+o(1) time.

• Let g̃k denote the approximated version of dL(X)
dAttn(T0)

. We have

∥g̃k −
dL(X)

dAttn(T0)
∥∞ ≤ 1/ poly(n) (29)

Step 3.1: Proof of the running time for (k + 1)-layer transformer

For less confusion, in this part of the proof, we ignore the approximation error temporarily.

By the assumption, we have dL(X)
dAttn(T0)

can be approximated in n1+o(1) time.

We compute dL(X)
dX in following order:

• Since we already have dL(X)
dAttn(T0)

, by Lemma E.11, the computation time for dL(X)
dT0

is

n1+o(1).

• Since we have dL(X)
dT0

, by Lemma H.2, the computation time for dL(X)
dX is n1+o(1).
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Therefore, for (k + 1)-layer transformer, the overall running time for dL(X)
dX is n1+o(1).

Step 3.2: Proof of the error bound for (k + 1)-layer transformer

By Lemma E.11, during the process of solving the approximated version of dL(X)
dg(X) , the approxima-

tion error will not be magnified by more than poly(n).

Let g̃t0 denote the approximated version of dL(X)
dg(X) , we have

∥g̃t0 −
dL(X)

dg(X)
∥∞

≤ poly(n)∥g̃k −
dL(X)

dT (X)
∥∞

≤ 1/poly(n) (30)

where the 1st step is from the above statement, the 2nd step comes from Eq. (29), the 3rd step is
because of basic algebra.

Then, we consider

dL(X)

dX
=

dL(X)

dg(X)
· dg(X)

dX
(31)

Recall that we have g̃ = dL(X)
dX . Then, we have

∥g̃ − dL(X)

dX
∥∞

= ∥(g̃t0 −
dL(X)

dg(X)
) · dg(X)

dX
∥∞

≤ n · d∥g̃t0 −
dL(X)

dg(X)
∥∞∥

dg(X)

dX
∥∞

≤ n · d(1/ poly(n))∥dg(X)

dX
∥∞

≤ 1/poly(n)

where the 1st step is from Eq. (31), the 2nd step comes from basic linear algebra, the 3rd step is
because of Eq. (30), the 4th step is due to each entry can be written by O(log n) bits.

Step 4: Use math induction.

So far, with the assumption that our statement holds under k-layer transformer, we have proved that
our statement still holds under (k + 1)-layer transformer.

Therefore, by math induction, our statement holds for any m-layer transformer.

I CAUSAL ATTENTION MASK

This section will discuss how to combine the causal attention mask with our framework. We argue
that even with the causal attention mask, we can also achieve almost linear time gradient computing
for the multi-layer transformer.

In Section I.1, we introduce essential tools from literature to deal with the causal mask added on the
attention matrix. In Section I.2, we show that with the addition of causal mask, our framework can
still achieve almost linear time gradient computation.

I.1 TOOLS FROM PREVIOUS WORK

Firstly, we restate a classical low-rank approximation method in the literature.
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Lemma I.1 (Low-rank approximation, (Alman & Song, 2023)). Suppose Q,K ∈ Rn×d, with
∥Q∥∞ ≤ R, and ∥K∥∞ ≤ R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter
ϵ ∈ (0, 1), there is a positive integer g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)
such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation of A ∈ Rn×n. Furthermore,
the matrices U0 and V0 defining Ã can be computed in O(n · r) time.

Then, we provide the formal definition for the causal attention mask.
Definition I.2 (Causal attention mask, (Liang et al., 2024a)). We define the causal attention mask
as M ∈ {0, 1}n×n, where Mi,j = 1 if i ≥ j and Mi,j = 0 otherwise.

Algorithm 2 Causal attention mask algorithm, Algorithm 4 in Liang et al. (2024a)

1: procedure CAUSALMASK(U0 ∈ Rn×k, V0 ∈ Rn×k, v ∈ Rn) ▷ Lemma I.3
2: c0 ← 0k

3: for j = 1→ n do
4: bj ← (V ⊤

0 )j︸ ︷︷ ︸
k×1

vj︸︷︷︸
scalar

▷ Let (V ⊤
0 )j denote the j-th row of V0 ∈ Rn×k

5: cj ← cj−1︸︷︷︸
k×1

+ bj︸︷︷︸
k×1

6: end for
7: for j = 1→ n do
8: Yj ← ⟨(U⊤

0 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

9: end for
10: return Y ▷ Y ∈ Rn

11: end procedure

In previous work (Liang et al., 2024a), they point out there exists an algorithm (Algorithm 2) that
can calculate low-rank matrices (with the causal attention mask) multiplication with any vector v in
almost linear time. We restate their results in Lemma I.3.
Lemma I.3 (Fast computation for causal attention mask on tensor, (Liang et al., 2024a)). Let M ∈
{0, 1}n×n be a causal attention mask defined in Definition I.2. Let U0, V0 ∈ Rn×k. Let v ∈ Rn.
Then, there exists an algorithm (see Algorithm 2) whose output satisfies that

Y = (M ⊙ (U0V
⊤
0 ))v,

which takes O(nk) time.

We extend their results to the multiplication of matrix with no(1) columns.
Lemma I.4 (Fast computation for causal attention mask on matrix). If we have the below conditions,

• Let M ∈ {0, 1}n×n be a causal attention mask defined in Definition I.2.

• Let U0, V0 ∈ Rn×k where k = no(1).

• Let H ∈ Rn×kH where kH = no(1).

Then, there exists an algorithm, whose output satisfies that

Z = (M ⊙ (U0V
⊤
0 ))H,

which takes n1+o(1) time.
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Proof. For j ∈ [kH ], let H∗,j ∈ Rn denote the j-th column of H .

By Lemma I.3, we can compute (M ⊙ (U0V
⊤
0 ))H∗,j in O(nk) time.

There are kH columns in total. Therefore, the overall running time is O(nkkH) = O(n · no(1) ·
no(1)) = n1+o(1).

I.2 FAST COMPUTATION WITH CAUSAL MASK

We can easily change all low-rank matrices multiplication to the algorithm mentioned in Lemma I.4.
Then, our framework can support the causal attention mask and still achieves almost linear time
gradient computing for the multi-layer transformer.

The causal mask directly affects the attention matrix, so it’s necessary to define the attention matrix
with the causal mask applied.

Definition I.5. Let M ∈ {0, 1}n×n be a causal attention mask defined in Definition I.2. We define
attention matrix with causal mask as:

f̂(X) := D−1(M ⊙A)

where A := exp(XWX⊤/d) and D := diag((M ⊙A) · 1n).

After analyzing the components of gradients on Ti(X),Wi,WVi
in Section E, F and G, we cate-

gorize them into two groups: one involving the dot product and the other involving the Hadamard
product of the attention matrix. Then, we can show f̂(X)H and (f̂(X) ⊙ (UV ⊤))H for low rank
matrices U, V,H can be approximated in almost linear time.

Lemma I.6. If we have the below conditions,

• Let f̂(X) be defined in Definition I.5.

• Let U, V ∈ Rn×k where k = no(1).

• Let H ∈ Rn×kH where kH = no(1).

Then, approximating the following takes n1+o(1) time:

• Part 1. f̂(X)H

• Part 2. (f̂(X)⊙ (UV ⊤))H

Proof. From Definition I.5, we know

f̂(X) := D−1(M ⊙A)

where D := diag((M ⊙A) · 1n).

By Lemma I.1, U0V
⊤
0 is a good approximation for A. Then, we can approximate f̂(X) by:

D−1(M ⊙ (U0V
⊤
0 ))

where D := diag((M ⊙ (U0V
⊤
0 )) · 1n).

Using Lemma I.3, we know (M ⊙ (U0V
⊤
0 )) · v for any vector v ∈ Rn can be computed in almost

linear time.

We begin by examining the normalization matrix D−1. Calling Lemma I.3, we compute (M ⊙
(U0V

⊤
0 )) ·1n in almost linear time. Then, it takes O(n) time to make (M ⊙ (U0V

⊤
0 )) ·1n diagonal.

Given that D is diagonal, its inverse D−1 can be determined in O(n) time. Thus, we can compute
D−1 in almost linear time.

Proof of Part 1. H can be viewed as a combination of kH vectors, each of size n. Calling
Lemma I.4, we can compute (M ⊙ (U0V

⊤
0 ))H in n1+o(1) time.
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Finally, we compute D−1︸︷︷︸
n×n

(M ⊙ (U0V
⊤
0 ))H︸ ︷︷ ︸

n×kH

, which takes n1+o(1) time since D−1 is diagonal. The

overall gradient computation remains n1+o(1) time.

Proof of Part 2. The proof for this part involves Fact C.2. We can show

((D−1(M ⊙ (U0V
⊤
0 )))⊙ (UV ⊤))H

= ((M ⊙ (D−1U0V
⊤
0 ))⊙ (UV ⊤))H

= (M ⊙ ((D−1U0V
⊤
0 )⊙ (UV ⊤)))H

= (M ⊙ ((D−1U0)⊘ U)(V0 ⊘ V )⊤)H

where the 1st step is from D(A⊙B) = (DA)⊙B = A⊙ (DB) for diagonal matrix D ∈ Rm×m

and A,B ∈ Rm×n, the 2nd step comes from (A⊙ B)⊙ C = A⊙ (B ⊙ C) for A,B,C ∈ Rm×n,
and the last step follows from Fact C.2.

Let UM := (D−1U0)⊘ U and VM := V0 ⊘ V .

For UM , we compute D−1︸︷︷︸
n×n

U0︸︷︷︸
n×k

which takes nk time. We then compute (D−1U0)︸ ︷︷ ︸
n×k

⊘ U︸︷︷︸
n×k

which

takes O(nk2) time.

For VM , we compute V0︸︷︷︸
n×k

⊘ V︸︷︷︸
n×k

which takes O(nk2) time.

We now have (M ⊙ (UMV ⊤
M )H . Calling Lemma I.4, we finish the proof.

We now prove for gradient components that have dot product.

Lemma I.7 (Components for dot product). If we have the below conditions,

• Let f̂(X) be defined in Definition I.5.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Let D6 = −f(X) diag(K)XW⊤ be defined in Lemma D.17.

• Let D2 = −diag(K)f(X)XW be defined in Lemma D.17.

• Let D8 = f(X)GiW
⊤
V be defined in Lemma D.17.

• Let gv := X⊤f(X)Gi be the gradient on WVi
and defined in Lemma G.3.

Then, we can show the following can be approximated in almost linear time:

• Part 1. D̂6 = −f̂(X) diag(K)XW⊤

• Part 2. D̂2 = −diag(K)f̂(X)XW

• Part 3. D̂8 = f̂(X)GiW
⊤
V

• Part 4. ĝv := X⊤f̂(X)Gi

Proof. Proof of Part 1. For D̂6, we compute diag(K)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

first, which takes nd time.

Then, we compute f̂(X)︸ ︷︷ ︸
n×n

diag(K)X︸ ︷︷ ︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1) time.
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Finally, we compute f̂(X) diag(K)X︸ ︷︷ ︸
n×d

W⊤︸︷︷︸
d×d

, which takes n1+o(1) time.

Proof of Part 2. For D̂2, we compute f̂(X)︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1)

time.

Then, we compute diag(K)︸ ︷︷ ︸
n×n

f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd time.

After that, we compute diag(K)f̂(X)X︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

, which takes n1+o(1) time.

Proof of Part 3. For D̂8, we compute in the following steps:

We compute f̂(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1) time.

Then, we compute f̂(X)Gi︸ ︷︷ ︸
n×d

W⊤
V︸︷︷︸

d×d

, which takes n · d2 time.

Proof of Part 4. For ĝv , we compute in the following steps:

We compute f̂(X)︸ ︷︷ ︸
n×n

Gi︸︷︷︸
n×d

using Part 1. of Lemma I.6, which takes n1+o(1) time.

Then, we compute X⊤︸︷︷︸
d×n

f̂(X)Gi︸ ︷︷ ︸
n×d

, which takes n · d2 time.

We then prove for gradient components that have Hadamard product.

Lemma I.8 (Components for Hadamard product). If we have the below conditions,

• Let f̂(X) be defined in Definition I.5.

• Let Gi ∈ Rn×d denote the gradient matrix resulting from the application of the chain rule
up to the function gi, i.e., Gi =

dL(X)
dAttni(Ti−1(X)) .

• Let D7 = (f(X)⊙ (h(X)G⊤
i ))XW⊤ be defined in Lemma D.17.

• Let D4 = (f(X)⊙ (Gih(X)⊤))XW be defined in Lemma D.17.

• Let gw := X⊤p(X)X = X⊤(p1(X) − p2(X))X be the gradient on Wi and defined in
Definition C.12 and Lemma F.5 where p1(X) = f(X)⊙ q(X) and p2(X) = diag(p1(X) ·
1n)f(X).

Then, we can show the following can be approximated in almost linear time:

• Part 1. D̂7 = (f̂(X)⊙ (h(X)G⊤
i ))XW⊤

• Part 2. D̂4 = (f̂(X)⊙ (Gih(X)⊤))XW

• Part 3. ĝw := X⊤(p̂1(X) − p̂2(X))X where p̂1(X) = f̂(X) ⊙ q(X) and p2(X) =

diag(p̂1(X) · 1n)f̂(X).

Proof. Proof of Part 1. For D̂7, we can compute (f̂(X)⊙ (h(X)G⊤
i ))︸ ︷︷ ︸

n×n

X︸︷︷︸
n×d

using Part 2. of

Lemma I.6, which takes n1+o(1) time.
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We then compute (f̂(X)⊙ (h(X)G⊤
i ))X︸ ︷︷ ︸

n×d

W⊤︸︷︷︸
d×d

, which takes nd2 time.

Proof of Part 2. For D̂7, we can compute (f̂(X)⊙ (Gih(X)⊤))︸ ︷︷ ︸
n×n

X︸︷︷︸
n×d

using Part 2. of Lemma I.6,

which takes n1+o(1) time.

We then compute (f̂(X)⊙ (Gih(X)⊤))X︸ ︷︷ ︸
n×d

W︸︷︷︸
d×d

, which takes nd2 time.

Proof of Part 3. For ĝw, we consider X⊤p̂1(X)X first. Based on Definition C.11, we have p̂1(X) =

f̂(X)⊙ q(X) = f̂(X)⊙ (Gih(X)⊤). We then compute (f̂(X)⊙ (Gih(X)⊤))X using Part 2. of
Lemma I.6, which takes n1+o(1) time. After that, we compute X⊤︸︷︷︸

d×n

(f̂(X)⊙ (Gih(X)⊤))X︸ ︷︷ ︸
n×d

, which

takes nd2 time.

Now we consider X⊤p̂2(X)X . By definition, p̂2(X) = diag(p̂1(X) · 1n)f̂(X). We first com-
pute p̂1(X) · 1n = (f̂(X) ⊙ (Gih(X)⊤)) · 1n using Part 2. of Lemma I.6, which takes
n1+o(1) time. Meanwhile, we compute f̂(X)X using Part 1. of Lemma I.6, which takes
n1+o(1) time. We then have diag(p̂1(X) · 1n)︸ ︷︷ ︸

n×n

f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd time. Finally, we compute

X⊤︸︷︷︸
d×n

diag(p̂1(X) · 1n)f̂(X)X︸ ︷︷ ︸
n×d

, which takes nd2 time.

Together, X⊤p̂1(X)X︸ ︷︷ ︸
d×d

−X⊤p̂2(X)X︸ ︷︷ ︸
d×d

takes d2 time.

Thus, we show that our framework can support causal attention masks.

J RESIDUAL CONNECTION

In this section, we discuss how to adapt our framework to the attention mechanism with the residual
connection.

In Section J.1, we provide a formalized definition of the two residual connections used in the at-
tention mechanism. In Section J.2, we argue that with the addition of the residual connection, the
gradient over the attention mechanism can be computed in almost linear time n1+o(1) and the ap-
proximation error can be bound by 1/ poly(n). In Section J.3, we use math induction to show that
the gradient over the entire transformer with the residual connection can also be computed in almost
linear time n1+o(1).

J.1 KEY CONCEPTS

Recall that in Definition 3.3, we have defined Ti(X) ∈ Rn×d as the intermediate variable output
by the i-th transformer layer. For simplicity, we use Ti to represent Ti(X) in the rest part of this
section. Namely, we have

Ti = (gi ◦ Attni)(Ti−1)

Then, we consider adding the residual connection to our framework. Note that there are two residual
connection operations in one transformer layer. We first define the residual connection over the Attni
in Definition J.1.

Definition J.1 (Residual connection over Attni). If we have the below conditions,

• Let Ti be defined as Definition 3.3.
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• Let Attni be defined as Definition C.3.

We define Zi ∈ Rn×d as the output with the residual connection of Attni. Namely, we have

Zi = Ti−1 + Attni(Ti−1)

Then, we consider the second residual connection over the MLP layer gi, where we have the formal
definition for this in Definition J.2.
Definition J.2 (Residual connection over gi). If we have the below conditions,

• Let the multi-layer transformer be defined as Definition 1.3.

• Let the intermediate variable Ti be defined as Definition 3.3.

• Let gi denote the components other than self-attention in the i-th transformer layer.

• Let Zi ∈ Rn×d be defined as Definition J.1.

Then Ti, the output of i-th layer transformer with the residual connection, should have the following
form:

Ti = Zi + gi(Zi)

J.2 ANALYSIS OF THE RESIDUAL CONNECTION

In the previous section, we have defined the two residual connection operations.

In this section, we argue that if the gradient computation can be done in almost linear time without
the residual connection, then with the addition of the residual connection, the gradient computation
can also be completed in almost linear time.
Lemma J.3 (Analysis of the residual connection). If we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let YR ∈ Rn×d and XR ∈ Rn×d denote the output and input of the residual connection,
respectively.

• Let H : Rn×d → Rn×d denote some layer in the transformer, such as MLP, Attn, etc.

• Suppose the residual connection can be written as

YR = XR + H(XR).

• Assuming we have dL(X)
dYR

∈ Rn×d, then we can calculate dL(X)
dYR

dH(XR)
dXR

in almost linear
time n1+o(1).

Then, we can show that,

• dL(X)
dXR

can be calculated in almost linear time n1+o(1).

• If dL(X)
dYR

has 1/ poly(n) approximation error, then the approximation error on dL(X)
dXR

is
still 1/ poly(n).

Proof. By the chain rule, we have

dL(X)

dXR
=

dL(X)

dYR

dYR

dXR

=
dL(X)

dYR
(I +

dH(XR)

dXR
)

=
dL(X)

dYR
+

dL(X)

dYR

dH(XR)

dXR
(32)

73



3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

where the 1st step is from the chain rule, the 2nd step comes from basic calculus, the 3rd step is
because of basic algebra.

By the assumption, we already have dL(X)
dYR

, and dL(X)
dYR

dH(XR)
dXR

can be computed in almost linear
time n1+o(1).

The addition operation between dL(X)
dYR

and dL(X)
dYR

dH(XR)
dXR

takes n · d time.

Therefore, the overall running time for dL(X)
dXR

is n1+o(1).

Then, we consider the approximation error.

By Eq. (32) and basic linear algebra, the approximation error will not be magnified by more than
(n · dpoly(n) + 1). Since (n · dpoly(n) + 1)(1/ poly(n)) = poly(n), the approximation error on
dL(X)
dXR

can be bounded by 1/ poly(n).

J.3 ANALYSIS FOR THE ENTIRE MODEL WITH THE RESIDUAL CONNECTION

In the previous section, we have shown that, with the addition of the residual connection on a single
component, the gradient computation time can still be done in almost linear time. We will apply this
finding to the entire model.

We begin by single layer proof.
Lemma J.4 (Fast gradient computation for single-layer transformer with residual connection). If
we have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let X ∈ Rn×d be defined as Definition C.3.

• Suppose we have a single-layer transformer (see Definition 1.3).

• Let the residual connection be defined as Definition J.1 and J.2.

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the single-layer transformer with the
residual connection can be bounded by 1/poly(n). Namely, our algorithm output g̃r1
satisfies

∥g̃r1 −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. We use Ti to represent Ti(X) for simplicity. By the definition of Ti (see also Definition 3.3),
we have the following equations

T0 = g0(X)

Follow Definition J.1 and J.2, we have

Z1 = T0 + Attn1(T0)

and

T1 = Z1 + g1(Z1)

Then we calculate the gradient by the following steps:

• Step 1: Calculate dL(X)
dT1

. By the definition of L(X) (see also Definition 3.1), we have
dL(X)
dT1

can be computed in n · d time.
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• Step 2: Calculate dL(X)
dZ1

. By Lemma H.2, the assumption in Lemma J.3 is satisfied.

Therefore, we have dL(X)
dZ1

can be computed in almost linear time n1+o(1).

• Step 3: Calculate dL(X)
dT0

. By Lemma E.11, the assumption in Lemma J.3 is satisfied.

Hence, dL(X)
dT0

can be computed in almost linear time. By Lemma E.11, the approximation
error is 1/ poly(n).

• Step 4: Calculate dL(X)
dX . By Lemma H.2, dL(X)

dX can be computed in n1+o(1). The
approximation error is (n · d)(1/ poly(n)) = (1/poly(n)).

To sum up, we can show that the overall running time for dL(X)
dX is n1+o(1) and the approximation

error is 1/ poly(n).

Let g̃r1 be the output of Step 4. Then we are done.

We now prove for multi-layer.

Lemma J.5 (Fast gradient computation for multi-layer transformer with residual connection). If we
have the below conditions,

• Let L(X) be defined as Definition 3.1.

• Let X ∈ Rn×d be defined as Definition C.3.

• Let the residual connection be defined as Definition J.1 and J.2.

• Suppose we have a m-layer transformer (see Definition 1.3).

Then, we can show that,

• Part 1: running time. Our algorithm can approximate dL(X)
dX in n1+o(1) time.

• Part 2: error bound. The approximation error of the m-layer transformer with the resid-
ual connection can be bounded by 1/ poly(n). Namely, our algorithm output g̃r satisfies

∥g̃r −
dL(X)

dX
∥∞ ≤ 1/ poly(n)

Proof. We use math induction in this proof.

Step 1: Proof of a single-layer transformer.

Firstly, by Lemma J.4, we have the statement holds for a single-layer transformer.

Step 2: Assumption for k-layer transformer.

Secondly, we assume for any k, for k-layer transformer model, we have

• Part 1: running time. Our algorithm can approximate dL(X)
dX in O(n1+o(1)) time.

• Part 2: error bound. The approximation error of the k-layer transformer can be bounded
by 1/ poly(n). Namely, our algorithm output g̃ satisfies

∥g̃ − dL(X)

dX
∥∞ ≤ 1/ poly(n)

Step 3: Proof of (k + 1)-layer transformer.

Thirdly, we consider the (k + 1)-layer transformer model.

Let Fk denote a k-layer transformer with the residual connection.
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Then, the entire model can be written as

(Fk ◦ g0)(X)

By the definition of Ti, we have

T0 = g0(X)

Then, by definition of Zi (see also Definition J.1), we have

Z1 = T0 + Attn1(T0)

By Definition J.2, we have

T1 = Z1 + g1(Z1)

Without loss of generality, we assume that the additional transformer layer is added at the beginning
of the model. Then, the (k + 1)-layer transformer model has the following structure:

Fk+1(X) = Fk(T1)

By the assumption for k-layer transformer, we have dL(X)
dT1

can be computed in almost linear time
n1+o(1) and the approximation error can be bounded by 1/ poly(n).

We apply similar proof of Lemma J.4, then we can show that, we can compute dL(X)
dX in almost

linear time n1+o(1) and the approximation error can be bounded by 1/poly(n).

K MULTI-HEAD ATTENTION

Following the notation used in Section B.1, we use h to denote the number of heads, and dh = d/h
to denote the dimension of each head.

Definition K.1 (Multi-head attention). If we have the below conditions,

• Let h denote the number of heads.

• Let d denote the hidden dimension. Let dh = d/h denote the dimension of each attention
head.

• Let Q,K, V ∈ Rn×d be defined as Definition C.3.

• Let f(X) be defined as Definition C.8.

• Let s(X) be defined as Definition C.10.

The multi-head attention can be formalized as follows:

• Step 1. Split the hidden dimension d of Q,K, V ∈ Rn×d into h parts. Then, for each
l ∈ [h], we have Ql,Kl, Vl ∈ Rn×dh .

• Step 2. For each l ∈ [h], calculate the attention matrix fl := Softmax(QlK
⊤
l /dh) ∈

Rn×n, and calculate the corresponding attention result sl := flVl ∈ Rn×dh .

• Step 3. Concatenate sl ∈ Rn×dh together, then we have the final multi-head attention
output s ∈ Rn×d.

Then, we dive into the analysis of the gradient computation process over the attention mechanism
with multi-head attention.

Lemma K.2 (Analysis of the multi-head attention). If we have the below conditions,
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• Let Attn(X) be defined as Definition C.3.

• Let multi-head attention mechanism be defined as Definition K.1.

• Let Ym, Xm ∈ Rn×d denote the output and input of the multi-head attention, respectively.

Then, we can show that,

• dL(X)
dXm

can be calculated in almost linear time n1+o(1).

• If dL(X)
dYm

has 1/ poly(n) approximation error, then the approximation error on dL(X)
dXm

is
still 1/ poly(n).

Proof. Following the notations used in Definition K.1, for l ∈ [h], we use sl ∈ Rn×dh to denote
the output by each attention head. And we use s ∈ Rn×d to denote the concatenated version of the
output of the multi-head attention.

By the chain rule and the definition of L(X) (see also Definition 3.1), we have

dL(X)

dXm
=

dL(X)

dYm
· dYm

ds

ds

dXm

=
dL(X)

dYm
· dYm

ds

h∑
l=1

dsl
dXm

where the 1st step is from the chain rule, the 2nd step comes from s ∈ Rn×d is the concatenated
version of sl ∈ Rn×dh .

We calculate the gradient in the following steps:

• Step 1: Calculate dL(X)
dYm

. By the definition of L(X) (Definition 3.1), we have that dL(X)
dYm

can be calculated in n · d time.

• Step 2: Calculate dL(X)
dYm

· dYm

ds . Since we already have dL(X)
dYm

, by Lemma H.2, we have
dL(X)
dYm

· dYm

ds can be computed in almost linear time n1+o(1).

• Step 3: Calculate dL(X)
dYm

· dYm

ds

∑h
l=1

dsl
dXm

. For each l ∈ [h], by Lemma E.11, dL(X)
dYm

·
dYm

ds ·
dsl
dXm

can be computed in n1+o(1). Since the number of heads h can be viewed as a
constant here, it takes n1+o(1) time to compute the gradients on h heads.

Therefore, the overall running time for dL(X)
dXm

is n1+o(1).

Then, we consider the error bound.

By assumption, there is 1/ poly(n) approximation error on dL(X)
dYm

. For each l ∈ [h], the approxima-

tion error will not be magnified by more than n2 · d · dh · poly(n) on dL(X)
dYm

· dYm

ds ·
dsl
dXm

.

Then, since there is total h heads, the approximation error on dL(X)
dXm

can be bound by

h · n2 · d · dh · poly(n) · (1/ poly(n)) = 1/ poly(n)

Similar to the proof of Lemma H.3 and H.4, we apply Lemma K.2 to deal with the multi-head
attention in each transformer layer. Then, we can show that dL(X)

dX can be computed in almost linear
time n1+o(1) and the approximation error can be bounded by 1/ poly(n).
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