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Abstract
Fairness of decision-making algorithms is an in-
creasingly important issue. In this paper, we focus
on spectral clustering with group fairness con-
straints, where every demographic group is rep-
resented in each cluster proportionally as in the
general population. We present a new efficient
method for fair spectral clustering (Fair SC) by
casting the Fair SC problem within the differ-
ence of convex functions (DC) framework. To
this end, we introduce a novel variable augmenta-
tion strategy and employ an alternating direction
method of multipliers type of algorithm adapted
to DC problems. We show that each associated
subproblem can be solved efficiently, resulting in
higher computational efficiency compared to prior
work, which required a computationally expen-
sive eigendecomposition. Numerical experiments
demonstrate the effectiveness of our approach on
both synthetic and real-world benchmarks, show-
ing significant speedups in computation time over
prior art, especially as the problem size grows.
This work thus represents a considerable step for-
ward towards the adoption of fair clustering in
real-world applications.

1. Introduction
Algorithmic decision-making systems leveraging machine
learning (ML) are increasingly being used in critical do-
mains such as healthcare, social policy, and education, rais-
ing concerns about the potential for these algorithms to
exhibit unfair behavior towards certain demographic groups
(Hardt et al., 2016; Buolamwini & Gebru, 2018; Choulde-
chova & Roth, 2020). In response to these concerns, the
field of fair ML has proposed mathematical fairness for-
mulations for various ML tasks, e.g., (Dwork et al., 2012;
Zafar et al., 2017; Samadi et al., 2018; Donini et al., 2018;
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Agarwal et al., 2019; Aghaei et al., 2019; Amini et al., 2019;
Davidson & Ravi, 2020; Celis et al., 2018; Singh et al.,
2023; Ali et al., 2023).

In clustering research, Chierichetti et al. (2017) introduced
demographic fairness by imposing fairness constraints to
ensure balanced representation across protected groups in
clusters. Initially applied to two groups in Chierichetti et al.
(2017), this concept was expanded to multiple groups (Rös-
ner & Schmidt, 2018; Bera et al., 2019a) and primarily
explored in prototype-based clustering (Chierichetti et al.,
2017; Carreira-Perpinán & Wang, 2013; Bera et al., 2019a).
Kleindessner et al. (2019) adapted this notion of fairness
to spectral clustering (Shi & Malik, 2000; Von Luxburg,
2007) and is known as fair spectral clustering (Fair SC). Al-
though recent advances (Wang et al., 2023) have sped up the
computation of Fair SC, the reliance on the computationally
expensive eigendecomposition of the fairness-constrained
graph Laplacian still limits the application of Fair SC to
real-world problems.

From an optimization standpoint, SC can be cast as a
trace maximization problem with orthonormality constraints
(Bach & Jordan, 2003), falling into the differences of convex
functions (DC) framework. This problem class has spurred
substantial interest (Tao et al., 1986; Le Thi & Pham Dinh,
2018), and efficient DC-based algorithms have been de-
veloped for various ML tasks including feature selection
(Le Thi et al., 2015), reinforcement learning (Piot et al.,
2014) and (kernel) PCA (Beck & Teboulle, 2021; Tonin
et al., 2023). However, these algorithms do not extend di-
rectly to Fair SC due to their lack of consideration for the
fairness constraints, the integration of which within the DC
framework remains unexplored in the existing literature.

In this work, we cast the Fair SC problem into the DC
framework and develop an efficient alternating direction
method-of-multipliers (ADMM)-type algorithm through a
suitable variable augmentation, achieving higher compu-
tational efficiency over existing algorithms (Kleindessner
et al., 2019; Wang et al., 2023). Our specific contributions
can be summarized as follows:

• Novel Algorithm Design: We develop a new efficient
optimization method for Fair SC by casting the prob-
lem in the DC framework and by designing a novel

1



Accelerating Spectral Clustering under Fairness Constraints

variable augmentation suitable for efficient DC opti-
mization within an ADMM type of algorithm.

• Efficient Solution via DC: We show that each associ-
ated ADMM subproblem can be solved efficiently. In
particular, our approach can exploit fast gradient-based
algorithms for the DC framework. This results in better
computational efficiency of our method, avoiding the
expensive eigendecomposition of a modified Laplacian
required by exisiting algorithms.

• Empirical Validation: Through numerical experiments,
we demonstrate the effectiveness of our approach on
both synthetic and real-world benchmarks, showing
significant speedups in computation time, especially
with larger sample size and number of clusters.

This paper is structured as follows. Section 2 reviews the
group fairness constraints for spectral clustering and the
existing algorithms for Fair SC. Section 3 presents our new
algorithm for Fair SC. The numerical experiments in Sec-
tion 4 show the advantage of our method in computational
efficiency over existing algorithms on multiple benchmarks.
Proofs are deferred to the Appendix.

2. Problem Formulation
Notation: Given a symmetric real matrix M ∈ Rn×n,
λ(M) ∈ Rn is the vector of its eigenvalues ordered decreas-
ingly. Is is the identity matrix of size s× s. ∥·∥F denotes
the Frobenius norm. For a convex set C, ιC(·) is its indicator
function: 0 on C and +∞ otherwise. The Fenchel-Legendre
transform of a function f is f⋆. For an integer s > 0, [s]
denotes the set {1, . . . , s}.

2.1. Group-fair clustering

Given a set of data points, the goal of clustering is to par-
tition the dataset into disjoint subsets such that data points
in the same subset are more similar to each other than to
those in the other subsets. Formally, let D = {xi ∈ Rd}ni=1

be a dataset of n data points. Clustering partitions D into k
clusters:

D = C1 ∪ · · · ∪ Ck, (1)

such that the resulting clustering has high intra-cluster sim-
ilarity and low inter-cluster similarity. Clustering can be
encoded in a clustering indicator matrix Q ∈ Rn×k, where
qil := 1 if xi ∈ Cl, and 0 otherwise, for i ∈ [n] and l ∈ [k].
We now review the notion of group fairness in clustering.
Suppose we are also given h groups partitioning the dataset
D (e.g., based on sensitive data such as nationality or cen-
sus):

D = V1 ∪ . . . ∪ Vh, (2)

where Vi ∩ Vj = ∅ for i ̸= j. Chierichetti et al. (2017);
Bera et al. (2019a) proposed the following notion of balance

C1 C2

C ′
1

C ′
2

Figure 1: Illustrative example of fair clustering. Red and
blue colors indicate h = 2 different demographic groups.
Clustering with k = 2 of the left-hand side data can result
in two possible partitionings: the top clustering C1, C2 or
the bottom clustering C ′

1, C
′
2, where balance(C{1,2}) = 0

and balance(C ′
{1,2}) = 1.

in fair clustering such that each cluster contains the same
number of elements from each group Vs.

Definition 2.1 (Balance (Chierichetti et al., 2017)). For a
clustering of type (1), define the balance of the cluster Cl as

balance(Cl) = min
s,s′∈[h]
s̸=s′

|Vs ∩ Cl|
|Vs′ ∩ Cl|

∈ [0, 1]. (3)

An example of fair clustering is shown in Figure 1, with
ground-truth labels shown for visualization purposes. In
group-level fairness (Chierichetti et al., 2017), the higher
the balance of each cluster, the fairer the clustering. A
perfectly balanced clustering means that objects from all
groups are presented proportionately in each cluster. The
following definition due to Kleindessner et al. (2019) gives
the corresponding group fairness condition.

Definition 2.2 (Group fairness). A clustering such as (1)
is group fair with respect to a group partition (2) if the
proportion of each group in all clusters is the same as in D,
i.e. for s ∈ [h] and l ∈ [k],

|Vs ∩ Cl|
|Cl|

=
|Vs|
n
. (4)

Groups can be encoded in a group indicator matrix G ∈
Rn×h with gis := 1 if xi ∈ Vs, and 0 otherwise, for i ∈
[n], s ∈ [h]. The fairness condition (4) can be represented
in matrix form using the indicator matrices Q and G. This
is done in Wang et al. (2023) by considering the matrices
A = G⊤Q and B = (G⊤1n) · (Q⊤1n)

⊤. The entries of
A and B are asl = |Vs ∩ Cl| and bsl = |Vs| · |Cl| for
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s ∈ [h] and l ∈ [k]. The group-fairness condition (4) is then
equivalent to n ·A = B, or

F⊤
0 Q = 0, (5)

where F0 = G− 1nz
T ∈ Rn×h and z = GT 1n

n ∈ Rh.

2.2. Fair spectral clustering

Given the dataset D, in this work we consider a positive
definite kernel κ : Rd × Rd → R and define the affin-
ity matrix K ∈ Rn×n as Kij = κ(xi, xj) and the de-
gree matrix D ∈ Rn×n as Dii =

∑n
j=1Kij (Alzate &

Suykens, 2008). The spectral clustering solution is obtained
by solving an eigenvalue problem of size n × n and cor-
responds to the eigenvectors H ∈ Rn×k associated with
the k largest eigenvalues of the normalized affinity matrix
M := D−1/2KD−1/2. Typically as in normalized SC, the
clustering indicators are then obtained by applying k-means
to the rows of D−1/2H .
Remark 2.3. Spectral clustering with kernel as affinity func-
tion is particularly useful in clustering applications where
the input data is given as a data matrix. Our algorithm
can also be applied in the standard SC setting (Shi & Ma-
lik, 2000; Von Luxburg, 2007) where the input is given
as a graph with adjacency matrix W , by considering M =
D−1/2WD−1/2. We can regularize the problem by working
with p.s.d. M := M+ (1 + ω)In for small ω > 0. In fact,
it holds that λi(M) ≥ −1, ∀i = 1, . . . , n, as the eigenval-
ues of the normalized Laplacian L̂ = D−1/2LD−1/2, with
L = D −W , lie in [0, 2]. This regularization does not alter
the solution space as it only shifts the eigenvalues. This is
a well-studied regularization technique that is widely used,
e.g., in kernel methods (Bishop & Nasrabadi, 2006).

The group fairness constraint was incorporated into the
framework in Kleindessner et al. (2019) by adding the linear
constraint (5) to the spectral clustering problem:

max
H∈Rn×k

Tr(H⊤MH)

s.t. H⊤H = Ik,
F⊤H = 0

(6)

with normalization F = D−1/2F0, as reviewed in Ap-
pendix D.2. We now review existing algorithms for (6).

2.2.1. O-FSC ALGORITHM

The nullspace-based algorithm for solving (6) proposed in
Kleindessner et al. (2019) is as follows. Since the columns
of H live in the null space of F⊤, we can write H = ZY ,
for some Y ∈ R(n−h)×k, where Z ∈ Rn×(n−h) is an or-
thonormal basis of null(F⊤). Consequently, the optimiza-
tion problem (6) is equivalent to the following trace maxi-
mization where the linear constraints are removed:

max
Y ∈R(n−h)×k

Tr (Y ⊤MZY ) s.t. Y ⊤Y = Ik, (7)

with modified affinity MZ = Z⊤MZ ∈ R(n−h)×(n−h).
By Bach & Jordan (2003), the solution Y is given by the k
largest eigenvectors of MZ by the eigenvalue problem

MZY = Y Λ, (8)

where Λ = diag(λn−h−k, . . . , λn−h) is the diagonal matrix
of eigenvalues of MZ . Finally, the solution to the original
problem (6) is recovered as H = D−1/2ZY .

This algorithm is denoted o-FSC as it is the original algo-
rithm for Fair SC. o-FSC requires two major computational
steps. The first one is the explicit computation of the null
space of FT . This can be done by the SVD of F , which has
time complexity O(nh2). The second major computational
step is the eigenvalue decomposition of MZ . This step has
complexity O((n − h)3). Due to the cubic complexity of
eigendecomposition, the o-FSC algorithm is only suitable
for small n and is not scalable to real-world datasets.

2.2.2. S-FSC ALGORITHM

In Wang et al. (2023), the authors proposed a more efficient
version of the o-FSC algorithm. Wang et al. (2023) rewrite
the eigenvalue problem (8) in terms of a new matrix s.t. they
can efficiently apply the the implicitly restarted Arnoldi
method (Sorensen, 1992) for computing eigenpairs. First
note that (8) can be rewritten by left-multiplication with Z
as (

ZZ⊤MZZ⊤)ZY = ZY Λ, (9)

as Z⊤Z = In−h. This leads to the following projected
eigenvalue problem AY ′ = Y ′Λ, where A = PMP ∈
Rn×n with P = ZZ⊤ and Y ′ = ZY . It is possible to
show that an eigenvalue/eigenvector pair (λ, y′) of A, with
λ being one of its largest n − h eigenvalues, is also an
eigenvalue/eigenvector pair of MZ with y = Z⊤y′. There-
fore, one can solve Problem (8) by finding the smallest
eigenvectors of (9). Note that, for the sake of avoiding
the computation of Z, Wang et al. (2023) use the rows
of H ′ = D−1/2Y ′ instead of H = D−1/2ZY ′ in the k-
means step, with Y ′ being the top k eigenvectors of A.
The complexity of s-FSC for each eigensolver iteration is
O(n2 + nh2 + nk2), with constants depending on the num-
ber of required restarts of the Arnoldi method; in general,
this depends on the initial vector and properties of M , in
particular the distribution of its eigenvalues (Stewart, 2001).
While the s-FSC algorithm improves efficiency over o-FSC,
its scalability remains limited by the eigendecomposition
routine, which in practice exhibits significant computational
cost.

3. Algorithm
In this section, we design an ADMM-like algorithm for Fair
SC. This is done by reformulating the problem within the dif-
ference of convex functions (DC) framework and devising a
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new variable augmentation allowing efficient dualization of
the ADMM subproblem. Our specific construction leads to
efficient gradient-based algorithms avoiding the expensive
eigendecomposition routines on the n× n matrices.

Difference of convex functions. To leverage the effi-
ciency of DC optimization, we recast Problem 6 as the
minimization of a difference of convex functions. However,
directly applying DC optimization to Problem 6 would ne-
cessitate computing M1/2, a computationally demanding
operation akin to solving the original problem. To circum-
vent this challenge, we formulate our DC problem in terms
of M2 instead of M . This choice allows us to bypass the
computation of M1/2 without sacrificing solution quality,
as we will demonstrate empirically that optimizing with
M2 yields solutions exhibiting comparable fairness to those
obtained with M . Note that in practice we never compute
M2 explicitly, as we only need to compute matrix-vector
products. Formally, we define f, g, h : Rn×k → R∪{+∞}
as follows:

f(H) =
1

2
∥H∥2F , g(H) = ιSk

n
(H),

h(H) = ι{0}(F
⊤H).

Remark 3.1. Here, the orthogonality constraints corre-
spond to belonging to the Stiefel manifold Sk

n = {H ∈
Rn×k |H⊤H = Ik}. While the constraint H ∈ Sk

n is not
itself convex, it can be relaxed into a convex constraint by
considering the convex hull of the Stiefel manifold as the
solutions necessarily lie on the boundary (Uschmajew, 2010,
Lemma 2.7).

Using this notation, our proposed DC formulation reads

min
H∈Rn×k

g(H) + h(H)− f(MH). (10)

Note that Problem 10 corresponds to solving a modified (6)
withM2 instead ofM in the cost function. Notice that, with-
out the fairness constraints, (10) reduces to finding the top k
eigenvectors of M2 (Bach & Jordan, 2003). While efficient
optimization algorithms with DC for the simpler variance-
maximization case without fairness constraints (i.e., h = 0)
have been studied in previous work (e.g., in the PCA litera-
ture (Thiao et al., 2010; Beck & Teboulle, 2021; Tonin et al.,
2023)), the main challenge here is to develop an efficient
algorithm that can handle the additional complexity intro-
duced by the fairness constraints. In this work, we derive
a dual framework that is amenable to fast gradient-based
optimization of (10), as opposed to the eigendecomposi-
tion routines used in o-FSC (Kleindessner et al., 2019) and
s-FSC (Wang et al., 2023).

Novel variable augmentation. To address the Fair SC
problem, we propose to first cast the problem into an

ADMM framework. The ADMM approach in the context
of difference of convex functions has been investigated in,
e.g., (Sun et al., 2018a; Chuang et al., 2022; Tu et al., 2020).
However, naively applying the existing ADMM algorithms
to the Fair SC problem results in intermediate argmin prob-
lems that are not easy to solve, involving large matrix in-
versions. To arrive at efficient solutions, we introduce a
novel variable augmentation scheme, where the linear con-
straint couples the ADMM variable Y with MH instead
of directly with H . This specific design choice is crucial
for decomposing the problem into a subproblem w.r.t. H
that can be efficiently tackled through dualization within the
DC framework. Moreover, as we will demonstrate empir-
ically, enforcing fairness on MH instead of H effectively
promotes the same group balance. Let us then write (10)
with the proposed variable augmentation as a composite
function with linear constraints:

min
H,Y ∈Rn×k

g(H)+h(Y )−f(MH) s.t. MH = Y. (11)

We form the augmented Lagrangian

L(H,Y, P ) = g(H) + h(Y )− f(MH)

+ ⟨P,MH − Y ⟩

+
α

2
∥MH − Y ∥2F ,

(12)

where P are the Lagrange multipliers and α is the penalty
parameter. The ADMM algorithm corresponds to the fol-
lowing iterations:

H(i+1) = argmin
H∈Rn×k

L(H,Y (i), P (i)), (13)

Y (i+1) = argmin
Y ∈Rn×k

L(H(i+1), Y, P (i)), (14)

P (i+1) = P (i) + α(MH(i+1) − Y (i+1)). (15)

Our algorithm is summarized in Algorithm 1. The penalty
α(i+1) is updated according to the standard rule suggested
in (Boyd et al., 2011) and detailed in Appendix B. We now
analyze the two subproblems separately.

3.1. Subproblem with respect to H

Our approach to solving Problem (13) consists in the fol-
lowing steps. First, we remark that it can be written as a
difference of convex functions. Such problems have been
widely studied in the literature (Tao et al., 1986), and in
our case dualization is possible and strong duality holds.
Next, we solve the dual problem using iterative techniques,
as we can provide an explicit form for the corresponding
gradient using standard properties of the Fenchel-Legendre
conjugates. Finally, we can get back the primal solution that
is exactly the solution to Problem (13) by computing the
SVD of a well-chosen matrix.
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Algorithm 1 Proposed ADMM-type method for Fair SC

Input: affinity matrix K ∈ Rn×n; group matrix F ∈
Rn×h; k ∈ N; α(0) > 0

1: Compute normalized affinity matrix M =
D−1/2KD−1/2

2: Initialization H(0) = 0, Y (0) = 0, P (0) = 0
3: Lα(H,Y, P ) = g(H)+h(Y )−f(MH)+ ⟨P,MH−
Y ⟩+ α

2 ∥MH − Y ∥2F
4: for i = 0, 1, . . . , T − 1 do
5: H(i+1) = argminH Lα(i)(H,Y (i), P (i))
6: Y (i+1) = argminY Lα(i)(H(i+1), Y, P (i))
7: P (i+1) = P (i) + α(i)(MH(i+1) − Y (i+1))
8: Update α(i+1) according to (19)
9: end for

10: Apply k-means clustering to the rows of H ′ =
D− 1

2H(T )

Proposition 3.2. Let ϕ : X 7→ f(X) − ⟨P,X⟩ −
α
2 ∥X − Y ∥2 and assume that α < 1. Then Problem (13)
can be written as a DC. Moreover, it holds that

argmin
H∈Rn×k

L(H,Y (i), P (i)) = argmin
H∈Rn×k

g(H)− ϕ(MH)

and the dual problem reads

inf
V ∈Rn×k

ϕ⋆(V )− g⋆(MV ). (16)

Finally, strong duality holds.

The condition α < 1 is not a limiting assumption as the
ADMM is known to converge for small α values (Nocedal
& Wright, 1999). To solve (16), we assume that M is full
rank, which typically happens when the affinity matrix K
comes from positive definite kernels associated with infinite
dimensional feature spaces, such as the Gaussian kernel,
and the data dataset does not contain any duplicates.

This assumption is needed to guarantee the existence of the
gradients of the terms of Problem (16) that are detailed in
the following proposition.

Proposition 3.3. Let V ∈ Rn×k, and A : V 7→
1

1−α (V + P (i) − αY (i)). Then ϕ⋆(V ) = 1
2 ∥V ∥2 −

1
2 ∥A(V )− V ∥2+ α

2

∥∥A(V )− Y (i)
∥∥2+ ⟨P (i), A(V )⟩ and

g⋆(MV ) = Tr
(√

V ⊤M2V
)

.

Gradient-based techniques for the dual problem. Solv-
ing Problem (16) can be done by using iterative gradient-
based techniques, as all the quantities involved are easy to
compute. Indeed, ϕ⋆ is a quadratic form whose gradient is
trivial and, for g⋆(MV ), we exploit the fact that its gradient
is known in closed-form (Tonin et al., 2023) and expressed
through the SVD of the matrix V ⊤M2V ∈ Rk×k; this SVD

is computationally cheap in the context of a relatively small
number of clusters. Overall, the computational complexity
per iteration associated to the computation of a dual solu-
tion V̂ is bounded by the sum of: (i) the computation of
V ⊤M2V that scales as O(kn2) (ii) the SVD of V ⊤M2V
that costs O(k3) (iii) the matrix products for ∇g⋆(MV ) in
O(nk2 + k3) (iv) the computation of ∇ϕ⋆ that scales as
O(nk). In the experiments, we solve Problem (16) using a
fast L-BFGS optimization algorithm. Note that M2 is not
explicitly computed as one can use the associative property
to perform consecutive multiplications, e.g. V ⊤M2V can
be computed as (V ⊤M)(MV ).

Computing the primal solution. Once the dual solution
V̂ is computed, one can recover the corresponding primal
solution H(i+1) by

max
H∈Rn×k

⟨V̂ ,MH⟩ s.t. H⊤H = Ik. (17)

This step can be performed by H(i+1) = LR⊤ computing
the SVD of the matrix V̂ ⊤M = LSR⊤, with complexity
O(nk2).

3.2. Subproblem with respect to Y

We now turn to solving Problem (14), i.e.

argmin
Y ∈Rn×k

α

2

∥∥∥MH(i+1) − Y
∥∥∥2
F
− ⟨P (i), Y ⟩

s.t. F⊤Y = 0.

(18)

The linear constraints can be removed by using a suitable
parameterization Y = QZ where Q ∈ Rn×(n−h) is the ma-
trix of an orthonormal basis of the nullspace of F⊤ that can
be obtained from the SVD of F similarly to the technique
employed in Section 2.2.1. Then Z ∈ R(n−h)×k is the new
variable, resulting in the problem in Z without linear con-
straints. The problem is solved by nullifying the gradient in
closed-form solution, i.e., Ẑ = Q⊤MH(i+1) + 1

αQ
⊤P (i)

and Y (i+1) = QẐ. The computational complexity in this
step is dominated by matrix-vector products in O(kn2) and
by the SVD of F in O(nh2). We note that this SVD is in
practice fast as h is typically very small.

Complexity analysis. The complete ADMM-like algo-
rithm is summarized in Algorithm 1. The runtime is dom-
inated by matrix multiplication applying M to an n × k
matrix (i.e., the H variable and its dual V ), with complexity
O(n2k), where typically k ≪ n. The improvement is there-
fore in the efficiency of the core operations. In fact, while
for an n× n matrix both matrix multiplication and matrix
eigendecomposition have the same O(n3) complexity, the
former is much more efficient in practice. The proposed
efficient gradient-based algorithm avoids the eigendecompo-
sition routines and is shown to achieve significantly higher
computational efficiency in practice in Section 4.
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Table 1: m-SBM. Runtime and balance for m-SBM bench-
mark with k = 50, h = 5 and varying n.

n Metric o-FSC s-FSC Ours

5000 Time (s) 96.39 75.61 3.29
Balance 1.00 1.00 1.00

7500 Time (s) 235.62 88.99 5.29
Balance 1.0 1.0 1.0

10000 Time (s) 495.70 107.94 9.19
Balance 1.0 1.0 1.0

Convergence analysis. While ADMM convergence is
well-established for convex problems (Eckstein & Bertsekas,
1992; Boyd et al., 2011), obtaining convergence results for
nonconvex problems is an active area of research. Existing
results rely on problem-specific assumptions such as in the
nonconvex consensus setting (Hong et al., 2016), or require
structural properties such as bounded Hessians (Li & Pong,
2015) or continuity (Wang et al., 2019) preventing their
direct application to Problem 6. Other works (Sun et al.,
2018b; Pham et al., 2024) exploit the difference of convex
functions structure but are limited to differentiable convex
functions h with Lipschitz continuous gradient. Finally,
another line of works rely on making additional assump-
tions on the sequence of iterates (Shen et al., 2014; Jiang
et al., 2014; Magnusson et al., 2016), yielding weaker re-
sults. In particular, applying Proposition 3 from Magnusson
et al. (2016) to (11), we characterize the convergence of the
ADMM algorithm as specified in the following proposition,
whose formal details can be found in Appendix D.1.

Proposition 3.4. Provided that the sequence of dual vari-
ables P (i) generated by Algorithm 1 converges, any limit
point (H∗, Y ∗) of the primal sequence (H(i), Y (i)) satisfies
the first-order conditions.

The proof of Proposition 3.4 relies on (i) Problem (11) hav-
ing finitely defined closed constraints sets, (ii) local solu-
tions for subproblems, and (iii) limit solutions enjoying a
regular set of constraint gradient vectors. Beyond theoreti-
cal guarantees, ADMM algorithms have been successfully
applied to a wide array of nonconvex problems in machine
learning, e.g., (Xu et al., 2012; Sun & Fevotte, 2014). Em-
pirical evidence on a wide range of tasks for both synthetic
and real-world datasets presented in the next section demon-
strates the strong practical performances of Algorithm 1.

4. Numerical Experiments
Through numerical evaluations on both synthetic and real-
world datasets, we show the efficiency of the proposed
ADMM-type algorithm with DC dualization for Fair SC.
We compare with the original Fair SC algorithm (o-FSC)
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Figure 2: Fair clustering of Elliptical dataset. The clus-
tering label is represented by different colors, and sensitive
attributes by shapes. The legend is “C-i, G-j” for Cluster-i,
Group-j. These plots show that our method produces as-
signments comparable to exact algorithms (o-FSC, s-FSC).
Critically, we achieve this with reduced computations.

Table 2: Real-world data. Runtime for multiple Fair SC
real-world problems with k = 25.

Dataset n
Time (s)

o-FSC s-FSC Ours

LastFMNet 5576 103.82 19.08 4.59
Thyroid 7200 279.03 30.49 7.38
Census 32561 - 136.60 15.78
4area 35385 - 166.92 25.85

(Kleindessner et al., 2019) and its state-of-the-art scalable
extension (s-FSC) (Wang et al., 2023). We apply the pro-
posed algorithm to problems of different sizes, quantify the
fairness of the computed clusters, and compare solutions
with exact methods. We also study the effect of the number
of clusters k on runtime and conduct a sensitivity analysis
on the penalty parameter α. Experiments are implemented
in Python 3.10 on a machine with a 3.6GHz Intel i7-9700K
processor and 64GB RAM.

Datasets. We consider the following synthetic datasets: m-
SBM, RandLaplace, and Elliptical. The m-SBM benchmark
(Kleindessner et al., 2019) is a modification of the stochas-
tic block model (Holland et al., 1983) to take fairness into
account. It has ground-truth perfectly fair clustering, where
the n nodes are partitioned in h groups and assigned to a
fixed fair clustering with k clusters. In the experiments, we
vary n and set k = 50, h = 5 and edge connectivity prob-
ability as ( logn

n )1/10. The RandLaplace dataset is a graph
induced by a random n× n symmetric adjacency matrix W
with each node randomly assigned to one of h = 2 groups.
Elliptical has k = 2 clusters and h = 2 groups, as defined
in (Feng et al., 2024). We consider the following real-world
datasets, summarized in Table 10 in Appendix. LastFMNet
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(Rozemberczki & Sarkar, 2020) (n = 5576, h = 6) is the
graph of follower relationship between users of the Last.fm
website; the groups correspond to different nationalities.
Thyroid (Quinlan, 1987) (n = 7200, h = 3) contains 21
attributes of patients divided into three groups: not hypothy-
roid, hyperfunction, and subnormal functioning. Census
(Kohavi et al., 1996) (n = 32561, h = 7) contains 12
attributes from 1994 US census data, with 7 groups repre-
senting demographic categories. 4area (Ahmadian et al.,
2019) (n = 35385, h = 4) represents researchers from four
areas of computer science: data mining, machine learning,
databases, and information retrieval. The RBF kernel is
used for Thyroid, Census, and 4area, while the remaining
datasets are given as graphs through Remark 2.3.

Metrics. The average balance, as introduced in
Chierichetti et al. (2017), is used to measure how fair
a clustering is; it is the average over all clusters of (3).
It is a value in [0, 1], where a value of 1 corresponds to
a perfectly fair clustering, i.e., (4) holds. Note that our
approach follows the established line of works on fair
spectral clustering, which do not provide guarantees in the
general case on the balance of the clustering given by (6), as
discussed in Kleindessner et al. (2019), similarly to how the
relaxed spectral clustering only approximates the optimal
normalized cut solution (Shi & Malik, 2000). All reported
running times are averaged over 5 trials. Additional results
and detailed setups are provided in Appendix A and B.

4.1. Experimental results

Synthetic benchmarks. In this experiment, we compute
the Fair SC solution on the m-SBM benchmark (Klein-
dessner et al., 2019) to evaluate the performance and ef-
ficiency of our proposed method. The results are presented
in Table 1. The experiment is carried out for sample sizes
n ∈ {5000, 7500, 10000}. Our method consistently outper-
forms both o-FSC and s-FSC in runtime. For instance, at
n = 10000, our method is approximately 54 times faster
than o-FSC and 12 times faster than s-FSC. In terms of
average balance, recall that Problem 6 is able to recover the
ground-truth fair clustering in m-SBM (Kleindessner et al.,
2019). This is confirmed in the experiments, where the
balance is consistently 1.0 for all three methods across sam-
ple sizes, demonstrating that all methods equally respect
the fairness constraints. We also consider the Elliptical
dataset (Feng et al., 2024) (k = 2, h = 2) and visualize
the found clustering in Figure 2, showing that our method
achieves comparable labels to the exact algorithms.

Real-world data. We now test on real-world datasets to
compare the performance of our proposed method with o-
FSC (Kleindessner et al., 2019) and s-FSC (Wang et al.,
2023). The runtime of the algorithms was measured for a

2 25 50

0

20

40

60

k

Ti
m

e
(s

)

2 25 50

0

0.1

0.2

k

B
al

an
ce

s-FSC Ours

(a) LastFMNet

2 25 50

0

100

200

k

Ti
m

e
(s

)

2 25 50

0.3

0.4

0.5

0.6

k

B
al

an
ce

s-FSC Ours

(b) 4area

Figure 3: Runtime and fairness across k. Fair SC on real-
word datasets (a) LastFMNet, (b) 4area with s-FSC (Wang
et al., 2023) (blue) and the proposed algorithm (orange). In
each dataset, the left plot shows the runtime comparison and
the right plot shows the average balance, for multiple num-
bers k of clusters. Left plots show that our method is con-
sistently faster than s-FSC, with even better efficiency gains
as k increases. Right plots compare the balance achieved by
both methods, showing our method mantains the fairness in
terms of balance of the exact algorithm.

Fair SC problem with k = 25 clusters. As shown in Table 2,
our method consistently outperforms both o-FSC and s-FSC
in terms of runtime across all datasets. For instance, on the
LastFMNet dataset with n = 5576, our method shows a
runtime of 4.59 seconds, which is significantly faster than
both o-FSC (103.82 seconds) and s-FSC (19.08 seconds).
Similar trends are observed for the other datasets, with our
method achieving even higher speedups for larger datasets.
For example, on the 4area dataset with n = 35385, our
method takes 25.85 seconds compared to 166.92 seconds
by s-FSC. Overall, o-FSC cannot complete the task within
500 seconds for the larger datasets (Census and 4area), and
s-FSC takes considerably longer than our method.

Figure 3 compares runtime and average balance of the com-
puted clustering by our method and s-FSC across multiple
numbers of clusters k ∈ [2, 50] on LastFMNet and 4area
datasets. In terms of runtime, we observe that our method
scales better in k than s-FSC, especially in LastFMNet. This
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Figure 4: Scalability. Runtime (in seconds) of our algorithm, s-FSC, and o-FSC on RandLaplace at multiple sample sizes
n ∈ {5000, 7500, 10000} with h = 5 and k ∈ {10, 25, 50}.

Table 3: Comparison of clustering cost, balance, and time
speedup vs. exact algorithm.

Dataset Method Clustering Balance Time

LastFM s-FSC 1.057±.063 0.0105±.0020 4.16×
Ours 1.086±.074 0.0093±.0015 1×

Thyroid s-FSC 0.353±.020 0.0029±.0005 4.13×
Ours 0.353±.018 0.0030±.0004 1×

Census s-FSC 134.539±3.667 0.0004±.0001 8.65×
Ours 130.973±14.371 0.0004±.0001 1×

4area s-FSC 235.268±6.084 0.3884±.0150 6.45×
Ours 242.000±10.303 0.3823±.0200 1×

trend shows that more iterations are needed for convergence
of the additional eigenvectors in the eigendecomposition
routines, while our method involves the computation of the
SVD of a small k × k matrix; in the context of a small
number of clusters, this SVD is computationally cheap. The
plots for each dataset show that our method offers a more
efficient solution for Fair SC on multiple real-world datasets
while achieving comparable average balance than the com-
peting exact algorithm.

We compare our method with the exact approach using
eigendecomposition (s-FSC) in Table 3, where we report
the clustering cost, a standard metric to evaluate spectral
clustering (Shi & Malik, 2000), i.e., Tr(Ĥ⊤MĤ) where
Ĥ is computed from the 0-1 clustering indicator matrix
obtained by applying k-means on H . The results show that
our method consistently achieves comparable clustering
costs and balance to the exact eigendecomposition approach
across all datasets at a fraction of the runtime, with speedups

Table 4: Comparison with methods FFSC and UFSC using
different objectives for fair spectral clustering. Time is in
seconds, “Cost” is the clustering cost, “Fairn.” indicates
the fairness constraint

∥∥F⊤H
∥∥2, and “Ortho.” indicates

the orthogonality constraint
∥∥H⊤H − I

∥∥2. Our method is
significantly faster than both methods, while consistently
achieving better fairness and orthogonality than FFSC.

Dataset Method Time (↓) Cost (↓) Balance (↑) Fairn. (↓) Ortho. (↓)

LastFM
FFSC 33.74 1067.91 0.2701 4.032 3.91E+00
UFSC 16.36 3.54 0.016 1.21E-24 4.13E-13
Ours 4.59 1.09 0.0093 0.000014 1.36E-11

Thyroid
FFSC 56.11 3080.85 0.0170 15.79 1.02E+01
UFSC 95.08 0.94 0.0026 1.25E-24 3.77E-10
Ours 7.38 0.35 0.0030 0.000001 2.18E-11

Census
FFSC 193.92 146669.89 0.0051 9.47 2.14E+00
UFSC timed out
Ours 15.78 130.97 0.0004 0.000012 4.12E-10

4area FFSC 237.35 285174.39 0.6403 58.30 2.66E+00
UFSC timed out
Ours 25.85 242.00 0.3823 0.000001 4.22E-10

between 4− 8× faster than SOTA (Wang et al., 2023).

Scalability in RandLaplace. We use the RandLaplace
dataset to illustrate the scalability of our method. Figure 4
presents the runtime of our method, s-FSC, and o-FSC for
different sample sizes n ranging from 5000 to 10000 with
varying numbers of clusters k ∈ {10, 25, 50}. Our method
requires less time than both compared methods across all
clusters and sample sizes. These findings suggest that our
method better scales with increasing sample size and cluster
numbers, demonstrating the practicality of our method for
real-world problems of varying sizes.
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Table 5: Sensitivity analysis of penalty parameter α.

α Iter. Cost Bal. Fairn. Constr. Ortho. Constr.

0.005 9.0±.63 25.98±.004 1.0±.0 7.82e-08±5.49e-08 1.05e-14±6.55e-16

0.01 7.6±.49 25.99±.001 1.0±.0 8.86e-08±1.82e-08 1.07e-14±5.55e-16

0.05 6.6±.49 26.09±.001 1.0±.0 2.30e-07±7.82e-08 1.02e-14±6.73e-16

0.1 5.4±.49 26.06±.001 1.0±.0 1.27e-06±5.84e-07 9.92e-15±5.66e-16

Comparative analysis with other spectral methods. We
compare with different formulations of spectral clustering
with fairness constraints that deviate from (6) for compre-
hensive analysis. In particular, FFSC (Feng et al., 2024)
and UFSC (Zhang & Wang, 2024) do not adopt the prob-
lem of (Kleindessner et al., 2019). FFSC instead introduces
fairness by changing the SC objective with a different regu-
larization term. UFSC learns an induced fairer graph where
eigendecomposition is applied. Comparative results are
shown in Table 4. Our method is 7−12× faster and achieves
significantly better spectral clustering cost. FFSC’s modi-
fied objective shows a different balance-clustering trade-off
with higher balance but worse clustering and group fairness.
Note the two different measures of fairness, where balance
promotes same number of individuals in each cluster (3),
and group fairness ensures proportional representation (4).
Overall, these methods’ solutions are far from the exact one
of (6) leading to higher spectral cost, potential instability
when orthogonality is not enforced, and longer runtimes.

Sensitivity analysis of α. We conduct a sensitivity analy-
sis of our algorithm w.r.t. the ADMM penalty parameter α.
Table 5 presents key indicators obtained on the RandLaplace
dataset with n = 1000, k = 25 over 5 runs, detailing how
varying the initial α influences the number of ADMM it-
erations, the final objective cost, the attained balance, and
the final feasibility of the orthogonality and linear fairness
constraints. All tested α values lead to solutions with similar
final cost and constraint satisfaction, as well as perfect bal-
ance (1.0) for the studied dataset. This observation suggests
that our algorithm is robust to changes in α. As α increases,
the faster convergence due to higher penalty on primal feasi-
bility comes at the cost of slightly worse fairness constraint
satisfaction. Given this slight decrease with larger α, in our
experiments we opt for a smaller α(0) = 0.005 and update
it as detailed in Appendix B.

5. Conclusion
We design a significantly faster algorithm for Fair SC than
previous state-of-the-art. Our main contributions lie in (i)
reformulating the Fair SC problem into a differences of con-
vex functions problem where we avoid expensive matrix
routines using M2 instead of M1/2, and (ii) showing that
the ADMM subproblems can be solved efficiently, thanks to
the DC dualization enabled by our design choice of includ-

ing the fairness constraints as MH instead of H . Empiri-
cal evaluations show significant speedups with comparable
clustering and fairness metrics to exact algorithms. Fu-
ture works include investigating model-based formulations
within kernel-based settings and applying our framework
to more general constrained spectral clustering by accom-
modating other constraints whenever the DC formulation
is maintained. For example, it might be possible to extend
our framework to constrained spectral clustering, e.g., lin-
ear constraints for must-link and cannot-link constraints, by
considering a modified indicator function h(·), accomodat-
ing other constraints or fairness metrics as DC functions.
ADMM could then be applied with appropriate modifica-
tions to the subproblem w.r.t. Y .

Impact Statement
A faster fair spectral clustering algorithm can have a signif-
icantly positive societal impact as it can facilitate a more
widespread adoption of fairer clusterings in applications
with larger real-word datasets. The approach presented in
this paper aims at advancing the field of Machine Learning.
No other potential societal consequences of our work are
deemed necessary to specifically highlight here.
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A. Additional experimental results
A.1. Real-world data
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Figure 5: Fair spectral clustering on LastFMNet with s-FSC (Wang et al., 2023) (blue) and the proposed algorithm (orange).
The plot uses the same structure as Figure 3 in the main body.
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Figure 6: Fair spectral clustering on Thyroid with s-FSC (Wang et al., 2023) (blue) and the proposed algorithm (orange).
The plot uses the same structure as Figure 3 in the main body.

In this experiment, we evaluate the runtime and average balance of the proposed algorithm for Fair SC on the real-world
datasets summarized in Table 10. The affinity graphs for Thyroid, Census, and 4area are obtained by a radial basis
function (RBF) kernel k(xi, xj) = exp(−γ ∥xi − xj∥2), where γ = 1/d and γ = 1/d ∗ 0.01 for the smaller Thyroid, with
xi ∈ Rd, i = 1, . . . , n. We compare with the fastest available Fair SC algorithm, i.e., s-FSC from (Wang et al., 2023). Here,
we report the complete results for the LastFMNet, Thyroid, 4area, and Census datasets in Figures 5 to 8.

We compare the runtime and average balance of the computed clustering across multiple numbers of clusters k ∈ {2, . . . , 50}.
Our method consistently outperforms state-of-the-art s-FSC in terms of runtime across all datasets while maintaining
approximately the same level of balance. Our method overall scales better in k than s-FSC, especially in LastFMNet.
Both methods require a longer time for larger k values. s-FSC requires more iterations for convergence of the additional
eigenvectors in the eigendecomposition routines, while our method involves the computation of the SVD of a small k × k
matrix; this is computationally cheap for a small number of clusters, which is usually the case in applications. Our method
also involves the MH matrix product with complexity O(n2k) for dense M ; however, matrix multiplication is in practice
significantly more efficient than the eigendecomposition. In terms of average balance, the clustering computed by our
method achieves approximately the same balance to s-FSC. Balance on Thyroid and Census is low for both algorithms,
which means that, in the Fair SC clustering, some groups are under-represented across multiple clusters. Overall, our method
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Figure 7: Fair spectral clustering on 4area with s-FSC (Wang et al., 2023) (blue) and the proposed algorithm (orange). The
plot uses the same structure as Figure 3 in the main body.
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Figure 8: Fair spectral clustering on Census with s-FSC (Wang et al., 2023) (green) and the proposed algorithm (blue). The
plot uses the same structure as Figure 3 in the main body.

offers a more efficient solution for Fair SC on real-world datasets, without compromising the fairness of the results w.r.t. the
exact Fair SC solution. This makes it a promising choice for applications where both efficiency and fairness are crucial.

A.2. Scalability in RandLaplace

In this experiment, we employ the RandLaplace dataset to evaluate the scalability of our proposed algorithm w.r.t. sample
size n at different k. The RandLaplace dataset is generated by a random n × n symmetric adjacency matrix and h = 2
protected groups randomly assigned according to a Bernoulli distribution with probability 0.3. The performance comparison
between our approach and the existing Fair SC methods, o-FSC (Kleindessner et al., 2019) and s-FSC (Wang et al., 2023),
is depicted in Figure 4 and reported for completeness in Table 6 here. The results show that our algorithm outperforms
the compared ones in terms of computational time for all tested sample sizes and cluster sizes. These results indicate that
our algorithm exhibits superior scalability as the data size and number of clusters increase, underscoring our enhanced
applicability for larger-scale problems.

A.3. Additional visualizations on synthetic data

We provide additional figures of the clustering results to illustrate the effectiveness of our method to preserve the clustering
structure while satisfying the fairness constraints. We consider the 2D datasets from (Feng et al., 2024): the Elliptical
dataset with k = 2, h = 2 and the DS-577 dataset with k = 3, h = 3. Figure 9 shows the clustering results on the Elliptical
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Table 6: Running time in seconds for the RandLaplace dataset with different configurations (number of samples n ∈
{5000, 7500, 10000} and clusters k ∈ {10, 25, 50}). Standard deviations in parentheses.

(a) k = 10, h = 5

n o-FSC s-FSC Ours

5000 68.12 (2.48) 4.00 (0.09) 3.50 (0.10)
7500 199.72 (3.20) 11.22 (0.27) 4.42 (0.12)
10000 454.68 (5.50) 23.99 (0.31) 5.93 (0.23)

(b) k = 25, h = 5

n o-FSC s-FSC Ours

5000 71.58 (2.0) 8.73 (0.30) 3.84 (0.09)
7500 204.72 (4.62) 28.10 (2.25) 4.52 (0.16)
10000 481.18 (6.91) 42.93 (3.91) 5.93 (0.10)

(c) k = 50, h = 5

n o-FSC s-FSC Ours

5000 99.41 (3.0) 32.52 (2.11) 3.85 (0.09)
7500 233.97 (8.35) 43.66 (7.36) 5.29 (0.11)
10000 508.63 (9.78) 74.94 (7.62) 7.70 (0.16)

Table 7: Running time in seconds (average and standard deviation over 5 runs) for the m-SBM benchmark from Table 1 and
the considered real-world datasets from Table 2.

Dataset Time (s)

o-FSC s-FSC Ours

m-SMB (n = 5000) 96.39 (3.62) 75.61 (2.58) 3.29 (0.11)
m-SMB (n = 7500) 235.62 (4.48) 88.99 (4.35) 5.29 (0.21)
m-SMB (n = 10000) 495.70 (9.49) 107.94 (5.10) 9.19 (0.36)
LastFMNet 103.82 (2.87) 19.08 (1.96) 4.59 (0.30)
Thyroid 279.03 (4.21) 30.49 (3.17) 7.38 (0.16)
Census - 136.60 (0.69) 15.78 (1.06)
4area - 166.92 (0.73) 25.85 (1.4)

dataset (top) and the DS-577 dataset (bottom). These plots show that our method produces assignments comparable to
exact algorithms (o-FSC,s-FSC). Critically, we achieve this with reduced computations, as shown in the main paper, which
constitutes our main contribution.

A.4. Additional metrics and dataasets

In main body, we follow the setups of (Kleindessner et al., 2019; Wang et al., 2023) and report the average balance. For
completeness, we also report the minimum balance for Table 2 with k = 25 in Table 8.

Table 8: Minimum balance for the considered real-world datasets from Table 2.

Dataset Time (s-FSC) Time (Ours) Min. Balance (s-FSC) Min. Balance (Ours)

LastFM 19.08 4.59 0.0027 0.0029
Thyroid 30.49 7.38 0.0011 0.0012
Census 136.60 15.78 0.0001 0.0001
4area 166.92 25.85 0.1582 0.1517

We also evaluate on the common FacebookNet dataset (Wang et al., 2023) that collects Facebook friendship links with
n = 155, h = 2. We show results in Table 9. These results further demonstrates the computational advantage of our method,
while achieving similar clustering quality to exact algorithms.
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Figure 9: Clustering results on synthetic datasets. The top panel shows the Elliptical dataset with k = 2, h = 2, and the
bottom panel shows the DS-577 dataset with k = 3, h = 3. Our method preserves the clustering structure while satisfying
fairness constraints.

Table 9: Running time in seconds for the FacebookNet dataset with balance and spectral clustering cost.

#Clusters Method Time (s) Balance SC Cost

2 o-FSC 0.798 1.00 0.126
2 s-FSC 0.193 1.00 0.126
2 Ours 0.055 1.00 0.133
25 o-FSC 9.908 0.84 14.114
25 s-FSC 6.422 0.84 14.114
25 Ours 0.131 0.84 14.128
50 o-FSC 12.243 0.58 37.084
50 s-FSC 11.558 0.58 37.084
50 Ours 0.215 0.58 37.100

B. Additional experimental details
Experimental setups. Regarding optimization of the dual DC problem, we employ the LBFGS algorithm in the scipy
implementation with backtracking line search using the strong Wolfe conditions with initialization from the standard
normal distribution; the stopping condition is given by gtol = 10−3,ftol = 10−4. The ADMM algorithm is run with
α(0) = 0.005, T = 10. The compared methods o-FSC (Kleindessner et al., 2019) and s-FSC (Wang et al., 2023) employ the
scipy eigendecomposition routine. For s-FSC, we use

∥∥∥L̂∥∥∥
1

as shift, as suggested in their paper. The k-means algorithm
is run to obtain the clustering indicators for all compared methods. The real-world datasets used in the experiments are
summmarized in Table 10.

The update rule for α in Algorithm 1 is standard in ADMM (Boyd et al., 2011) and is given by

α(i+1) =


τα(i) if

∥∥R(i)
∥∥
F
> µ

∥∥S(i)
∥∥
F

α(i)/τ if
∥∥S(i)

∥∥
F
> µ

∥∥R(i)
∥∥
F

α(i) otherwise
, (19)

with primal and dual residuals R(i) =MH(i) − Y (i) and S(i) = α(i)(Y (i) − Y (i+1)). The parameters τ and µ are set to 2
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Table 10: Description of the real-world datasets used for the experiments.

Dataset Samples (n) Groups (h) Group type

LastFMNet 5576 6 Nationality
Thyroid 7200 3 Disease
Census 32561 7 Demographic
4area 35385 4 Research field

and 10, respectively.

C. Additional discussions on related works
Our method follows the established line of work on Fair SC, which enforces fairness via linear constraints in the embed-
ding (Kleindessner et al., 2019; Wang et al., 2023). There exist other spectral clustering methods that do not follow this line
of work and enforce fairness via different means. (Feng et al., 2024) introduce fairness by changing the SC objective with a
different fairness regularization term; they do not employ the group-fairness constraint F⊤H = 0. They apply coordinate
descent to this new objective where they relax the discrete clustering indicator constraint without orthogonality constraints
H⊤H = I . Therefore, (Feng et al., 2024) solves a different problem than (6): their solution is far from the exact one leading
to higher spectral cost and potential training instability. Another related work is (Zhang & Wang, 2024). Our work designs a
much faster method for the existing Fair SC problem defined in (Kleindessner et al., 2019). (Zhang & Wang, 2024) instead
focuses on improving fairness and is orthogonal to our algorithmic contribution: it learns an induced fairer graph where Fair
SC is applied. Future work could combine our method on top of (Zhang & Wang, 2024) by applying our faster algorithm to
their learned graph.

Other works on fair clustering include (Bera et al., 2019b; Backurs et al., 2019), which are not directly comparable to our
work as they do not consider the spectral clustering objective. (Bera et al., 2019b) propose LP-based k-(means, median,
center) clustering. Using their formulation in our work would ignore the RatioCut objective, resulting in suboptimal solutions
wr.t. the spectral objective. (Backurs et al., 2019) use fairlets for prototype-based clustering. However, extending the fairlet
analysis, which relies on the k-median and k-center cost of the fairlet decomposition, to the spectral setting is not trivial.
SC involves a spectral embedding step followed by a clustering in the embedding space, where reassigning points within
a fairlet can significantly alter the spectral embedding and hence potentially violating fairness, making it non-trivial to
incorporate their analysis in the fair SC case. The primary contribution of our present work is to design a significantly faster
method for the already established Fair SC problem defined in (Kleindessner et al., 2019), rather than designing alternative
fair clustering problems.

D. Proofs and derivations
D.1. Proofs of Assumptions of Proposition 3.4

We prove the convergence result from Proposition 3.4 by applying Proposition 3 from Magnusson et al. (2016) to our
specific ADMM structure. There they consider problems of the form

min
x,z

u(x) + v(z) (20)

s.t. x ∈ X , z ∈ Z (21)
Ax+Bz = c. (22)

We can already cast Problem 11 into this structure by letting

• X = Sk
n and u(x) = −f(Mx)

• Z = {z ∈ Rn×k | F⊤Y = 0} and v(z) = 0

• A =M , B = −I and c = 0.
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To apply their result, we verify that four key assumptions hold, namely Assumption D.1, Assumption D.2, Assumption D.4
and Assumption D.5 that can be found in Magnusson et al. (2016).

Assumption D.1. The functions u and v are continuously differentiable.

This is satisfied in our setting.

Assumption D.2. The sets X and Z are closed and can be expressed in terms of a finite number of equality and inequality
constraints. In particular,

X = {x ∈ Rn×k | ψ(x) = 0, ϕ(x) ≤ 0} (23)

Z = {z ∈ Rn×k | θ(z) = 0, σ(z) ≤ 0} (24)

where ψ, ϕ, θ, σ are continuously differentiable functions.

This is clear from the definition of the spaces X and Z , a proof is provided for the case of the Stiefel manifold in the
following lemma.

Lemma D.3 (Smooth Representation of Orthogonal Matrix Constraints). . Let A ∈ Rn×m be a matrix satisfying the
orthogonality constraint A⊤A = Im, where Im denotes the m×m identity matrix. Then there exists a smooth function
ψ : Rnm → Rm(m+1)/2 such that the constraint can be equivalently expressed as

{x ∈ Rnm : ψ(x) = 0},

where x = vec(A) is the vectorization of matrix A.

Proof. Let x ∈ Rnm denote the vectorization of matrix A obtained by column-wise stacking:

x =



a11
...
an1
a12

...
anm


.

Under this vectorization scheme, the (k, j)-th element of A corresponds to the ((j − 1)n + k)-th component of x, i.e.,
akj = x(j−1)n+k. The orthogonality constraint A⊤A = Im is equivalent to requiring that the columns of A form an
orthonormal system. Specifically, for all 1 ≤ i ≤ j ≤ m:

n∑
k=1

akiakj = δij ,

where δij denotes the Kronecker delta. Expressing this constraint in terms of the vectorized representation x, we obtain:

n∑
k=1

x(i−1)n+kx(j−1)n+k = δij .

We now define the function ψ : Rnm → Rm(m+1)/2 with components:

ψij(x) =

n∑
k=1

x(i−1)n+kx(j−1)n+k − δij , 1 ≤ i ≤ j ≤ m.

The orthogonality constraint A⊤A = Im is then equivalent to the condition ψ(x) = 0. To establish smoothness, observe that
each component ψij(x) is a quadratic polynomial in the elements of x. Since polynomial functions possess derivatives of all
orders, each ψij is smooth (i.e., C∞). Consequently, the vector-valued function ψ is smooth. Therefore, the orthogonality
constraint on matrix A admits a smooth representation.
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Assumption D.4. At every step from Algorithm 1, the solutions of sub-Problem 13 and sub-Problem 14 computed are
locally or globally optimal.

This assumption allows solutions to the subproblems to be only locally optimal. In our case, both subproblems allow global
optimality.

Assumption D.5. Let L denote the set of limit points of the sequence {xi := H(i), zi = Y (i)}i∈N and let (x̄, z̄) ∈ L. The
set of constraint gradient vectors at x̄,

CX (x̄) = {∇ψi(x̄)|i = 1, . . . ,dimψ} ∪ {∇ϕi(x̄)|i s.t. ϕi(x̄) = 0} (25)

associated to X is linearly independent. Similarly, the set of constraint gradient vectors CZ(z̄) is linearly independent.

This assumption is a regularity assumption that is usually satisfied in practice according to Magnusson et al. (2016). The
following lemmas are dedicated to proving that it holds in our case.

Lemma D.6 (Linear Independence of Orthogonal Constraint Gradients). Let x ∈ Rnm be identified with the matrix
A ∈ Rn×m, where Api = xpi for p = 1, . . . , n and i = 1, . . . ,m. Define ψij(x) =

∑n
p=1 xpixpj − δij for 1 ≤ i ≤ j ≤ m.

Let C(x) = {∇xψij(x)|1 ≤ i ≤ j ≤ m}. If ATA = I , then C(x̄) is linearly independent at x̄.

Proof. Suppose there exist scalars λij (with λij = λji) such that∑
1≤i≤j≤m

λij∇xψij(x̄) = 0.

Let Λ be the m×m symmetric matrix with entries Λij = λij . Define the scalar function

f(A) =
∑

1≤i≤j≤m

λijψij(x) =

m∑
i,j=1

λij
2

(aTi aj − δij) =
1

2
Tr(Λ(ATA− I)),

where ai denotes the i-th column of A. For any perturbation H ∈ Rn×m, the directional derivative of f at A in the direction
of H is

Df(A)[H] =
1

2
Tr(Λ(HTA+ATH))

= Tr(HTAΛ)

= ⟨vec(H), vec(AΛ)⟩.

By the chain rule, and since we assumed
∑
λij∇xψij(x̄) = 0, we have

Df(A)[H] =

〈 ∑
1≤i≤j≤m

λij∇xψij(A), vec(H)

〉
= 0, ∀H.

This implies vec(AΛ) = 0, and hence AΛ = 0. Since ATA = I at x̄, A has full column rank, and thus Λ = 0. This implies
λij = 0 for all i, j. Therefore, the only linear combination of the gradients ∇xψij(x̄) that equals zero is the trivial one,
which proves that C(x̄) is linearly independent.

Lemma D.7. Let F ∈ Rn×h and H ∈ Rn×k. Define z = vec(H) ∈ Rnk and consider the constraint F⊤H = 0. Let
θ(z) = vec(F⊤H) ∈ Rhk. The set of constraint gradients

C(z) = {∇zθi(z) | i = 1, . . . , hk}

is linearly independent at any z̄ such that F⊤H = 0 whenever F has full column rank.

Proof. Using the Kronecker product identity vec(AB) = (I ⊗A) vec(B), we can express θ(z) as:

θ(z) = (Ik ⊗ F⊤)z =Mz,
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where M = Ik ⊗ F⊤ ∈ Rhk×nk.

Since θ(z) is linear, its Jacobian is the constant matrix M . The gradient of the i-th component of θ(z), denoted ∇zθi(z), is
the i-th row of M transposed. Thus, the set C(z) consists of the rows of M .

The rows of M are linearly independent if and only if M has full row rank, which is hk. We have:

rank(M) = rank(Ik) rank(F
⊤) = k rank(F ).

Therefore, rank(M) = hk if and only if rank(F ) = h. This means the gradients in C(z) are linearly independent if and
only if F has full column rank (if rank(F ) = h). For instance, this is the case in the Fair SC problem when h is set to be the
number of groups minus 1 (Wang et al., 2023). This can be guaranteed by solving (6) with F := F [:, : h− 1], i.e., removing
the last column of F , which guarantees that rank(F ) = h− 1 with same range (Wang et al., 2023). This holds regardless of
the order of the groups (Wang et al., 2023).

D.2. Derivation of Problem 6

In this subsection, we review the derivation of the fair spectral clustering problem (6). First, recall that spectral clustering
aims at partitioning D into k clusters by minimization of a normalized cut objective, as detailed in (Shi & Malik, 2000;
Von Luxburg, 2007). The spectral clustering problem is defined as

min
T∈Rn×k

Tr(T⊤LT ) s.t. T⊤DT = Ik. (26)

Because of the normalized cut objective, Problem 26 is also often referred to as the normalized spectral clustering
problem, to distinguish it from the spectral clustering problem with mincut criterion without normalization. By substituting
T = D−1/2H in Problem 26, we obtain the equivalent problem in terms of the normalized Laplacian L̂:

min
H∈Rn×k

Tr(H⊤L̂H) s.t. H⊤H = Ik. (27)

Solving the spectral clustering problem amounts to finding the k eigenvectors of L̂ corresponding to the k smallest
eigenvalues and then applying k-means clustering to the rows of D−1/2H . The fair spectral clustering problem is obtained
by adding the fairness constraint (5) to the spectral clustering problem (26):

min
T∈Rn×k

Tr(T⊤LT ) s.t. T⊤DT = Ik, F⊤
0 T = 0. (28)

By substituting T = D−1/2H as above, we obtain the equivalent Fair SC problem in terms of the normalized Laplacian L̂:

min
H∈Rn×k

Tr(H⊤L̂H) s.t. H⊤H = Ik, F⊤H = 0, (29)

where F = D−1/2F0. Now, we have that for all H ∈ Rn×k,

Tr(H⊤L̂H) = Tr
(
H⊤H

)
− Tr

(
H⊤D−1/2WD−1/2H

)
= Tr

(
H⊤H

)
− Tr

(
H⊤MH

)
.

On the Stiefel manifold, the quantity Tr
(
H⊤H

)
is constant so that the minimizers of Problem 29 are the maximizers of

Problem 6.

D.3. Proof of Proposition 3.2

Proof. Expanding ϕ(MH) to recover the expression of the augmented Lagrangian shows that H 7→ ϕ(MH) is convex as
long as α < 1. Then, following Proposition 3.1 from (Tonin et al., 2023), equivalently we can write the problem as

inf
H∈Rn×k

[
g(H)− sup

V ∈Rn×k

{⟨V,MH⟩ − ϕ∗(V )}
]
= inf

H∈Rn×k
g(H) + inf

V ∈Rn×k
{ϕ∗(V )− ⟨V,MH⟩} (30)

= inf
H∈Rn×k,V ∈Rn×k

g(H) + ϕ∗(V )− ⟨V,MH⟩ (31)

= inf
V ∈Rn×k

ϕ∗(V )− sup
H∈Rn×k

{⟨MV,H⟩ − g(H)} (32)

= inf
V ∈Rn×k

ϕ∗(V )− g∗(MV ), (33)
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where we used the self-adjointness of M .

D.4. Proof of Proposition 3.3

Proof. We begin by the derivation of ϕ⋆(V ):

ϕ⋆(V ) = sup
Z

{⟨V,Z⟩ − ϕ(Z)} (34)

= sup
Z

{⟨V,Z⟩ − 1

2
∥Z∥2 + ⟨P,Z⟩+ α

2
∥Z − Y ∥2} (35)

= sup
Z

{−1

2
∥Z − V ∥2 + 1

2
∥V ∥2 + ⟨P,Z⟩+ α

2
∥Z − Y ∥2} (36)

=
1

2
∥V ∥2 − inf

Z
{1
2
∥Z − V ∥2 − ⟨P,Z⟩ − α

2
∥Z − Y ∥2}. (37)

By nullifying the gradient in Z, we find that the critical point Ẑ satisfies Ẑ = η(V + P − αY ), where η = 1
1−α , which in

turn gives

ϕ⋆(V ) =
1

2
∥V ∥2 − 1

2
∥η(V + P − αY )− V ∥2 (38)

+ ⟨P, η(V + P − αY )⟩ (39)

+
α

2
∥η(V + P − αY )− Y ∥2 . (40)

We now prove that g⋆(MV ) = Tr
(√

V ⊤M2V
)

by using that the Fenchel-Legendre conjugate of g is the Schatten 1-norm,

also called the nuclear norm: g⋆(U) =
∑k

i=1 |λ(U)i| := ∥U∥S1
. We then have

sup
H⊤H⪯Ik

⟨MV,H⟩ = ∥MV ∥S1
= Tr

(√
V ⊤M2V

)
, (41)

where the last equality is obtained by exploiting the SVD of MV .
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